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ABSTRACT: Recent record-breaking wildfire seasons in California prompt an investigation into the climate patterns that
typically precede anomalous summer burned forest area. Using burned-area data from the U.S. Forest Service’s Monitoring
Trends in Burn Severity (MTBS) product and climate data from the fifth major global reanalysis produced by the European
Centre for Medium-Range Weather Forecasts (ERA5) over 1984–2018, relationships between the interannual variability of
antecedent climate anomalies and July California burned area are spatially and temporally characterized. Lag correlations
show that antecedent high vapor pressure deficit (VPD), high temperatures, frequent extreme high temperature days, low
precipitation, high subsidence, high geopotential height, low soil moisture, and low snowpack and snowmelt anomalies all cor-
relate significantly with July California burned area as far back as the January before the fire season. Seasonal regression
maps indicate that a global midlatitude atmospheric wave train in late winter is associated with anomalous July California
burned area. July 2018, a year with especially high burned area, was to some extent consistent with the general patterns re-
vealed by the regressions: low winter precipitation and high spring VPD preceded the extreme burned area. However, geopo-
tential height anomaly patterns were distinct from those in the regressions. Extreme July heat likely contributed to the extent
of the fires ignited that month, even though extreme July temperatures do not historically significantly correlate with July
burned area. While the 2018 antecedent climate conditions were typical of a high-burned-area year, they were not extreme,
demonstrating the likely limits of statistical prediction of extreme fire seasons and the need for individual case studies of ex-
treme years.

SIGNIFICANCE STATEMENT: The purpose of this study is to identify the local and global climate patterns in the
preceding seasons that influence how the burned summer forest area in California varies year-to-year. We find that a
dry atmosphere, high temperatures, dry soils, less snowpack, low precipitation, subsiding air, and high pressure centered
west of California all correlate significantly with large summer burned area as far back as the preceding January. These
climate anomalies occur as part of a hemispheric scale pattern with weak connections to the tropical Pacific Ocean. We
also describe the climate anomalies preceding the extreme and record-breaking burned-area year of 2018, and how
these compared with the more general patterns found. These results give important insight into how well and how early
it might be possible to predict the severity of an upcoming summer wildfire season in California.

KEYWORDS: Atmosphere–land interaction; Climate variability; Forest fires; Hydrologic cycle; North America;
Wildfires

1. Introduction

As a natural part of the coupling between climate and vegeta-
tion ecosystems, widespread wildfires have occurred for as long
as Earth’s atmosphere has contained sufficient oxygen to sup-
port burning and the land surface has had sufficient fuel load
from vegetation (∼350 million years ago) (Scott and Glasspool
2006). Historically, when humans move into a fire ecosystem,
we influence that region’s fire regime: in the western United
States, this began as precolonial indigenous people con-
trolling fires locally and igniting fires for management of
the land (Anderson 2006; van Wagtendonk 2007). When
European colonizers decimated the Native population, be-
gan logging forests and tilling grasslands, and brought live-
stock to graze, the vegetation and fire regime in the west

were altered significantly. In the early twentieth century, the
U.S. Forest Service (USFS) set out to completely suppress all
fires on USFS land (Marlon et al. 2012; van Wagtendonk 2007).
This suppression has allowed for the accumulation of fuel load
in regions where fires were heavily suppressed such that a “fire
deficit” has developed in these regions, and burned area is thus
less constrained by fuel amount (Marlon et al. 2012; Williams
et al. 2019). Additionally, the dramatic increase in burned area
in the western United States over the latter half of the twentieth
century has been confidently linked to increased aridity and
reduced summer soil moisture, in part due to anthropogenic
warming (Williams et al. 2019; Abatzoglou and Williams 2016;
Westerling et al. 2006; Holden et al. 2018).

In addition to the increase in burned area over recent deca-
des in the western United States, there is strong year-to-year
variability in wildfire activity, and California’s more severe
wildfire seasons in particular have achieved widespread noto-
riety due to the death and destruction they have effected in
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recent years, as well as their deleterious effect on air quality
in the state (Phuleria et al. 2005; Wegesser et al. 2009; Shi et al.
2019). The 2018 wildfire season in California was devastating
and record-breaking by measure of deaths, burned area, and
structures destroyed (CALFIRE 2021; Herring et al. 2020).
This was followed by the relatively quiet 2019 fire season, and
then 2020, another record-setting fire season that burned almost
4% of the state (Higuera and Abatzoglou 2021). 2021 was yet
another extreme wildfire season for California, with total
burned area exceeding that of the 2018 season (CALFIRE
2021). Such extreme and destructive wildfire seasons prompt a
diagnosis of the possible drivers in previous months and seasons
of the interannual variability of California burned area. In this
study we focus on this interannual variability, which is likely
connected to regional- and hemispheric-scale climate variability
and influenced by variability in the preceding summer, spring,
and, possibly, winter.

