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Abstract

NLU models often exploit biases to achieve

high dataset-specific performance without

properly learning the intended task. Recently

proposed debiasing methods are shown to be

effective in mitigating this tendency. However,

these methods rely on a major assumption that

the types of bias should be known a-priori,

which limits their application to many NLU

tasks and datasets. In this work, we present

the first step to bridge this gap by introducing

a self-debiasing framework that prevents mod-

els from mainly utilizing biases without know-

ing them in advance. The proposed framework

is general and complementary to the existing

debiasing methods. We show that it allows

these existing methods to retain the improve-

ment on the challenge datasets (i.e., sets of ex-

amples designed to expose models’ reliance

on biases) without specifically targeting cer-

tain biases. Furthermore, the evaluation sug-

gests that applying the framework results in

improved overall robustness.1

1 Introduction

Neural models often achieve impressive perfor-

mance on many natural language understanding

tasks (NLU) by leveraging biased features, i.e.,

superficial surface patterns that are spuriously as-

sociated with the target labels (Gururangan et al.,

2018; McCoy et al., 2019b).2 Recently proposed

debiasing methods are effective in mitigating the

impact of this tendency, and the resulting mod-

els are shown to perform better beyond training

distribution. They improved the performance on

challenge test sets that are designed such that rely-

ing on the spurious association leads to incorrect

predictions.

1The code is available at https://github.com/

UKPLab/emnlp2020-debiasing-unknown
2E.g., in several textual entailment datasets, negation

words such as “never” or “nobody” are highly associated with
the contradiction label.

Prevailing debiasing methods, e.g., example

reweighting (Schuster et al., 2019), confidence reg-

ularization (Utama et al., 2020), and model ensem-

bling (He et al., 2019; Clark et al., 2019; Mahabadi

et al., 2020), are agnostic to model’s architecture

as they operate by adjusting the training loss to ac-

count for biases. Namely, they first identify biased

examples in the training data and down-weight their

importance in the training loss so that models focus

on learning from harder examples.3

While promising, these model agnostic methods

rely on the assumption that the specific types of

biased features (e.g., lexical overlap) are known

a-priori. This assumption, however, is a limitation

in various NLU tasks or datasets because it de-

pends on researchers’ intuition and task-specific in-

sights to manually characterize the spurious biases,

which may range from simple word/n-grams co-

occurrence (Gururangan et al., 2018; Poliak et al.,

2018; Tsuchiya, 2018; Schuster et al., 2019) to

more complex stylistic and lexico-syntactic pat-

terns (Zellers et al., 2019; Snow et al., 2006; Van-

derwende and Dolan, 2006). The existing datasets

or the newly created ones (Zellers et al., 2019; Sak-

aguchi et al., 2020; Nie et al., 2019b) are, therefore,

still very likely to contain biased patterns that re-

main unknown without an in-depth analysis of each

individual dataset (Sharma et al., 2018).

In this paper, we propose a new strategy to en-

able the existing debiasing methods to be appli-

cable in settings where there is minimum prior

information about the biases. Specifically, mod-

els should automatically identify potentially biased

examples without being pinpointed at a specific

bias in advance. Our work makes the following

novel contributions in this direction of automatic

bias mitigation.

First, we analyze the learning dynamics of a

3We refer to biased examples as examples that can be
solved using only biased features.
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large pre-trained model such as BERT (Devlin

et al., 2019) on a dataset injected with a syn-

thetic and controllable bias. We show that, in very

small data settings, models exhibit a distinctive

response to synthetically biased examples, where

they rapidly increase the accuracy (→ 100%) on bi-

ased test set while performing poorly on other sets,

indicating that they are mainly relying on biases.

Second, we present a self-debiasing framework

within which two models of the same architecture

are pipelined to address the unknown biases. Using

the insight from the synthetic dataset analysis, we

train the first model to be a shallow model that is

effective in automatically identifying potentially bi-

ased examples. The shallow model is then used to

train the main model through the existing debiasing

methods, which work by down-weighting the po-

tentially biased examples. These methods present

a caveat in that they may lose useful training sig-

nals from the down-weighted training examples.

To account for this, we also propose an anneal-

ing mechanism which helps in retaining models’

in-distribution performance (i.e., evaluation on the

test split of the original dataset).

Third, we experiment on three NLU tasks and

evaluate the models on their existing challenge

datasets. We show that models obtained through

our self-debiasing framework gain equally high im-

provement compared to models that are debiased

using specific prior knowledge. Furthermore, our

cross-datasets evaluation suggests that our general

framework that does not target only a particular

type of bias results in better overall robustness.

Terminology This work relates to the growing

number of research that addresses the effect of

dataset biases on the resulting models. Most re-

search aims to mitigate different types of bias on

varying parts of the training pipeline (e.g., dataset

collection or modeling). Without a shared defini-

tion and common terminology, it is quite often that

the term “bias” discussed in one paper refers to

a different kind of bias mentioned in the others.

