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Abstract

The lateral vibration of cracked isotropic thick beams is investigated. Generally, the analysis of thick beam based on

line elements can be undertaken using either Timoshenko beam theory or a third order beam theory (TSDT) such as

Reddy beam theory. TSDT is superior to Timoshenko beam theory, as it eliminates the need for a shear correction

coefficient. However, there is no available solution for a cracked beam based on Reddy beam theory which is main

focus of this paper. The investigated beam is divided into several elements where their stiffness and mass matrices are

derived using Reddy beam theory. Each element has two nodes with 3 degrees of freedom (1 lateral and 2 rotational)

at each node. The crack was modeled using two rotating springs with stiffnesses that varied with crack depth. These

elements are used to connect the adjacent beam elements. The impact of boundary conditions, slenderness ratio,

crack location, and crack depth are investigated. In addition, experimental and finite element analyses of cracked

steel beams is undertaken to validate the results of the present model. The results show that the maximum deviation

between the analytical and the experimental results is less than 3 % up to the third mode shape.

Keywords: Reddy beam theory, finite element, lateral vibration, experimental analysis, cracked beam.

1. Introduction

Cracks in vibrating components may cause catastrophic failures. As a result, detecting cracks and understanding

their consequences for a structure is critical for safety. The major issue is how to detect the presence of such crack,

as well as its position and depth in a structural member, before failure occurs, so that necessary actions can be

implemented to prevent further damage.

Dimarogonas (1996) surveyed a range of strategies that are used for diagnosis of cracks. Non-destructive testing

(NDT) methods that are used to detect defects include visual inspection, ultrasonic testing, thermography, radiography,

electromagnetic testing, acoustic emission, and stereography (Dwivedi et al., 2018). Most of these methods require

access to the damaged section so that such sites can be directly scanned. Vibration-based methods are a viable
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substitute for traditional NDT methods. Vibration-based methods have a number of specific advantages: most notably

the test equipment is relatively inexpensive; the vibration data may be gathered from a single location or from many

locations on the structural component, and access to the damaged section is not necessary (Sánchez et al., 2016).

The presence of crack in a structural part causes local flexibility that varies with crack depth. The crack depth and

location affect the properties of a structure including the natural frequency, the vibration response amplitude, and the

mode shape. These changes in the structure dynamical properties can be easily measured, and therefore a number of

papers have focused on the analysis of cracked beams (Ahmed and Uddin, 2019; Aria et al., 2019; Banerjee and Guo,

2009; Ebrahimi et al., 2005; Farghaly, 1994; Kim et al., 2018; Kisa et al., 1998; Labib et al., 2014; Loya et al., 2009;

Mazaheri et al., 2018; Torabi and Nafar Dastgerdi, 2012; Yamuna and Sambasivarao, 2014; Yang et al., 2015; Yendhe

et al., 2016) and this is also the aim of this paper.

The advantage of analytical methods is that they enable the derivation of models that can correlate the observed

dynamic features with the crack parameters. These models can then be used to solve the inverse problem of crack

detection based on measured responses or natural frequencies. Characterization of the dynamic response of damaged

beams leads to greater insight into damage identification via solution of the inverse problem based on experimental

measurements. Friswell (2007) provided an overview on using measured data for damage identification (position

and size). Damage detection inverse problems combine experimental dynamic measured data with data obtained

from an initial numerical model to improve the model. The first stage in detecting damage is to define a reliable

model that is compatible with the real structure and to evaluate a correct solution to the direct problem. Studies,

such as (Dilena et al., 2011; Morassi, 2001; Vestroni and Capecchi, 2000), have employed inverse analysis based on

the fluctuation of natural frequencies caused by the presence of a single damage feature (crack size and position).

There are also some studies that have looked at the detection of multiple cracks based on measurements of the natural

frequencies (Luo and Hanagud, 1997; Patil and Maiti, 2005; Xiaoqing et al., 2010).

Beams are fundamental structural elements that are used to transfer lateral loads in many engineering applica-

tions including long-span bridges, buildings, turbomachine blades, aircraft wings, robot arms, etc. Several theories

have been formulated to describe the lateral vibrations of beams namely the Bernoulli-Euler, Rayleigh, Timoshenko,

Levinson and Reddy theories (Wang et al., 2000). Each of these theories has its own advantages and disadvantages.

Bernoulli-Euler (or classical) beam theory (CBT) is the simplest and oldest theory, which is still widely used for

thin beams. In CBT, the plain section is assumed to remain planar and perpendicular to the beam axis after deforma-

tion, as shown in Fig.1-b. This theory neglects transverse shear deformation, which is less of an issue for thin beams,

hence its continued use in such cases. The significance of shear deformations in elastic beams was first demonstrated

by Timoshenko (1921) and Timoshenko beam theory can be considered as a first-order shear deformation theory

(FSDT). Timoshenko beam theory is widely used for thick beams (Cheng et al., 2011; El-Sayed and El-Mongy, 2021;

El-Sayed and Farghaly, 2018, 2020; Elsawaf et al., 2020; Farghaly and El-Sayed, 2016, 2017; Kaya and Dowling,
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2016; Yardimoglu, 2010) . In this case a plane section again remains plane after deformation, as shown in Fig.1-c,

however the assumption that the plane remains perpendicular to the beam axis is relaxed. The drawback of this the-

ory is that the shear distribution across the beam section is incorrectly assumed to be uniform, although this can be

compensated by using a shear correction factor. This drawback of FSDT motivated the development of higher-order

shear deformation theories (HSDTs) first introduced by Levinson (1981). Basically, in HSDTs, the considered dis-

placement field eliminates the transverse shear strain and stress on the top and bottom planes of the beam (Bickford,

1982; Heyliger and Reddy, 1988; Huang et al., 2013; Jemielita, 1975; Levinson, 1980, 1981; Reddy, 1984a,b). Reddy

beam theory or third-order shear deformation theory (TSDT) is one of the most popular HSDTs, with still high or-

der theories higher being rarely used because the additional gains in accuracy achieved are too low. TSDT assumes

a parabolic distribution of the transverse shear strain and stress with respect to the thickness coordinate, as shown

in Fig.1-d. Note that the beam cross-section is allowed to warp in such a way that it remains normal to the beam

shear-free surfaces.

CBT

FSDT

TSDT

(a)

(b)

(c)

Undeformed

Φ
Ψ(d)

Figure 1: Coordinate system and deformation of a cross-sectional plane in different beam theories (Wang et al., 2000)

Heyliger and Reddy (1988) developed a finite element model based on linear and non-linear TSDT. They presented

several examples comparing TSDT results with the previous results to show the theory’s accuracy and examined the

effect of the slenderness ratio and different boundary conditions. Soldatos and Sophocleous (2001) introduced a

general beam theory that includes CBT, FSDT and TSDT. They analytically derived frequency equations and the

natural frequencies for different boundary conditions. Şimeşk and Kocatürk (2007) employed Lagrange multipliers

to satisfy several boundary conditions based on TSDT. They examined different beam aspect ratios and compared

their results with CBT and FSDT. Yesilce and Catal (2009) studied the free vibration of an axially loaded beam on

elastic soil using the differential transform method (DTM) based on TSDT and compared the natural frequencies of

clamped-simply supported beams with the analytical solutions. The authors examined the effects of relative stiffness,
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stiffness ratio and dimensionless axial force. Bozyigit and Yesilce (2016) investigated axially moving beams using

the dynamic stiffness method (DSM) and DTM according to TSDT. They studied the effect of dimensionless axial

speed and force for different boundary conditions. The results show that the obtained natural frequencies from DTM

and DSM are in very good agreement with the analytical results. They concluded that increasing the axial speed with

constant axial tensile force decreases the natural frequencies for all boundary conditions and vice versa.