Previous studies have found relationships between burned
area in the western United States and local antecedent in situ
climate variables such as soil moisture, vapor pressure deficit
(VPD) and precipitation (Abatzoglou and Kolden 2013;
Westerling et al. 2003; Crimmins and Comrie 2004; Williams
et al. 2015). In this study, we go further to explore the rela-
tionships between summer California burned forest area vari-
ability and variability in atmospheric circulation and sea
surface temperatures and examine the roles of these drivers
in one particularly destructive fire season. While several varia-
bles exist for evaluating operational fire risk on synoptic
scales, such as the Fosberg fire weather index (Fosberg 1978)
and 1000-h fuel moisture (Cohen and Deeming 1985), our
purpose is to relate summer burned forest area with anteced-
ent atmospheric conditions on a seasonal and interannual
basis. Hence, we focus primarily on monthly and seasonal
anomalies in common atmospheric and hydrological predic-
tors of forest fire in this region. In particular, we use VPD
rather than operational fire risk variables because on interan-
nual time scales, summer burned area in California has been
found to correlate better with VPD than other integrative
moisture-balance metrics (Williams et al. 2019). Similarly,
Williams et al. (2014) studied the large-scale climate condi-
tions that caused the extreme atmospheric aridity linked to
the extreme 2011 wildfire season in the southwestern United
States. The causes of the extreme 2018 wildfire season in
California deserve such an investigation.

The fire season in California typically runs from May
through November, and burned forest area reaches a maxi-
mum for fires ignited in July and August (Fig. 1). Summer fires
in California are often enabled by fuel supply and atmo-
spheric moisture deficits and are thus more susceptible to
the climate conditions in antecedent months than fall fires.
Wildfires in autumn are often driven by extreme offshore
wind events, such as the Santa Ana winds that bring dry air
downslope, westward and southward, from the Transverse
and Peninsular Ranges. These winds can promote the rapid
spread of existing wildfires (Williams et al. 2019; Westerling
et al. 2003; Keeley and Fotheringham 2001). The yearly
burned forest area by fires ignited in July have a large
amount of year-to-year variability and July of 2018 was

extreme in comparison with all previous Julys since at least
1984 (Fig. 2). Precipitation deficits and atmospheric aridity are
also more influential on summer fire extent in forested ecosys-
tems than nonforest ecosystems (Abatzoglou and Kolden
2013; Williams et al. 2019). 79% of summer fires from 1992 to
20181 in California were nonforest fires, whereas about 49%
of burned area was nonforest. In the summer season of 2018,
78% of fires were nonforest, while only 31% of burned area
was nonforest. Specifically, for fires ignited in July 2018, 74%
of fires were nonforest and 35% of burned area was nonforest.
Additionally, the percentage of California summer burned
area occurring in forested regions has increased significantly in
recent decades (Williams et al. 2019). Thus, in this study we
characterize the antecedent sequences of climate anomalies
that are robustly linked to California burned forest area in
July and compare these sequences with the climate conditions
leading up to the extreme fire season of 2018.

2. Data and methods

a. Burned forest area and lightning data

The burned-area data used are from the U.S. Forest Serv-
ice’s Monitoring Trends in Burn Severity (MTBS) product
(Finco et al. 2012), reprocessed onto monthly 1 km 3 1 km
grid cells, for the period 1984–2018. Burned area in the MTBS
product is for all land surface types, and for the monthly grids,
the burned area is assigned to the month during which the fire
attributed to that burn began. The MTBS product contains
fires.404 ha, and fires classified as “prescribed” are excluded
from the dataset. We approximate a monthly burned forest
area time series by multiplying the burned area in each grid
cell by the forest-cover fraction in that cell. The forest-cover
fractions are calculated from the National Land Cover Data-
base (NLCD) (Homer et al. 2012). The NLCD produced
eight land-cover products from 1992 to 2016, from which we
produced 1-km grids of forest fractional cover. We then make
a single map of forest fraction by assigning to each grid cell
the maximum forest fraction value among the eight versions
of the dataset, because this is most likely to best represent
prefire forest coverage in each grid cell. For all analyses,
the burned forest area is summed over all California grid
cells to create a time series of monthly total burned forest
area in California. We chose to work with burned-area
data directly, rather than the logarithm of burned area as
in Williams et al. (2019), because both the distributions of
July California burned forest area and logarithm of July
California burned forest area are relatively normal (with
respective skews of 2.5 and 22.5 and kurtoses of 8.2 and
9.8 after detrending), and the resulting correlation coeffi-
cients in section 3 are stronger using burned forest area
than the logarithm of burned forest area.

For analyses of lightning and human ignition events and
other background information on individual fires, we also use
the dataset of western U.S. fires from Short (2017), which

1 Summer is defined as May–September, and here we use the
dataset of individual fires from Short (2017).

J OURNAL OF AP P L I ED METEOROLOGY AND CL IMATOLOGY VOLUME 61990

Brought to you by Columbia University | Unauthenticated | Downloaded 08/30/22 07:52 PM UTC



contains individual fires ranging down to as small as 0.1 acre
(1 acre = 0.4 ha). Burned forest area for this dataset is esti-
mated by treating each fire as a circle centered over the lati-
tude and longitude provided and overlaying the circle on a
map of NLCD forest fraction. Forest fires are then defined as
fires with $50% of the total burned area in a forested region.
We also use a dataset of lightning strike density from the
National Lightning Detection Network, which we reprocessed
onto monthly 12 km3 12 km grid cells.

