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Abstract

Correctly identifying sleep stages is essential for assessing sleep quality and treating sleep disorders. However, the current

sleep staging methods have the following problems: (1) Manual or semi-automatic extraction of features requires professional

knowledge, which is time-consuming and laborious. (2) Due to the similarity of stage features, it is necessary to strengthen the

learning of features. (3) Acquisition of a variety of data has high requirements on equipment. Therefore, this paper proposes a

novel feature relearning method for automatic sleep staging based on single-channel electroencephalography (EEG) to solve

these three problems. Specifically, we design a bottom–up and top–down network and use the attention mechanism to learn

EEG information fully. The cascading step with an imbalanced strategy is used to further improve the overall classification

performance and realize automatic sleep classification. The experimental results on the public dataset Sleep-EDF show that

the proposed method is advanced. The results show that the proposed method outperforms the state-of-the-art methods. The

code and supplementary materials are available at GitHub: https://github.com/raintyj/A-novel-feature-relearning-method.

Keywords Sleep staging · Automatic · Single channel · Attention · Imbalanced strategy

Introduction

Sleep accounts for one-third of human life and is a critical

link in human life. The quality of sleep affects many aspects

of a person’s physical health, mental health, and memory

[1–3]. However, the task of sleep quality analysis is not only

very demanding for physicians but also requires equipment

with a high level of expertise. Polysomnography (PSG) is a

powerful tool for sleep assessment that contains data such as

electroencephalogram (EEG), electrooculogram (EOG), and

electromyography (EMG). Physicians need to manually clas-
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sify the collected PSG data records, which is a subjective and

tedious process. Traditional machine learning methods based

on manual extraction of statistical features usually include

the following four steps: data preprocessing, feature extrac-

tion, feature selection, classification. Because of the need for

strong professionalism to extract and select representative

features, it is not friendly to researchers.

Step 1: Human body electrical signals are easily affected

by other physiological electrical signals and the environment

during the collection process, so preprocessing methods are

needed to remove some noise effects. Methods such as multi-

scale principal component analysis (PCA) [4], or wavelet

transform [5], or notch filter and band-pass Butterworth filter

[6], etc.

Step 2: Extract feature information from the polyso-

mnography map, such as maximum value, median value,

entropy, and energy [7].

Step 3: Use methods such as Best Subset Program

(BSP) [8], Minimum Redundancy Maximum Correlation

Algorithm (MRMR) [9], and recursive feature elimination

algorithm based on support vector machine (SVM) [10] to

select the best feature subset.
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Table 1 Characteristic of each stage, adapted from AASM

Stage Unique feature Similar feature

Wake beta wave(>13 Hz) >50% alpha (8–13 Hz) activity, mixed (2–7 Hz) frequency activity

N1 “vertex sharp waves (5–14 Hz, >75uV)” “50% of the epoch consists of relatively low voltage, mixed (2–7 Hz)
activity, <50% alpha (8–13 Hz) activity ”

N2 — high voltage, mixed (2–7 Hz) activity, K complexes, sleep spindles

N3 “slow wave activity (0.25–2 Hz)” high voltage, low frequency activity

REM “sawtooth waves (2–6 Hz)” relatively low voltage mixed (2–7 Hz) frequency EEG, alpha (8–13 Hz)
activity

Step 4: Use various machine learning classification meth-

ods to perform sleep stages on selected feature combinations,

such as decision tree [11], clustering [12,13], etc.

Deep learning has gradually become the mainstream

method in recent years, because it requires no domain knowl-

edge and can implement end-to-end systems excellently.

Some researchers have found that the sleep process has a

certain transitional regularity [14]. Based on this, it is com-

mon practice to enhance the central era information by taking

advantage of the surrounding epochs. For instance, Tsinalis

et al. [15] combined one preceding and following epochs as

common input and converted multiple one-dimensional fea-

tures into two-dimensional features for learning by a stacking

layer in Convolutional Neural Networks (CNN), thus realiz-

ing automatic sleep staging. Li et al. [16] used a many-to-one

strategy, took multi-epoch (3 epochs) raw EEG signals as its

input, and relabeled the input. In addition, they set the thresh-

old of softmax of their CCN-SE network according to the data

distribution to alleviate the problem of class imbalance. Seo

et al. [17] designed a network with a modified ResNet-50 and

a two-layered BiLSTM to capture intra- and inter-epoch rep-

resentative features, and compared the impact of inputting

one, four (3 past), and ten (9 past) epochs data on the classi-

fication results. Their experiments show that the more input

data epochs, the better the results, which proves that there is

indeed a certain correlation between sleep epochs. In [18] and

[19], researchers built multi-task network architectures based

on the theory that most adjacent epochs have the same label.