The vibration analysis of composite beams has been reported in a range of literature. For example the behavior

of sandwich composite beams as a function of different boundary conditions, laminate schemes and aspect ratios

was reported in (Khdeir and Reddy, 1994; Marur and Kant, 1996). Khdeir and Reddy (1994) applied a general

beam theory to study a cross-ply rectangular beam with arbitrary boundary conditions. Their study showed that the

results based on the different shear deformation theories were very close together, with the largest deviation in the

results being between the shear theories and Bernoulli-beam theory. Marur and Kant (1996) used a finite element

model in conjunction with three different HSDTs to present the free vibration analysis of sandwich and composite

beams. The authors compared the results of the three theories with the first order shear theory and with their results

to determine the most effective method. Jun et al. (2009) introduced TSDT using the dynamic stiffness method. They

also examined the influences of Poisson’s ratio, material anisotropy, slenderness and boundary condition on the natural

frequencies of the beams. Karamanlı (2018) investigated two-directional functionally graded beams using TSDT. The

equations of motion were derived by means of Lagrange equations in conjunction with auxiliary polynomials. The

author examined the influence of the different gradient indexes, various aspect ratios and boundary conditions on the

results. Wattanasakulpong et al. (2018) investigated functionally graded porous beams using TSDT. Both beam ends

were supported by rotational and translational springs and the Chebyshev collocation method was applied to solve the

governing equations.

Yesilce and Catal (2011) studied the free vibration analysis of beams with variable cross-section rested on elastic

soil with/without axial forces using DTM based on TSDT. Parameters for the relative stiffness, stiffness ratio and a

dimensionless multiplication factor for the axial compressive force were incorporated into the equations of motion

in order to investigate their effects on the natural frequencies. The results were compared with the results of the

analytical solution where a very good agreement was observed. They concluded that increasing the axial compressive

force leads to reduction in natural frequency unlike increasing the relative stiffness and the stiffness ratio which

leads to increasing in natural frequency. Yesilce (2011) investigated the free vibration analysis of multi-span beams

carrying multiple spring-mass systems based on TSDT. They used the exact solutions for the natural frequencies and

mode shapes. The natural frequencies were calculated by using the numerical assembly technique and the secant

method and the effects of attached spring-mass systems on the free vibration characteristics of the 1–4 span beams

were studied.

Yamuna and Sambasivarao (2014) investigated the natural frequency of a simply supported beam with a triangular
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crack using ANSYS finite element software. The effect of using different crack locations was considered, and the

results were compared to those for an uncracked beam. The results show that the 1st natural frequency of a beam

without cracks is higher than that for the same beam with cracks. Additionally, when the crack location moves from

either end to the center of the beam the first natural frequency decreases. Ahmed and Uddin (2019) studied the

vibrational analysis of a cracked I beam subjected to periodic loading using ‘ABAQUS CAE’ finite element software.

They analyzed the behavior of natural frequency for various parameters such as crack position, crack depth, crack

opening and mesh sensitivity. The results of the study show that the presence of a crack reduces the natural frequency

depending on the crack position and its depth. The significance of vibration analysis is clear when the crack reaches

the web of the I beam. Furthermore, if the crack depth is greater or the position of the crack is closer to the fixed end,

the resonance occurs earlier. Yendhe et al. (2016) investigated the vibration behavior of beams both experimentally

and using ANSYS. They investigated beams with rectangular cross-sections with and without cracks. The depth of

the crack and its location and different boundary conditions were used as variable parameters. The results demonstrate

that the change in frequencies is affected not only by crack depth and crack location, but also by the mode number.

The effect of a crack is greater for a crack located where the bending moment is higher (i.e. the centerline for a simply

supported beam and the fixed end for a cantilever beam). Ebrahimi et al. (2005) studied the bending vibration of

a uniform simply supported Bernoulli-Euler beam with an open edge crack using Hamilton’s principle. The results

show that increasing crack depth reduces natural frequencies. Moving the crack location towards the center of the

beam, results in increasing the rate of change in the first natural frequency. However, this is not valid for the other

higher natural frequencies. The validity of the obtained results has been confirmed by comparison with the finite

element results. Kim et al. (2018) examined the free vibration behavior of a cracked Timoshenko beam model based

on ultra-spherical polynomials for general boundary conditions modeled using elastic springs at both ends. Yang

et al. (2015) investigated the free vibration of rectangular cracked Bernoulli-Euler beam made of functionally graded

materials (FGMs) using the transfer matrix method (TMM). Much research work considers the free vibration analysis

of cracked beams using Bernoulli-Euler (Aria et al., 2019; Banerjee and Guo, 2009; Labib et al., 2014; Loya et al.,

2009; Mazaheri et al., 2018) and Timoshenko(Farghaly, 1994; Kisa et al., 1998; Torabi and Nafar Dastgerdi, 2012)

theories, leading to the conclusion that the presence of a crack reduces the natural frequency of vibration. Also, a

number of papers have investigated the free vibration of discontinuous beams and frames without subdivision into

sub-elements, which restricted the degrees of freedom to the overall system. Caddemi and Caliò (2009) investigated

the vibration modes of a Bernoulli Euler beam with multiple open cracks. They modeled the open cracks as a sequence

of generalized Dirac delta functions, without enforcement of any continuity conditions and employed the dynamic

stiffness matrix in vibration analysis of frame structures with multiple cracks. Caddemi and Caliò (2013) developed

a finite element model of a stepped Timoshenko beam for the dynamic analysis of frame structures with deflection,

rotation, and abrupt cross-sectional fluctuations. Their approach was based on the use of Heaviside and Dirac delta
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distributions to represent abrupt discontinuities in the beam. Caddemi and Morassi (2013) proposed a mathematical

model for multiply cracked Bernoulli Euler beams, in which they justified using the rotating elastic spring model to

represent an open crack. Caddemi et al. (2017) used the dynamic stiffness matrix for modeling the axially loaded

frames with arbitrary number of open cracks. The size of their DSM remained constant regardless of the number of

cracks along the beam.

From the previous literature we can conclude that the TSDT has an advantage over Timoshenko beam theory

in that it does not require the evaluation of a shear coefficient κ with changing beam cross section (Cowper, 1966;

Timoshenko, 1921). A solution for the case of a cracked thick beam has not been published yet and this is aim of

the current paper. In Section 2 the theoretical model based on TSDT is investigated and the crack model is discussed,

along with finite element analysis using ANSYS and the experimental setup used for the verification of the model. The

model results and verifications are presented in Section 3. Finally, the main outcomes and conclusions are presented

in Section 4.

