
BIROn - Birkbeck Institutional Research Online

Enabling Open Access to Birkbeck’s Research Degree output

Simplifying authoring and facilitating component
reuse of programming tutors

https://eprints.bbk.ac.uk/id/eprint/49182/

Version: Full Version

Citation: Karkalas, Sokratis (2022) Simplifying authoring and facilitat-
ing component reuse of programming tutors. [Thesis] (Unpublished)

c© 2020 The Author(s)

All material available through BIROn is protected by intellectual property law, including copy-
right law.
Any use made of the contents should comply with the relevant law.

Deposit Guide
Contact: email

https://eprints.bbk.ac.uk/id/eprint/49182/
https://eprints.bbk.ac.uk/theses.html
mailto:lib-eprints@bbk.ac.uk

SIMPLIFYING AUTHORING AND

FACILITATING COMPONENT REUSE

OF PROGRAMMING TUTORS

Sokratis Karkalas

2021

A thesis submitted to the University of London

for the degree of Doctor of Philosophy

Birkbeck, University of London

Department of Computer Science and Information Systems

Declaration

This thesis is the result of my own work, except where explicitly acknowledged in the text.

Abstract

Learning programming is very hard, especially during the early stages. Programming

is an exploratory activity and therefore it is more natural to learn it through explo-

ration. Freedom and lack of structure in exploratory learning offer more opportunities

for experimentation and discovery of knowledge but at the same time that requires

substantial support. For the same reasons provision of support is more challenging

and costly in this context. Typical traditional intelligent tutoring systems are highly

controllable environments that offer guided learning. Modern environments are more

open and exploratory but they lack intelligence and adaptability. There is an emerging

need for systems that are both exploratory and intelligent but authoring them is a very

challenging task.

The intention of this thesis is not to offer a new exploratory and intelligent learning

platform that teaches programming more effectively but to provide the architectural

framework, techniques and tools that can be used to develop intelligent tutors for ex-

ploratory learning with ease. This thesis is concerned with both task-dependent and

task-independent intelligent support. The latter is expected in systems that offer free

exploration or in situations where students work with ill-defined problems and define

their own tasks dynamically. In these situations there is no explicit knowledge in the

system about task-specific objectives.

This thesis presents a process used to identify common student misconceptions for

early programming and transform them into task-independent intelligent support. It

also presents a novel methodology that can be used to lower the cognitive load and

entry threshold for prospective authors of task-dependent support.

Designing and developing support is not enough if the tutors cannot take advan-

tage of the various learning environments available and combine them with intelligent

support components. For this reason, this thesis presents a novel approach that simpli-

fies the integration and interoperability of diverse and heterogeneous components so

that authors can synthesise dynamic learning environments with minimal overhead.

Having the components and being able to integrate them may be problematic if there

is no understanding of the system as a whole. An overview of what is needed to foster

intelligent support for programming is given in an architectural framework that shows

how the various components are logically interrelated with each other and shows how

they should be combined together in an incremental manner.

Finally, a tool to facilitate reusability of existing functionality is presented. This

tool can be used to define new and existing languages that can be used in the context

of learning platforms either to simplify authoring of support or to enable teaching

programming through manipulation of existing learning environments.

The outcomes of this research are materialised in a proof of concept that shows

how all the components presented in the text can be combined together to simplify

authoring of intelligent support and facilitate reusability of functionality.

Acknowledgements

I would like to express my sincere gratitude to all of those that contributed to this

thesis and supported me throughout this process. In particular, I want to thank my

supervisors Dr. Sergio Gutiérrez-Santos and Dr. Manolis Mavrikis for their invaluable

guidance and encouragement during the project. I would also like to thank Dr. Keith

Mannock for the logistical help he provided me during the first stages of my degree.

I am thankful to all the students that participated and contributed to the studies

that took place. Also, I am thankful to my fellow teaching assistants that contributed

significantly with their work and input in various stages of the project.

I would like to express my thanks to my colleagues at the UCL Knowledge Lab

and my fellow engineers at Sopra Steria Ltd for their participation in the studies and

their input. Special thanks deserve my colleagues at the Educational Technology Lab

of the National and Kapodistrian University of Athens for their invaluable input and

feedback throughout the project.

Finally, I would like to thank a dear friend and former lecturer at the Department

of Computer Science and Information Systems, Dr. Roger Mitton, for believing in me

and helping me in my first steps when I arrived in the UK in 2012.

Contents

Contents 6

List of Figures 12

List of Tables 15

1 Introduction 16

1.1 Motivation . 17

1.1.1 The Need for Programming Skills 17

1.1.2 The Need for Automated Support 18

1.1.3 The Need for more accessible AI 21

1.1.4 The Need for Intelligent Exploratory Learning Environments . . 23

1.1.5 The Need for Flexible Integration and Interoperability 24

1.2 Research Objectives . 28

1.2.1 Challenges Translated into Research Objectives 29

1.3 Research Methodology . 31

1.3.1 Literature Review . 31

1.3.2 Reasoning Behind the Research Project - Design Thinking 34

1.3.3 The Project Step by Step . 35

1.4 Thesis Outline . 44

6

2 Related Work 46

2.1 Educational Programming Environments 47

2.1.1 Turtle Graphics in LOGO . 47

2.1.2 Karel . 48

2.1.3 Toontalk . 48

2.1.4 Alice . 49

2.1.5 BlueJ . 50

2.1.6 Greenfoot . 51

2.1.7 SALESPOINT . 51

2.1.8 Malt+ . 52

2.1.9 Scratch . 53

2.1.10 Discussion . 54

2.2 Exploratory Learning Systems . 55

2.2.1 Exploratory Learning . 55

2.2.2 Exploratory Learning Environments 56

2.2.3 Discussion . 65

2.3 Tutoring Systems for Programming . 67

2.3.1 Programming Environments . 68

2.3.2 Debugging Aids . 74

2.3.3 Intelligent Tutoring Systems . 77

2.3.4 Intelligent Programming Environments 80

2.3.5 Discussion . 84

2.4 Automated Support Authoring Tools . 86

2.4.1 SQL-Tutor . 86

2.4.2 ASPIRE . 87

2.4.3 Diligent . 88

2.4.4 Disciple . 89

2.4.5 Demonstr8 . 90

7

2.4.6 CTAT . 91

2.4.7 Automatic Rule Authoring System for CTAT 92

2.4.8 SimStudent . 92

2.4.9 GIFT . 93

2.4.10 The FRAME Approach . 93

2.4.11 Discussion . 94

2.5 Integration and Interoperability . 96

2.5.1 Technologies used in Learning Management Systems 101

2.5.2 Epiphytic Integration Systems . 102

2.5.3 Discussion . 106

2.6 Synthesis of Related Work and Revised Research Objectives 108

3 Exploring Possibilities 123

3.1 Literature Review and Domain Analysis - An Outline 125

3.2 Educational Ethnographic Study . 127

3.2.1 The Data Collection Process . 129

3.2.2 Managing Bias and Subjectivity . 131

3.2.3 Thematic Analysis . 133

3.3 Common Student Misconceptions in Elementary Programming 137

3.3.1 Importance of Student Misconceptions 139

3.4 Understanding Challenges by Developing a Prototype 141

3.5 Developing FLIP . 143

3.5.1 Knowledge Elicitation . 143

3.5.2 Knowledge Representation . 144

3.5.3 Knowledge Processing . 148

3.5.4 The PoC . 150

3.6 An Important Outcome: The Intelligent Tutor Layered Architecture . . . 158

3.7 Usability Testing . 166

8

3.7.1 Participants . 166

3.7.2 Method . 167

3.7.3 Results . 168

3.7.4 Discussion . 168

4 Completing the Working Principles 170

4.1 Literature Review and Domain Analysis - An Outline 173

4.2 User Centric Design through a Requirements Elicitation Workshop . . . 175

4.3 Implementation of WIIL . 178

4.4 The Web Integration and Interoperability Layer (WIIL) 179

4.4.1 Web Components . 180

4.4.2 Design Considerations . 181

4.4.3 Browser Security . 184

4.4.4 The Technique . 188

4.4.5 The Ladders Activity - A PoC . 205

4.4.6 GeoGebra Coding - A PoC . 206

4.4.7 Results . 207

4.5 Learning Environment vs Platform . 209

4.6 An architectural aspect of Learning Platforms 210

4.6.1 Tightly Coupled . 210

4.6.2 Loosely Coupled . 210

4.7 Learning Platforms as Ecosystems of Diverse Components 212

4.8 Implementation of AuthELO . 214

4.9 AuthELO . 216

4.9.1 Design . 217

4.9.2 Architecture . 222

4.9.3 Integration at a Technical Level . 224

4.9.4 The PoC . 226

9

5 Evaluation of AuthELO 234

5.1 First Evaluation . 235

5.2 Second Evaluation . 242

6 Addressing new Requirements 248

6.1 Requirements Elicitation . 250

6.2 Making Authoring Simpler . 251

6.3 Implementation of LFT . 252

6.4 The Lingua Franca Transformer (LFT) . 254

6.4.1 Architecture . 256

6.4.2 The Language Specification Syntax 259

6.4.3 The Tool . 260

6.4.4 Implementation Details . 262

7 The Microworld Learning Platform 267

7.1 A Conceptual Overview . 268

7.2 The Platform . 269

7.3 The Basic Workflow . 270

7.4 Creating and Enhancing Instances of Learning Components 276

8 Contributions 281

8.1 Part 1 - Facilitate Reuse . 282

8.2 Part 2 - Simplify Authoring . 283

8.3 Part 3 - Miscellaneous . 284

8.4 How it all fits together . 285

9 Future Work 287

9.1 Visual Integration Editor for WIIL . 288

9.2 Use AuthELO to handle Common Student Misconceptions 289

9.3 Enhance AuthELO with high-level Authoring Languages 289

10

9.4 Enhance AuthELO with Machine Learning Techniques 290

Bibliography 291

A Sample Rules 317

A.1 Understanding the Role of Variable Declaration 317

A.2 Understanding the Difference Between Variable Values and Literal Values318

A.3 Understanding the Necessity of Variables/Constants 320

A.4 Understanding the Necessity of Variables when Referring to Array Length323

A.5 Understanding off-by-one Errors with Arrays in Loops 325

B Literature Review Strategy Used 330

C Observation Sheet 332

D Usability Test Material 335

D.1 Day 1 . 335

D.2 Day 2 . 339

11

List of Figures

1.1 The project step by step . 43

2.1 The CTAT system . 95

2.2 The FRAME Approach . 95

3.1 The Rule Editor . 145

3.2 Facts . 152

3.3 Sample Rule . 153

3.4 The Consequent . 154

3.5 The Reasoner Architecture . 154

3.6 Misconceptions identified by FLIP . 155

3.7 Initial Support . 155

3.8 Third Level of Support . 156

3.9 Fourth Level of Support . 156

3.10 Fifth Level of Support . 157

3.11 Sixth Level of Support . 157

4.1 The WIIL stack . 196

4.2 The LTI Protocol . 202

4.3 The WIIL protocol . 203

4.4 The Ladders Interface . 206

4.5 The Blockly Interface . 207

12

4.6 The JS Interface . 208

4.7 The Architecture . 224

4.8 The Widget View . 228

4.9 The Logging View . 229

4.10 The Analysis View . 230

4.11 The Feedback View . 231

4.12 The Messages View . 232

4.13 Feedback Testing . 233

6.1 Typical widget manipulation . 256

6.2 Widget manipulation with other languages 257

6.3 Widget manipulation with any language 257

6.4 The LFT Architecture . 258

6.5 The LFT Editor . 261

6.6 The LFT Comparisons Section . 262

6.7 The LFT Comparisons Section . 263

6.8 The LFT Testbed Section . 263

6.9 LFT Real-time Updates . 264

6.10 LFT Interactive AST Visualisation . 264

7.1 Abstract Factory Pattern . 268

7.2 Abstract Factory Pattern in Detail . 268

7.3 The MLP Frontpage . 271

7.4 The Author’s Homepage . 272

7.5 Activity Deployment . 273

7.6 The Students’ Terminal . 273

7.7 Connecting to the System . 274

7.8 Synchronous Operation between Teacher and Students 274

7.9 Activity in Student Terminal . 275

13

7.10 Real-time Support . 275

7.11 Creating a new Activity . 277

7.12 Enhancing an Activity with Automated Support 278

7.13 Configuring Logging Rules . 278

7.14 Preparing the Facts for the Feedback Rules 279

7.15 Developing the Feedback Rules . 279

7.16 Editing Feedback Messages . 280

7.17 Checking Rule Validity . 280

8.1 Contributions Chart . 285

A.1 Understanding the Role of Variable Declaration 319

A.2 Understanding the Difference Between Variable Values and Literal Val-

ues . 321

A.3 Understanding the Necessity of Variables/Constants 323

A.4 Understanding the Necessity of Variables when Referring to Array Length

. 326

A.5 Understanding off-by-one Errors with Arrays in Loops 329

14

List of Tables

3.1 Procedural Programming Concepts . 137

3.2 Other Concepts . 138

3.3 Misconception Indicators . 168

5.1 Time Savings with AuthELO . 239

5.2 Results for Part 1 - AuthELO . 245

5.3 Results for Part 2 - AuthELO . 246

5.4 Results for Part 3 - AuthELO . 247

15

1
Introduction

16

1.1 Motivation 17

1.1 Motivation

1.1.1 The Need for Programming Skills

Programming can be seen both as a skill and as a learning activity. The way society

sees programming affects the way we approach it as a learning activity. The different

degrees of adoption by schools at different periods in the past is indicative of that.