For each input epoch, the categories of surrounding epochs

were additionally calculated, and joint decision-making was

carried out by assigning different weights. However, the

above methods are all based on the research of the corre-

lation between the various stages, ignoring the similarity of

the internal features of each stage, as shown in the summary

of Table 1.

For sleep staging tasks, just like PSG, the diversity of

data types will affect the classification effect. Jia et al. [20]

input EEG, EOG, and EMG into an independent CNN branch

network with multi-scale and residual connections (called

SleepPrintNet), and perform feature fusion and classifica-

tion. Amelia et al. [21] used two PSG channel data (located

at two different positions on the scalp), and after data pre-

processing and data enhancement by overlapping windows

in order, they were input into the CNN + LSTM network for

classification. Xu et al. [22] designed a lightweight convo-

lutional neural network model to detect EEG fatigue status.

They decomposed the five-channel EEG signal into multiple

frequency bands and sent them to the convolutional network,

respectively, and finally used the integrated learning method

to weigh and vote on the network results. However, multi-

modal data often require the subject to wear more sensors.

On the one hand, it has an impact on sleep itself; on the other

hand, it is not conducive to the promotion of daily sleep mon-

itoring.

To solve the above problems, this paper proposes a novel

feature relearning method for automatic sleep staging based

on single-channel EEG, which aims to reduce equipment

requirements by using single-channel data and mining infor-

mation within the stage. First, merge N1 and REM, which

have strong similarities and a small amount of data [23]. In

the first part of the method, a novel stacked network is used

for four classifications. In the second part of the method, the

CNN block network is used to classify N1 and REM. The

two parts are cascaded to get the final sleep staging result.

The contributions of this paper are summarized as follows:

(1) We develop a bottom–up and top–down network com-

bined with the attention mechanism and use the cascading

step with an imbalanced strategy, which can mine feature

information within the stage. (2) We achieve automatic sleep

staging tasks, and avoid any prior knowledge in the auto-

mated process, saving time, and manpower. (3) We only use

single-channel EEG data, which reduces the requirements

for equipment and facilitates the promotion of daily sleep

monitoring applications.

The rest of this article is organized as follows. In Section

‘Methods’, we introduce the network structure and the frame-

work of the proposed method. Section ‘Materials’ reflects the

experiment and analysis in detail. Section ‘Results and dis-

cussion’ discusses results and visualization. Finally, Section

‘Conclusion and future work’ presents the conclusion and

the future.
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Methods

In this section, we explain in detail the theoretical knowledge

of the technology used, and describe the network structure

and framework of the proposed method.

Convolutional neural networks

Convolutional neural networks are one of the representa-

tive algorithms of deep learning [24]. They are widely used

thanks to their excellent adaptive representational learning

and selection capability [25–27]. They mainly consist of a

convolutional layer, a pooling layer, and a fully connected

layer. The convolutional layer performs local feature extrac-

tion on the input information. The pooling layer, also known

as the downsampling layer, mainly performs downsampling

with reduced data dimensionality, thus reducing the com-

putational complexity fully connected layer integrates local

features. By stacking convolutional layers layer by layer, the

low-level feature information may suffer loss [28]. Therefore,

our backbone architecture is inspired by the complementarity

of the high-level and low-level information of the pyramid

network [29] to obtain richer, more comprehensive, and more

reliable features.

Long short-termmemory

Recursive neural networks (RNN) and their variants can help

with current tasks by integrating past information and have

excellent learning abilities on problems related to sequential

data processing [30–32]. Compared with classical RNN net-

work, long short-term memory (LSTM) is more favorable

to deal with long-term dependency problem [33], which is

attributed to the “gate“ structure. As shown in Fig. 1, f rep-

resents the forgetting gate, i is the input gate, o represents

the output gate. xt , ht , ct represents the input, output, and

cell state of the network at time t . σ represents the sigmoid

function. The sigmoid activation function is used in the gate

structure to determine the amount of information transferred.