2. Theoretical model and experimental setup

The Cartesian coordinate system is used to describe the Reddy beam element as shown in Fig.1-(a). The (x, y, z)

axes are placed along the beam length L, width W and thickness (height) h respectively. The displacements along

the (x, y, z) coordinate directions are (u, v,w) respectively. In the current analysis, and for simplicity, the transverse

vibration in y direction is not considered hence the v displacement is assumed to be zero. A Reddy beam with total

length L and uniform cross-section area A = W × h is shown in Fig.2. The beam has a transverse through edge

crack of depth a at a position Lc. The beam is connected to masses at both ends by transverse and rotational springs

and concentrated masses are attached to the beam at both ends. The beam is subject to a non-uniform distributed

transverse force f (x).

K L
r

K L
t

K R
r

K R
t

L

Lc

f(x)

W

h

a

X

X
X-X

mL
mR

Figure 2: Cracked Reddy beam attached by transverse and rotational springs to masses at both ends and loaded by a non-uniform distributed

transverse force.
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2.1. Governing equations

The displacement field according to TSDT is given by

u (x, z) =zψ −
4

3h2
z3

(

ψ +
dw

dx

)

,

w (x, z) =w,

(1)

where ψ is the value of the slopeϕ (x, z, t) given by

ϕ =
∂u

∂z
= ψ −

4

h2
z2

(

ψ +
dw

dx

)

, (2)

at z = 0, as shown in Fig.1-(d).

The average value of the slope over the interval z ∈ [−h/2 , h/2 ] is given by

ϕav =

∫ h
2

− h
2

ϕdz

h
=

[

z ψ − 4
3h2 z3

(

ψ + dw
dx

)]
h
2

− h
2

h
=

2

3
ψ −

1

3

dw

dx
(3)

Here, the obtained value of ϕav is used to evaluate the torsional spring moment at the beam boundaries and

intermediate nodes. The same concept is used with crack equivalent torsional spring. Then, the moment resulting

from a torsional spring Kr can be written as shown in Eq. (4). This moment can be divided into two components

written in terms of ψ and dw
dx

.

Fr = Krϕav = Kr

(

2

3
ψ −

1

3

dw

dx

)

= Kψψ − Kθ

dw

dx
, (4)

where Fr is the total rotational moment, Kψ =
2
3
Kr and Kθ =

1
3
Kr.

The strain and stress components corresponding to the displacement field given by Eq.(1) are:

εxx =
∂u

∂x
=

(

z
dψ

dx
−

4

3h2
z3

(

dψ

dx
+

d2w

dx2

) )

,

γxz =
∂u

∂z
+
∂w

∂x
=

(

1 −
4

h2
z2

) (

ψ +
dw

dx

)

,

(5)

σxx =Eεxx = E

(

z
dψ

dx
−

4

3h2
z3

(

dψ

dx
+

d2w

dx2

) )

,

τxz =Gγxz = G

(

1 −
4

h2
z2

) (

ψ +
dw

dx

)

,

(6)

where E and G are the Young’s and shear moduli of the beam respectively.

The strain energy of the system Π can be expressed as the sum of the strain energy of the beam element

Π1 = 1/2

∫

A

∫ L

0

(σxxεxx + τxzγxz) dx dA, (7)
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and the strain energy at the beam element boundaries

Π2 =















1

2















KL
t w2 + KL

ψψ
2 + KL

θ

(

dw

dx

)2




























x=0

+















1

2















KR
t w2 + KR

ψψ
2 + KR

θ

(

dw

dx

)2




























x=L

. (8)

The rotational spring reacts opposite to the moment forces as given in Eq.(4). Hence substituting equations (6)

into equations (7) and (8) and simplifying gives

Π =
1

2

∫ L

0















E I















68

105

(

dψ

dx

)2

−
32

105

dψ

dx

d2w

dx2
+

1

21

(

d2w

dx2

)2














+
8

15
G A















ψ2 + 2 ψ
dw

dx
+

(

dw

dx

)2




























+















1

2















KL
t w2 + KL

ψψ
2 + KL

θ

(

dw

dx

)2




























x=0

+















1

2















KR
t w2 + KR

ψψ
2 + KR

θ

(

dw

dx

)2




























x=L

,

(9)

where I = W h3

12
is the cross-section moment of inertia,

∫ (

z2, z4

h2 ,
z6

h4

)

dA = I
(

1, 3
20
, 3

112

)

and
∫ (

1, z2

h2 ,
z4

h4

)

dA =

A
(

1, 1
12
, 1

80

)

.

The velocities of any point on the beam are given by:

u̇ =z
dψ

dt
−

4

3h2
z3

(

dψ

dt
+

d2w

dx dt

)

,

ẇ =
dw

dt
,

(10)

and the average axial velocity is equal to zero i.e.

u̇av =

∫ h
2

− h
2

u̇ dz

h
= 0, (11)

where
∫ h

2

− h
2

(

z, z3
)

dz = (0, 0).

The kinetic energy of the system T at any instant can be expressed as

T =T1 + T2 =
1

2

∫

A

∫ L

0

ρ















(

du

dt

)2

+

(

dw

dt

)2














dx dA

+















1

2















mL

(

dw

dt

)2




























x=0

+















1

2















mR

(

dw

dt

)2




























x=L

=
1

2

∫

A

∫ L

0

ρ





























z2

(

dψ

dt

)2

−
8

3h2
z4















(

dψ

dt

)2

+
dψ

dt

d2w

dx dt















+
16

9h4
z6

(

dψ

dt
+

d2w

dx dt

)2














+

(

dw

dt

)2














dxdA

+















1

2















mL

(

dw

dt

)2




























x=0

+















1

2















mR

(

dw

dt

)2




























x=L

(12)

where T1 and T2 refer to the kinetic energy of the beam and the attached masses respectively and ρ is the density of

the beam material.
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Simplifying Eq.(12) gives

T =
1

2

∫ L

0















ρI















68

105

(

dψ

dt

)2

−
32

105

dψ

dt

d2w

dx dt
+

1

21

(

d2w

dx dt

)2














+ ρA

(

dw

dt

)2














dx+















1

2















mL

(

dw

dt

)2




























x=0

+















1

2















mR

(

dw

dt

)2




























x=L

(13)

The work of the distributed transverse load f (x, t) is given by

W =

∫ L

0

f wdx. (14)

Hamilton’s principle can be used to obtain the equations of motion i.e.

δ

∫ t2

t1

(Π − T −W)dt = 0, (15)

where the terms δ
∫ t2

t1
Πdt, δ

∫ t2

t1
Tdt and δ

∫ t2

t1
Wdt are given by:

δ

∫ t2

t1

Πdt =

∫ t2

t1

∫ L

0

[

EI

(

68

105

dψ

dx
δ

(

dψ

dx

)

−
16

105

dψ

dx
δ

(

d2w

dx2

)

−
16

105

d2w

dx2
δ

(

dψ

dx

)

+
1

21

d2w

dx2
δ

(

d2w

dx2

))

+
8

15
GA

(

ψδ (ψ) + ψδ

(

dw

dx

)

+
dw

dx
δ (ψ) +

dw

dx
δ

(

dw

dx

)) ]

dxdt

+

∫ t2

t1

[(

KL
t wδ (w) + KL

ψψδ (ψ) + KL
θ

dw

dx
δ

(

dw

dx

))

x=0
(

KR
t wδ (w) + KR

ψψδ (ψ) + KR
θ

dw

dx
δ

(

dw

dx

))

x=L

]

dt

(16)