In the 80’s schools demonstrated great enthusiasm in supporting programming as

a learning activity (Resnick et al. 2009). By the mid-90’s there was a serious setback

that lasted a decade. As indicated in Noss & Hoyles (1996) one of the reasons was

that the educational system was immature and not ready to respond effectively to this

demand. There were practical problems that hindered the process i.e. lack of qualified

teachers and lack of subject-matter integration. This negative trend became even more

intense when educational software with sophisticated graphical user interfaces was

introduced. Event-driven environments that enable dynamic manipulation of graphi-

cal elements was seen as a more appealing alternative to programming. Programming

was seen as a kind of unnecessary noise to doing interesting things with digital media

(Kynigos 2015). However, during the last decade, this situation seems to have dramat-

ically reverted (Kafai & Burke 2013). Programming has been recognized as an impor-

tant learning activity and a plethora of educational tools have been developed in order

to promote student engagement with programming design and coding. Tools such as

Scratch, Alice, ToonTalk, Imagine Logo and later NetLogo, Kodu and GreenFoot have

become very popular and attracted people of all ages to engage with programming.

The society nowadays sees computational media and programming in particular

as an enabler that through algorithmic thinking can promote and facilitate the devel-

opment of powerful ideas in other scientific disciplines (Blikstein 2013) and aspects

of human activity in general. But how did that happen? What is the causation of this

big comeback of programming? Programming is a craft and as such it is by nature a

creative activity. The sense of creativity through making ’tangible’ artifacts is inherent

1.1 Motivation 18

in programming. Therefore, it is not surprising that it has been at the centre of global

movements like the ’maker culture’ in the mid 00’s. This movement was followed by

other and more ’focused’ ones like ”hour of code” and ”coding for all” in the early 10’s.

These movements sparked and invigorated this new emerging culture around cod-

ing that influenced the way we see and use programming in general. This change

gradually translated into the release of numerous tools for programming and a signifi-

cant increase of programming-based learning activities in formal and informal educa-

tion. People even started designing digital fabrication activities (Blikstein & Krannich

2013) through programming of tangible objects (physical computing). Programming is

now seen as the literacy of the future. There is a constantly growing demand for edu-

cational systems that promote computational thinking as a means of making peoples’

lives better and there is also a huge demand for people with coding skills in the global

industry.

1.1.2 The Need for Automated Support

Learning computer programming is particularly hard especially during the early stages

(Soloway 1986, Jenkins 2002, Robins et al. 2003). Programming is a craft and requires

the development of practical skills that can only be learnt through practical training

(Vihavainen et al. 2011). Typically, learning takes place either in a workplace through

apprenticeships or in University computer laboratories through training courses. In

the latter case students are given problem and/or inquiry-based learning scenarios

(Savery 2006) and work individually or in pairs under the supervision of tutors. Stu-

dents are not expected to follow instructions and repeat actions. They are encouraged

to explore their own strategies, designs, patterns and techniques through experimenta-

tion. They are expected to discover knowledge in an exploratory manner (Huitt 2003,

Vygotskiı̆ et al. 1978). Learning this way is painful. It involves investigation, planning,

tactics and action. Tutors play a crucial role in this process. They are not just people

1.1 Motivation 19

that merely give instructions and expect answers. They actively engage in the pro-

cess as facilitators and they contribute by identifying problems, giving directions and

confirming acceptable solutions.

It has been established that considerable effort is required by tutors to ensure effec-

tive learning in such open-ended contexts (Kirschner et al. 2006, Kynigos 1992, Mayer

2004). Time and human resources in computer laboratories are limited. The effective-

ness of this process highly depends on whether utilisation of these resources is opti-

mal or not. Students and tutors have their own individual characteristics, problems

and idiosyncrasies. Students expect individualised support that reflects their particu-

lar misconceptions and practices. Tutors are expected to make bias-free and informed

decisions about the type and level of support needed in every case and respond accord-

ingly. The latter presupposes that tutors have a deep knowledge of students’ profiles

and the ability to analyse previous activity on the spot in order to provide suitable and

adequate support in every case. Support in this context is a multi-faceted and complex

task that requires a lot of preparation, expertise, time and resources. Decisions must

be based on a multitude of criteria and a considerable amount of data about students.

It is evident that human tutors cannot respond effectively to these challenges without

help.

Another important aspect of learning in a computer laboratory is the sequence of

actions that take place during a learning cycle (Kolb et al. 1984, Konak et al. 2014).

There is a pattern that students follow when they engage with a task. The sequence of

actions they execute follows a cyclical process. In every round students attempt to code

something that brings them closer to the completion of the task at hand. Sometimes

this is interrupted by the inherent inability of the student to move forward. That can

be lack of knowledge or a misconception. This is the point where the student hits the

inner circle of their particular zone of proximal development (ZPD) (Vygotskiı̆ et al.

1978). The only way to overcome the problem in this case is to receive enough and

relevant help in a timely fashion. Typically the tutor intervenes and provides the help

1.1 Motivation 20

needed so that the student can move on and complete the cycle. The student concep-

tualises the issue and then confirms the validity of the new knowledge through active

experimentation. Computer laboratories are especially busy during the early stages

of learning. These interruptions are very frequent and support may not be enough.

Tutors have to prioritise and provide help to many people in a very limited time and

that apparently can have a negative effect on the quality and quantity of service pro-

vided. If these cycles get interrupted, then learning gets interrupted. If support is not

adequate and cannot be provided timely, then inevitably the learning process becomes

less effective.

Both of the above (limiting) factors influence to a great extend the effectiveness of

the learning process. Inadequate support potentially means that students may not be

able to engage with the subject in the most constructive way and as a consequence of

that they may not be able to exploit their full potential and achieve the best possible

learning outcome. If technology can be used to compensate for these limitations then

it is expected that the learning process will be much more effective, fair and inclu-

sive. That will also have an effect on the way people approach the learning process of

programming even in the early stages. If a significant proportion of teaching can be

shifted from human teachers to automated agents, then it might be possible that a sig-

nificant proportion of learning can take place in different contexts without the pressure

of limited time and resources.

It is evident from the above that programming is by nature an exploratory activity

where people approach solutions and knowledge through discovery. This is a deeply

experiential process that is best conveyed through the constructionist approach (Pa-

pert 1993) about learning. Teaching and learning that way requires a certain degree

of freedom and is challenging. Learning environments and tools are expected to pro-

mote creative expression and exploration, and enhance skills like critical thinking and

problem solving but all that comes at a cost. The learners need a significant amount

of support to utilise effectively the tools and maximise their potential. It is imperative

1.1 Motivation 21

that we take advantage of this opportunity and find ways to either utilise existing tools

better or create new ones and provide better support to the development of computa-

tional thinking.

1.1.3 The Need for more accessible AI

The history of Artificial Intelligence (AI) is full of setbacks and comebacks called win-

ters and summers respectively (Grudin 2009). Despite the difficulties, the community

devised numerous systems and technologies since the early 60’s. The biggest obsta-

cles have always been the high complexity of AI problems and the consequent cost.

There were also technological barriers like the lack of adequate computer power and

memory and the ability to gather enormous amounts of training datasets in databases.

That inevitably lead to negative publicity and AI was perceived as a theoretical field

of computer science with no applicability to real world problems and therefore no real

value. In the field of technology enhanced learning (TEL) there have been numerous

attempts to devise intelligent systems, yet very little of this outcome has been utilised

in real world applications. It is indicative that contemporary learning platforms (in

the wider sense), commercial or not, make very little use of AI. Teaching-oriented in-

tegrated development environments (like BlueJ), virtual learning environments (like

Moodle), Web-based learning platforms (like Khan Academy) or even specialised ex-

ploratory learning environments (like Geogebra) lack AI support completely.

In the context of programming the first attempts to utilize technology into support-

ing programming can be traced back in the 80s. The first tutoring systems of this era

(Brown & Burton 1978, Reiser et al. 1985, Johnson & Soloway 1985) were able to pro-

vide intelligent and personalized support to students. Another system that appeared

a decade later with a somewhat different orientation is the ELM-ART (Brusilovsky

et al. 1996). This was a courseware delivery system also equipped with intelligence

and adaptivity. Other more recent systems are Mitrovic (2003), Sykes & Franek (2003),

1.1 Motivation 22

Holland et al. (2009), Peylo et al. (2000). The system in Mitrovic (2003) is a constraint-

based approach that does comparisons between student solutions and model solutions

defined by tutors. Another system based on constraint-based modelling is J-LATTE

(Holland et al. 2009). J-LATTE teaches Java and provides support for both design and

implementation issues. Another system that teaches Java is Sykes & Franek (2003).

This system is both intelligent and adaptive and the underlying technology used in an

expert system supported by decision trees. The system in Peylo et al. (2000) teaches

Prolog. In this case domain knowledge is represented as an ontology.

All of these systems present excellent examples of what is possible but from an ed-

ucational point of view they fail to address an important aspect of the process. They

all focus on task-dependent support for well-defined problem-based scenarios. They

provide guidance in an intrusive and controllable manner and they fail to support dis-

covery of knowledge through exploration that is essential in motivating students to

actively make meaning of their learning process. These systems prove that the tech-

nology needed to provide intelligent support exists, yet it is still not mature enough

to be used in the context of exploratory learning. Although, today the technological

barriers are much lower, still the degree of adoption of intelligent support in learning

systems is very low. Existing systems do not fit these educational requirements and

building new systems is still perceived as a complex and expensive endeavour. The

difference, though, between the past and the present is that AI has moved on from

being seen as an over-ambitious and under-achieving field of research. Nowadays,

AI is seen as a scientific field with promising ideas and great potential. Recent devel-

opments in machine learning algorithms combined with lower technological barriers

present new opportunities and people are starting to use it in real applications. Its

use in big data and data science is prevalent these days and the exponential growth

of IoT will dramatically change the way we live and operate in the near future. These

changes present new opportunities for technology enhanced education. It is impera-

tive that we take advantage of this situation and promote the design and development

1.1 Motivation 23

of techniques and tools that will give us the ability to utilise AI in a cost-effective man-

ner and provide a greater level of high quality support in the educational process.

1.1.4 The Need for Intelligent Exploratory Learning Environments

In the previous sections a wide range of tools and platforms was presented. All of

them fall in two broad categories. We have tools that are merely teaching-oriented de-

velopment environments like BlueJ, Greenfoot, Alice, Karel, ToonTalk, LOGO-based

Microworlds and Scratch (Kölling et al. 2003, Kölling 2010, Dann et al. 2000, Bergin

et al. 1997a, 2005, Becker 2001, Morgado & Kahn 2008, Jenkins 2012, Maloney et al.

2008). These systems may use guided or exploratory learning but they are not intel-

ligent and/or adaptive. There are also non-academic platforms like Khan Academy,

Code school, Coursera and Udemy. These are typically used for guided learning and

they are also not intelligent/adaptive. So, this first category comprises systems that

are not intelligent/adaptive but they may offer some degree of freedom in terms of

method of delivery (free/exploratory). The fact that there is freedom in the way the

students can approach learning is of fundamental importance in programming because

programming is by nature an exploratory activity. Nevertheless, as research suggests

considerable effort is required in terms of teaching and guidance to ensure effective

learning in such open-ended contexts (Kirschner et al. 2006, Kynigos 1992, Mayer

2004) and that means that the lack of automated support can be a seriously limiting

factor in those systems.

The other category comprises systems like ELM-ART and J-LATTE (Brown & Bur-

ton 1978, Reiser et al. 1985, Johnson & Soloway 1985, Brusilovsky et al. 1996, Mitrovic

2003, Sykes & Franek 2003, Holland et al. 2009, Peylo et al. 2000). These systems follow

the guided learning paradigm and are intelligent and/or adaptive. The distinguish-

ing characteristic of those systems is that learning takes place in a strictly controllable

environment, where support is imposed in an intrusive manner with the intention to

1.1 Motivation 24

correct the students as early as possible and align them with what is expected to be

an acceptable answer. Intelligence and adaptability in these systems proves that it is

possible to employ very sophisticated technology to enhance teaching and learning

but the fact that this takes place in a very deterministic manner may be too restric-

tive for systems that teach computer programming which ideally should allow a lot of

freedom and experimentation.

This distinction between systems that are exploratory but not intelligent and sys-

tems that are intelligent but not exploratory gives a false sense of a dilemma. Does

a system have to belong to the first or the second category? In reality, there is no

dilemma. A system can be both exploratory and intelligent/adaptive and that can

be a very powerful combination. The lack of systems that fulfill both objectives indi-

cates the difficulty of the problem. In an exploratory learning environment there are

potentially infinite paths the students might take and you don’t know what student

trajectories to anticipate. Authoring intelligent support for such a system is not a triv-

ial task. However, these types of systems need significantly more support than others

(Kirschner et al. 2006, Kynigos 1992, Mayer 2004). This necessity combined with the

emerging free and exploratory learning paradigms signifies the need of contribution

in this area.