Following the definition established in the recent

survey paper by Shah et al. (2020), the dataset bias

that we address in this work falls into the category

of label bias. This bias emerges when the condi-

tional distribution of the target label given certain

features in the training data diverges substantially

at test time. These features that are associated with

the label bias may differ from one classification set-

ting to the others, and although they are predictive,

MNLI synthetic:

premise: What’s truly striking, though, is that
Jobs has never really let this idea go.

orig. hypo.: Jobs never held onto an idea for long.

biased: 0 Jobs never held onto an idea for long.

anti-biased: 1 Jobs never held onto an idea for long.

label: 0 (contradiction)

Figure 1: Synthetic bias datasets are created by ap-

pending an artificial feature to the input text that al-

lows models to use it as a shortcut to the target la-

bel. For each example in MNLI, a number-coded la-

bel (contradiction: 0 , entailment: 1 , neutral:

2 ) is appended to the hypothesis sentences.

relying on them for prediction may be harmful to

fairness (Elazar and Goldberg, 2018) or generaliza-

tion (McCoy et al., 2019b). The instances of these

features may include protected socio-demographic

attributes (gender, age, etc.) in automatic hiring

decision systems; or surface-level patterns (nega-

tion words, lexical overlap, etc.) in NLU tasks.

Further, we consider the label bias to be unknown

when the information about the characteristics of

its associated features is not precise enough for the

existing debiasing strategies to identify potentially

biased examples.

2 Motivation and Analysis

Debiasing NLU models Recent NLU tasks are

commonly formulated as multi-class classification

problems (Wang et al., 2018), in which the goal is

to predict the semantic relationship label y ∈ Y
given an input sentence pairs x ∈ X . For each ex-

ample x, let b(x) be the biased features that happen

to be predictive of label y in a specific dataset. The

aim of a debiasing method for an NLU task is to

learn a debiased classifier fd that does not mainly

use b(x) when computing p(y|x).

Model-agnostic debiasing methods (e.g.,

product-of-expert (Clark et al., 2019)) achieve this

by reducing the importance of biased examples

in the learning objective. To identify whether an

example is biased, they employ a shallow model

fb, a simple model trained to directly compute

p(y|b(x)), where the features b(x) are hand-crafted

based on the task-specific knowledge of the biases.

However, obtaining the prior information to design

b(x) requires a dataset-specific analysis (Sharma

et al., 2018). Given the ever-growing number of

new datasets, it would be a time-consuming and
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Figure 2: The learning trajectory of a BERT model on MNLI datasets that are synthetically biased with different

proportions: 0.9, 0.8, 0.7, and 0.6. All settings show models’ tendency to rely on biases after seeing only a small

number of training examples (accuracy goes up rapidly on “biased” while goes down on “anti-biased” after less

than 10K training steps).
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Figure 3: Histogram of probabilities assigned by synthetic MNLI models to their predicted labels. Top: model

trained on 5K examples for 1 epoch. Bottom: model trained on 2K for 3 epochs. Blue areas indicate the proportion

of the correct predictions within each bin.

costly process to identify biases before applying

the debiasing methods.

In this work, we propose an alternative strat-

egy to automatically obtain fb to enable existing

debiasing methods to work with no precise prior

knowledge. This strategy assumes a connection be-

tween large pre-trained models’ reliance on biases

with their tendency to operate as a rapid surface

learner, i.e., they tend to quickly overfit to surface

form information especially when they are fine-

tuned in a small training data setting (Zellers et al.,

2019). This tendency of deep neural network to

exploit simple patterns in the early stage of the

training is also well-observed in other domains of

artificial intelligence (Arpit et al., 2017; Liu et al.,

2020). Since biases are commonly characterized

as simple surface patterns, we expect that models’

rapid performance gain is mostly attributed to their

reliance on biases. Namely, they are likely to oper-

ate similarly as fb after they are exposed to only a

small number of training instances, i.e., achieving

high accuracy on the biased examples while still

performing poorly on the rest of the dataset.

Synthetic bias We investigate this assumption by

analyzing the comparison between models’ perfor-

mance trajectory on biased and anti-biased (“coun-

terexamples” to the biased shortcuts) test sets as

more examples are seen during the training. Our

goal is to obtain a fair comparison without the

confounds that may result in performance differ-

ences on these two sets. Specifically, the exam-

ples from the two sets should be similar except for

the presence of a feature that is biased in one set

and anti-biased in the other. For this reason, we

construct a synthetically biased data based on the

MNLI dataset (Williams et al., 2018) using a pro-

cedure illustrated in Figure 1. A synthetic bias is

injected by appending an artificial feature to 30%
of the original examples. We simulate the presence

of bias by controlling m portion of these manipu-

lated examples such that their artificial feature is

associated with the ground truth label (“biased”),

whereas, in the remaining (1−m), the feature is

disassociated with the label (“anti-biased”).4 Us-

ing a similar injection procedure we can produce

both fully biased and anti-biased test sets in which

100% of the examples contain the synthetic fea-

tures. Models that blindly predict based on the

artificial feature are guaranteed to achieve 0% ac-

4The remaining 70% of the dataset remain the same. The
biased and anti-biased examples refer to the fraction within
the other 30% that are injected with the artificial feature.
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curacy on the anti-biased test.