δ

∫ t2

t1

T1dt =

∫ t2

t1

[ ∫ L

0

[

ρI

(

−
68

105

d2ψ

dt2
δ (ψ) +

16

105

d2ψ

dt2
δ

(

dw

dx

)

+
16

105

d3w

dxdt2
δ (ψ) −

1

21

d3w

dxdt2
δ

(

dw

dx

))

−ρA

(

d2w

dt2
δ (w)

)]

dx

]

dt +

∫ t2

t1

[(

mL d2w

dt2
δ (w)

)

x=0

+

(

mR d2w

dt2
δ (w)

)

x=L

]

dt,

(17)

δ

∫ t2

t1

Wdt =

∫ t2

t1

(∫ L

0

f δ (w) dx

)

dt. (18)
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Applying integration by parts to Eqs (16) and (17) gives

δ

∫ t2

t1

Πdt =

∫ t2

t1

∫ L

0

[ (

−
16

105
EI

d3ψ

dx3
+

1

21
EI

d4w

dx4
−

8

15
GA

(

dψ

dx
+

d2w

dx2

))

δ (w)

+

(

−
68

105
EI

d2ψ

dx2
+

16

105
EI

d3w

dx3
+

8

15
GA

(

ψ +
dw

dx

) )

δ (ψ)

]

dxdt

+

∫ t2

t1

[ (

16

105
EI

d2ψ

dx2
−

1

21
EI

d3w

dx3
+

8

15
GA

(

ψ +
dw

dx

))

δ (w) |L0 +
[

KL
t w0δ (w0) + KR

t wLδ (wL)
]

+

(

−
16

105
EI

dψ

dx
+

1

21
EI

d2w

dx2

)

δ

(

dw

dx

)

|L0 +

[

KL
θ

dw0

dx
δ

(

dw0

dx

)

+ KR
θ

dwL

dx
δ

(

dwL

dx

)]

+

(

68

105
EI

dψ

dx
−

16

105

d2w

dx2

)

δ (ψ) |L0 +
(

KL
ψψ0δ (ψ0) + KR

ψψLδ (ψL)
)

]

dt

(19)

δ

∫ t2

t1

Tdt =

∫ t2

t1

∫ L

0

[ (

−
16

105
ρI

d3ψ

dxdt2
+

1

21
ρI

d4w

dx2dt2
− ρA

d2w

dt2

)

δ (w)

+

(

−
68

105
ρI

d2ψ

dt2
+

16

105
ρI

d3w

dxdt2

)

δ (ψ)

]

dx dt

+

∫ t2

t1

[

16

105
ρI

d2ψ

dt2
−

1

21
ρI

d3w

dxdt2

]L

0

δ (w) dt

+

∫ t2

t1

[(

−mL d2w0

dt2
δ (w0)

)

+

(

−mR d2wL

dt2
δ (wL)

)]

dt

(20)

Collecting the coefficients of δ (w) and δ(ψ) in Eqs (18-20) together gives the equations of motion:

16

105
EI

d3ψ

dx3
−

1

21
EI

d4w

dx4
+

8

15
GA

(

dψ

dx
+

d2w

dx2

)

+ f =
16

105
ρI

d3ψ

dxdt2
−

1

21
ρI

d4w

dx2dt2
+ ρA

d2w

dt2
, (21)

−
68

105
EI

d2ψ

dx2
+

16

105
EI

d3w

dx3
+

8

15
GA

(

ψ +
dw

dx

)

= −
68

105
ρI

d2ψ

dt2
+

16

105
ρI

d3w

dxdt2
. (22)

The boundary conditions for the Reddy beam are given in Table 1.

Table 1: Reddy beam boundary conditions.

Essential boundary conditions Natural boundary conditions Natural boundary conditions

At left (x=0) At right (x=L)

w Ft = KL
t w0 + mL d2w0

dt2
Ft = −KR

t wL − mR d2wL

dt2
dw
dx

Fθ = KL
θ

dw0

dx
Fθ = −KR

θ
dwL

dx

ψ Fψ = KL
ψψ0 Fψ = −KR

ψψL

where Ft =
16

105
EI

d2ψ

dx2 −
1

21
EI d3w

dx3 +
8
15

GA
(

ψ + dw
dx

)

− 16
105
ρI

d2ψ

dt2
− 1

21
ρI d3w

dxdt2
,

Fθ = −
16
105

EI
dψ

dx
+ 1

21
EI d2w

dx2 and Fψ =
68

105
EI

dψ

dx
− 16

105
EI d2w

dx2 .

2.2. Element mass and stiffness matrices of Reddy beam

The beam was divided into J elements and N = J + 1 nodes. Each jth element has 2 nodes as shown in Fig.3-(a).

Equations (16-18) show that the transverse displacement w and the rotation ψ are required to be at least twice and

10



once differentiable, respectively. In order to obtain the element mass and stiffness matrices, exact integration is used

with linear Lagrange Li and Hermite cubic Hi interpolation functions for ψ and w:

j j+1

1 J

j j+1

K cy

K c

(a)

(b)

ᶿ

Figure 3: Schematic diagrams of (a) the Reddy beam finite element model (b) the crack rotational spring model

ψ (x, t) =

2
∑

i=1

ψi (t) Li(x) and w (x, t) =

4
∑

i

∆i (t) Hi(x), (23)

where∆i is as given by:

∆1 = [w]x=x j
, ∆2 = [θ]x=x j

=

[

−
dw

dx

]

x=x j

,

∆3 = [w]x=x j+1
and ∆4 = [θ]x=x j+1

=

[

−
dw

dx

]

x=x j+1

,

(24)

and (x j, x j+1) are the global nodal coordinates of the jth element. Substituting Eq (23) into Eqs (16-18) gives the

element equation. The Reddy beam has 6 × 6 stiffness Ke and mass Me matrices with nodal-value vector ∆e =

[

∆1∆2ψ1∆3∆4ψ2

]

and force vector Fe

(

Ke − ω
2Me

)

∆e = Fe (25)

These matrices are given in Appendix A.

The transverse and rotational elastic support at the jth node is given by a diagonal 3 × 3 matrix;

Ksj
=









































Kw j
0 0

0 Kθ j
0

0 0 Kψ j









































(26)

2.3. Crack model

In several studies, the crack is modeled as a massless rotational spring, whose stiffness can be calculated using

fracture mechanics which leads to a substructure approach (Aria et al., 2019; Banerjee and Guo, 2009; Kisa et al.,

1998; Labib et al., 2014; Loya et al., 2009; Mazaheri et al., 2018; Torabi and Nafar Dastgerdi, 2012). Consider

the cracked node to be a cracked element with no length and no mass. The key benefit of this approach is that

the global nonlinear structure is divided into multiple linear subsystems with a local stiffness discontinuity. In the
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present analysis, the lateral stiffness of the beam at the crack position is assumed to have remained unchanged and the

continuity conditions at the crack location imply that the vertical deflections at the left and right nodes are identical.