b. Climate data

For the climate and surface hydrology data in this study, we
use the fifth major global reanalysis produced by European
Centre for Medium-Range Weather Forecasts (ECMWF)
(ERA5) for the 1984–2018 period, gridded at 0.258 resolution
(Hersbach et al. 2020). We chose to use an atmospheric

reanalysis product for this study because reanalyses connect
surface climate variables with atmospheric circulation and
ocean variables in a dynamically consistent manner. We use
ERA5 in particular because it is a recently released, state-of-
the-art atmospheric reanalysis product with higher spatial res-
olution than prior reanalyses. To validate our choice of ERA5
we reran the lag correlation analysis in section 3 using the
Gridded Surface Meteorological (gridMET) temperature
and precipitation dataset of Abatzoglou (2013), which com-
bines surface observations with the North American Land
Data Assimilation System Phase 2 (NLDAS-2) regional re-
analysis (Mitchell et al. 2004) and found results consistent
with ERA5. For brevity, we do not include these results in
this paper. Unless otherwise specified, we accessed all fields
at a monthly temporal resolution. In addition, we use the
hourly minimum and maximum 2-m temperature to

FIG. 1. (top left) Percent forest cover in California, (top right) burned forest area in California for fires ignited in July 2018 as percent of
1-km2 grid cells burned, (bottom left) monthly time series of burned forest area in California 1984–2018 (km2), and (bottom right) boxplot
of the monthly distribution of California burned forest area over 1984–2018, with boxes indicating the interquartile range, whiskers at the
5th and 95th percentiles, and gray diamonds showing outliers. July 2018 is indicated in the bottom two plots with a red star.
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calculate the daily minimum and maximum 2-m temperature,
and hourly 2-m temperature and dewpoint temperature to cal-
culate the daily minimum and maximum vapor pressure defi-
cit. We calculate VPD, a measure of atmospheric aridity that
is the difference between saturation vapor pressure and actual
vapor pressure, as in Seager et al. (2015b).

To calculate daily maximum (and minimum) 2-m temperatures
and VPD, we take the maximum (minimum) of the hourly data
for each day. Then, to quantify the frequency of extreme tem-
peratures, which is an important metric in addition to monthly
mean temperatures because it can capture heat wave fre-
quency, we create a monthly time series for the number of
days in each month that have a daily maximum temperature
greater than the 75th percentile of daily maximum tempera-
tures for that day of the year over the 1984–2018 period. We
repeat this for high daily minimum temperatures and maxi-
mum and minimum VPD, and for the 90th percentile thresh-
old as well.

c. Lag correlations and regressions

To quantify which climate variables affect July burned
forest area and during which months, we perform a lag cor-
relation analysis with monthly resolution. Climate anoma-
lies are calculated for each grid point as deviations from the
monthly climatology over the period 1979–2017. Then, the
linear trend over the period is removed from both the July
California burned forest area time series and the California-
averaged anomalies in order to remove any contribution to
the correlations due to common long-term trends rather

than year-to-year variability. The lag correlations are calcu-
lated as the correlation coefficients between the detrended
July California burned forest area time series and the de-
trended California-averaged anomalies of climate variables
in months around the summer fire season, from the previous
November to the following October. The year 2018 is ex-
cluded from correlation analysis in order to describe the
relationships between burned forest area and climate up un-
til the extreme year of 2018 and avoid biasing the results by
the extreme conditions in 2018.

Similarly, to make maps of the climate conditions associated
with large July burned forest area in seasons preceding July
ignition, we take the January–March (JFM) and April–June
(AMJ) climate anomalies during 1984–2017. Then, we detrend
these anomalies and for each grid point calculate their linear
regression slopes with the detrended July California burned
forest area time series and plot these regression coefficients.

3. Climate anomalies associated with anomalous
California July burned forest area

Figure 3 shows the lag correlation coefficients with burned
forest area for anomalous California-averaged VPD, 2-m
temperature, specific humidity, precipitation, vertical wind
at 700 hPa, and number of days with daily Tmax and daily
Tmin higher than the 90th percentile, and anomalous geopo-
tential height at 500 hPa averaged over a box west of the
coast in the North Pacific Ocean, from 308 to 508N and 1208
to 1508W. The 95% significance threshold is shown as a pink
dashed line.

FIG. 2. Linear trends in California burned forest area for the months of May–October. In each panel, burned forest area for the respec-
tive month of each year is plotted in blue, with the trend line calculated over the 1984–2017 period shown in red, and the 2018 burn for
that month plotted as a red star. Slope, R2, and p value for Student’s t test with a two-sided null hypothesis are shown in each panel for the
linear regression over the 1984–2017 period.
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The lag correlations r for VPD, temperature, and frequency
of Tmax extremes with July burned forest area are generally
positive in preceding months and closely track each other,
while humidity correlation coefficients are negative from
January through June and are not statistically significant.
Of all variables in all months, June VPD has the strongest
correlation with July burned forest area at nearly r ∼ 0.6.
VPD and extreme Tmax frequency in the preceding February
through April are also significantly correlated with July
burned forest area, and the correlation coefficient drops off
in months before February and after July. The correlation
coefficients for temperature follow a similar pattern but are
generally weaker during February–June and are not signifi-
cant in March. Extreme Tmin frequency only correlates
significantly with July burned forest area in March and
June. July VPD, temperature, extreme Tmin and Tmax fre-
quency, and humidity do not correlate significantly with July
burned forest area, implying that the antecedent atmospheric
aridity and temperature conditions in June and before are

statistically more important to the amount of burned forest
area from fires ignited in July than the July conditions
themselves.