Model’s performance trajectory We finetune

a bert-base-uncased model (Wolf et al.,

2019) on the whole MNLI datasets that are par-

tially biased with different proportions (m =
{0.9, 0.8, 0.7, 0.6}). We evaluate each model on

the original as well as the two fully biased and anti-

biased test sets. Figure 2 shows the performance

trajectory in all settings. As expected, the models

show the tendency of relying on biases after only

seeing a small fraction of the dataset. Specifically,

at an early point during training, models achieve

100% accuracy on the biased test and drop to al-

most 0% on the anti-biased test. This behavior is

more apparent as the proportion of biased examples

is increased by adjusting m from 0.6 to 0.9.

Training a shallow model The analysis suggests

that we can obtain a substitute fb by taking a check-

point of the main model early in the training, i.e.,

when the model has only seen a small portion of

the training data. However, we observe that the

resulting model makes predictions with rather low

confidence, i.e., assigns a low probability to the pre-

dicted label. As shown in Figure 3 (top), most pre-

dictions fall in the 0.4 probability bin, only slightly

higher than a uniform probability (0.3). We further

find that by training the model for multiple epochs,

we can obtain a confident fb that overfits biased

features from a smaller sample size (Figure 3, bot-

tom). We show in Section 3 that overconfident fb
is particularly important to better identify biased

examples.

3 Self-debiasing Framework

We propose a self-debiasing framework that en-

ables existing debiasing methods to work with-

out requiring a precise dataset-specific knowledge

about the biases’ characteristics. Our framework

consists of two stages: (1) automatically identify-

ing biased examples using a shallow model; and

(2) using this information to train the main model

through the existing debiasing methods, which are

augmented with our proposed annealing mecha-

nism.

3.1 Biased examples identification

First, we train a shallow model fb, which approxi-

mates the behavior of a simple hand-crafted model

that is commonly used by the existing debiasing

methods to identify biased examples. As men-

tioned in Section 2, we obtain fb for each task

by training a copy of the main model on a small

random subset of the dataset for several epochs.

The model fb is then used to make predictions on

the remaining unseen training examples. Given a

training example {x(i), y(i)}, we denote the output

of the shallow model as fb(x
(i)) = p

(i)
b .

Probabilities pb are assigned to each training

instance to indicate how likely that it contains bi-

ases. Specifically, the presence of biases can be es-

timated using the scalar probability value of p
(i)
b on

the correct label, which we denote as p
(i,c)
b , where

c is the index of the correct label. We can interpret

p
(i,c)
b by the following: when the model predicts an

example x(i) correctly with high confidence, i.e.,

p
(i,c)
b → 1, x(i) is potentially biased. Conversely,

when the model makes an overconfident error, i.e.,

p
(i,c)
b → 0, x(i) is likely to be a harder example

from which models should focus on learning.

3.2 Debiased training objective

We use the obtained pb to train the main model fd
parameterized by θd. Specifically, pb is utilized

by the existing model-agnostic debiasing methods

to down-weight the importance of biased exam-

ples in the training objective. In the following, we

describe how the three recent model-agnostic de-

biasing methods (example reweighting (Schuster

et al., 2019), product-of-expert (He et al., 2019;

Clark et al., 2019; Mahabadi et al., 2020), and con-

fidence regularization (Utama et al., 2020)) operate

within our framework:

Example reweighting This method adjusts the

importance of a training instance by directly as-

signing a scalar weight that indicates whether the

instance exhibits a bias. Following Clark et al.

(2019), this weight scalar is computed as 1− p
(i,c)
b .

The individual loss term is thus defined as:

L(θd) = −(1− p
(i,c)
b )y(i) · log pd

Where pd is the softmax output of fd. This formu-

lation means that the contribution of an example to

the overall loss is steadily decreased as the shallow

model assigns a higher probability to the correct

label (i.e., more confident prediction).

Product-of-expert In this method, the main

model fd is trained in an ensemble with the shallow

model fb, by combining their softmax outputs. The

ensemble loss on each example is defined as:

L(θd) = −y(i) · log softmax(log pd + log pb)
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During the training, we only optimize the parame-

ters of fd while keeping the parameters of fb fixed.

At test time, we use only the prediction of fd.