The total equivalent stiffness for crack rotary spring is assumed to be related to the crack depth a by:

Keq =
E I

L

1

k∗
where k∗ =

h

L
C(ξ), (27)

where k∗ is a dimensionless local compliance which is a measure of crack severity, C (ξ) is a dimensionless function

given by (Caddemi and Caliò, 2009, 2013):

C (ξ) =
ξ (2 − ξ)

0.9 (ξ − 1)2
. (28)

and ξ = a
h

is the crack depth to height ratio. The stiffness of the equivalent rotational spring Keq in the cracked node

position was determined by Eq (27). In the case of uncracked nodes, the value of Keq approaches infinity.

In the Reddy beam the beam cross sections are pinned together by 2 parallel rotary springs as shown in Fig.3-(b)

which are used to model the increased flexibility due to the crack, where the subscript c means crack. (ψL, θL) and
(

ψR, θR
)

are the rotation and bending slope at left and right ends of the element, respectively; w is the lateral displace-

ment of the node; and Kψ and Kθ are the components of rotational stiffness corresponding to ψ and θ respectively.

Based on Eq (4), Kcψ and Kcθ can be expressed as 2
3
Keq and 1

3
Keq respectively. The continuity conditions at the crack

location demonstrate that the left and right nodes have the same vertical deflection wL = wR; i.e., the node connecting

stiffness is infinity in this direction. However, the rotations ψL, θL and ψR, θR of these nodes are related through the

torsional stiffness. The stiffness matrix of the crack can be written as:

Kc =





























































































∞ 0 0 −∞ 0 0

0 Kcθ 0 0 −Kcθ 0

0 0 Kcψ 0 0 −Kcψ

−∞ 0 0 ∞ 0 0

0 −Kcθ 0 0 Kcθ 0

0 0 −Kcψ 0 0 Kcψ





























































































(29)

2.4. Global stiffness and mass matrix

In this global matrix, there are N nodes and n cracks leading to a 3(N + n) × 3(N + n) matrix. The assembly

technique for the cracked beam follows the traditional finite element technique. The overall stiffness K and mass M

matrices of a cracked Reddy beam can be assembled as shown in Fig.4.
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If(iel=ic) 𝐊 = 𝐊 + 𝐊c𝐌 = 𝐌+[0] 

FALSE

else𝐊 = 𝐊 + 𝐊e𝐌 = 𝐌+𝐌𝐞

ASSEMBLY

Next

*iel is the number of the element

*ic is the number of crack node

TRUE

Figure 4: Finite element assembly technique.

2.5. Determination of natural frequencies and mode shapes

The natural frequencies and mode shapes of an undamped beam in free vibration analysis can be obtained using

global stiffness K and mass M matrices. In general, the undamped eigenvalues can be obtained using

[

K − ω2
i M

]

d = 0, (30)

where, ωi is the natural frequency and d is the mode shape vector of the beam. MATLAB code was used to obtain the

natural frequencies and the mode shapes of the beam.

2.6. Finite element model using ANSYS

To validate the results of the present model, selected cases were solved using the present finite element model

based on Reddy beam theory and using real cracked beam geometry model using the ANSYS finite element package

(El-Sayed and Hand, 2011). The cracked beams were modeled in three-dimensions using SOLID186 elements. A

mapped mesh was used for the selected model as shown in Fig.5. The number of elements used to mesh the model

was 20000. The boundary conditions were identified according to the investigated case as clamped, simply supported,

or free. The analysis was performed using ANSYS Modal module.

2.7. Experimental setup

To investigate the accuracy of the present model in a practical application, selected samples were prepared and

experimentally tested. These samples were manufactured from steel. The length of the samples was L = 0.3 m and

the width and height of the samples were W = h = 0.02 m . The density of the material was experimentally evaluated

as 7800±16 kg/m3. The elastic modulus of the material was evaluated based on the free vibration analysis of an

uncracked beam as 202±3 GPa.
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Figure 5: ANSYS model of cracked beam.

The experimental setup as based on the free vibration of cracked and uncracked samples. The beam was excited

using instrumented hammer model B&K 8202. A low weight accelerometer model B&K 4375 was used, to reduce

the effect of accelerometer mass on the results. This accelerometer was connected to a charge amplifier Model B&K

2635. The analog output from this amplifier was connected to a NI data acquisition card (model NI6216), see Fig.6-b,

which was directly connected to a laptop. LABVIEW software was used to capture the results in real-time. The

signal capture settings were a sample frequency of 8 kHz, sampling time 5 s with a 2 k sample block. The obtained

experimental frequency was calculated based on the average of at least 6 measurements for each single case. For

each case the measurements were performed using at least two locations for the accelerometer to avoid coinciding the

accelerometer location with a standing wave node which would have resulted in the mode being missed. This was

found to help to capture all the first vibration modes more precisely. Several crack locations and crack depths were

used in the present analysis; the cracked samples are shown in Fig.6-b. The dimensions and location of the crack are

listed in Table 2. Four different crack depth ratios namely ξ = 0, 0.2, 0.4, 0.6 were used.

Table 2: The dimensions and crack location ratios of the five samples.

Samples L (m) W (m) h (m) lc

S 1 0.1

S 2 0.2

S 3 0.3 0.02 0.02 0.3

S 4 0.4

S 5 0.5
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(a)

(b)

Figure 6: (a) Experimental setup (b)Cracked steel test samples

3. Results and discussion

This section is divided into two subsections. In the first subsection validation results for the present model are

compared with some published literature. In the second subsection, new results are presented and discussed. The

following dimensionless parameters are employed throughout the present work, ω̄ =
(

ρ A

E I
ω2L4

)
1
4
, Ω =

ωcr

ωint
, ξ =

a
h
, lc =

Lc

L
,

where ω̄, ωcr, ωint,Ω, ξ, lc are respectively the dimensionless frequency, the frequency of the cracked beam, the

frequency of the intact beam, the frequency ratio, the crack depth ratio and the crack position ratio. ω̂ = ω
2π

is the

frequency in Hertz.

3.1. Validation of the present cracked Reddy beam model

The effects of aspect ratio and crack (depth and position) on the beam frequencies were independently investigated

and compared with the literature in order to present a comprehensive verification procedure. Initially, the results were

obtained for an intact beam with various aspect ratios as shown in Table 3. Then, the natural frequencies for a cracked

beam with varying crack depths and positions were calculated and are compared in Table 4.

The first six dimensionless natural frequencies ω̄n for an intact clamped-simply supported beam are compared

with those from Ref. (Şimeşk and Kocatürk, 2007) as shown in Table 3. The analysis was applied for different aspect

ratios h
L
= 0.002, 0.01, 0.02, 0.05, 0.1, 0.2.

15



The results of the present model, 3D-FE and those based on FSDT (Torabi and Nafar Dastgerdi, 2012) and ones

based on CBT (Aria et al., 2019; Loya et al., 2009) were compared. A slenderness ratio of 0.1 is considered in the

present TSDT and 3D-FE results. The effect of crack position ratio (lc = 0.5, 0.25) and crack severity parameter

(k∗ = 0.065, 0.35, 2) or crack depth ratio (ξ = 0.028, 0.128, 0.402) were examined. For further validation, the

results for simply supported-simply supported boundary conditions are given in Table 4. In this comparison first four

dimensionless natural frequencies are compared.

This concludes the procedure for detailed examination of the current model. There is good agreement between

the results of this analysis, the 3D-FE results and literature data.