1.1.5 The Need for Flexible Integration and Interoperability

Educators have always been trying to take advantage of technology affordances of

their time and introduce innovative approaches in their teaching. One major compo-

nent of teaching and learning is the development and delivery of courseware material.

Since TCP/IP and the advent of WWW a multitude of systems emerged as precursors

of modern Learning Management Systems (LMS). Systems like TrainingPartner 1 (by

GeoMetrix), Teachers Toolbox and Interactive Learning Network 2 (by CourseInfo) and

1http://www.trainingpartner.com/
2http://en.wikipedia.org/wiki/CourseInfo

1.1 Motivation 25

ASAP 3 (by ePath Learning) attempted to leverage the potential of new technologies

and offer efficient organisation, management and dissemination of teaching resources.

The appearance of modern LMSs like Moodle 4, Blackboard 5, Sakai 6 and ANGEL

Learning 7 and the development of standards like SCORM 8 changed radically the ed-

ucational landscape (Bohl et al. 2002).

In the 00s the level of acceptance and adoption started to dramatically increase

and the LMS established itself as the dominant technology for more than a decade.

High degree of adoption is seemingly a good development. Global acceptance and

wider adoption entail higher investment, faster implementation and better support

and maintainability. Nowadays LMSs are mature and current implementations are

stable, robust and reliable but that is just one side of the coin. LMSs ended up being

treated like any other large-scale enterprise-wide application (Severance et al. 2010).

Universities and other institutions have heavily invested on them and they conse-

quently heavily depend on them. The implication of that is more stringent and conser-

vative system management. The primary concern gradually shifted from education-

related issues to considerations like system stability and reliability. As a consequence

of that the process of integrating new functionality and instructional content became

more difficult (Severance et al. 2010). Educationalists with the ability and willingness

to experiment with new software and instructional content are suppressed for the sake

of keeping systems robust for daily production. The new challenge now is the ability

to balance innovation with stability.

The solution for stability was a shift to an architectural approach that offers the

ability to decouple functionality into independent and self-sufficient components that

interoperate via standardised communication protocols potentially over a network

3http://www.epathlearning.com/services/lms/
4https://moodle.org/
5http://uki.blackboard.com/sites/international/globalmaster/
6https://sakaiproject.org/
7http://www.angellearning.com/community/higher ed.html
8http://www.adlnet.gov/scorm.html

1.1 Motivation 26

(González et al. 2009). Componentisation offers better testability and resilience to

system changes. A Service Oriented Architecture (SOA) implies that components are

self-contained and have no dependency on specific products, technologies and archi-

tectures. Components can be hosted in different machines and functionality can be

made available in the form of a service. In such a system, functionality can be be easily

added, removed or changed without affecting its operation and robustness (stability).

Innovation is empowered by the ability and the freedom to combine potentially

heterogeneous learning components into formations that offer new and unique learn-

ing experiences. The solution employed for the stability problem led to the develop-

ment of a new market for learning components. These components are typically fully-

fledged web-based applications equipped with their own infrastructure in terms of

security and operations and able to provide their services as stand-alone applications.

The need for these applications to integrate with LMSs without sacrificing stability

led to the development of standards like the IMS Learning Tools Interoperability (LTI)

specification and OpenAjax. That gave the opportunity to educators, to develop new

instructional material by combining possibly disparate and heterogeneous learning

components together and integrate them with LMSs with transparency.

This is definitely a step forward but educators are still finding development in

LMSs too restrictive for their purposes (Mott 2010). LMSs are designed to be very

controllable and well-structured. That makes them very efficient in supporting admin-

istrative functions but relatively inflexible in supporting student-centered learning sce-

narios. Nowadays, educators see learning platforms as highly customisable mashup

applications that don’t necessarily impose prefabricated and static teaching-centered

material to students. These platforms are like constantly evolving networks of com-

ponents that may or may not have been designed for learning purposes. Educators

want the freedom to easily develop formations of components that are available on the

web and make them part of their educational practice with little or no configuration

overhead in a way that resembles systems like Gurram et al. (2008). Modern learning

1.1 Motivation 27

platforms are expected to support dynamic and authorable material that can be easily

combined and processed both by teachers and students. Students should be able to

configure their own learning environments by selecting tools that reflect their particu-

lar needs and circumstances. Web 2.0 or any other component (learning or not) should

be able to integrate with such a system with minimal or no additional development.

Typical examples of such components are wikis, blogs, services provided by social net-

working platforms and any other web tool that can be used to enhance productivity

and satisfy basic communication and collaboration needs. Learning components like

Geogebra, Cinderella, Scratch and eXpresser can also be added to the mix.

This new trend leads to systems that deviate from the basic LMS norm. These

systems are called Personal Learning Environments (PLE) (Severance et al. 2008) or

Personal Learning Networks (PLN) and are expected to be used in conjunction with

LMSs. Another, more radical approach is the Open Learning Network (OLN) (Mott

2010) that unifies both worlds in a single platform. The logic behind these systems

and its consequent architecture is radically different and promises greater flexibility,

portability, adaptability and openness but the stringent and expensive to implement

processes of LTI still remain and have to be used even when practically they have

nothing to offer.

Nowadays, there is a multitude of components that exist solely in the browser.

These components may not have dependencies on back-end services and typically

there is no requirement for user authentication and other sensitive operations. Usu-

ally, these components do not have the ability to extend themselves and natively com-

ply with interoperability standards. Integrating them with a learning platform using

LTI and OpenAjax requires a significant overhead that is not necessary. Facilitating

reusability in this case that minimises overheads will offer opportunities for the devel-

opment of new learning environments and compelling learning experiences.

1.2 Research Objectives 28

1.2 Research Objectives

The analysis presented so far reveals three interesting aspects of the current situation:

• What is needed: Computer programming is the literacy of the present and the

future and learning programming deserves to be treated accordingly. Learning

programming is very hard, especially during the early stages. Programming is by

nature an exploratory activity and therefore it is more natural to learn it through

exploratory learning. The level of support required in exploratory learning is

much higher than it is in guided learning (Kirschner et al. 2006, Kynigos 1992,

Mayer 2004). Exporatory learning takes place in more open environments where

instruction may be less explicit. Learners discover knowledge through explo-

ration of fuzzy, ill-defined and ill-structured problems. Personal inquiry, diver-

gent thinking and self-directed learning is encouraged (Hannafin et al. 1999). In

this context there is no predefined path for the course of actions that take place

and thus the possible student trajectories are potentially infinite. For these rea-

sons, provision of support in this context is a very challenging task. Automated

support may be used to augment human support and optimise the learning pro-

cess. Designing and implementing automated support for exploratory learning

is a very challenging and demanding endeavour. According to Murray (1999)

ITS design, development and evaluation is a challenging and costly process. Evi-

dence show that it takes roughly 200 to 1000 hours of development time to create

an hour of instruction for a guided learning system (Woolf & Cunningham 1987).

Insertion of knowledge into a system requires highly skilled people with exper-

tise in knowledge engineering and specialised software development as well as

domain experts. If that is challenging and expensive then it is logical to assume

that development of support for open environments is at least equally challeng-

ing as that, if not more. According to Gutierrez-Santos, Cocea & Magoulas (2010)

the nature of student engagement in those envirnments combined with the con-

1.2 Research Objectives 29

structivist intentions behind their design, make the development of support even

more difficult and costly.

• What is missing: Old systems fail to support free, exploratory learning and con-

structivism. Current systems may offer exploratory learning but are not intelli-

gent and/or adaptive. Technologies and tools exist but they are not being used to

enhance these systems with adaptivity and intelligence so that they can support

the learning process more efficiently. Automated support is literally nonexistent

in current systems.

• What is emerging: Modern learning platforms that support dynamic and au-

thorable material that can be easily combined and processed both by teachers

and students. Nowadays, educators see learning platforms as highly customis-

able mashup applications that don’t necessarily impose prefabricated and static

teaching-centered material to students. These platforms are like constantly evolv-

ing networks of components. Educators want the freedom to easily develop for-

mations of components that satisfy their particular needs and make them part of

their educational practice with little or no configuration overhead.

1.2.1 Challenges Translated into Research Objectives

As illustrated in the previous section the greatest challenge identified is to enable the

development of intelligent support and adaptability for programming education in an

exploratory context. Under these settings the level of complexity expected is quite

substantial as it is of course the respective cost of development. This challenge may

have many facets. Reducing the cost of development may be related to reducing the

complexity of the authoring process. It may also be the case that a process applica-

ble to a wide range of use cases (possibly dissimilar in nature) can further reduce the

cost due to reusability. Reusability on the other hand implies that there is an architec-

tural framework in place as well as certain integration and interoperability techniques

1.2 Research Objectives 30

to allow the actual application of the process on different (possibly diverse) learning

components in a logically organised and technically feasible manner. The technical

challenge to enable reuse in this case should not outperform the benefit of having it.

All of this constitutes a complex mix of issues that can be logically categorised under

the following two major components of this work:

• Facilitate reuse of diverse web components

• Simplify authoring of intelligent tutors for programming education in exploratory

learning environments

The aim of this research is thus to devise techniques, methods, frameworks and tools

that can facilitate reusability of existing functionality with minimal overhead and sim-

plify the development of intelligent support for educational programming environ-

ments that operate in an exploratory context.

1.3 Research Methodology 31

1.3 Research Methodology

Overall the research conducted in this project lies under the principles of the design

thinking methodology (Melles et al. 2015). In this section we present a brief literature

review of the related methodologies and a detailed description of the research journey

followed as well as the theoretical underpinning and methodological reasoning behind

it.

1.3.1 Literature Review

This thesis follows a design-oriented approach that seeks to create artifacts in order

to solve real world problems. This recognises that a practice-oriented approach in

social sciences is needed to address problems that require solutions with immediate

and transferable value in order to support practice. The text that follows presents the

underlying theory that underpins these concepts.

Research methodologies in the social sciences evolved over the past three decades.

The traditional approach was concerned with theory-oriented research aimed at knowl-

edge with no transferable practical orientation. At some point a new, more practice-

oriented approach emerged that mainly focused on improvements of existing reality.

This approach gradually changed into research aimed at creating new artifacts in order

to solve construction or inventive problems and this is called design-oriented research

(Verschuren & Hartog 2005, Fällman 2004).

Educational research followed the same path. Educational research and educa-

tional practice should ideally go hand in hand but in reality that was not always the

case. This disconnection or lack of relevance between the two has been the reason that

led to the development of alternative approaches to research. The orientation of these

approaches leans more towards addressing and solving real problems in educational

practice rather than answering research questions. An example that clearly highlights

the difference between the two perspectives is given in McKenney & Reeves (2018).

1.3 Research Methodology 32

The argument in this text is that instead of doing more studies comparing whether one

or the other method is better in a certain context, it would bring more value to actually

undertake research aimed at developing an optimal solution for the problem in that

context. In the area of learning sciences, the belief that context is important changed

the perspective under which research paradigms are being used. Research that simply

examines learning processes as isolated variables within laboratory settings is doomed

to fail as it will inevitably lead to an incomplete understanding of their relevance in real

life.

Design Research A notable example of an approach with a problem-solving orienta-

tion is the design research approach. Design research has a clear orientation to support

practice. The intention is typically to support improvement of systems. It embraces

methods that help us understand reality and develop support for that improvement

(Chakrabarti 2010). It embraces all facets of design and combines it with social and

technical sciences to create tools and methods to support the process.

Educational design research follows the exact same principles to resolve educa-

tional problems. It blends scientific investigation with practical and systematic de-

velopment of solutions to educational problems. This approach encompasses the sys-

tematic study of designing, developing and evaluating educational interventions that

may take the form of programs, learning processes, learning environments, teaching-

learning materials and learning systems in general. Empirical studies must lead to

usable and effective solutions and in order to achieve that these studies take place

in real learning conditions and not under ’sterilised’, controllable laboratory settings

(McKenney & Reeves 2018). According to Plomp (2013) the systematic analysis, de-

sign and evaluation of educational interventions has a dual purpose. The obvious

objective is to build design solutions for complex problems in educational practice.

The not so obvious objective is to advance our knowledge about the particularities of

these interventions and the surrounding processes of designing and developing them.

1.3 Research Methodology 33

Developing solutions to practical and complex educational problems is an iterative

process and the motive is to improve practice (McKenney & Reeves 2014). Scientific

inquiry in this context may target multiple goals simultaneously. Prioritisations of the

work relates to how the research work and the relative importance of goals evolve.

The aim is always a tight and rigorous connection between the theoretical principles

and practical educational innovation (Gravemeijer & Cobb 2006). Rigorous theoreti-

cal analyses of educational problems generate ideas for possible interventions. These

ideas are then used by designers to implement educational systems and evaluate them.

The journey from theoretical principles to educational interventions is not straightfor-

ward. Designers must do design research in order to ensure that the system rigorously

implements the research principles derived from theory. The purpose of design re-

search is not to evaluate theories but to discover ways to create new systems based on

those theories. Then, it is not the theory that gets evaluated but the effectiveness of the

system in practice.