Curiously, July burned forest area is correlated with in-
creased precipitation and upward motion. Although we do
not show results from this analysis here, this is likely due to
precipitation associated with the July storms that contribute
to lightning-ignited fires. Both lightning strikes and convective
available potential energy (CAPE), a proxy for lightning
(Romps et al. 2014), in California have a climatological peak
across July and August. Similar to precipitation, July CAPE
correlates significantly (r = 0.35) with July burned forest area,
and also with July lightning strikes (r = 0.64). Using the data-
set of Short (2017), which provides ignition classifications for
fires ranging as small as 0.1 ha, we find that the number of
lightning-ignited fires in July correlates with July precipitation
with r = 0.43. The correlation between July precipitation and
lightning-ignited burned forest area is strongly positive as
well (r = 0.64) but is seemingly driven by a single year with

FIG. 3. Correlation coefficients of detrended July California burned forest area with detrended
climate anomalies in the preceding November through the following October. Correlations are
calculated using 1984–2017 data. Pink dashed lines indicate the 95% significance threshold, and
months for which the correlation is significant above this threshold are marked with a circle. July
is marked with a vertical dashed line. (top) Correlation coefficients for VPD, 2-m temperature
T, number of days in the month with maximum daily temperature greater than the 90th percen-
tile for that day (No. of days Tmax . 90%), number of days in the month with minimum daily
temperature greater than the 90th percentile for that day (No. of days Tmin . 90%), and specific
humidity q. (middle) Correlation coefficients for precipitation (precip), subsidence at 700 hPa
v700, and geopotential height anomaly at 500 hPa z700. (bottom) Correlation coefficients for
snowmelt, SWE, snowfall, and 0–7-cm soil moisture. All fields are averaged over all of California
except geopotential height z500, which is averaged over the 308–508N, 1208–1508Wbox.
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anomalously high precipitation and lightning-ignited burned
forest area (2015). Human-ignited burned forest area in July
does not significantly correlate with July precipitation. Thus,
we suggest that the link between positive precipitation anom-
aly and burned forest area in July reflects the effect of light-
ning ignitions from thunderstorms that also cause anomalous
precipitation. However, further investigation beyond the
scope of this study is required to confirm this supposal.

Precipitation correlates negatively with July burned forest
area for the months before July, starting in January, with local
extrema for its negative correlation in January and June. Ad-
ditionally, a ridge off of the West Coast at 500 hPa averaged
over 308–508N and 1208–1508W positively correlates with July
burned forest area during the preceding December}June,
and the correlation coefficient is significant in February.

These lag correlations are mostly consistent with the intuitive
notion that large burns that begin in July are preceded by drier
and hotter conditions than usual. The land surface correlations
provide some insight into the mechanisms behind these rela-
tionships. Top layer (0–7 cm) soil moisture is significantly nega-
tively correlated with July burned forest area from the January
through June before the fire year. From March through May,
snow water equivalent (SWE) correlates negatively and signifi-
cantly with July burned forest area, as does snowmelt in March,
April, and June. Snowfall never significantly correlates with
July burned forest area but maintains a negative correlation
from December through June. These correlations suggest that
low soil moisture in the winter and spring, which could be
caused by less precipitation during the winter wet season or
more sublimation and less snowmelt, is linked to high burned
forest area in the summer. This is logical as low soil moisture
can desiccate vegetation, making fuels easier to burn. Also, dry
soils can contribute to land surface feedbacks whereby low soil
moisture increases evaporative demand, driving up surface tem-
peratures and VPD (Seneviratne et al. 2010). Then, high VPD
in late winter and spring can draw moisture out of soils and veg-
etation further, setting the system up for high burned area. Ad-
ditionally, less snow mass and snowmelt in the spring can dry
out the vegetation that relies on snowmelt for moisture after
the winter. Thus, the land surface, circulation, and thermody-
namic processes that affect summer fire are all highly interre-
lated and sensitive to year-to-year variability in these variables.
An important finding is that none of the months before January
have significant correlations between variable anomalies and
July burned forest area, suggesting that it is the late winter,
spring, and summer climate conditions that most influence sum-
mer burned forest area in California.2

Since June VPD has the strongest correlation with July
burned forest area, it is useful to see which fields vary with June
VPD concurrently and in preceding months (Fig. 4). June pre-
cipitation has the highest magnitude correlation with June VPD
at r ∼ 20.8, and May precipitation has the next highest, with

precipitation in April and earlier dropping off and not sig-
nificantly correlated with June VPD. Although subsidence
in California is never significantly correlated with June
VPD, it does maintain a generally positive correlation as far
back as the previous December. Geopotential height in the
North Pacific region is positively and significantly correlated
with June VPD in May and weakly negatively correlated in
June. The subsidence and height relations are consistent
with the idea that an offshore high pressure system with
northerly subsiding flow and suppressed precipitation over
California favors high VPD. Therefore, June VPD, which
has the strongest correlation with July burned forest area,
varies with May and June precipitation and May geopoten-
tial height off the West Coast.

The relations shown so far make clear that, despite signifi-
cance levels varying month to month, high July burned forest
area is favored by high pressure, subsidence, low precipita-
tion, high VPD, low soil moisture, low snowpack and snow-
melt, and high surface air temperature from the preceding
late winter through to early summer. The thermodynamic var-
iations are themselves consistent with the large-scale circula-
tion anomalies. Hence, next we look at the spatial patterns of
the governing climate and circulation anomalies. Given that
climate anomalies as early as January correlate significantly
with July burned forest area, the monthly climate anomalies
are averaged over JFM and AMJ to only include the months
before the July fires begin. These seasonal anomalies are then
detrended and linearly regressed onto the detrended California
burned forest area. The regression slopes are plotted as
maps in Figs. 5 and 6, with colors only shown where signifi-
cant at the 95% confidence level for Fig. 5 and the 90%
level for Fig. 6.