Table 3: The first six dimensionless natural frequency ω̄n of an intact clamped-simply supported beam for different aspect ratios h
L

Method h
L

ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

a
0.002

3.9265 7.0684 10.2097 13.3508 16.4916 19.6322

present 3.9266 7.0685 10.2099 13.3511 16.4921 19.6328

a
0.005

3.9264 7.0676 10.2074 13.3459 16.4826 19.6173

present 3.9264 7.0676 10.2075 13.3460 16.4828 19.6174

a
0.01

3.9258 7.0647 10.1992 13.3284 16.4506 19.5646

present 3.9258 7.0647 10.1993 13.3285 16.4507 19.5644

a
0.02

3.9234 7.0531 10.1671 13.26 16.3266 19.3624

present 3.9235 7.0531 10.1671 13.2600 16.3264 19.3616

a
0.05

3.9072 6.9754 9.9582 12.8349 15.5932 18.2290

present 3.9073 6.9754 9.9582 12.8349 15.5930 18.2281

a
0.1

3.8525 6.7346 9.3769 11.7802 13.9692 15.9742

present 3.8526 6.7350 9.3778 11.7819 13.9716 15.9774

a
0.2

3.6708 6.0947 8.1219 9.8636 11.3979 12.7717

present 3.6710 6.0957 8.1237 9.8662 11.4010 12.7753

(a) refers to Şimşek and Kocatürk (Şimeşk and Kocatürk, 2007) results.

3.2. Vibration of a cracked Reddy beam

3.2.1. Crack depth and location effect on the beam natural frequency using TSDT, FSDT, CBT and 3D-FE.

The number of elements used in the MATLAB code for TSDT is 100 elements. The changes in the first frequency

ω̂1 of a cracked beam for crack depth ratios (ξ = 0, 0.2, 0.4, 0.6) and different boundary conditions versus crack

location ratios lc are presented in Fig.7. Figure 7 also compares the TSDT , FSDT and CBT with FE results for thick

and thin beams with slenderness ratios (λ = 20, 40) and beam lengths L = 0.4 , 0.8 m respectively.

There is good agreement between TSDT, FSDT, CBT, and the FE results for the frequency of the first vibrational

mode. As the crack depth ratio increases, the first frequency decreases, indicating a reduction in the stiffness of the

cracked beams for both thin and thick beams and for the different boundary conditions. For the same crack depth and
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Table 4: The first four dimensionless natural frequencies ω̄n of a cracked simply supported-simply supported beam for different crack position

ratios lc and crack severity k∗.

k∗ ξ ω̄n lc Present 3D-FE a b c lc Present 3D-FE a b c

0.065 0.2057

n = 1

0.5

3.0186 3.0601 3.0469 2.9379 3.0466

0.25

3.0650 3.0846 3.0921 3.024 3.0925

n = 2 6.0930 6.0974 6.2832 6.1583 6.2818 5.9228 5.9855 6.1028 5.8101 6.1019

n = 3 8.6316 8.7224 9.1669 8.5536 9.1652 8.7450 8.7879 9.3021 8.8166 9.3005

n = 4 11.3578 11.3816 12.5664 11.717 12.5638 11.3578 11.3815 12.5664 11.717 12.5642

0.35 0.5091

n = 1 2.7238 2.7214 2.7496 2.3533 2.7489 2.8809 2.8790 2.9071 2.596 2.9064

n = 2 6.0930 6.0900 6.2832 6.1583 6.2819 5.5041 5.4887 5.6491 4.9441 5.6484

n = 3 8.1679 8.3652 8.6129 7.3535 8.6114 8.5576 8.5040 9.0767 8.4026 9.0752

n = 4 11.3578 11.3104 12.5664 11.717 12.5638 11.3578 11.3395 12.5664 11.717 12.5642

2 0.7706

n = 1 2.0843 2.1788 2.096 1.3055 2.0958 2.3345 2.2948 2.3493 1.5023 2.3465

n = 2 6.0930 6.0654 6.2832 6.1583 6.2818 4.9976 5.2813 5.1047 4.3015 5.1042

n = 3 7.7000 8.1824 8.073 6.3928 8.0715 8.4064 8.1396 8.9008 8.1377 8.8993

n = 4 11.3578 11.1176 12.5664 11.717 12.5638 11.3578 11.1941 12.5664 11.717 12.5642

n = 1 3.1160 3.1167 3.1416 3.1252 3.1409

Intact n = 2 6.0930 6.0977 6.2832 6.1583 6.2818

beam n = 3 8.8475 8.8606 9.4248 9.0328 9.4228

n = 4 11.3578 11.3828 12.5664 11.717 12.5638

(a)Loya et al. (2009), (b) Torabi and Nafar Dastgerdi (2012), (c) Aria et al. (2019) and n is the mode index.

location ratios, the vibration frequency of a thick (short) beam decreased more than that of a thin (long) beam, indi-

cating that the vibrations of thick (short) beams are more sensitive to the presence of cracks. Each boundary condition

has a crack location where the crack depth has a negligible effect on the frequency and the behavior resembles that of

the intact beam; these locations are referred to as blind locations. There are also some locations where the influence

of crack depth on frequency is maximised; these are referred to as sensitive locations.

The first three natural frequencies of the cracked beam with a slenderness ratio λ = 20 , length L = 0.4 m and

crack depth ratio ξ = 0.4 with respect to crack location ratio lc are shown in Fig. 8. The results of Fig. 8 show clearly

that the results of both TSDT, FSDT are very close together in all modes and for all boundary conditions. In addition,

it can be shown from the same figure that CBT results are closer to 3D-FE results at the first mode while TSDT, FSDT

results are closer to the 3D-FE results for the 2nd and 3rd modes. As shown in Fig. 8, the blind and sensitive locations

for every boundary condition change with changing the vibration mode. The change in blind and sensitive locations

ratios as extracted from Fig. 7 and Fig. 8 are tabulated in Table 5 for different boundary conditions and for the first

three modes.

3.2.2. Crack depth and location effect using TSDT, FSDT, CBT, experimental and 3D-FE

Here, the samples discussed in experimental setup section are used. There are five samples with crack location

ratios [0.1, 0.2, 0.3, 0.4, 0.5] for [S 1, S 2, S 3, S 4, S 5] respectively. The number of elements used in the TSDT method is

400 elements. The test samples are supported on a flexible car tire inner tube to simulate the free-free end conditions.

The changes in the first three natural frequencies ω̂n of the cracked beam versus crack depth ratios (ξ = 0, 0.2, 0.4, 0.6)

for different crack location ratios lc and for free-free boundary conditions are compared with the TSDT, FSDT, CBT

and 3D-FE results in Fig.9. The percentage deviations between the model results and the experimental results are

listed in Table 6.
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Table 5: The blind and sensitive locations ratios for first three modes and different boundary conditions.