Design Thinking Dorst (2011), Lor (2017) is a methodology that follows the same ap-

proach but it is more loose and flexible. In this approach nothing is fixed as everything

may be challenged during a design cycle. Even the definition of the problem itself may

be revisited and reviewed. Both problem and solution may be constructed and recon-

structed multiple times throughout this journey. The whole process is characterised by

uncertainty and the element of subjectivity is always present as the approach pursued

reflects the researcher’s perspective. In this context evaluation and assessment of the

final product and its usefulness might be tricky as the target might be continuously

changing and adapting to the complex nature of educational problems. The design

outcomes and their credibility rely on the design narrative, its cohesion and how it is

supported by the research undertaken. Design is not applied science.

Design thinking is aspirational in the sense that it seeks to change things for the

better. The proposition that a solution carries some value remains an aspiration un-

1.3 Research Methodology 34

tils that solution gets evaluated. The process is highly dynamic as it aims at finding

novel and innovative ways of framing problems that evolve during the development

of a solution. This unique idiosyncrasy makes this approach especially suitable for ill

defined, complex problems. In practice, research projects following this path take a

constructivist approach that leads to solving problems through making and that nat-

urally implies collaborations between people with different specialties like designers,

learning technologists, teachers, students and others.

1.3.2 Reasoning Behind the Research Project - Design Thinking

The traditional approach to research is to address a given question and try to set up

the best possible study that can provide an answer. In some cases this is quite narrow

because there are research projects, typically design projects, that face many questions

and of varying degrees of uncertainty. The single study pattern may not be adequate

in this case (Gravemeijer & Cobb 2006). A sensible alternative would be to identify the

most important questions related to a design problem and plan the studies to address

them. The idea is to start with brief, inexpensive studies that reveal the most promising

approaches. As new questions arise or existing questions are given different weight it

is sensible to gradually invest in more rigorous and expensive studies on the ones that

seem more crucial for the discovery of the truth. As Dorst (2011) states, there are

basic reasoning patterns used in problem solving that, in general, try to complete the

unknown factors in the equation that follows:

WHAT + HOW leads to RESULT

When it comes to design research, the equation transforms into the following:

WHAT + HOW leads to VALUE

The core difference between the formal logic and the design logic is that instead of pre-

dicting results the researcher wants to create valuable things. In this thesis the starting

1.3 Research Methodology 35

point is the belief that programming is the literacy of the future and the present. The

intention is to see if some aspect of teaching programming can be improved so that we

can help society cultivate more literate people. At that stage this value is an aspira-

tion based on personal views and experiences but it will be confirmed as the research

progresses. Regarding the reasoning pattern we only know the end value we want to

achieve, that is to ”make teaching introductory programming easier”. So the equation

takes the form:

WHAT + HOW → ”make teaching introductory programming easier”

1.3.3 The Project Step by Step

In the text that follows we describe the process through which we gradually give sub-

stance to the two unknown components of the equation.

Exploring Possibilities

The first step is to start with the leftmost component. We start with a literature re-

view in the areas of teaching and learning programming in order to get more familiar

with the area and identify elements that can help us formulate an initial idea about

the WHAT. The dominant finding in this research is that learning programming is not

natural for everyone and requires support. Concequently teaching and supporting

learning in this subject is expensive and thus limited due to limited resources. That

strengthens our initial belief about the value. Another important finding is that teach-

ing and learning programming in exploratory settings seems more natural and offers

more opportunities for learning but also carries a heavier cost in terms of support.

Thus, the problem becomes even more intense if learning takes place in an exploratory

setting. A possible viable solution to this may be the to complement human support

with automated support through a learning system. Current learning systems that

offer opportunities for exploratory learning lack automated support and that is an in-

1.3 Research Methodology 36

dication that the WHAT in the reasoning pattern might be a system that facilitates

exploratory learning in programming and offers automated support and adaptability.

At that stage we have research findings from the literature and some idea about

WHAT might give a viable solution to the issues we identified. We need a first hand

experience of the reality of those problems so that we can see for ourselves the issues

and understand better the area of interest. We need to understand processes, flaws

and weaknesses in the currently used teaching approaches, understand how learners

approach learning and solve their problems and identify oppotunities for improve-

ment and innovation. The intention is to verify what we already know and put it in a

real world educational context so that we can have a more concrete understanding of

the situation. The approach we follow for that part is to do an ethnographic research

(Mills & Morton 2013) by becoming part of the process ourselves. This part of the

research was conducted in computer laboratories where students were undertaking

programming assignments and practical training. We were involved in the process as

tutors and in this capacity we provided help, we did observations and non-structured

interviews.

This part gave us insight about the actual problems the students experience when

they first start learning programming. We realised that laboratories become quite busy

during these early stages of learning and students require a significant amount of sup-

port. Quite often the level of support may not be adequate or prioritised properly and

students feel intimidated and excluded as they are not able to progress. We identified

a set of common initial misconceptions that most students experience and that helped

us realise the distinction between support that is independent of any task and support

that is task specific. We verified both the need for exploratory and free learning and the

need to provide as much automated support as possible. The fact that, according to the

literature, there is no system that provides Task Independent (TI) support specifically,

lead us to the next step which is the development of a system that offers free explo-

ration and provides TI support on demand. The objective for this component is to

1.3 Research Methodology 37

learn from the process about the technical feasibility, to understand the actual require-

ments for the development of such a system and identify opportunities for innovation.

A final objective is to verify that there is indeed a need for this type of support and that

learners are willing to use it. The approach for this last objective is to test the prototype

with real students (Henson & Knezek 1991, Wong 1993).

The outcome of this process is a system called FLIP Learning that fulfills all the

design objectives set. Throughout this process we developed a more concrete under-

standing of what is needed to develop such a system and we realised the technical

challenges for componentization, reusability and interoperability. A significant devel-

opment was the design of a generic architectural framework (refer to layered architec-

ture in 3.6) that is suitable for web-based automated tutors in programming. Another

useful outcome was the opportunities that arose for making this process less expen-

sive through reusability of existing components. The next step is to conduct a usability

testing (Barnum 2020) to verify the need for TI support with real users.

FLIP was used effectively by University students in two sessions with very en-

couraging results. Students were able to tackle the tasks given to them with minimal

human support despite the fact that they had no previous experience in the language

used. Student activities were recorded and analysed and the results indicate that TI

support was used and learners were comfortable and confident to consult an auto-

mated tutor for their problems.

The experiences and findings acquired throughout this phase strengthen our belief

about what is needed to make teaching of programming easier. The WHAT is clearly

a system that allows learning programming through exploration and provides TI and

TD automated support. The equation takes now the following form:

”ELE with automated support” + HOW → ”make teaching programming easier”

1.3 Research Methodology 38

Completing the Working Principles

At that stage we have established the WHAT component and we also have findings

that give some substance to the HOW component. These are the layered architecture,

the need for web-based design, componentization, reusability, interoperability and ul-

timately the need to find ways to make tutors in an easy and cost-effective way. The

next step is to discover the rest of the HOW component.

In this phase we focus on the TD side of automated support. We need to know

what other systems exist that offer automated support and what teaching and learning

approaches they use. We need to know what systems support authoring of automated

tutors, in what context and how usable they are. Finally, we need to identify lim-

itations, deficiencies and weaknesses of current approaches so that we can recognise

opportunities for improvement and innovation. For this part we did a literature review

on all these areas of interest.

The outcome of this review was that there are a lot of learning systems that of-

fer opportunities for exploratory learning yet these systems lack automated support

and adaptability. On the other hand there are Intelligent Tutoring Systems (ITSs) that

utilise very sophisticated technologies to provide support and adaptability but they of-

fer limited opportunities for exploration and the learning process typically takes place

in a quite controllable manner.

On the authoring side, tools for the generation of automated support are typically

oriented towards guided learning. These systems are platform-specific technologies

and offer domain-specific solutions. In general, the entry threshold for end users is

quite high and development of automated support is quite expensive. What gives us

motivation to move on at that stage is that there is very little work on authoring auto-

mated support for exploratory learning and there is no authoring tool that can develop

domain-independent support for any learning environment and diverse technologies.

Furthermore, there are technologies and approaches that can be give us a good starting

1.3 Research Methodology 39

point for what we need to develop.

At that point we need a fresh look at the design considerations for building an au-

thoring tool. The next step is to conduct a requirements elicitation workshop (Millard

et al. 1998) and use participatory design methods to elicit the challenges in developing

support for exploratory learning environments. The information we collected from

this workshop helped us form an idea of the development requirements both at a tech-

nical and a functionality level.

Based on the low level technical requirements derived from this step we decided to

give some time for a technical spike to address a very important obstacle in this pro-

cess which is integration and interoperability with diverse technologies. The outcome

of this spike was the development of a technique that can be used to overcome web

component heterogeneity and achieve seamless integration and interoperability be-

tween any web component and its host environment. A prototype (Henson & Knezek

1991, Wong 1993) was implemented and named Web Integration and Interoperability

layer (WIIL). The technique enables seamless integration and unrestricted two-way

communication between web components and their environment with minimal tech-

nical overhead. This output gives an answer to two problems: reusability of any web

component that carries some educational value and reusability of web-based author-

ing tools with those environments. This gives us a more concrete picture of the HOW

component.

Following the findings derived from the requirements elicitation workshop in com-

bination with suitable techniques, technologies and architectures found in the litera-

ture, a prototype, named AuthELO was designed and developed.

The tool addresses successfully integration and interoperability issues and is able

to perform dynamic and continuous testing of automated feedback in a sandbox with

minimal administrative overhead. The next step is to evaluate it (Nieveen & Folmer

2013) and see whether it makes development of automated tutors for exploratory

learning easier and less expensive.

1.3 Research Methodology 40

At this stage we make the desired value more specific to focus more on the contri-

bution of this project and the reasoning pattern takes the following form:

”ELE with automated support” + ”HOW” → ”make authoring of automated support

for teaching programming easier”

Evaluation of Authelo

Evaluation of authELO took place in two steps. The first evaluation was a workshop

involving the three learning designers that contributed to the initial design of auth-

ELO. The evaluation revealed aspects of the process that helped us revisit and refine

the design of the tool. The evaluation also revealed that authELO can reduce substan-

tially the time and development effort required regardless of learning environment and

task. This was the fist confirmation that authELO complements successfuly the HOW

component. This evaluation led to a re-design iteration which was subsequently eval-

uated with a quasi experiment - single group study (Privitera & Delzell 2019) that took

place in the context of a real project. The aim of the experiment was again to evaluate

the tool in terms of speed and ease of use. This time two learning designers were in-

volved in the process and they did an integration and development exercise with and

without authELO. The designers shared estimates for both iterations and the results

clearly confirm the findings obtained from the first evaluation. The fact that we have

similar results and positive user satisfaction strengthens our belief that there is value

in this work.

The second evaluation was conducted with a focus group (O’leary 2017) of five

top software engineers senior to lead level working in the software industry. The aim

of this session was to obtain time estimations from industry experts about the devel-

opment of the basic infrastructure for a system like authELO and the key phases in the

authoring process identified in the first evaluation. The overall estimations confirmed

the time gains achieved in the previous steps and the qualitative evaluation gave top

1.3 Research Methodology 41

ratings to all the distinctive features of authELO. At that point we have a solid confir-

mation that the HOW component is complete.

Addressing new Requirements

The qualitative evaluation revealed a new requirement which is the need to have a

more high-level language specialised in authoring feedback. That lead to another it-

eration to revisit the design (Nieveen & Folmer 2013). In order to address this re-

quirement we organised a requirements elicitation workshop with two categories of

participants: ICT teachers with some programming skills and EdTech students with

no programming skills. The ICT teachers were asked to develop support for a number

of activities using authELO and the group of EdTech students were asked to do the

same at a much higher level. The outputs from the first cohort were analysed and a

common pattern for the data acquisition part was identified. This gave the require-

ments for the development of the high-level language. The outputs from the students

confirmed that there is indeed a need for a block-based language for less skilled people.

The next step is to implement a software library to provide high level language con-

structs for the data acquisition and analysis part. Based on the requirements obtained

in the workshop the library was implemented and integrated with authELO. This was

an easy and cost-effective improvement to lower the entry threshold and give moe

value to the HOW component.

The final step of this research is an attempt to address the requirement of devel-

oping a high-level language specialised in authoring feedback. Instead of doing that,

we designed and developed a tool that can be used for the specification of new lan-

guages executable in web browsers. The tool is developed and called Lingua Franca

Transformer (LFT). It can be used to facilitate the authoring process of a new or an

existing language and generates transpilers from that language to JavaScript The tran-

spilers allow real-time execution of any language in the browser with no server-side

1.3 Research Methodology 42

dependencies.

The benefit of this last development is two-fold: the ability to speak any language

in the browser context increases reusability of web components. People can use the

language of preference to manipulate widgets. In particular, learning designers can

teach any programming language with any learning environment. In addition we give

the ability to skilled designers to develop a high-level specialised language of their

preference for authoring feedback and thus increase the reusability of authELO.

The final form of the reasoning patterns is the following:

”ELE with automated support” + ”authELO” → ”make authoring of automated

support for teaching programming easier”

AuthELO is the final outcome for the HOW component as it gives us the means to

achieve the aspired value. Alongside the final product, a series of methods, processes,

tools, techniques that embrace the working principle are given as artifacts that provide

added value. These artifacts can either be re-used as individual values to complement

other projects or help other researchers and practitioners as a roadmap that shows

proven and effective ways to develop similar projects.