Confidence regularization This method works

by regularizing model confidence on the examples

that are likely to be biased. Utama et al. (2020)

use a self-distillation training objective (Furlanello

et al., 2018; Hinton et al., 2015), in which the super-

vision by the teacher model is scaled down using

the output of the shallow model. The loss on each

individual example is defined as a cross entropy

between pd and the scaled teacher output:

L(θd) = −S(pt, p
(i,c)
b ) · log pd

Where ft is the teacher model (parameterized iden-

tically to fd) that is trained using a standard cross

entropy loss on the full dataset, and ft(x) = pt.

This “soft” label supervision provided by the scaled

teacher output discourages models to make over-

confident predictions on examples containing bi-

ased features.

3.3 Annealing mechanism

Our shallow model fb is likely to capture multi-

ple types of bias, leading to more examples be-

ing down-weighted in the debiased training ob-

jectives. As a result, the effective training data

size is reduced even more, which leads to a sub-

stantial in-distribution performance drop in several

debiasing methods (He et al., 2019; Clark et al.,

2019). To mitigate this, we propose an anneal-

ing mechanism that allows the model to gradually

learn from all examples, including ones that are

detected as biased. This is done by steadily low-

ering p
(i,c)
b as the training progresses toward the

end. At training step t, the probability vector p
(i)
b

is scaled down by re-normalizing all probability

values that have been raised to the power of αt:

p
(i,j)
b =

p
(i,j)αt

b
∑K

k=1 p
(i,k)αt

b

, where K is the number of

labels and index j ∈ {1, ...,K}. The value of αt

is gradually decreased throughout the training us-

ing a linear schedule. Namely, we set the value

of αt to range from the maximum value 1 at the

start of the training to the minimum value a in the

end of the training: αt = 1 − t
(1−a)
T

, where T is

the total number of training steps. In the extreme

case where a is set to 0, pb vectors are scaled down

closer to uniform distribution near the end of the

training. This results in a more equal importance

of all examples, which is equivalent to the standard

cross entropy loss.

We note that since this mechanism gradually

exposes models to potentially biased instances, it

presents the risk of model picking up biases and

adopting back the baseline behavior. However, our

results and analysis suggest that when the param-

eter a is set to a value close to 1, the annealing

mechanism can still provide an improvement on

the in-distribution data while retaining a reasonably

well performance on the challenge test sets.

4 Experimental Setup

4.1 Evaluation Tasks

We perform evaluations on three NLU tasks: natu-

ral language inference, fact verification, and para-

phrase identification. We simulate a setting where

we have not enough information about the biases

for training a debiased model, and thus biased ex-

amples should be identified automatically. There-

fore, we only use the existing challenge test set

for each examined task strictly for evaluation and

do not use the information about their correspond-

ing bias types during training. In the following,

we briefly discuss the datasets used for training

on each task as well as their corresponding chal-

lenge test sets to evaluate the impact of debiasing

methods:

Natural language inference We use the English

Multi-Genre Natural Language Inference (MNLI)

dataset (Williams et al., 2018) which consists of

392K pairs of premise and hypothesis sentences

annotated with their textual entailment information.

We test NLI models on lexical overlap bias using

HANS evaluation set (McCoy et al., 2019b). It

contains examples, in which premise and hypothe-

sis sentences that consist of the same set of words

may not hold an entailment relationship, e.g., “cat

caught a mouse” vs. “mouse caught a cat”. Since

word overlapping is biased towards entailment in

MNLI, models trained on this dataset often perform

close to a random baseline on HANS.

Paraphrase identification We experiment with

the Quora Question Pairs dataset.5 It consists of

362K questions pairs annotated as either duplicate

or non-duplicate. We perform an evaluation using

PAWS dataset (Zhang et al., 2019) to test whether

5The dataset is available at https://www.kaggle.
com/c/quora-question-pairs



7602

Method
MNLI (Acc.) FEVER (Acc.) QQP (F1)

dev HANS ∆ dev symm. ∆ D dev ¬D dev D PAWS ∆ ¬D PAWS ∆

BERT-base 84.5 61.5 - 85.6 63.1 - 87.9 92.9 48.7 - 17.6 -

Reweighting known-bias 83.5
‡

69.2
‡

+7.7 84.6
♣

66.5
♣

+3.4 85.5 91.9 49.7 +1.0 51.2 +33.6

Reweighting self-debias 81.4 68.6 +7.1 87.2 65.6 +2.5 75.7 86.7 43.7 −5.0 69.9 +52.3

Reweighting ♠ self-debias 82.3 69.7 +8.2 87.1 65.5 +2.4 79.4 88.6 46.4 −2.3 61.8 +44.2