In the preceding winter (JFM), high July burned forest area
in California is typically associated with a ridge off the West
Coast and anomalously low precipitation in California and
over the ocean off the coast of California. Anomalously dry

FIG. 4. Correlation coefficients of California-averaged detrended
June VPD with preceding September–June California-averaged de-
trended anomalous precipitation, 308–508N and 1208–1508W geopo-
tential height at 500 hPa z500, and California-averaged subsidence at
700 hPa from 1984 to 2017 v700. Pink dashed lines indicate the 95%
significance threshold, and months for which the correlation is signifi-
cant above this threshold are marked with a circle.

2 Using climate anomalies averaged over northern California
where the large majority of July 2018 burned area occurred, in-
stead of over the entire state, does not noticeably change the re-
sults in Fig. 3.
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surface air, subsidence, high surface temperature, and more
frequent Tmax extremes in JFM, particularly in Southern
California, are also significantly associated with subsequent
high burned forest area.

In the preceding spring (AMJ), there is also a ridge at
500 hPa associated with high burned forest area, centered
over California and the West Coast of the United States.
Dry and hot spring conditions in California}anomalously
low precipitation, high VPD, high surface temperature,
and more frequent extreme Tmax days}are also typical of
years with high burned forest area in July. The regression
coefficients for VPD are larger in spring than in winter, mean-
ing that high local VPD in the preceding spring has a more
pronounced relationship with summer California burned for-
est area than high VPD in the preceding winter. Precipitation
in California, however, has larger regression coefficients in the
preceding winter than the preceding spring, perhaps related
to more climatological precipitation in the winter than in
the spring. In addition, winters with low precipitation con-
tribute to high VPD in the summer by drying out soils,
which can cause surface temperature in following months to
increase due to a decrease in evapotranspiration, which in-
creases sensible heating and VPD (Seneviratne et al. 2010;
Seager et al. 2015b).

To put these local climate patterns into a larger climate
dynamics perspective, Fig. 6 shows regression coefficients
for geopotential height at 200 and 700 hPa, sea surface
temperature (SST), and precipitation on a global scale.
The offshore winter ridge in Fig. 5 is part of a circumglobal
atmospheric wave train with wavenumber 4, and the cy-
clone pair straddling the equator in the east Pacific are

characteristic of La Niña conditions. However, the La Niña
relation must be weak because it is not seen as statistically
significant in the SSTs. La Niña–like precipitation patterns
over the Pacific are also typical of the winter before a large
July burned forest area season. In AMJ, there is still a cir-
cumglobal Rossby wave train, but it is weaker and any con-
nection to the tropics is gone. The strong correlation with
large-scale geopotential height patterns, including the high
off the coast and lack of strong correlations with SSTs, is
consistent with the idea that California hydroclimate is pri-
marily affected by internal atmospheric variability, and
only secondarily affected by ENSO, especially in northern
California where most burned forest area occurs (Williams
et al. 2021; Baek et al. 2021; Seager et al. 2015a).

4. Climate anomalies in 2018 and diagnosing causes of
extreme burned forest area

Having characterized the climate anomalies associated with
anomalous July burned forest area in California, we move on
to examine the climate anomalies in the months preceding
July 2018, an extreme burned forest area year. Figure 7 shows
the same anomalies that were regressed on burned forest area
but for JFM and AMJ of 2018. In the 2018 winter, there was a
ridge offshore, but centered around 1658W and 508N, slightly
to the north and west of the ridge that appears in the re-
gressions. There was widespread anomalous subsidence on
the eastern flank of this ridge including over California.
This led to anomalously high VPD in winter connected to
circulation around the ridge bringing northerly, subsiding
flow to California. The winter subsidence went along with

FIG. 5. Regression coefficients for detrended July California burned forest area with detrended seasonal climate anomalies over
1984–2017. Regression coefficient at each grid point using (top) JFM and (bottom) AMJ seasonal averages, showing (left) regression coef-
ficients for geopotential height at 700 hPa z700 in contours and precipitation in color shading, (center) regression coefficients for subsidence
at 700 hPa v700 in contours and VPD in color shading, and (right) regression coefficients for the average number of days per month with
maximum daily temperature greater than the 90th percentile for that day (No. of days Tmax . 90%) in contours and 2-m temperature T in
color shading. Contours for subsidence and number of extreme temperature days are smoothed with a 0.758 rolling mean in longitude and
latitude. Colors are shown only where the regression coefficient is greater than the 95% significance threshold, and the units of the regres-
sion coefficient are unit per kilometer squared, where the units are meters for geopotential height, millimeters per day for precipitation,
pascals per second for subsidence, hectopascals for VPD, days per month for Tmax . 90%, and kelvin for temperature.
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anomalously low precipitation in Northern California; how-
ever, the precipitation anomaly was not more than 1 stan-
dard deviation away from the mean in California, so it does
not appear in Fig. 7. There were also high surface tempera-
ture anomalies in the southwest, both for monthly mean
temperature and extreme temperature days in winter 2018.
In the spring of 2018, there was a weak high over the West
Coast of the United States and a very large VPD anomaly
in the southwest that went along with high temperatures
and more extreme hot days.