When the sigmoid output is 1, the door opens, allowing mes-

sages to pass through; when the sigmoid output is 0, the gate

is closed, preventing messages from passing through.

In Eq. (1), w and b represent the weight matrix and bias

vector of the forgetting gate, respectively. The forgetting gate

calculates ht−1 and xt splicting results through sigmoid func-

tion, and determines the degree of information retention in

the cell state at the previous moment

ft = σ(W f · [ht−1, xt ] + b f ). (1)

The input gate indicates how much information the current

network input needs to be to reserve to cells (as shown in

Eq. (2)). The calculation method of the information retention

for candidate cells �Ct is shown in Eq. (3). And Eq. (4)

expresses the degree of selection of forgetting and input to

update the current cell state

it = σ(Wi · [ht−1, xt ] + bi ) (2)

�Ct = tanh(Wc · [ht−1, xt ] + bc) (3)

Ct = ft × Ct−1 + it × �Ct . (4)

Equations (5)–(6) represent how much information in the

current cell is used as the output of the hidden layer, where

Eq. (5) is the calculation formula of the output gate

ot = σ(Wo · [ht−1, xt ] + bo) (5)

ht = ot × tanh(Ct ). (6)

The convolutional block attentionmodule

The attention mechanism comes from the fact that humans

give different levels of attention to different parts of things

when observing them, which can be understood as allocating

resources with different importance under limited conditions.

Attention mechanism has been widely used in image classi-

fication [26], activity recognition [34], machine translation

[35], and other fields in recent years. The Convolutional

Block Attention Module (CBAM) [36] can perform adap-

tive attention learning in channel and space dimensions with

high efficiency. The attention is computed as

F ′ = Mc(F) ⊗ F

F ′′ = Ms(F ′) ⊗ F ′,
(7)

where F and F ′ represent the input and intermediate fea-

ture graphs, respectively. Mc is the channel attention map

and Ms is the spatial attention map. ⊗ denotes element-wise

multiplication.

The channel attention mechanism is designed to measure

the importance of different channel information. First, the

original feature graph F is compressed into two global infor-

mation Favg and Fmax using average pooling and maximum

pooling operations. Then, they are input into a shared net-

work with two layers of the neural network, and the elements

are summed. W0 represents the first-layer neural network in

which the number of neurons is C/r, r represents the reduction

ratio, and the activation function of W0 is Relu. W1 represents

the second-layer neural network with c neurons. Finally, the

channel attention feature map is obtained by sigmoid opera-

tion, where σ represents the sigmoid function

Mc(F) = σ(M L P(Avg Pool(F))) + M L P(Max Pool(F))

= σ(W1(W0(Fc
avg)) + W1(W0 Fc

max )).
(8)

The spatial attention mechanism is to measure the key

information of different spatial positions. First, the original
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Fig. 1 LSTM structure diagram

feature graphs are averaged and maximized along the chan-

nel axis, and the two pooling results are concatenated in the

channel dimension to obtain a 2D pooling result. Then, a ker-

nel size = 7 filter is used for convolution operation. Finally,

the sigmoid function is used to obtain the spatial attention

weight matrix

Ms(F)= σ( f 7×7([Avg Pool(F); Max Pool(F)]))

= σ( f 7×7(F s
avg); F s

max ).
(9)

Framework of the proposedmethod

This paper proposes a novel feature relearning method con-

sisting of two parts, as shown in Fig. 2. The first part performs

a four-class classification through three key modules :

bottom–up, top–down, and feature fusion. In the bottom–

up modules , multiple convolution operations are stacked

to learn frequency information, and LSTM is used to extract

the temporal information of frequency features of each layer.

In the top–down modules , the upsampling method is used

to strengthen information of the bottom layer. In the feature

fusion modules , high-semantic features that help classifi-

cation and shallow-level features that help localization [37]

are fused by the idea of the attention mechanism, which can

generate adaptive weights from different levels, rather than

manually specifying. Considering the similarity between the

N1 and REM and data imbalance, a random oversampling

method is used in the second part to construct a new training

dataset. Finally, the two parts are concatenated to divide the

five different sleep stages.