PoE known-bias 82.9
‡

67.9
‡

+6.4 86.5
†

66.2
†

+3.1 84.3 91.4 50.3 +1.6 61.2 +43.6

PoE self-debias 80.7 68.5 +7.0 85.4 65.3 +2.1 77.4 87.7 44.1 −4.6 69.4 +51.8

PoE ♠ self-debias 81.9 66.8 +5.3 85.9 65.8 +2.7 80.7 89.3 47.4 −1.3 59.8 +42.2

Conf-reg known-bias 84.5
♭

69.1
♭

+7.6 86.4
♭

66.2
♭

+3.1 85.0 91.3 49.0 +0.3 30.9 +13.3

Conf-reg self-debias 83.9 67.7 +6.2 87.9 66.1 +3.0 83.9 90.6 49.2 +0.5 33.1 +15.5

Conf-reg ♠ self-debias 84.3 67.1 +5.6 87.6 66.0 +2.9 85.0 91.3 48.8 +0.1 28.7 +11.1

Table 1: Models’ performance when evaluated on MNLI, Fever, QQP, and their corresponding challenge test sets.

The known-bias results for MNLI and FEVER are taken from Utama et al. (2020)(♭), Clark et al. (2019)(‡),

Mahabadi et al. (2020)(†), and Schuster et al. (2019)(♣). The results of the proposed framework are indicated by

self-debias. (♠) indicates the training with our proposed annealing mechanism. Boldface numbers indicate

the highest challenge test set improvement for each debiasing setup on a particular task.

the resulting models perform the task by relying on

lexical overlap biases.

Fact verification We run debiasing experiments

on the FEVER dataset (Thorne et al., 2018). It

contains pairs of claim and evidence sentences la-

beled as either support, refutes, and not-enough-

information. We evaluate on the FeverSymmetric

test set (Schuster et al., 2019), which is collected to

reduced claim-only biases (e.g., negative phrases

such as “refused to” or “did not” are associated

with the refutes label).

4.2 Main Model

We apply our self-debiasing framework on the

BERT model (Devlin et al., 2019), which performs

very well on the three considered tasks.6 It also

shows substantial improvements on the correspond-

ing challenge datasets when trained through the

existing debiasing methods (Clark et al., 2019; He

et al., 2019). For each examined debiasing method,

we show the comparison between the results when

it is applied within our framework and when it is

trained using prior knowledge to detect training

examples with a specific bias. For the second sce-

nario, MNLI and QQP models are debiased using a

lexical overlap bias prior, whereas FEVER model

is debiased using hand-crafted claim-only biased

features. We use the results reported in their corre-

sponding papers. Additionally, we train a baseline

BERT model with a standard cross entropy loss.

6We use the pre-trained bert-base-uncased

model available at https://huggingface.co/

transformers/pretrained_models.html.

4.3 Hyperparameters

The hyperparameters of our framework include the

number of training samples and epochs to train the

shallow model fb as well as parameter a to sched-

ule the annealing process. We only use the training

data, and no information about the challenging sets,

for tuning these parameters. Based on the insight

from our synthetic bias analysis (Section 2), we

choose the sample size and the number of epochs

which result in fb that satisfies the following condi-

tions: (1) its accuracy on the unseen training exam-

ples is around 60% to 70%; (2) More than 90% of

their predictions fall into the high confidence bin

(> 0.9). These variables vary for each task depend-

ing on their diversity and difficulty. For instance,

it takes 2000 examples and 3 epochs of training

for MNLI, and only 500 examples and 4 epochs

for an easier task such as QQP.7 For the annealing

mechanism, we set a = 0.8 as the minimum value

of αt for all experiments across the three tasks. Al-

though this may not be an optimal configuration for

all tasks, it still allows us to observe how gradually

increasing the importance of “biased” examples

may affect the overall performance.

5 Results and Discussion

Main results We experiment with several train-

ing methods for each task: the baseline training,

debiased training with prior knowledge, and the

debiased training using our self-debiasing frame-

work (with and without annealing mechanism). We

7We perform a search on all combinations of 1, 2, 3, 4, and
5 epochs and 500, 1000, 1500, and 2000 examples.
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Dataset base.
confidence-regularization (∆)

known HANS self-deb. self-deb. ♠

SICK 55.2 +1.2 ⇒ +3.0 =⇒ +2.1 =⇒

RTE 63.6 −0.5 ⇐ +0.5 ⇒ +0.6 ⇒

Diag. 58.6 −0.6 ⇐ +0.4 ⇒ +0.5 ⇒

Scitail 65.4 +1.4 =⇒ +0.4 ⇒ +1.0 =⇒

Table 2: Accuracy results of self-debias confidence reg-

ularization on cross-dataset evaluation.

present the results on the three tasks in Table 1.

Each model is evaluated both in terms of their in-

distribution performance on the original develop-

ment set and their out-of-distribution performance

on the challenge test set. For each setting, we report

the average results across 5 runs.