Figure 8 shows the global-scale seasonal anomalies in 2018
for geopotential height at 200 and 700 hPa, SST, and precipi-
tation. The winter 2017–18 La Niña is evident in both SST
and precipitation patterns, and the winter 200-hPa geopotential
height anomaly is that of the normal negative mode of the
Pacific–North American (PNA) pattern, which is typically asso-
ciated with La Niña winters (Seager et al. 2014). In addition,
there is a suggestion of a Rossby wave train over the North
Atlantic. The spring anomalies are approximately a muted ver-
sion of the winter anomalies associated with La Niña, typical of
the weakening of tropical–extratropical teleconnections in the

transition from boreal winter to summer as the mean flow
weakens (Webster 1982; Kumar and Hoerling 1998).

Thus, the climate conditions in the six months before the
extreme forest fire ignitions in July 2018 were as follows: a
La Niña winter in 2017–18 induced a Rossby wave train
propagating across the PNA region that included a high in
the North Pacific, west of the West Coast of North America
(Fig. 8). This high caused dry, but not significantly dry, pre-
cipitation conditions in California in the winter, along with
subsidence in Northern California, high VPD and high tem-
peratures across the southwest. In the spring, there was a
much weaker wave train with a high over the West Coast
and very high VPD and temperature anomalies in the south-
west. These conditions differ slightly from the typical pat-
terns found in Figs. 5 and 6 to precede large July burned
forest areas, in the structure of the winter Rossby wave train
and thus the location of the offshore high, as well as the lack
of significant precipitation anomalies in both the winter and
spring and the lack of a subsidence anomaly in the spring.
However, in both the regressions and in the 2018 anomalies
we see the importance of subsidence, high VPD, and high

FIG. 6. As in Fig. 5, but showing regressions of detrended July California burned forest area with detrended (left) geopotential height at
200 hPa z200 in contours and SST in color shading and (right) geopotential height at 700 hPa z700 in contours and precipitation in color
shading. Colors are shown where the regression coefficient is greater than the 90% significance threshold. Units are the same as Fig. 5 for
geopotential height and precip, and units for the SST regression plot are kelvins per kilometer squared.

FIG. 7. As in Fig. 5, but instead of regression coefficients, showing seasonal anomalies in 2018.
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surface temperatures over the preceding half-year in setting
up for high burned forest area in the summer.

While the 2018 antecedent climate conditions in many
ways resemble the regressions, 2018 does not appear to be
particularly extreme in the history of California-averaged
climate anomalies. For example, while both June VPD and
January precipitation correlate with burned forest area
(with r = 0.59 and 0.33, respectively), 2018 had high but not
extreme VPD in June and low but not extreme precipitation
in January (Fig. 9, left). On the other hand, snowmelt anom-
alies in May and June were indeed the lowest on record but
by a minute margin (on the order of thousandths of milli-
meters per day) (Fig. 9, right), whereas statewide soil mois-
ture and snow water equivalent were anomalously low in
January through June of 2018 but not extreme (not shown).
The hydrological conditions in the first half of 2018 were
typical of a larger-than-average fire season, however, they
were not so extreme to statistically predict that July 2018
would have the most extensive July burned forest area in
the 35-yr record by almost twofold. Other factors must have
contributed to the extremeness of July 2018.

Even though the California-averaged number of extreme
Tmin and Tmax days per month in July or August did not corre-
late strongly with burned forest area in July over the analysis
period, California did experience extreme heat in July 2018
and, to some extent, August 2018 that likely contributed to

the spread of the fires ignited in July. Figure 10 shows the
distribution of California-averaged daily maximum and
minimum 2-m temperatures and VPDs for each day in July
over the 1984–2018 period, as well as the values for each
day of July 2018. Of the 31 days in July 2018, 28 had a hot-
ter average maximum and minimum temperature than the
median temperature for that day over the period. Further,
daily minimum temperatures were consistently above the
75th percentile from the 6th day of the month onward.
High daily minimum temperatures can promote the spread
of fire by slowing fire containment efforts and drying out
fuels by reducing overnight humidity recovery (Herring
et al. 2020; Chiodi et al. 2021; Balch et al. 2022). The daily
maximum VPD in July 2018 followed the daily maximum
temperature in pattern, with three peaks separated by
about 10 days each. However, unlike the daily minimum
temperature, the daily minimum VPDs in July 2018 were
not consistently in the upper daily quartile, but instead fol-
lowed the variations in daily maximum temperature.

While it is useful to look at this day-by-day development of
July 2018 in comparison with the other Julys in the period,
spatially averaging the temperature and VPD metrics over all
of California could mask localized extremes in the regions
where the large forest fires in July 2018 occurred (see Fig. 1).
The three largest fires in Fig. 1 made up 90% of the burned
forest area in California in July 2018. From north to south, the

FIG. 8. As in Fig. 6, but instead of regression coefficients, showing seasonal anomalies in 2018.

FIG. 9. (left) Detrended June California-averaged VPD anomaly (hPa; x axis) and detrended January California-
averaged precipitation anomaly (mm day21; y axis) for each year 1984–2018, detrended using the 1984–2017 trend.
(right) Detrended May (x axis) and June (y axis) California-averaged snowmelt anomaly (mm day21); 2018 is plotted
as a black star, and the circles are colored by the detrended burned forest area in July of that year (km2).
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fires shown are the Carr Fire (712 km2 of burned forest area),
the Mendocino Complex Fire (1054 km2 of burned forest area),
and the Ferguson Fire (305 km2 of burned forest area).