Mode number Blind locations ratios Sensitive locations ratios

C-C

n = 1 0.25 and 0.75 Clamped ends and mid-point

n = 2 0.15, 0.5 and 0.85 0.3, 0.7 and clamped ends

n = 3 0.1, .35, 0.65 and 0.9 0.2, 0.8, Clamped ends and mid-point

S-S

n = 1 simply supported ends Mid-point

n = 2 Mid-point and simply supported ends 0.25 and 0.75

n = 3 0.35, 0.65 and simply supported ends 0.15, 0.85 and mid-point

C-S

n = 1 0.25 and simply supported end 0.65 and clamped end

n = 2 0.15, 0.55 and simply supported end 0.35, 0.8 and clamped end

n = 3 0.1, 0.4, 0.7 and simply supported end 0.25, 0.55, 0.85 and clamped end

C-F

n = 1 Free end Clamped end

n = 2 0.2 and free end 0.55 and clamped end

n = 3 0.15, 0.5 and free end 0.3, 0.7 and clamped end

The results shown in Fig.9 and Table 6 indicate better agreement between the experimental results and TSDT,

FSDT and 3D-FE than CBT, especially for higher modes. Figures 7-9, and Table 6 show that the results of FSDT

are very close to the TSDT. It is worth noting that the FSDT and TSDT results are very close together, however, the

FSDT model has an advantage over the TSDT model in that it does not require the evaluation of a shear correction

coefficient κ. The calculated maximum deviation between the present TSDT analysis and the experimental results is

less than 3.07 %. However, the maximum deviation between 3D-FE results and the experimental results is less than

1.73%. This means that the 3D-FE gives a more accurate prediction of the experimental results than TSDT. However,

TSDT has the advantage of being a line element model with less elements and thus lower memory requirements for

its solution.
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Figure 7: First natural frequency of cracked beam versus crack location ratio lc for different crack depths
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Figure 8: First three natural frequency of cracked beam versus crack location ratio.
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Figure 9: First three natural frequency of cracked beam versus crack depth ratio.
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Table 6: The deviation of the TSDT and 3D-FE results from the experimental results.

ξ Method n1 n2 n3 ξ Method n1 n2 n3

0 TDST 0.76 0.61 0.35 0 TDST -0.4 -0.42 -0.76

FSDT 0.77 0.61 0.35 FSDT -0.4 -0.42 -0.76

CBT 2.33 4.89 8.19 CBT 1.18 3.90 7.17

3D-FE 0.8 0.71 0.55 3D-FE -0.37 -0.32 -0.55

0.2 TDST 0.67 0.32 -0.33 0.2 TDST -0.9 -2.34 -2.96

FSDT 0.68 0.36 -0.24 FSDT -0.84 -2.15 -2.72

CBT 2.24 4.65 7.60 CBT 0.74 2.14 5.02

S 1 3D-FE 0.74 0.64 0.46 S 2 3D-FE -0.48 -0.87 -1.03

0.4 TDST 0.57 0.4 0.05 0.4 TDST -1.03 -2.14 -1.64

FSDT 0.58 0.47 0.28 FSDT -0.9 -1.72 -1.29

CBT 2.16 4.77 8.03 CBT 0.68 2.35 5.92

3D-FE 0.63 0.7 0.76 3D-FE -0.6 -0.82 -0.75

0.6 TDST 0.58 0.48 1.02 0.6 TDST -0.12 0.99 1.85

FSDT 0.6 0.63 1.4 FSDT 0.11 1.45 2.05

CBT 2.19 5.03 9.17 CBT 1.69 5.10 8.61

3D-FE 0.58 0.23 -1.14 3D-FE -0.18 0.15 0.06

ξ Method n1 n2 n3 ξ Method n1 n2 n3

0 TDST -0.52 -0.33 -0.81 0 TDST 0.25 0.02 -0.13

FSDT -0.52 -0.33 -0.81 FSDT 0.25 0.03 -0.13

CBT 1.07 3.99 7.12 CBT 1.82 4.33 7.75

3D-FE -0.48 -0.23 -0.61 3D-FE 0.28 0.13 0.07

0.2 TDST -1.88 -2.98 -1.48 0.2 TDST -1.17 -0.63 -0.42

FSDT -1.72 -2.72 -1.41 FSDT -0.90 -0.52 -0.38

CBT -0.14 1.49 6.46 CBT 0.63 3.71 7.43

S 3 3D-FE -0.68 -1.02 -0.77 S 4 3D-FE 0.8 0.3 0.06

0.4 TDST -2.46 -3.07 -1.3 0.4 TDST -0.93 -0.24 -0.16

FSDT -2.09 -2.64 -1.2 FSDT -0.38 -0.06 -0.10

CBT -0.56 1.27 6.53 CBT 1.04 4.00 7.55

3D-FE -1.27 -1.73 -1.07 3D-FE 0.86 0.34 -0.02

0.6 TDST -0.16 -0.08 0.33 0.6 TDST -0.11 0.5 1.4

FSDT 0.35 0.23 0.38 FSDT 0.54 0.63 1.44

CBT 1.76 3.67 7.87 CBT 1.79 4.47 8.80

3D-FE -0.27 -0.85 -0.9 3D-FE -0.22 -0.04 -0.26

ξ Method n1 n2 n3

0 TDST -0.4 -0.67 -0.8

FSDT -0.4 -0.67 -0.8

CBT 1.18 3.67 7.13

3D-FE -0.37 -0.56 -0.59

0.2 TDST -3.05 -0.67 -2.52

FSDT -2.73 -0.67 -2.33

CBT -1.19 3.66 5.33

S 5 3D-FE -0.72 -0.57 -0.95

0.4 TDST -2.19 -0.63 -2

FSDT -1.56 -0.63 -1.72

CBT -0.16 3.71 5.38

3D-FE -0.16 -0.57 -1.62

0.6 TDST -1.2 -0.5 2.23

FSDT -0.49 -0.5 2.41

CBT 0.72 3.83 8.66

3D-FE -1.31 -0.61 -1.45
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Conclusion

This paper aims to obtain the natural frequencies of cracked Reddy beams using the finite element method. The

cracked beam was solved by assembling the intact beams elements together with crack elements located at the ap-

propriate crack location. Two rotational springs with stiffnesses dependent on crack depth were used for the crack

element. The study examines the effect of boundary conditions, slenderness ratio, crack location and crack depth on

the frequencies.

From the obtained results, the following conclusions can be drawn:

• The cracked beam natural frequency decreases due to the loss of the equivalent beam flexibility. The amount of

decrease is determined by the crack depth, and crack location.

• For the same crack location and depth ratio, the percentage reduction of the natural frequency for the thick

(short) beam is greater than for thin (long) beams.

• The cracked beam has blind and sensitive locations that change by changing the boundary conditions and the

mode of vibration. The impact of a crack is more obvious at the fixed end than the free end. The blind locations differ

from the nodes of mode shapes.

• The CBT analysis is accurate for evaluating the first vibrational mode but not for evaluating higher modes.

• The results of both TSDT and FSDT are very close together and they prove an excellent agreement with the

experimental results and the 3D-FE models, especially for higher modes. However, it is important to highlight that

the advantage of TSDT over FSDT is that it does not require the evaluation of a shear correction coefficient κ..

• The effects of cracks on the higher-order frequencies tend to be clearer.

• To detect the crack on the beam it is important to check a lot of modes or boundary conditions for the beam.

The suggested approach is not restricted to the topics discussed in this study; it may also be applied to cracked

beams with numerous cracks. It should be emphasized that damping is not considered in this study. As a result, the

approach described herein must be changed if it is to be used to investigate damped beams.
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Caddemi, S., Caliò, I., 2013. The exact explicit dynamic stiffness matrix of multi-cracked euler–bernoulli beam and

applications to damaged frame structures. Journal of Sound and Vibration 332, 3049–3063. doi:doi:10.1016/j.

jsv.2013.01.003.