We observe that: (1) models trained through

self-debiasing framework obtain equally high im-

provements on challenge sets of the three tasks

compared to their corresponding debiased mod-

els trained with a prior knowledge (indicated

as known-bias). In some cases, the existing

debiasing methods can even be more effective

when applied using the proposed framework, e.g.,

self-debias example reweighting obtains 52.3
F1 score improvement over the baseline on the non-

duplicate subset of PAWS (compared to 33.6 by its

known-bias counterpart). This indicates that the

framework is equally effective in identifying biased

examples without previously needed prior knowl-

edge; (2) Most improvements on the challenge

datasets come at the expense of the in-distribution

performance (dev column) except for the confi-

dence regularization models. For instance, the

self-debias product-of-expert (PoE) model,

without annealing, performs 2.2pp lower than the

known-bias model on MNLI dev set. This in-

dicates that self-debiasing may identify more po-

tentially biased examples and thus effectively omit

more training data; (3) Annealing mechanism (in-

dicated by ♠) is effective in mitigating this issue

in most cases, e.g., improving PoE by 0.5pp on

FEVER dev and 1.2pp on MNLI dev while keeping

relatively high challenge test accuracy. Self-debias

reweighting augmented with annealing mechanism

even achieves the highest HANS accuracy in addi-

tion to its improved in-distribution performance.

Cross-datasets evaluation Previous work

demonstrated that targeting a specific bias to opti-

mize performance in the corresponding challenge

dataset may bias the model in other unwanted

directions, which proves to be counterproductive

in improving the overall robustness (Nie et al.,

2019a; Teney et al., 2020). One way to evaluate

the impact of debiasing methods on the overall

robustness is to train models on one dataset and

evaluate them against other datasets of the same

task, which may have different types and amounts

of biases (Belinkov et al., 2019a). A contemporary

work by Wu et al. (2020) specifically finds that

debiasing models based on only a single bias

results in models that perform significantly worse

upon cross-datasets evaluation for the reading

comprehension task.

Motivated by this, we perform similar evalu-

ations for models trained on MNLI through the

three debiasing setups: known-bias to target

the HANS-specific bias, self-debiasing, and

self-debiasing augmented with the proposed

annealing mechanism. We do not tune the hyperpa-

rameters for each target dataset and use the models

that we previously reported in the main results. As

the target datasets, we use 4 NLI datasets: Scitail

(Khot et al., 2018), SICK (Marelli et al., 2014),

GLUE diagnostic set (Wang et al., 2018), and 3-

way version of RTE 1, 2, and 3 (Dagan et al., 2005;

Bar-Haim et al., 2006; Giampiccolo et al., 2007).8

We present the results in Table 2. We observe

that the debiasing with prior knowledge to tar-

get the specific lexical overlap bias (indicated by

knownHANS) can help models to perform better

on SICK and Scitail. However, its resulting mod-

els under-perform the baseline in RTE sets and

GLUE diagnostic, degrading the accuracy by 0.5
and 0.6pp. In contrast, the self-debiased models,

with and without annealing mechanism, outperform

the baseline on all target datasets, both achieving

additional 1.1pp on average. The gains by the two

self-debiasing suggest that while they are effec-

tive in mitigating the effect of one particular bias

(i.e., lexical overlap), they do not result in models

learning other unwanted patterns that may hurt the

performance on other datasets. These results also

extend the findings of Wu et al. (2020) to the NLU

settings in that addressing multiple biases at once,

as done by our general debiasing method, leads to

a better overall generalization.

Analyzing the annealing mechanism In previ-

ous experiments, we show that setting the mini-

8We compiled and reformated the dataset files which
are available at https://nlp.stanford.edu/

projects/contradiction/.
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Figure 4: Analysis of the annealing mechanism using

different values of minimum αt.

mum αt to only slightly lower than 1 (i.e., a = 0.8)

results in improvements on the in-distribution with-

out substantial degradation on challenge datasets

scores. We question whether this behavior persists

once we set a closer to 0. Specifically, do models

fall back to the baseline performance when the loss

gets more equivalent to the standard cross-entropy

at the end of the training?

We run additional experiments using the self-

debiased example reweighting on QQP ⇒ PAWS

evaluations. We consider the following values to

set the minimum αt: 1.0, 0.8, 0.6, 0.4, 0.2, and 0.0.

For each experiment, we report the average scores

across multiple runs. As we see in Figure 4, the

challenge test scores decrease as we set minimum

a to lower values. Annealing can still offer a rea-

sonable trade-off between in-distribution and chal-

lenge test performances up until a = 0.6, before

falling back to baseline performance at a = 0.

These results suggest that models are still likely

to learn spurious shortcuts from biased examples

that they are exposed to even at the end of the

training. Consequently, the annealing mechanism

should be used cautiously by setting the minimum

αt to moderate values, e.g., 0.6 or 0.8.