Suppose there are N segments of 30 s single-channel EEG

signals. The feature extraction workflow in part 1 is as fol-

lows:

xi = f (xi−1) (10)

hi = p(g(xi )||k(hi+1)), (11)

where f(x) turns xt into feature vector xt+1 via CNN. p(x) rep-

resents the convolutional block attention module, which can

automatically integrate and learn the importance of differ-

ent levels of information. And g(x) represents the operation

of extracting time information from spatial features of each

layer through the LSTM block. ‖ is a concatenate operation

that combines the features between the layers. k(x) means the

upsampling process of the left and right 0 paddings on the

upper layer features.

According to AASM, dataset S1 is obtained by merging

stage N3 and stage N4 into a single N3, deleting MOVE-

MENT and UNKNOWN data. And Merge the N1 and REM

into a single stage to obtain the dataset S2(WAKE, N1-

REM, N2, N3). Part 1 and 2 are trained using dataset S2

and balanced dataset N1-REM, respectively, to obtain the

final model.

Algorithm 1

Input: batch size of (xi ,yi )

Output: classification results

Train

for each i ∈ [1, N ] do

Calculate the label using part 1.

if label == N1-REM and yi == N1-REM then

Train part 2 using the balanced selection of

dataset(xi ,yi ).

else

Label the sample as a label.

end if

end for

Test

for a test instance, x with an unknown label do

Predict the label using part 1.

if label == N1-REM then

Reclassify the sample as N1 or REM stage using

part 2.

else

Label the sample as a label, end this test and

continue the following sample.
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Fig. 2 Framework of the feature relearning method

end if

end for

Materials

In this section, we introduce the experimental dataset and

evaluation metrics and conduct multiple sets of ablation

experiments. All experiments are guaranteed to run five times

in the same environment, and the average value is taken as

the final result to ensure the authenticity of the experimental

results.

Dataset

The public sleep dataset Sleep-EDF used in this study comes

from Physiobank [38,39]. Each record in the dataset con-

tains various physiological data, among them, EEG is the

most widely used [40], with a sampling frequency of 100Hz.

The sleep experts manually classify all recorded data into

one of eight categories according to the Rechtschaffen and

Kales (R&K) [41,42]. As recommended by the American

Academy of Sleep Medicine (AASM) [14], stages N3 and

N4 are combined into one N3, Movement and Unknown data

Table 2 Statistical results on sleep-EDF dataset

Stage W N1 N2 N3 REM Total

Number 8285 2804 17,799 5703 7717 42,308

Percentage 19.6% 6.6% 42.0% 13.5% 18.2% –

are removed. Therefore, the sleep stages are divided into five

categories, W, N1, N2, N3, and REM. In this study, the raw

30 s EEGs are used as input without any other preprocessing.

Table 2 summaries the number and proportion of each

stage. It can be found that there is an imbalance problem in

the dataset. The N2 category has the largest amount of data,

ranging from 2 to 6 times that of other categories. This is also

one of the reasons that prompted us to merge the minority

classes in the first part of the method.

Evaluationmetrics and experimental design

We use Precision (PR), Recall (RE), and F1-score (F1) to

evaluate the classification performance of each sleep stage

and Accuracy (ACC) and macro-average F1-score (MF1) to

evaluate the overall performance of the classification. Pre-

cision represents the proportion of correctly predicted as

positive samples in predicted. Recall represents the propor-

123



Complex & Intelligent Systems

tion of positive samples that are correctly predicted in the

true positive samples. F1-score is the harmonic average of

Precision and Recall. Accuracy is the proportion of the total

number of all categories predicted to be correct to the total

number of samples. MF1 is the average value of F1 for all

classes. The formulas of these evaluation metrics are as fol-

lows:

P R =
T P

T P + F P
(12)

RE =
T P

T P + F N
(13)

F1 =
2 × P R × RE

P R + RE
(14)

ACC =
∑C

c=1 T Pc

N
(15)

M F1 =
∑C

c=1 F1c

N
, (16)

where TP represents correct prediction, and FP and FN rep-

resent incorrect prediction. FP represents the prediction of

another class as this class. FN represents the prediction of

this class as another class. And C represents the number of

categories.

In this study, an Adam optimizer is used to train our mod-

els. Set the initial learning rate to 0.001 and the batch size

to 128. Avoiding over-fitting caused by too few iterations,

the early stopping method is adopted to control the interrup-

tion of learning at an appropriate time. We use the fivefold

cross-validation to test the performance of the method. The

idea is to divide the whole dataset into K parts according to

the classification proportion and take one of them in turn as

the test dataset and the rest of the K-1 parts as the training

dataset. Finally, the average of the K results is taken as the

evaluation value.