1.3 Research Methodology 43

Figure 1.1: The project step by step

1.4 Thesis Outline 44

1.4 Thesis Outline

The remainder of this thesis is organised as follows: Chapter 2 presents research projects

related to the subjects this thesis is concerned with and gave inspiration to the ideas

proposed. It also discusses issues identified with current approaches and opportuni-

ties for contributions.

Chapter 3, 4, 5 and 6 discuss the phases of this project as we gradually progress

along the components of the reasoning pattern presented in 1.3.3. In chapter 3 there

is a detailed presentation of the process through which we identify what needs to be

accomplished so that we can achieve the desired value. In this part we show how we

build up a better understanding of the areas of interest and how that supports our

decisions in the process. We also show how we build up practical knowledge and we

identify ways of how this objective can be accomplished.

In chapter 4 we focus more on how we can develop the entity that will give us the

desired value. In this part we complement what we already know from previous steps

with new knowledge and more technical artifacts.

In chapter 5 we focus on the evaluation of the developments presented in chapter

4. The new requirements that emerge from this evaluation are addressed in chapter

6. Chapter 7 presents a fully fledged learning platform that shows how all the com-

ponents developed in previous steps can be combined together to achieve the desired

value. Chapter 8 presents and discusses the contributions of this work having cate-

gorised them in components that facilitate reuse, components that simplify authoring

of automated support and other miscellaneous components that provide additional

value.

Chapter 9 discusses what we envisage as possible strands this work can follow

after this thesis is submitted. Appendix A gives a diagrammatic presentation of a

few sample rules designed for task-independent support in programming. Appendix

B discusses the literature review strategy used throughout this project. Appendix C

1.4 Thesis Outline 45

shows the observation sheet used in the educational ethnographic study presented in

3.2 and finally appendix D shows the material used for the usability test presented in

3.7.

2
Related Work

46

2.1 Educational Programming Environments 47

2.1 Educational Programming Environments

There is a category of systems that have been designed to be used specifically for teach-

ing introductory programming to high school or early University students. These sys-

tems, typically offer highly interactive environments with visual interfaces and allow

the development of small scale projects, usually graphical applications. Students work

in a design window, the equivalent to an editor, with objects that can be dragged,

dropped and linked together to form interactions. The systems that fall under this

category follow:

2.1.1 Turtle Graphics in LOGO

Turtle Graphics in LOGO (Solomon & Papert 1976, Papert 1980) is a system designed

to teach basic algorithmic thinking to primary school children. The actor in this learn-

ing environment is a turtle that lives on a display screen. Its initial state is to stand in

the middle of the screen with it nose pointing upwards (north). The user can commu-

nicate with the turtle using the LOGO language. LOGO is a very primitive and simple

to learn and use language. The turtle can be instructed to move around the screen and

as she moves draws shapes. Of course the system is much more than a drawing device

since the turtle can also exhibit behaviour and respond to stimuli. The idea is to let

the student explore strategies on how to manipulate the turtle and once they are suc-

cessful to teach the system on how to repeat the task. Previous tasks can be combined

with new ones to draw more complex shapes and thus teach notions of componentiza-

tion and code reusability. This system has been very successful since there have been

multiple replicas since its initial inception using different interfaces and exploiting new

technologies as they became available. This system is probably one of the most heavily

used and therefore thoroughly evaluated with students.

2.1 Educational Programming Environments 48

2.1.2 Karel

Karel (Pattis 1981) is a learning environment designed to teach early programming

through robots that live in a virtual world (microworld). The virtual world is a graph-

ical area that looks like a 2D matrix. Columns and rows are used to designate streets

and walls. Robots inhabit this world and can move in all four directions as long as

there is no obstacle (wall) in front of them. Robots can also pick up, carry, and drop

beepers. Beepers are placed in intersections of streets and multiple robots may exist in

the world. The initial idea behind this design was to teach basic programming without

the need to spend time learning the syntax. Students can control robots using a very

small set of simple commands and familiarise themselves with the logic of program-

ming without spending significant time to fiddle with the particularities of a language.

Since its inception the system evolved and took many forms. The first system used a

Pascal-like language. Another version named Karel++ was based on a language sim-

ilar to C++ (Bergin et al. 1997b). Later implementations were designed around the

object-oriented paradigm and the underlying language used was Java (Becker 2001).

Karel proved to be a very good fit for the OO paradigm as it made teaching of the

fundamental OOP principles possible, very early in the process. That was the main

problem with other approaches. OO principles had to be introduced very late in the

learning process and there was little time left for the students to master the topics.

No adaptability or automated assistance is supported in the system. Karel has been

evaluated and found helpful in learning programming.

2.1.3 Toontalk

ToonTalk (Kahn 1996) is a general purpose programming environment that resem-

bles a video game which is ‘materialised’ as a virtual world (microworld). The user

can generate code using a programming by example (PBE) approach and code is ani-

mated. In this world, computational abstractions are mapped into concrete metaphors.

2.1 Educational Programming Environments 49

For example, a city is a computation whereas a robot is something that can be trained

- by the user - to execute a task. The user can develop, run, debug and modify code by

controlling a programmer persona in the virtual world. The design goal of ToonTalk

is to eliminate the need to learn a text-based programming language to express things

and provide a self-taught programming environment, thus, significantly reduce the

cognitive load required to start programming and lower the entry threshold. This is

based on the premise that people, mostly children, can learn on their own how to build

complex Lego constructions or master video games that require exploration and prob-

lem solving abilities in complex fictional worlds. The design of ToonTalk is heavily

influenced by analysis of video games and Lego systems (Malone 1980, Provenzo Jr

1991). Despite the fact that ToonTalk is easy to learn it is very generic and powerful in

terms of expressiveness as it allows the user to build a wide range of applications like

games, physical robots with motors and sensors as well as conventional programming

examples like sorting algorithms. ToonTalk has been evaluated and found very helpful

in learning programming especially with pre-school and school children.

2.1.4 Alice

Alice (Cooper et al. 2000) is a visual development environment for interactive 3D

applications designed to assist students learn algorithmic thinking and introductory

programming. Students can easily develop highly interactive 3D environments (vir-

tual worlds) and use simple scripts to control objects’ appearance and behavior. There

is a clear OO flavor in the design of Alice and that makes it particularly suitable for

teaching OO principles and programming. The design is based on the premise that

some students find it difficult to visualise what actually takes place when the com-

puter executes code. Therefore, students may be able to progress much easier if there

is an alternative method to conceptualise that part much easier. The basic idea is to

overcome this problem by using animations to show program execution instead of us-

2.1 Educational Programming Environments 50

ing code tracing or other complex visualisations. The objective is to provide a system

that is as inclusive as possible and can accommodate the needs of students at every

part of the spectrum. Alice was initially built on top of Python but latest incarnations

used Java as the underlying technology. Alice has been evaluated and found useful

in learning programming in the sense that students were very comfortable debugging

and correcting programs.

2.1.5 BlueJ

BlueJ (Kölling & Rosenberg 1996, Van Haaster & Hagan 2004) is an integrated develop-

ment environment specifically developed for teaching object-oriented programming.

It is designed to overcome known problems that hinder the learning process in OO

programming courses. The main argument is that the environment the students work

with should itself reflect the paradigm of the language. If students have to work with

different abstractions then their work is distracted and they spend time doing things

not relevant to what they need to learn. BlueJ offers a graphical environment that sim-

plifies interaction with the language significantly. The alternative is to either use the

compiler directly or to use a sophisticated IDE designed for professional development.

In both cases there is a significant overhead that increases unnecessarily the cognitive

load required to deal with learning tasks. Students work in a main design window that

shows a Unified Modelling Language (UML) class diagram that visualises the appli-

cation structure. The underlying language used is Java. Students can interact directly

with classes and objects using the respective icons in the graph. They can get access to

the underlying source code and modify the text and they can compile individual com-

ponents. They can also execute code on components like create instances of objects and

run methods on them. All of that is immediately reflected in the visual environment

they work in. That means that students get immediate feedback about what is going on

in their program. This forces students face problems immediately as they can visually

2.1 Educational Programming Environments 51

inspect the results of their actions and all that is happening in a purely OO manner.

BlueJ does not provide any adaptability or any automated support to students. It does

not maintain learner profiles and knows nothing about the subject being taught. It has

been evaluated and the results showed that students found it easy to use and quite

helpful in learning OO programming.

2.1.6 Greenfoot

Greenfoot (Henriksen & Kölling 2004, Kölling & Henriksen 2005) is a visual program-

ming environment designed to teach OO programming to novices. The interface con-

sists of a main window that shows the scene which is the virtual world to be built. On

the right there is another window that shows the class diagram that reflects the state

of the virtual world. The learner can work with visual components directly to drag

and drop, create the world and add interactivity. Gradually, once the user is comfort-

able with the concepts they can start interacting with the source code through the class

diagram (like in BlueJ). To an extent the system looks like a combination of BlueJ and

Alice. It comes with all the features and advantages of BlueJ but reduces significantly

the entry level and the cognitive load by introducing a 3D microworld that can be ma-

nipulated without code. Basic OO concepts can be articulated and presented much

easier and logic in programs can be followed without unnecessary details and cogni-

tive overload. The underlying language is Java. Greenfoot has been evaluated and

found very useful in learning programming.

2.1.7 SALESPOINT

SALESPOINT (Zschaler et al. 2014) is a java-based framework designed to support

students learn software development in a holistic way. The basic premise in this project

is that it is not enough for students to develop small scale isolated academic examples

of algorithmic solutions to problems. In typical real-life projects software engineers

2.1 Educational Programming Environments 52

have to deal with a multitude of problems that go far beyond code writing. They

have to understand and apply fundamental approaches to systematic software design

and development as well as collaborate efficiently with co-workers and communicate

their work with stakeholders. For this to work in academic settings, especially when

there is little time and resources combined with large student cohorts, there needs to

be a framework that streamlines the process and provides the foundation for the stu-

dents to work on. In SALESPOINT students are able to plan the work, organise their

teamwork, establish communication channels, do systems analysis, design, prototype,

implement, test, maintain and document components. The core components cover

application control, data management and GUI functionality. They are generic and

allow learners to extend them and develop functionality specific to the business sce-

nario dictated by their project design. The framework has been used for many years in

University settings and despite the fact that it involved a significant overhead (about

30% of the total effort for the project) students found it very useful. Results showed

that the system met its design objectives and students gained valuable experiences by

participating in simulations of real-world development contexts.

2.1.8 Malt+

Malt+ (Kynigos & Latsi 2007) is an exploratory learning environment designed to

teach introductory programming to secondary school students. The concept and the

interface is the same as in turtle graphics with LOGO. The difference is that the stu-

dent can manipulate the actor in a 3D space and create 3D dynamic geometry models.

The scene can be switched between 2D and 3D and there is also an automation that

displays a variation tool with sliders if there is variable identified in the code. There is

also a camera available that can be used to change the perspective. The tool has been

evaluated and found quite helpful in learning programming.

2.1 Educational Programming Environments 53

2.1.9 Scratch

Scratch (Maloney et al. 2008) is a visual programming environment designed to teach

introductory programming to school students (primary to high school). The envi-

ronment is supported by a block-based programming language designed to facilitate

media manipulation. The design is essentially based on the ideas of LOGO and ma-

nipulating graphical objects in a scene. The difference is that the LOGO language is

replaced by a drag and drop block-based language and therefore the user does not

even have to learn LOGO instructions. This reduces further the entry threshold as it

dramatically simplifies initial engagement. Emphasis is given on media manipulation

and support of programming activities that young learners find interesting in order

to stimulate engagement. Animated stories, games and interactive presentations are

typical examples of Scratch projects. The visual setup is similar to Turtle Graphics and

Malt+. There is a main window that shows the stage. The stage is inhabited by mov-

able sprites that can be used to draw shapes. Each sprite is associated with their own

set of images, sounds, variables and scripts. Programming constructs are presented

as blocks in a palette that is always visible. The user can assemble stacks of blocks by

dragging them from the palette to the scripting pane. Blocks that match in terms of

syntax snap together when they are close enough. Stacks and blocks can be executed

with a simple mouse click. Feedback is immediate in the stage. Code tracing is not easy

thought. Scratch is probably the predominant learning environment for programming

in schools today. It is being supported by a huge community of teachers, students,

learning designers, researchers and programmers. There is unlimited material devel-

oped that can readily be used in the classroom. It is probably the most thoroughly and

intensively evaluated tool under school conditions.

2.1 Educational Programming Environments 54

2.1.10 Discussion

The above systems are representative examples of the attempts that have been made

to ease the burden of learning programming and make it an enjoyable and rewarding

experience. Programming can indeed become more approachable and accessible by

people using approaches like ways to streamline the development / learning process,

provide suitable abstractions, metaphors, visualisations to assist in understanding the

concepts and to minimise or even eliminate the need to use a proper language. All

of these systems offer a lot of opportunities for exploratory learning and they cover a

wide range of learning aspects like the event-driven and OO paradigms but they lack

completely intelligent support and the ability to adapt to individual learning needs.