Impact on learning dynamics We previously

show (Figure 2) that baseline models tend to learn

easier examples more rapidly, allowing them to

make correct predictions by relying on biases. As

the self-debiasing framework manages to mitigate

this fallible reliance, we expect some changes in

models’ learning dynamics. We are, therefore, in-

terested in characterizing these changes by analyz-

ing their training loss curve. In particular, we exam-

ine the individual losses on each training batch and

measure their variability using percentiles (i.e., 0th,

25th, 50th, 75th, and 100th percentile). Figure 5

shows the comparison of the individual loss vari-

0 2000 4000 6000 8000 10000
train step

10 2

10 1

100

lo
ss

baseline self-debiased

0 2000 4000 6000 8000 10000

Figure 5: Training loss curves for the first 15K steps by

the baseline and self-debias example reweighting train-

ing (shown in log scale). Solid lines indicate the me-

dian loss within each training batch. The dark and light

shadow areas represent the range between 25th to 75th

percentile and the range between 0th (minimum) and

100th percentile (maximum), respectively.

ability between the baseline and the self-debiased

models when trained on MNLI. We observe that

the median loss of the baseline model converges

faster than the self-debiased counterpart (dotted

solid lines). However, examples below its 25th

percentile already have losses smaller than 10−1

when the majority of the losses are still high (darker

shadow area). This indicates that unregularized

training optimizes faster on certain examples, pos-

sibly due to the presence of biases. On the con-

trary, self-debiased training maintains relatively

less variability of losses throughout the training.

This result suggests that overconfident predictions

(unusually low loss examples) can be an indication

of the model utilizing biases. This is in line with

the finding of Utama et al. (2020), which shows

that regularizing confidence on biased examples

leads to improved robustness against biases.

Bias identification stability Researchers have

recently observed large variability in the general-

ization performance of fine-tuned BERT model

(Mosbach et al., 2020; Zhang et al., 2020), espe-

cially in the out-of-distribution evaluation settings

(McCoy et al., 2019a; Zhou et al., 2020). This

may raise concerns on whether our shallow models,

which are trained on the sub-sample of the training

data, can consistently learn to rely mostly on biases.

We, therefore, train 10 instances of shallow models

on the MNLI dataset using different random seeds

(for classifier’s weight initialization and training

sub-sampling). For evaluation, we perform two dif-

ferent partitionings of MNLI dev set based on the

output of two simple hand-crafted models, which
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Figure 6: Evaluation of 10 shallow model instances on

easy/hard partitioning of MNLI dev based on the pres-

ence of lexical overlap and hypothesis-only biases. The

results suggest the stability of shallow models in captur-

ing the two biases.

use lexical overlap and hypothesis-only features

(Gururangan et al., 2018), respectively. The stabil-

ity of bias utilization across the runs is evaluated

by measuring their performance on easy and hard

subsets of each partitioning, where examples that

simple models predicted correctly belong to easy

and the rest belong to hard.9

Figure 6 shows the results. We observe small

variability in the overall dev set performance which

ranges in 61-65% accuracy. Similarly, the models

obtain consistently higher accuracy on the easy

subsets over the hard ones: 79-85% vs. 56-59%
on the lexical-overlap partitioning and 72-77% vs.

48-50% on the hypothesis-only partitioning. The

results indicate that: 1) the bias-reliant behavior of

shallow models is stable; and 2) shallow models

capture multiple types of bias. However, we also

observe one rare instance of the shallow model that

fails to converge during training and is stuck at

making random predictions (33% in MNLI). This

may indicate that the biased examples are under-

sampled in that particular run. In that case, we

can easily spot this undesired behavior, discard the

model, and perform another sampling.

6 Related Work

The artifacts of large scale dataset collections re-

sult in dataset biases that allow models to perform

well without learning the intended reasoning skills.

In NLI, models can perform better than chance

by only using the partial input (Gururangan et al.,

2018; Poliak et al., 2018; Tsuchiya, 2018) or by

basing their predictions on whether the inputs are

9Although this may seem to be against the spirit of not
using prior knowledge about the biases, we believe that this
step is necessary to show the stability of the shallow models
and to validate if they indeed capture the intended biases.

highly overlapped (McCoy et al., 2019b; Dasgupta

et al., 2018). Similar phenomena exist in various

tasks, including argumentation mining (Niven and

Kao, 2019), reading comprehension (Kaushik and

Lipton, 2018), or story cloze completion (Schwartz

et al., 2017; Cai et al., 2017). To allow a better

evaluation of models’ reasoning capabilities, re-

searchers constructed challenge test sets composed

of “counterexamples” to the spurious shortcuts that

models may adopt (Jia and Liang, 2017; Glockner

et al., 2018; Zhang et al., 2019; Naik et al., 2018).

Models evaluated on these sets often fall back to

random baseline performance.