To examine the spatial patterns of extremes in July 2018 we
calculated for each July over 1984–2018 and each point in
California the number of extreme (.75th and 90th percentile
for that day) July days for daily maximum and minimum tem-
perature and VPD. We then determined where July 2018
ranked in this distribution. The ranks are plotted in Fig. 11
along with the location of the three largest fires that contributed
90% to the total burned forest area from July 2018. In most of
central California, and all of the regions with fire except for a
small corner of the Carr Fire, July 2018 had the most days with
75th percentile daily minimum surface temperature of any July
in the analysis period. For days in the 75th percentile daily max-
imum surface temperature, July 2018 is similarly extreme in
most of the fire region, except it does not definitively rank the
highest. In terms of VPD, in most of the fire regions, July 2018
consistently ranks in the top half of years for number of days
with extreme daily maximum and minimum VPD and ranks the
highest just to the east of the Mendocino Complex Fire. The
rankings for number of extreme temperature and VPD days in

the 90th percentile are, in general, lower than those for the
75th-percentile threshold; however, there are still large swaths
of the state where July 2018 had the most days with extreme
minimum and maximum temperature. In the fire regions the
90th-percentile minimum and maximum temperature days in
2018 consistently rank in the top half. The 90th-percentile mini-
mum and maximum VPD days vary in rank throughout the
state and do not have the top rank anywhere in the fire regions.

Averaged over all of California, of all Julys 1984–2018,
July 2018 had the most days3 with 75th percentile daily mini-
mum and daily maximum temperatures and 90th percentile
daily minimum temperatures and was second in number of days
with 90th-percentile daily maximum temperatures (Fig. 12). In a
similar way, July 2018 had anomalous daily minimum and

FIG. 10. July distribution of (top left) daily maximum 2-m temperature (K), (top right) daily minimum 2-m temperature (K),
(bottom left) daily maximum VPD (hPa), and (bottom right) daily minimum VPD for 1984–2018. The boxes indicate the middle quartiles
of the data, and the whiskers extend to the 10th and 90th percentiles, with outliers plotted as diamonds. Each day of July 2018 is shown as
a red star.

3 July 2015 is the other extreme burned forest area that appears
as a very dark red dot in Figs. 9 and 12. In Fig. 9, July 2015 was pre-
ceded by the driest January over the 1984–2018 period and a high,
but not extremely high, June VPD anomaly, as well as anoma-
lously low snowmelt in May and June. In Fig. 12, July 2015 actually
had few extreme daily minimum and maximum temperature and
VPD days, except for daily maximum temperature days in the
90th percentile, of which July 2015 had a small positive anomaly.
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maximum VPD days for both the 75th- and 90th-percentile
thresholds, but was not the most extreme in this regard. How-
ever, the relationship of these metrics with July burned forest
area in general is not strong, as evidenced by the lack of a visible
relationship with burned forest area (scatter colors in Fig. 12) as
well as by the low correlation coefficients in Fig. 3. Figures 10–12
show that July 2018 was extreme in terms of days with high
daily maximum and minimum surface temperatures, partic-
ularly daily minimums, and that these extremes were, in
some regions, accompanied by extremes in the number of
days with high minimum and maximum VPD.

While here we focused on the case study of temperature and
VPD extremes in July 2018, note that the large fires ignited in
July 2018 were not contained until mid-August–September, and
so similar hot and dry conditions in August 2018 likely pro-
moted the extreme burned forest area of the July 2018 fires.
The equivalent analysis for extreme minimum and maxi-
mum temperatures and VPD days in August 2018 revealed
that August 2018 was anomalously hot and dry in California
but not extreme relative to other Augusts in terms of the
number of extremely hot and dry days. Still, the tempera-
ture and VPD conditions in August 2018 likely enabled the
continued spread of July-ignited fires.

5. Conclusions and discussion

We found that monthly climate anomalies as early as the
January before the fire season correlate significantly with
July burned forest area in California over the 1984–2017 period.
In particular, anomalously low precipitation, increased sub-
sidence, an offshore ridge, and high VPD and surface tem-
peratures in the preceding winter all correlate strongly with

anomalous burned forest area. In the preceding spring, high
VPD, a high over the West Coast of the United States, high
temperatures, increased frequency of extreme temperature
days, and low precipitation correlate with large July burned
forest area. These local relationships are part of a larger re-
gression pattern including La Niña–like precipitation and
height anomalies in the North Pacific and a circumglobal
Rossby wave train with wavenumber 4 in winter and 5 in
spring. The bridging across seasons which allows winter cli-
mate anomalies to impact fire in summer is provided by
snow mass and soil moisture. Reduced rain directly reduces
soil moisture while reduced winter and spring snow will in-
troduce a lag until reduced snowmelt in late spring dries
soils directly ahead of the fire season. Aided by reduced
snow mass and precipitation in winter and spring, high tem-
peratures and VPD dry vegetation and soils, favoring greater
burned forest area in July.