2.2 Exploratory Learning Systems 55

2.2 Exploratory Learning Systems

2.2.1 Exploratory Learning

Exploratory learning can be thought of as the opposite of guided learning. In ex-

ploratory learning, the learner discovers knowledge through experimentation, investi-

gation and exploration in pursuit of a real or artificial task, whereas in guided learning

the learner is given precisely sequenced training materials that have to be followed in

a systematic way. Exploratory learning and its potential value were first introduced in

the early 80’s (Carroll 1982). The origin of exploratory learning was not in the area of

education but it first began to reveal itself in the industry when interactive computing

started to enter the business workplace (Rieman 1996). In many cases people were

given computers and were asked to operate them with minimal training and therefore

they had to improvise and devise their own learning strategies to discover knowledge

in an exploratory manner. Carroll et al. (1985) analysed the learnability of office ap-

plications in the workplace in situations where users had no prior training or coaching

during the process and the research revealed that most users were willing and able

to learn through exploration. The process was not flawless as there were cases where

users made major and unrecoverable errors, even with the aid of some basic instruc-

tions from manuals and tutorials (Carroll & Mazur 1986), but in general the process

proved to be effective. Research also showed that there are individual differences in

exploratory aggressiveness (Carroll 1990, 1987, Neal 1986).

An interesting research development that followed in this area was the effect of

minimalism in the nature and the length of instructions in exploratory learning. The

basic premise behind minimalism was that people that want to learn something are

curious, impatient and mentally active as they typically want to challenge themselves

and exercise their problem-solving abilities right away. They don’t want to go through

very structured and lengthy instructions that impede their urge to discover things.

Therefore, instructions should be as brief as possible, relevant, provide support for

2.2 Exploratory Learning Systems 56

real problems, and where possible permit non-sequential reading. Carroll (1990) im-

plemented this approach with great success as users managed to learn how to use

fairly complex environments quite effectively and they also expressed their preference

for it over other methods.

Another development that sparked researchers’ interest in this area was the success

of computer games (Malone 1982, Carroll 1982, Shneiderman 1993). There are a num-

ber of distinguishing characteristics that make computer games quite different from

other software applications (Rieman 1996). Typically, there is no training required or

expected in order to play a computer game. Playing the game should be intrinsically

motivating and the user should be able to start using the software with no previous

training or even knowledge of what it is or how it looks like. Typically, a computer

game starts with a very easy to use environment that offers only the basic functionality,

and as the game progresses new features are revealed incrementally. That helps users

start and continue using the software as they become more knowledgeable, skilled and

confident with it. Users learn how to play the game by playing it and normally they

are quite enthusiastic about going through this process. Clearly, what takes place dur-

ing this process is exploratory learning. The above findings suggest that ”exploratory

learning” can be an effective and attractive strategy for learning.

2.2.2 Exploratory Learning Environments

Exploratory Learning Environments (ELEs) are software that is specifically designed

and developed for educational purposes. The difference between an ELE and an or-

dinary learning environment is that the former is open-ended and allows learners to

work in a constructivist way. Learners discover knowledge by building constructions

that depict scientific models (Amershi & Conati 2006, Chen 1995, Cocea et al. 2008b).

They operate on these constructions, examine or change their properties and analyse

the data that derives from these processes. Learners are actively engaged in the dis-

2.2 Exploratory Learning Systems 57

covery of knowledge through this process. These environments offer learners a lot

of freedom to move around, explore and play, rather than being constrained or very

directed in a highly controllable process. In ELEs learners are expected to work in a

particular way. They are encouraged to investigate and explore a broad set of possibil-

ities when looking for something. They are encouraged to construct and explore mod-

els by varying their parameters and observe the effects of these operations on those

models (Cocea et al. 2008b). In terms of learning outcomes, ELEs have been shown to

offer significant benefits to the learning process (van Joolingen & Zacharia 2009, Noss

& Hoyles 1996). Since, exploratory settings provide for a rich educational environ-

ment for students (Amir & Gal 2013), modern pedagogical software tends to be more

open-ended and flexible, allowing students to approach problems through exploration

and trial-and-error. ELEs are by definition student-centric and that is perceived as an

approach that requires less direct teacher involvement in the learning process. As a

result of that, ELEs are generally used in big classes where teachers have a difficulty

to monitor students and provide assistance when needed (Gal et al. 2008). For the

same reason ELEs are becoming increasingly prevalent in developing countries where

access to teachers and other educational resources is limited (Pawar et al. 2006).

ELEs are particularly useful for ill-defined domains (Lynch et al. 2006), where

problems are not well structured and there are no clear boundaries between correct

and incorrect approaches to solve the task. Some problems in these domains may have

several valid solutions but none of them can be safely considered better than the others

(Cocea & Magoulas 2010). As mentioned above, ELEs are built on the principles of dis-

covery learning, which emphasises on opportunities to learn through free exploration

and discovery rather than guided tutoring and that is aligned with the principles of

the constructivism paradigm for teaching and learning. This approach has proved to

be beneficial for learners in terms of acquiring deep conceptual and structural knowl-

edge. However, discovery learning without guidance and support appears to be less

effective than step-by-step guiding in traditional learning environments (Kirschner

2.2 Exploratory Learning Systems 58

et al. 2006). Provision of support in this context requires a lot of preparation, skill and

intensive monitoring of the learning process. Guidance in ELEs requires monitoring

and understanding of learner behaviours and the associated knowledge construction

that is taking place (Morales Gamboa & Gamboa 2000). The nature of problems stu-

dents have to tackle in ELEs combined with the fact that there are no clear boundaries

between correct and incorrect approaches makes the task of providing support an ex-

cessively difficult, time consuming and resource-intensive process (Gutierrez-Santos,

Mavrikis, Magoulas et al. 2012). It is a big challenge for teachers to keep track of stu-

dent progress and assess their performance in such a context (Amir & Gal 2013). Re-

search in the learning sciences suggests that freedom of exploration without a proper

degree of support can be problematic due to distraction and loss of focus (Mayer 2004,

Kirschner et al. 2006, Klahr & Nigam 2004). Furthermore, lack of support or guidance

in an ELE can actually hinder learning (Kirschner et al. 2006).

ELEs are rich educational environments that offer a lot of learning opportunities to

students but learning and teaching in those environments can also be very challeng-

ing. Teachers have a limited capacity to support students in those environments and

that introduces a clear need for computer-based support (Gutierrez-Santos, Cocea &

Magoulas 2010, Amir & Gal 2013). Considering all the above, it comes as no surprise

that most of the effort in the community has been focused on the development of sys-

tems that offer student and teacher support for those environments. These efforts soon

revealed another facet of the same problem.

ELEs’ open nature makes it difficult to design a system that supports the user, as

the operations that take place in them are mostly unstructured and the possible com-

binations of those operations quite broad (Cocea et al. 2008a). According to Murray

(1999), ITS design, development and evaluation is, in general, a challenging and costly

process anyway. The nature of student interactions in ELEs, and the constructivist in-

tentions behind their design, make this even more difficult and costly in those systems

(Gutierrez-Santos, Cocea & Magoulas 2010). Therefore, we have four distinct direc-

2.2 Exploratory Learning Systems 59

tions of research in this scientific area: systems that support teachers in ELEs, systems

that support students in ELEs, design approaches for such systems and fully functional

ELEs.

Teacher Support Systems

As mentioned in the previous section, there is a clear need for computer-based support

for ELE users. ELEs tend to be used with large cohorts of students and students tend

to work in unpredictable ways with ELEs. Teachers need support in identifying and

recognising student activities and coordinate or facilitate learning accordingly. The

techniques presented in Amir & Gal (2013) can be used to recognise student activi-

ties in ELEs. Once the activities are recognised, they can also be presented to teachers

through visualisations. The approach is based on a plan recognition algorithm that

uses a recursive grammar which takes into account repetition and interleaving of ac-

tivities. The algorithm was evaluated empirically on an ELE teaching chemistry with

good results. The system was able to correctly infer student plans when the appropri-

ate grammar was available. The system also provides two methods to visualise student

activities for teacher inspection. The first one visualises student inferred plans, and the

other one visualises student interactions over a timeline.

Another project that focuses on tools designed to support teachers is presented in

Pearce-Lazard et al. (2010). Possible student trajectories in ELEs are potentially infinite.

In this context it is quite difficult to establish whether a student is moving towards a

solution to a problem or how close they are to a discovery of something that carries

some learning value. To resolve this issue there were landmarks placed in the sys-

tem so that tools can provide information to teachers regarding student trajectories

in relation to those landmarks. The purpose of those tools was to reveal the level of

engagement on task dependent and task independent activities in MiGen. Tracking

student trajectories would then enable real-time and retrospective interventions in the

2.2 Exploratory Learning Systems 60

learning process. Further work that focuses again on teacher assistance tools in MiGen

is given in Gutierrez-Santos, Geraniou, Pearce-Lazard & Poulovassilis (2012). This

text presents the design and development of teacher assistance tools for the eXpresser

microworld. The eXpresser is a component that resides in the core of the MiGen sys-

tem and this is where students can construct models. The aim of this work was to

find ways to identify common student misconceptions and situations where students

may be in difficulty or may be disengaged from the given task. If this information is

available to teachers then students may be able to receive more personalised support

on how to reflect on their constructions and interpret the feedback given by the sys-

tem. Teachers may be able to prepare their interventions in a more informed way and

encourage students to work towards specific goals and communicate and share their

constructions with others.

Another part of the same project that falls in the category teacher support tools

is given in Cocea & Magoulas (2010). An interesting problem for teachers in ELEs is

how to form groups of learners for collaborative learning sessions. This work presents

a computational model for group formation specifically designed for open-ended ex-

ploration in ELEs. The technique is based on modelling the various strategies learn-

ers adopt to solve the same task. The underlying theoretical basis is underpinned by

Group Technology (GT) techniques. The system uses learner strategies and the similar-

ity among them as criteria to recommend homogeneous group formations that match

the given pedagogy considerations. The formation of heterogeneous groups is also

possible. The proposed mechanism is tested in eXpresser.

Student Support Systems

As shown in previous sections it is very difficult to exploit the learning potential of

ELEs without adequate support for students. The level of support required is typi-

cally higher in ELEs as these systems are by definition student-centered and highly

2.2 Exploratory Learning Systems 61

complex due to lack of structure. For the same reasons, it is difficult to generate and

provision automated intelligent support in those environments. It is also difficult to

formulate a common strategy to develop support mechanisms that are universal for

this type of systems. That, in turn, makes it difficult to perform fair comparative anal-

yses between systems that employ different approaches. An attempt to provide some

common ground on which different techniques for intelligent support can be assessed

is given in Cocea et al. (2008a). This work is focused on the formulation of a modelling

strategy for activities that take place in an ELE that teaches mathematical generali-

sation, called ShapeBuilder. The proposal is based on scenarios that cover different

aspects of problems that take place during the learning process as well as the different

possible methods of the required support. A case-based reasoning formulation is also

given for the representation of learner behaviour during model construction.

The openness of ELEs imply that tasks in those environments can be approached

in many different ways. However, learners are expected to be able to address certain

things that characterise those tasks or have an awareness of them. The criterion to iden-

tify what the learners need help with may be their current level of understanding or

more importantly the actions they perform as they are working on a task. Using solely

these actions to understand the need and provide support may not have the same

effectiveness for all learners due to differences in personal characteristics. Cocea &

Magoulas (2009a) proposes a context-dependent personalised feedback prioritisation

mechanism for ELEs to cover exactly this need. According to this approach, context

can bring valuable information and help us provide more appropriate and effective

personalised support. Context refers to different learning modes as individual or col-

laborative learning and the different stages within tasks. The proposed technique is

based on the Analytic Hierarchy Process (Saaty 1990) which is a popular method in

Multicriteria Decision-Making (Zopounidis & Doumpos 2002). Following this work

there is an hybrid approach presented in Cocea & Magoulas (2009b) that is based on

Case-Based Reasoning (CBR) and Multicriteria Decision Making (MDM) components

2.2 Exploratory Learning Systems 62

used for learner modelling and feedback generation in ELEs. This is a conceptual

model that can be used to represent learner constructions and identify strategies learn-

ers follow in ELEs. These findings can then be used to prioritise different types of

feedback. The Case-Based Reasoning component is used to diagnose what students

are doing in the environment and the Multicriteria Decision Making component is

used for learner modelling and feedback generation.

Successful exploratory learning is also related with certain meta-cognitive skills

that students may or may not possess according to Bunt et al. (2004). Skills like sys-

tematic exploration, hypothesis generation and hypothesis testing are considered im-

portant in this process. One particular meta-cognitive skill that plays a crucial role for

effective exploratory learning is self-explanation and this is where this work is focused

on. Self-explanation means the ability to spontaneously explain to oneself things re-

lated to the activity that takes place in terms of the underlying domain knowledge. The

ELE used in this project is called ACE and teaches mathematical functions. Support is

based on a learner model that incorporates meta-cognitive skills to track and evaluate

student understanding and exploratory behaviour. This project focuses particularly

on how the model is expanded in order to track self-explanation behaviour of learners

and improve the effectiveness of student exploration. Another system that focuses on

the provision of automated adaptive support in ELEs is given in Amershi & Conati

(2006). In this case machine (unsupervised) learning techniques are used to automat-

ically recognise learner behaviours and identify patterns in those behaviours. These

patterns can then be used to identify groups of learners that have distinguishing in-

teraction patterns and similar learning improvements. This work then discusses how

these findings can facilitate the provision of adaptive support in ELEs. Another system

that focuses on adaptive support in ELEs is given in Bernardini & Conati (2010). In

this work we have a learner model that is generated using data mining techniques and

in particular Class Association Rule mining and the respective classifier. The idea is

to automatically generate learner models that can then be used to facilitate adaptive

2.2 Exploratory Learning Systems 63

support in ELEs. The approach was applied on an ELE that teaches AI algorithms.