There has been a flurry of work in dynamic

dataset construction to systematically reduce

dataset biases through adversarial filtering (Zellers

et al., 2018; Sakaguchi et al., 2020; Bras et al.,

2020) or human in the loop (Nie et al., 2019b;

Kaushik et al., 2020; Gardner et al., 2020). While

promising, researchers also show that newly con-

structed datasets may not be fully free of hidden

biased patterns (Sharma et al., 2018). It is thus

crucial to complement the data collection efforts

with learning algorithms that are more robust to

biases, such as the recently proposed product-of-

expert (Clark et al., 2019; He et al., 2019; Mahabadi

et al., 2020), confidence regularization (Utama

et al., 2020), or other training strategies (Belinkov

et al., 2019b; Yaghoobzadeh et al., 2019; Tu et al.,

2020). Despite their effectiveness, these methods

are limited by their assumption on the availabil-

ity of information about the task-specific biases.

Our framework aims to alleviate this limitation and

enable them to address unknown biases.

7 Conclusion

We present a general self-debiasing framework to

address the impact of unknown dataset biases by

omitting the need for thorough dataset-specific

analysis to discover the types of biases for each

new dataset. We adopt the existing debiasing meth-

ods into our framework and enable them to obtain

equally high improvements on several challenge

test sets without targeting a specific bias. The eval-

uation also suggests that our framework results

in better overall robustness compared to the bias-

specific counterparts. Based on our analysis, future

work in the direction of automatic bias mitigation

may include identifying potentially biased exam-

ples in an online fashion and discouraging models

from exploiting them throughout the training.
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Main model We finetune the BERT base model

for all settings (baseline, known-bias, and self-

debiasing) using default parameters: 3 epochs of

training with learning rate 5−5. An exception is

made for product-of-expert and confidence regular-

ization, where we follow He et al. (2019) to run the

training longer, i.e. 5 epochs.

Shallow model The shallow model for MNLI is

trained on 2K of examples for 3 epochs using the

default learning rate of 5−5.

B Fact verification

Main model We follow Schuster et al. (2019) in

finetuning the BERT base model on FEVER dataset

using the following parameters: learning rate 2−5

and 3 epochs of training.

Shallow model The shallow model can be

trained in lesser amount of data, 500 examples. We

train the model for 5 epochs with the same learning

rate, 2−5.

C Paraphrase Identification

Main model We follow Utama et al. (2020) in

setting the parameters for training a QQP model:

learning rate 2−5 and 3 epochs of training.

Shallow model Similar to FEVER, we train the

shallow model using only 500 examples. It con-

verges in 4 epochs using the same learning rate,

2−5.

D Synthetic MNLI Results

We report the final accuracy of models when trained

on our synthetic bias datasets. We show that the

anti-biased accuracy correlates negatively with the

proportion of the biased examples. We present the

results in Table 3.

Bias prop.
test sets

original biased anti-biased

0.9 83.6 ⇐ 97.1 =⇒ 61.7 ⇐=

0.8 83.7 ⇐ 95.3 =⇒ 70.4 ⇐=

0.7 83.9 ⇐ 92.8 ⇒ 75.5 ⇐

0.6 84.1 = 90.9 ⇒ 78.5 ⇐

Table 3: Final accuracy of models trained on synthetic

bias datasets.

E Detailed HANS Results

HANS dataset (McCoy et al., 2019b) consist of

three subsets, covering different inference phenom-

ena which happen to have lexical overlap: (a) Lex-

ical overlap e.g., “The doctor was paid by the ac-

tor” vs. “The doctor paid the actor”; (b) Subse-

quence, e.g., “The doctor near the actor danced”

vs. “The actor danced”; and (c) Constituent e.g.,

“If the artist slept, the actor ran” vs. “The artist

slept”. Each subset contains examples of both en-

tailment and non-entailment. The 3-way predic-

tions on MNLI is mapped to HANS by taking max

pool between neutral and contradiction labels. We

present the results of our experiments in Table 4.

Method
HANS all sets (Acc.)

Lex Lex. Sub. Sub. Con. ¬Con.

BERT-base 96.0 51.8 99.5 7.4 99.4 14.5

Rew. self-debias 81.3 73.3 94.7 34.5 92.8 42.3
Rew. ♠ self-debias 84.7 77.1 96.0 30.5 95.3 37.4

PoE self-debias 77.0 73.6 92.1 42.2 89.3 49.8
PoE ♠ self-debias 78.5 67.7 91.3 28.6 95.4 45.1

Conf-reg self-debias 81.8 78.2 93.7 31.7 95.1 31.5
Conf-reg ♠ self-debias 87.4 74.5 96.3 27.4 95.1 26.6

Table 4: Models’ performance on HANS challenge test

set (McCoy et al., 2019b). Column lex., con., and

sub. stand for lexical overlap, constituency, and sub-

sequence, respectively. The (¬) symbol indicates the

non-entailment subset.