Caddemi, S., Calio, I., Cannizzaro, F., 2017. The dynamic stiffness matrix (dsm) of axially loaded multi-cracked

frames. Mechanics Research Communications 84, 90–97. doi:https://doi.org/10.1016/j.mechrescom.

2017.06.012.

Caddemi, S., Morassi, A., 2013. Multi-cracked euler–bernoulli beams: Mathematical modeling and exact solutions.

International Journal of Solids and Structures 50, 944–956. doi:doi:10.1016/j.ijsolstr.2012.11.018.

Cheng, Y., Yu, Z., Wu, X., Yuan, Y., 2011. Vibration analysis of a cracked rotating tapered beam using the p-version

finite element method. Finite Elements in Analysis and Design 47, 825–834.

Cowper, G.R., 1966. The shear coefficient in timoshenko’s beam theory. Journal of Applied Mechanics 33, 335–340.

doi:doi:10.1115/1.3625046.

Şimeşk, M., Kocatürk, T., 2007. Free vibration analysis of beams by using a third-order shear deformation theory.

Sadhana 32, 167–179. doi:doi:10.1007/s12046-007-0015-9.

Dilena, M., Dell’Oste, M.F., Morassi, A., 2011. Detecting cracks in pipes filled with fluid from changes in natural

frequencies. Mechanical Systems and Signal Processing 25, 3186–3197. doi:doi:10.1016/j.ymssp.2011.04.

013.

24



Dimarogonas, A.D., 1996. Vibration of cracked structures: A state of the art review. Engineering Fracture Mechanics

55, 831–857. doi:doi:10.1016/0013-7944(94)00175-8.

Dwivedi, S.K., Vishwakarma, M., Soni, P.A., 2018. Advances and researches on non destructive testing: A review.

Materials Today: Proceedings 5, 3690–3698. doi:doi:10.1016/j.matpr.2017.11.620.

Ebrahimi, A., Meghdari, A., Behzad, M., 2005. A new approach for vibration analysis of a cracked beam. Interna-

tional Journal of Engineering 18, 319–330.

El-Sayed, T., Hand, R.J., 2011. Modelling the strengthening of glass using epoxy based coatings. Journal of the

European Ceramic Society 31, 2783–2791. doi:doi:10.1016/j.jeurceramsoc.2011.05.033.

El-Sayed, T.A., El-Mongy, H.H., 2021. A new numeric-symbolic procedure for variational iteration method with

application to the free vibration of generalized multi-span timoshenko beam. Journal of Vibration and Control -,

1–13.

El-Sayed, T.A., Farghaly, S.H., 2018. Frequency equation using new set of fundamental solutions with application

on the free vibration of timoshenko beams with intermediate rigid or elastic span. Journal of Vibration Control 24,

4764–4780.

El-Sayed, T.A., Farghaly, S.H., 2020. Formulae for the frequency equations of beam-column system carrying a fluid

storage tank. Structural Engineering and Mechanics 73, 83–95. doi:doi:sem.2020.73.1.083.

Elsawaf, A., El-sayed, T.A., Farghaly, S.H., 2020. Optimal design for maximum fundamental frequency and minimum

intermediate support stiffness for uniform and stepped beams composed of different materials. doi:https://doi.

org/10.4271/2020-01-5014.

Farghaly, S., El-Sayed, T., 2016. Exact free vibration of multi-step timoshenko beam system with several attachments.

Mechanical Systems and Signal Processing 72, 525–546.

Farghaly, S.H., 1994. Vibration and stability analysis of timoshenko beams with discontinuities in cross-section.

Journal of Sound and Vibration 174, 591–605. doi:doi:10.1006/jsvi.1994.1296.

Farghaly, S.H., El-Sayed, T.A., 2017. Exact free vibration analysis for mechanical system composed of timoshenko

beams with intermediate eccentric rigid body on elastic supports: An experimental and analytical investigation.

Mechanical Systems and Signal Processing 82, 376–393.

Friswell, M.I., 2007. Damage identification using inverse methods. Philosophical Transactions of the Royal Society

A: Mathematical, Physical and Engineering Sciences 365, 393–410. doi:doi:10.1098/rsta.2006.1930.

25



Heyliger, P.R., Reddy, J.N., 1988. A higher order beam finite element for bending and vibration problems. Journal of

Sound and Vibration 126, 309–326. doi:doi:10.1016/0022-460X(88)90244-1.

Huang, Y., Wu, J.X., Li, X.F., Yang, L.E., 2013. Higher-order theory for bending and vibration of beams with circular

cross section. Journal of Engineering Mathematics 80, 91–104. doi:doi:10.1007/s10665-013-9620-2.

Jemielita, G., 1975. Technical theory of plates with moderate thickness. Rozprawy Ink 23, 483–499.

Jun, L., Xiaobin, L., Hongxing, H., 2009. Free vibration analysis of third-order shear deformable composite

beams using dynamic stiffness method. Archive of Applied Mechanics 79, 1083–1098. doi:doi:10.1007/

s00419-008-0276-8.

Karamanlı, A., 2018. Free vibration analysis of two directional functionally graded beams using a third order shear

deformation theory. Composite Structures 189, 127–136. doi:doi:10.1016/j.compstruct.2018.01.060.

Kaya, Y., Dowling, J., 2016. Application of timoshenko beam theory to the estimation of structural response. Engi-

neering Structures 123, 71–76. doi:doi:10.1016/j.engstruct.2016.05.026.

Khdeir, A.A., Reddy, J.N., 1994. Free vibration of cross-ply laminated beams with arbitrary boundary conditions. In-

ternational Journal of Engineering Science 32, 1971–1980. URL: http://www.sciencedirect.com/science/

article/pii/0020722594900930, doi:doi:10.1016/0020-7225(94)90093-0.

Kim, K., Kim, S., Sok, K., Pak, C., Han, K., 2018. A modeling method for vibration analysis of cracked beam with

arbitrary boundary condition. Journal of Ocean Engineering and Science 3, 367–381. doi:doi:10.1016/j.joes.

2018.11.003.

Kisa, M., Brandon, J., Topcu, M., 1998. Free vibration analysis of cracked beams by a combination of finite el-

ements and component mode synthesis methods. Computers & Structures 67, 215–223. doi:doi:10.1016/

S0045-7949(98)00056-X.

Labib, A., Kennedy, D., Featherston, C., 2014. Free vibration analysis of beams and frames with multiple cracks for

damage detection. Journal of Sound and Vibration 333, 4991–5003. doi:doi:10.1016/j.jsv.2014.05.015.

Levinson, M., 1980. An accurate, simple theory of the statics and dynamics of elastic plates. Mechanics Research

Communications 7, 343–350. doi:doi:10.1016/0093-6413(80)90049-X.

Levinson, M., 1981. A new rectangular beam theory. Journal of Sound and Vibration 74, 81–87. doi:doi:10.1016/

0022-460X(81)90493-4.
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Appendix A. Elements of stiffness and mass matrix

The finite element equation of any elements without attachments may be written as
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where
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The stiffness and mass matrices and force vector are rearranged according to the displacement vector ∆e = {w1 θ1 ψ1 w2 θ2 ψ2}

as:
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Me =
ρ A l
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l is the element length.
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