Ablation study

To clarify the influence of different single channels on the

results, the experimental design is shown in Table 3. Under

the same settings, the classification performance of Fpz-Cz is

generally better than that of Pz-Oz. The Fpz-Cz channel has

better performance on the proposed model, possibly because

the channel contains more useful information. Therefore, in

the following ablation studies, we all use the Fpz-Cz channel

as the experimental data.

To prove the structural design of part 1, we conducted a

series of ablation studies to prove the validity of each module

of the method, as shown in Table 4. We compared the results

of removing the attention structure (second row) and top–

down connection (third row) from the original model (first

row). The results prove that deleting both modules harms the

classification effect. The attention mechanism has reliable

Table 3 Classification results based on different channels

Channle Classification ACC MF1

Fpz-Cz 4-stage 86.5 86.7

5-stage 82.7 76.8

Pz-Oz 4-stage 83.7 83.5

5-stage 79.7 72.5

Table 4 The F1 results of part 1 ablation experiments

Operations Wake N1-REM N2 N3

Our method 90.0 80.4 87.8 88.7

No attention 89.7 79.4 86.9 87.0

No top-down 88.6 79.2 87.3 87.8

Table 5 The F1 results of part 2 ablation experiments

Cascading Oversampling Undersampling N1 REM

√ √
41.6 75.8

√ √
40.3 73.8

√
39.6 77.1

37.5 77.6
√

35.2 74.4
√

37.0 69.6

attention to different levels of information, and the connec-

tion between the upper and lower levels can reduce the loss

of information and improve classification accuracy.

To explore the impact of the second part of the method on

the classification results, we organized the following compar-

ative experiments, as shown in Table 5. “Cascading” means

that it is classified into four first and then classified into

two. Both “oversampling” and “undersampling” are common

methods of data balancing. Oversampling means random

repetition of minority samples, and undersampling means

randomly deleting the number of samples in the majority

class. The first row in Table 5 represents the composition

and results of the second part in the original model. The sec-

ond row means to change the data balance processing from

random oversampling to random undersampling in the sec-

ond part. The third row indicates that the second part of the

model directly performs cascade classification without data

balancing operations. The fourth and fifth rows represent the

classification results with random oversampling and random

undersampling balancing operations when there is no cas-

cade. The results show that the cascading step with random

oversampling has the best overall performance. It can be seen

that, regardless of whether there is a data balancing opera-

tion, the cascade step improves the overall results of N1 and

REM. The last two rows in the table represent the N1 and

REM results for the five classes of data balancing operations
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without the cascading step. The results showed a negative

effect on N1 and REM. This may be because the first part

of the method has enough ability to learn the overall fea-

tures of the data, and the sampling operation will make the

learning become over-fitting to the training data. It is worth

mentioning that, under the cascading step, although the sam-

pling operation improves the classification performance of

the N1 stage, it reduces the REM stage to some extent. The

possible reason is that the first step of the cascade ignores

some of the similar features of REM, and the sampling oper-

ation makes the model pay too much attention to learning N1

information. Due to the increase in overall performance, we

still retain these operations.

Results and discussion

In this section, we select and compare the research results of

the past 5 years, and conduct visual analysis.

Experimental results

Table 6 shows the confusion matrix of 42,308 test datasets

on the Fpz-Cz channel, which correctly classified 34,985

datasets. The bold represents the number of samples that are

correctly classified in each category. The sum of each column

in the confusion matrix is the number of predicted samples,

and the sum of each row is the number of real samples. The

last three columns of each row are the performance metrics

of each class. It can be seen from the confusion matrix results

that the classification effect of Wake and N3 stages are the

best. We speculate that this phenomenon is related to the

unique wave frequencies of the two stages in Table 1. For

the N2 stage, because the amount of data is several orders of

magnitude more than other stages (as shown in Table 2), the

classification effect is also very good. Although the N1 and

REM phases have feature waves that are different from other

phases, on the one hand, the frequency of the feature waves

and other waves has overlapped, and on the other hand, their

data volume is small (as shown in Table 2), so the effect is the

worst. From the N1 and REM rows in the confusion matrix,

it can be seen that they are easily predicted to be each other,

and are also in the N2 stage, but are rarely predicted to the

N3 stage, which is inseparable from the overlap of similar

features in Table 1.