Climate anomalies in the winter and spring of 2018 preceding
the extreme July burned forest area in some ways matched
these regression patterns. The winter and spring were hot and
dry, but more significant in Southern California and the south-
west, and precipitation anomalies were negative but not signifi-
cant. Winter 2017–18 was a La Niña winter, and there was a
Rossby wave train with a negative PNA pattern typical of La
Niña winters, with a ridge centered farther north and west of
the ridge in the regressions. While the antecedent climate con-
ditions were close to those found for high burned forest area
years in general, the atmospheric anomalies that usually corre-
late with July burned forest area, such as winter precipitation
and July VPD, were not extreme enough in 2018 to explain the
record-setting burned forest area of July 2018. Snow hydrology
variables that typically vary with July burned forest area in

FIG. 11. Rank of July 2018, in comparison with Julys 1984–2018, in terms of the number of days in the (top) 75th and (bottom) 90th
percentile for that day of daily (left) maximum 2-m temperatures, (left center) minimum 2-m temperatures, (right center) maximum VPD,
and (right) minimum VPD. Data are ranked in descending order, with dark red representing areas where July 2018 had the most number
of days with the given variable in the given percentile, in comparison with all other Julys in the period. Locations of the three largest fires
in July 2018 are enclosed in black contours.
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winter and spring, such as snowmelt and soil moisture, were
anomalously low in 2018. Only late spring snowmelt was ex-
treme in 2018, and only narrowly so, such that it was unlikely to
be the main cause of extreme burned area in July. Rather, we
found that even though July California surface temperatures
and the number of extremely high minimum and maximum
temperature days do not typically correlate with July burned
forest area, extreme surface temperatures and particularly
many extremely high overnight low temperatures were likely a
factor in the record-setting burned forest area in July 2018.
Nighttime temperatures can have a critical influence on fire
suppression and spread. While it is well known that high day-
time temperatures can exacerbate the spread of wildfires
(Abatzoglou and Williams 2016; Abatzoglou et al. 2019), Balch
et al. (2022) found that overnight low temperatures are a partic-
ularly important barrier to fire spread and that hotter and
drier nighttime conditions are linked with increased nighttime
fire intensity.

While the statistical relationships between antecedent cli-
mate anomalies and July burned forest area are robust for
many variables, this case study of summer 2018 California
fires shows the likely limits of these statistical relationships in
predicting individual extremes. The climate conditions evolv-
ing in the first six months of 2018 were similar to what we
would expect of a year with anomalously high July burned
forest area, and these conditions likely enabled high burned

forest area by drying out fuels. However, without predicting
the meteorological factors such as the local extreme heat in
the fire regions in July 2018, we would not have been able to
predict the record-breaking burned forest area of the July
2018 fires. Forest fires require an ignition event by lightning
or humans, and the proper fuel conditions, and even then,
burned forest area is sensitive to day-to-day weather and sup-
pression efforts. Since our statistical analysis of antecedent cli-
mate conditions does not account for all of these factors that
affect forest fires, we expect there to be a limit to the predict-
ability of extreme fire seasons using antecedent climate. It
might have been expected that extreme burned forest area in
a July would arise from equally extreme antecedent climate
anomalies but for 2018 this was not the case. Instead, it ap-
pears the antecedent climate anomalies set the stage but then
extreme daily maxima and minima temperatures and VPD in
July 2018 itself turned what would have been a high burned
forest area July into a record extreme one.

The differential anomalies in climate conditions and burned
forest area in 2018 may also be evidence of the emerging possi-
bility of record-shattering burned area during conditions of
anomalous but not record-shattering heat and drought due to
the observed exponential response of burned forest area to
VPD (Williams et al. 2019; Juang et al. 2022). This exponential
response implies that with background warming, the interan-
nual variability in burned forest area will increase even if the

FIG. 12. Detrended July California-averaged anomalous number of days in the (top) 75th and (bottom) 90th percentile
for that day of daily (left) maximum and minimum 2-m temperatures and (right) maximum and minimum VPD for each
year 1984–2018, detrended using the 1984–2017 trend; 2018 is plotted as a black star. The circles are colored by the de-
trended burned forest area in July of that year (km2).
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interannual variability in climate anomalies does not, allowing
for such extreme fire years as 2018, 2020, and 2021 (Abatzoglou
et al. 2019). Our analysis quantifies the linear relationships be-
tween burned forest area and antecedent climate, which we
found captured stronger lag correlations for the 1984–2017 pe-
riod than exponential relationships using logarithm of burned
area. However, because the above work has established expo-
nential relationships between seasonal and annual burned area
and VPD, it is possible that the extreme burned forest areas of
2018, 2020, and 2021 are harbingers of emerging extraordinary
increases in burned area with more moderate increases in heat
and drought conditions.

Characterizing the climate factors and their timing that in-
fluence the interannual variability of California wildfires is
crucial to our understanding of the predictability of large and
devastating wildfire years. While the 2018 wildfire season in
California was by many metrics the worst on record at the
time, the 2020 wildfire season broke records yet again, with
the so-called August Complex Fire, which burned from
August to November 2020, surpassing the Mendocino Com-
plex Fire to become the largest California wildfire. In 2021,
the Dixie Fire had greater burned area than the Mendocino
Complex Fire and is the largest single noncomplex fire on re-
cord (CALFIRE 2021). Many recent studies have examined
the role of anthropogenic climate change and warming-driven
atmospheric changes in this increased wildfire activity in the
west (Williams et al. 2019; Abatzoglou and Williams 2016;
Kirchmeier-Young et al. 2019; Goss et al. 2020; Westerling
et al. 2006; Westerling 2016, 2018). Still, with increased wild-
fire activity there is year-to-year variability, and our ability to
diagnose the large-scale antecedent climate conditions that
enable anomalous burned area is becoming increasingly rele-
vant as the extreme years become more and more extreme. In
addition, with background warming and changes in the sea-
sonal cycles of precipitation in the western United States, an
important extension of the findings of this study would be to
explore potential shifts in the statistical relationship between
summer burned forest area and antecedent climate conditions
due to warming-induced changes.
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