Systems Design

From what has been presented so far it seems that due to the nature of interaction in

ELEs, it is difficult to design, develop and evaluate them. MiGen, a ELE presented

in previous sections, is an intelligent, exploratory environment intended to support

learning of mathematical generalisation. Pearce & Poulovassilis (2009) presents the

conceptual and architectural design of MiGen. The description gives a detailed tech-

nical explanation of a working proof-of-concept prototype of the architecture. This

explains the motivation behind using the particular technologies and approaches cho-

sen to implement the intended functionality in the context of this project.

Developing support for an ELE is not merely a matter of technical expertise. The

system is complex, there are no generic architectural frameworks to streamline the pro-

cess, the task is highly interdisciplinary and there are many different concerns by dif-

ferent people and from different viewpoints that need to be addressed. Scientists from

different areas have to collaborate and in general there is a lot of interaction between

technical and non-technical members of the research team. The nature of interaction

expected in ELEs makes it difficult to design, develop and evaluate automated support

that reflects student needs. An attempt to simplify this process is given in Gutierrez-

Santos, Mavrikis & Magoulas (2010). This work proposes a model that addresses the

above issues through a conceptual separation of concerns. This separation allows com-

partmentalisation of concerns and easier communication between technical and non-

technical members of the development team. Another advantage of this layered ap-

proach is that it facilitates early evaluation of the system as it allows for both formative

and summative evaluation of the components to be developed. Another project that

focuses on the design and validation of intelligent exploratory environments is given

in Mavrikis et al. (2013). This work is based on the premise that ELEs require ap-

2.2 Exploratory Learning Systems 64

propriate support to lead to meaningful learning outcomes and that means that there

should be a mechanism to operationalise relevant pedagogical strategies through ap-

propriate computer-based support. Design of intelligent support components needs

to be aligned with the theoretical principles behind exploratory learning. It also needs

to be informed of what kind of interaction is conducive to learning so that it can lead

to components that offer meaningful support. Development of intelligent support for

ELEs is a long, complex and resource-intensive process. That means that there should

be a framework in place that facilitates evaluation and identification of design and im-

plementation flaws throughout the project and this was another objective of the work

presented in Mavrikis et al. (2013).

ELEs

In this section we present some notable examples of ELEs that show what has been

accomplished in this area. An early example of an ELE that teaches Lisp is given in

Schmalhofer, Kühn, Charron & Messamer (1990), Schmalhofer, Kühn, Messamer &

Charron (1990). This system was designed to allow exploration of the effectiveness

of different learning approaches allowing receptive, exploratory learning and combi-

nations of the two. The system was used in an experimental study to compare the

effectiveness of three given learning conditions. In all three cases learning takes place

in a basic exploration environment. The variable changed by the three conditions is the

presence of tutoring. The first condition is to operate without a tutor. The second is to

operate with a selective tutor and the last one is to operate with a constant tutor. The

outcome of this study revealed that the selective tutor approach was the most effective

of the three. Students working under this condition managed to acquire the intended

knowledge and solve the given tasks in less time than the other cohorts. During the

test they solved the criterion test tasks, while solving an equal number of programming

tasks correctly. What this result shows is that combining the advantages of learning by

2.2 Exploratory Learning Systems 65

exploration and guidance that is available on demand seems to be the most appropri-

ate tutoring strategy. Students learn better in an exploratory manner when there is on

demand support that can help them overcome obstacles and misconceptions.

Another ELE, also presented in previous sections is eXpresser (Pearce et al. 2008).

eXpresser is a microworld that lives in the core of the MiGen system and teaches math-

ematical generalisation. eXpresser is the component where learners can build and anal-

yse general patterns through models. This system is equipped with sophisticated intel-

ligent support components to assist both teachers and learners throughout the learning

process. More details for both aspects are given in previous sections.

Another platform that is more generic, in the sense that it can host any exploratory

learning task-based environment is Annie, (Thomas & Young 2011). Annie is a domain-

independent platform that can host exploratory learning environments. An evaluation

study that took place in this project, shows that using the platform had a strong, pos-

itive, and statistically significant impact on increasing the number of learning tasks

completed by the students and reducing the time needed to complete them. The re-

sults did not show an impact in learning gains on domain knowledge.

2.2.3 Discussion

Evidently, learning in an exploratory context offers a lot of opportunities but it’s not

a panacea. The approach alone cannot overcome the inherent difficulty of people to

learn programming. It needs to be supported with the right type and amount of help so

that learners can exploit the full potential of this freedom. Teachers also need support

in order to adequately guide students through this process. In both cases automated

support is essential and can significantly improve the effectiveness of the process but

design and development of intelligent and adaptive support for that type of learning

is a complex, long and very resource-intensive process. The process requires a lot of

domain knowledge combined with deep, low-level technical expertise in order to both

2.2 Exploratory Learning Systems 66

conceptualise and implement adequate solutions. Furthermore, solutions tend to be

domain-specific and with limited reusability in other systems.

2.3 Tutoring Systems for Programming 67

2.3 Tutoring Systems for Programming

It has been established that programming is considered hard by students (Bellaby

et al. 2003, Virtanen et al. 2005, Lahtinen & Ahoniemi 2005). There have been numerous

attempts to address this problem and identify ways to help students learn the concepts

and develop the required skills. In the field of Technology-enhanced learning (TEL)

there has been a lot of scientific interest in this area since the late 70’s. A survey of

tools that can be used to assist learning of programming is given by Deek & McHugh

(1998). The categorisation proposed in this survey follows:

• Programming environments: Tools intended to allow users to familiarise them-

selves and experiment with specific languages and their features. Typically they

are given as fully fledged programming environments equipped with editors,

compilers, tracers and debuggers so that users can explore the features of pro-

gramming languages and construct, compile, test and debug programs.

• Debugging aids: As the name suggests, these are tools limited to testing as well

as observing program execution. Typically, these tools are intended to assist in

detecting and correcting errors. Common components that belong to this cate-

gory are code watchers, tracers, flags, and visualization and animation utilities.

• Intelligent tutoring systems: These are more sophisticated systems specifically

designed to support training. Their aim is to provide automated and adaptable

support to students that learn programming. Typically, they can interact with

students and guide the learning process with instructions suitable to individual

learner needs.

• Intelligent programming environments: These are programming environments

enhanced with some features of intelligent tutoring systems such as adaptive

instruction, automated support and assessment etc.

2.3 Tutoring Systems for Programming 68

A presentation of systems that belong to the above categories follows. Some sys-

tems may belong to more than one category.

2.3.1 Programming Environments

Typical systems that belong to this category are equipped with code editors that sup-

port automatic syntax highlighting for different languages, syntax checking and veri-

fication as well as code formatting that follows language-specific conventions. Other

features may include visual programming interfaces, dynamic compilation/ interpre-

tation of code and dynamic visualisation of outputs. Some programming environ-

ments are designed to facilitate learning as well as development. In those systems

usually there is tutorials about algorithmic thinking/logic, programming paradigms

and concepts, language specifications and the respective semantics.

Pict

Pict (Glinert & Tanimoto 1984) is a visual programming environment for the Pascal

language. It was designed to assist with algorithm design and program development

in a way that is more natural for the human brain and not restricted to one-dimensional

text-based representations. Programming in Pict is done with a joystick. Text input via

a keyboard is not possible. Every element (atom) needed in program construction is

represented by an icon and the user can select atoms and arrange them in a flow chart.

The user can use the graphical representation of the program to observe the flow of

execution. The system can identify syntax errors but there is no automated support

beyond that. Pict was evaluated and found useful for novice students but limited and

confusing for people that had previous knowledge of programming.

PECAN

PECAN (Reiss 1985) is a language-neutral system (suite of components) that provides

2.3 Tutoring Systems for Programming 69

users with assistance in program development, algorithm understanding and execu-

tion monitoring of data structures. It has a layered architecture featuring basic, mid

and higher-level modules. At the basic level there is the user interface where program

construction/parsing/compilation takes place. At this level the user can use prede-

fined templates and amend/augment with their own code. The mid-level module

provides support for data manipulation and monitoring as well as program represen-

tation in abstract syntax trees. The higher level module utilises the mid-level services

to provide various program views like semantic views, abstract syntax trees, flow dia-

grams, execution views and graphical representations of data structures.

SCHEMACODE

SCHEMACODE (Robillard 1986) is a system designed to promote better solution plan-

ning and code design. Development is done in pseudo code using the SPC language

(Schematic Pseudo Code). The system can then translate SPC and automatically gen-

erate source code in other languages like Fortran and Pascal. The resulting code is

self-documented using SPC specifications as comments. The design objectives were

to provide a system that offers systematic and consistent documentation in the source

code and enables better understanding of flow control that ultimately leads to better

use of the language and problem solving. An obvious disadvantage of this system is

that users need to learn SPC to implement things. Furthermore, SPC may not have

the same level of abstraction as the target languages. This may be a limiting factor

depending on what needs to be implemented.

DSP

The DSP system (Olsen et al. 1988) is specifically designed to support teaching of

introductory programming. The system is a visual programming integrated develop-

ment environment that supports code management, maintenance and reusability. The

user interface provides access to code templates through a high-level visual language

2.3 Tutoring Systems for Programming 70

intended to eliminate syntactical mistakes. There is emphasis given in modular de-

velopment and working on different aspects of a problem / parts of the solution. The

system can generate code in various languages like Ada and Pascal, execute the solu-

tions and visualise memory maps to show data structures and variables. The user is

allowed to access the underlying code, but in general this feature is neglected as em-

phasis is on visual handling, manipulation and understanding.

Amethyst

Amethyst (Myers et al. 1988) is a suite of software components designed to teach intro-

ductory programming. Its primary design objective is to teach programming through

visualisations. Emphasis is given on the conceptualisation of data. There is visual rep-

resentations of data structures as well as the operations on them. There is also different

visual perspectives of code like outline, tree decomposition, and linear. Data visual-

isation is highly customisable allowing users to define ways to display complex data

structures like linked lists and stacks.

University of Washington Illustrating Compiler

The University of Washington Illustrating Compiler (UWPI) (Henry et al. 1990) is a

system designed to help students understand basic programming concepts through

program visualisation. Code is written in a cut-down version of Pascal. The system

can perform code analysis and maintain a semantic-rich internal representation with

inferences of abstract data types, value ranges and idioms of code patterns. This repre-

sentation is translated in a layout plan which is then transformed into a visualisation

of the program. Mapping between the underlying code and the intermediary repre-

sentation is done using a knowledge base.

BACCII

BACCII’s (Calloni & Bagert 1994) is another system developed to teach introductory

2.3 Tutoring Systems for Programming 71

programming by abstracting syntax details thought visual components. Students can

develop programs in the form of flow diagrams and code is then automatically gener-

ated in various languages like Pascal and Basic. There is no support for other higher

level tasks like problem solving. The system has been evaluated and has shown posi-

tive positive impact in learning.

ASA

ASA (Guimarães et al. 1994) is a development environment designed to teach algo-

rithmic logic at an introductory level. It is equipped with a visual programming envi-

ronment where students can develop code in the form of flow diagrams and generate

code in a pseudocode language and other languages like Pascal. The system, also of-

fers guided instruction in the form of tutorials with animations of relevant concepts

and algorithms. ASA was evaluated and proved to be too instructive since students

could develop correct algorithms without understanding their purpose. As a conse-

quence of that there was lack of control over their learning process since there was

limited information about their strengths and weaknesses.

POLKA

POLKA (Kraemer & Stasko 1998) is system designed to teach programming through

the development of graphics and animations. Since graphics development is inher-

ently difficult, high-level abstractions are used to reduce the level of expertise needed

and make the development of animations simpler.

SUPPORT

SUPPORT (Zelkowitz et al. 1989) is a development environment intended to be used

for programming in a cut-down version of Pascal. Code is written in a syntax-directed

editor with function keys and menu buttons that correspond to statements and proce-

dures. Text input that corresponds to expressions is processed by an internal parser.

2.3 Tutoring Systems for Programming 72

The code is guaranteed to be syntactically correct because the system maintains and

checks against an internal syntax tree and does not allow incorrect inputs. If the input

is incorrect the system invokes automatically a component that helps the user to make

the necessary modifications that will preserve the validity of the syntax tree. Other fea-

tures include automatic logging that simplifies program output and testing, program

tracing and debugging.

STRUEDI

STRUEDI (Köhne & Weber 1987) is a system designed specifically to teach program-

ming to novice students. Coding is done in Lisp and students can work with a sophis-

ticated syntax-directed editor to select predefined language constructs from a menu

and synthesise programa. The template constructs are placed in the workspace and

contain empty slots that need to be completed by the students. The main design objec-

tive of STRUEDI is to help students understand better the syntax and the underlying

semantics. According to the evaluation the systems seems to satisfy those objectives.