Comparison with other approaches

Table 7 describes the comparison between our method and

the other methods in terms of classification method, feature

extraction method, the channel used, accuracy, and macro-

average f1-score. The bold represents the best results. It can

be seen from Table 7 that our method has achieved ACC:

Table 6 Confusion matrix using the proposed method

Predicted Per-class Metrics

W N1 N2 N3 REM PR RE F1

W 7351 552 165 23 194 91.2 88.8 90.0

N1 390 1349 562 6 492 36.7 48.1 41.6

N2 131 671 15,658 564 775 87.6 88.0 87.8

N3 18 4 655 5023 3 89.4 88.1 88.7

REM 167 1100 842 4 5604 79.2 72.6 75.8

82.7, 79.7, and MF1: 76.8, 72.5 on the Fpz-Cz channel and

the Pz-Oz channel, respectively.

The experimental results on the Pz-Oz channel are slightly

weaker than the Fpz-Cz channel. We speculate that it is

because the Fpz-Cz channel contains more information that

is useful for classification.

The work of [43] is based on the multi-tapered spec-

trogram decomposition and semi-supervision, their perfor-

mance is lower than other algorithms. Literature [16] focuses

on stage correlation and uses deep learning methods for auto-

matic feature extraction and classification, but only uses the

convolution module. [44] converted the description text in

the AASM manual into semantic features, and performed

weighted fusion with the frequency domain and time domain

features of the EEG signal for automatic classification. How-

ever, the way researchers divide the one-dimensional signal

into multiple segments and compose the two-dimensional

signal as input, it is easy to lose the local information of the

segment to a certain extent, so the effect is slightly worse.

Although our results are not as good as [16], it can be seen

that we use less data, which is also one of our advantages.

In contrast, our method can achieve a good classification

effect under the condition of 30 s single-channel EEG data.

The results show that our method of relearning features can

achieve results comparable to multi-epoch input.

Visualization verification

We randomly select a test data file and perform visual analy-

sis. As shown in Fig. 3, we draw the confidence of the method

prediction as a boxplot diagram. The red line in the figure rep-

resents the median. The triangle represents the average value.

The two horizontal lines on the top and bottom of the box

chart represent the maximum and minimum probability.

Obviously, the median and the average probability of

being correctly classified in the N1 stage is the smallest,

followed by REM, N2, N3, and W. And the N1 and REM

stages have the largest probability distribution range, and the

classification effect is the most unstable. We speculate that

this phenomenon is related to the distribution of the dataset

and similar features, as shown in Tables 1 and 2.

123



Complex & Intelligent Systems

Table 7 Performance comparison on Sleep-EDF

Citations Methods Feature type Employed Channels Overall results

ACC MF1

[43]/2018 Gaussian Mixture Model Hand-crafted Pz-Oz EEG 73.2 –

[44]/2020 GAN + CNN + BiLSTM + AdaBoost Learned Fpz-Cz EEG 82.5 76.3

[16]/2021 CNN Learned Fpz-Cz EEG (90 seconds) 87.5 76.2

Fpz-Cz EEG 81.3 65.5

Our method cascaded CNN + LSTM Learned Fpz-Cz EEG 82.7 76.8

Pz-Oz EEG 79.7 72.5

Fig. 3 Confidence distribution of sample classification

Conclusion and future work

In this paper, a novel feature relearning method is proposed.

We design bottom–up and top–down model structures to

effectively learn the features of each stage and use the cas-

cading step to improve the classification performance further.

The method implements an end-to-end staging, eliminating

the need for professional knowledge. Only a single-channel

EEG signal is used, which reduces the need for acquisition

equipment, which shows that our method will be conducive

to the practical application of sleep staging. The experi-

mental results on the public dataset Sleep-EDF show that

the proposed method is advanced. Although the complexity

of the method has increased due to the hierarchical con-

nection, the experimental results prove that the top–down

connection achieves the complementation of information and

comprehensively improves the classification performance to

a certain extent.

In future work, we will explore a more concise model

and conduct a more detailed study on the similarity of sleep

stages, especially between N1 and other stages.
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