Example-Based Programming System

The Example-based Programming System (EBPS) (Neal 1989) is a system designed to

assist novice programmers learn coding through examples. The idea is based on the

premise that programmers tend to reuse previously written code and integrate it with

their programs rather than develop everything from scratch. Typically they are looking

for code examples that exhibit the same characteristics or behaviour with the function

they are trying to develop. Sources of information may be textbooks, source code from

previous projects and nowadays the WWW. The core of this approach is reusability of

code, which if done properly, offers a lot of advantages like less risk (code is already

tested), economy (less development effort) and a lot of learning opportunities (code

understanding, integration). The system comprises a syntax-directed editor and an

example library. The editor is supported by an example window. Example programs

2.3 Tutoring Systems for Programming 73

given in the latter can be copied into the editor and processed there. The system has

been evaluated and found useful in teaching introductory programming.

Software Design Laboratory

Software Design Laboratory (SODA) (Hohmann et al. 1992) is a system designed to

support novice students learn Pascal. The focus of the system is to support specifically

the software design process. The students are directed to follow a very specific design

pattern in a highly controllable environment. First, they are asked to decompose the

problem using references of existing program solution techniques. Then, they have to

state explicit goals, specify plans, and then assemble the pieces into a working solution.

Finally, they have to verify the solution using a debugging module. The system is sup-

posed to help students modularise a problem properly and integrate the modules into

a working solution. An obvious disadvantage is that it is very inflexible and does not

give opportunities for exploration. It is a purely guided process that must be executed

in a sequential manner even though some parts of the process may require an iterative

approach or could be executed in parallel. The system has not been fully evaluated but

there are indications that it affects positively student performance in design.

MEMO-II

MEMO-II (Forcheri & Molfino 1994) is a system designed to help novice students

develop problem solving skills rather than learn specific languages or engineer pro-

grams. This is contrary to what other tutoring systems of its time were doing. The

system was designed to help inexperienced users build correct problem-solving ab-

stractions that may, then, be implemented in different programming paradigms and

languages. Specifically, the system offers help in problem representation, specification

validation, implementation, and program execution. MEMO-II comprises three major

components: The first component is used to build solution specifications. That is done

using an editor and a verifier. The students are asked to express a problem specifica-

2.3 Tutoring Systems for Programming 74

tion in a specialised, syntactically complex language that consists of a set of predefined

operators. The second component is a reasoner that is used to validate the specification

base given in the editor. The third component is used to translate a valid specification

into program code. Although the solution proposed seems to offer student activities

that are essential for understanding and solving problems, the system may not be suit-

able for novice students. The obvious disadvantage is that students have to learn a

complex language to perform the problem representation task and that seems not to

be consistent with the original design objectives of the system.

2.3.2 Debugging Aids

These are tools intended to be used for testing programs, observe program behavior

during execution, detect and correct errors.

LAURA

LAURA’s (Adam & Laurent 1980) is a tool designed to identify semantic errors in pro-

grams and suggest possible corrections for them. Typically, debugging aids are tools

used during the program construction process to identify syntactic problems and cor-

rect them. This tool is designed to be used after the program construction is completed

and there is no interaction with the user during development. Therefore, the focus is

not on syntactic errors but rather on semantic problems in syntactically correct pro-

grams. The tool requires information about what the program is intended to achieve

in order to debug it properly and for that a translation of the code is performed into

a language-independent form where syntax variations are removed and programs can

be checked against models. The tool is using a knowledge base of program models as a

foundation for that. New programs are translated into graphs by a debugger and then

compared against the solution representations in the KB. The outcome of this process

is diagnostics about possible semantic inconsistencies in the code. The tool has been

2.3 Tutoring Systems for Programming 75

evaluated and found quite effective in identifying correctness or errors regardless of

structure variations in programs.

The Debugging Assistant

The Debugging Assistant (DA) (Laubsch & Eisenstadt 1981) is a tool developed to

help students learn introductory programming in the language SOLO. The code is first

translated into a language-independent diagram that contains information about con-

trol structures, data flows and a description of the overall effect of the program. This

diagram effectively depicts an execution plan of the program. At that stage the system

can detect what is called “irrational code”. That is instances where there is unbound

variables, code that is unreachable and code that seems not to be used for anything.

The next step is to classify the diagram according to a library of standard plan dia-

grams. The diagrams are seen as sequences of code (patterns) that are manifestations

of certain plan diagrams in the library. A plan diagram comes with an effect descrip-

tion. The next step is to evaluate the diagram and analyse all possible paths. The

outcome of this is an effect description that reveals the changes in the data as a result

of running the program. The final step is to check for mismatches between the effect

description of the program and the one in the library. If there are mismatches then the

system tries to figure out what is causing the problem in order to suggest corrections.

Various aspects of the program are investigated like variable bindings, missing steps,

correctness of conditions in branches and the respective effects. The system has not

been evaluated.

GENIUS

The GENIUS prototype (McCalla & Murtagh 1985) was designed to help in introduc-

tory PL/C programming. The underlying idea is based on the premise that knowledge-

based systems cannot provide adequate support and guidance to novice programmers

since complete coverage of solutions requires too much intelligence and knowledge.

2.3 Tutoring Systems for Programming 76

The system proposed as an alternative is one that appears to understand and know

a lot about programming where in fact it doesn’t. Its purpose is to get the students

discover the problems themselves by keeping them engaged with the problem for as

long as it takes to identify them. The system is based on what is called “ignorance-

based reasoning”. Although it can only identify syntax problems it pretends it knows

about the logic aspects as well. The tool is equipped with a simple natural language

understanding module that can interpret student answers to questions and a domain

knowledge module that contains hints and advise. The students are asked to provide

the error code as input and the tool first tries to determine if it is a syntax or logic error.

If it is the latter it tries to engage the student with the problem by repeatedly asking

questions and providing general advice. The system has been evaluated and found not

able to provide adequate support to students. In general it was established that as the

complexity of problems increased, the perceived usefulness of the system decreased.

VIPS

VIPS (Isoda et al. 1987, Shimomura & Isoda 1991) is a tool developed to assist in ADA

programming. It is a visual debugger able to perform dynamic code execution, visu-

alise program flow and display graphical representations of debugging data. A unique

advantage of the system is that it allows the user to determine the graphical represen-

tation of data. The disadvantage is that the user is supposed to learn a specialised

language called Figure Description Language (FDL) in order to do it. The tool has not

been evaluated.

Lens

Lens (Mukherjea & Stasko 1994) is a tool designed to help with logical mistakes that

derive from incorrect coding. The tool provides code visualisations as a series of an-

imations. The advantage of using it is that the user does not have to learn a graph-

ics paradigm or write additional code in some specialised language. As the code is

2.3 Tutoring Systems for Programming 77

graphically executed the user is able to trace the execution flow and recognise logical

problems easier. That is especially suitable for learning introductory programming.

Lens is an algorithm animation tool that utilises a traditional source-level debugger.

Its functionality is limited since it cannot deal with very complex programs and map

algorithmic principles like recursion. The tool has not been evaluated.

2.3.3 Intelligent Tutoring Systems

These systems are much more sophisticated than the ones in the preceding categories.

They typically present sets of problems to students and provide continuous support

until the solutions are developed. The solutions are automatically assessed and the

systems recognise individual learner needs and adjust the level of instruction. Adap-

tive instruction along with automated intelligent support are the two primary char-

acteristics of this category. The cognitive objectives of those systems are also much

higher. Depending on the orientation of the system indicative examples include devel-

opment of cognitive models and mental representations of problem domains. In terms

of architecture there is typically three general components in those systems:

• A knowledge base that formally represents the domain of knowledge on prob-

lems, solutions, and known errors. This is knowledge inserted into the system

by experts and typically used to recognise errors, identify possible corrections,

evaluate student progress and consider possible solutions.

• A learner model that is used to represent the student learning process along with

the current level of understanding. This is used to dynamically determine the

material that needs to be taught, the level of support and possibly the teaching

approach that needs to be followed.

• A virtual tutor. This is typically a component responsible for the orchestration of

the learning process. It utilises the two previous components to collect informa-

tion about goals, students and their current understanding and makes decisions

2.3 Tutoring Systems for Programming 78

on how to interact with them to facilitate the process and achieve the learning

objectives.

The BASIC Instructional Program

The BASIC Instructional Program (BIP) (Beard & Barr 1976) is a system designed to

facilitate the study of tutorial methods using computer-aided instruction. The focus of

this study was on feasibility and effectiveness of those methods. BIP is an instructional

course on the BASIC programming language. It is intended to be used as an informal

introduction to problem solving and the target group is high school or college level stu-

dents with no prior knowledge of programming. The core of the system is an enhanced

BASIC interpreter that can assess correctness not only in terms of language but also in

terms of the given task. It does that by comparing certain patterns in the code with

model solutions. If assessment fails, the student is given a lesson on the missing skill.

Lessons derive from a library of 100 programming tasks associated with certain skill

sets. Teaching is done through hints and examples. Those hints and examples come

from a different library that contains text-based help messages and problem-solving

hints. The system selects dynamically what lesson to present next based on student

ability which is measured through error counters and self-reported statements. The

system has been evaluated and shown no positive results in terms of performance. It

has shown, though, that people using it can achieve higher throughput as they en-

counter fewer difficulties in completing the tasks.

The LISP Tutor

The Goal-Restricted Environment for Tutoring and Educational Research on Program-

ming (GREATERP), also known as the LISP tutor (Reiser et al. 1985), is a system de-

signed to teach the LISP programming language. The system itself is built in LISP. The

design is based on the premise that private tutoring is more effective than classroom

training as students tend to learn the same amount of knowledge faster. Another major

2.3 Tutoring Systems for Programming 79

design consideration is the fact that students learn better when immediate feedback is

always available. As students work on the tasks, the system remains silent in the back-

ground for as long as there is nothing in the code that indicates a deviation for the

expected solution. If there is a divergence detected, the system interrupts the process

to help the student re-align themselves with the correct solution path. The system of-

fers explanation of the problem and the correct solution using templates stored as LISP

production rules. The system has been evaluated and found less effective than human

tutors and more effective than self-learning.

PROUST

PROUST (Johnson & Soloway 1985), is a a tutoring system for Pascal programs. The

system initially breaks down the program and tries to determine what the code is in-

tended to be used for. Known problem-solving algorithm models are used to assist in

the goal decomposition task. Once that is done the system examines the code against

its own stored solutions for the task. If there are significant differences that cannot be

reconciled a series of transformation rules are invoked and the code is decomposed

further. Individual functions are checked, error messages are displayed along with

explanations and help on request is offered. PROUST has been evaluated and found

quite accurate in detecting bugs. It fails, of course, when students introduce unusual

errors or even use creative ways to solve a problem.

The ACT Programming Tutor

The ACT Programming Tutor (APT) (Corbett & Anderson 1993) is a system designed

as a programming environment to help students complete short programming assign-

ments in LISP and PROLOG. The system was built to test the validity of the ACT*

theory of skill acquisition (Anderson, 1983). According to this theory programming

knowledge can be modeled as a series of “if–then” production rules that form an “ideal

student model.” The system is using a knowledge base to supports this and the user

2.3 Tutoring Systems for Programming 80

interface is presented as a set of graphical windows. The students are given exercises

through the main window. Another window is used to display hints - feedback. A

different window is used to present a graph that shows the probability the student

has learned the skills being presented in the exercise. The system has been evaluated

and shown moderate success. An obvious problem is that as the complexity of the

problems increases, so does the complexity of the rules.

2.3.4 Intelligent Programming Environments

Intelligent programming environments combine features of intelligent tutoring sys-

tems such as adaptive instruction, monitoring and assessment of students’ progress,

and feedback and advice with tools that are used in the program development pro-

cess. In addition to the domain knowledge base, student model, and tutoring agent,

intelligent programming environments provide access to traditional programming en-

vironments utilities such as syntax editors, compilers, and debuggers. A detailed ex-

planation of each system follows.

Bridge

Bridge (Bonar & Cunningham 1988) is designed as a learning environment for the

novice programmer. The main design objective was to bridge the gap between the

syntactic approach to learning a language and the cognitive processes needed to solve

a problem, hence the name. The students start with the specification of a solution to

the given problem that is expressed in English terms. The system is equipped with

a natural language understanding module to translate these specifications into a pro-

gramming plan. Finally, the students, supported by the system, translate the program-

ming plan into Pascal code. The obvious benefit of this system is that the students

are encouraged to think of algorithms in English which is much less formal than a

programming language and that helps them to easier conceive the logic and formu-

2.3 Tutoring Systems for Programming 81

late their ideas. The system is lacking support for problem decomposition and code

design. It also does not support functions or procedural abstractions. Correctness of

student solutions is verified against model solutions stored in the system. In general

the system is limited to support tutoring on very simple problems in nature. Bridge

has been evaluated but evaluation was very limited.

Graphical Instruction in LISP

Graphical Instruction in LISP (GIL) (Reiser et al. 1989) is a system designed to teach

simple programming in Lisp. As highlighted by it name, the system allows students to

synthesise their solutions in a visual programming environment. GIL is fairly flexible

in the sense that it allows students to develop solutions in both directions. One can

start from the data and work forward to the solution or start from the solution and

work backwards. Another distinguishing feature is that it can determine the way the

student develops the solution and adapt the way support is provided. It can use its

own reasoning to suggest the next steps to be taken by the student. GIL has not been

evaluated adequately but results look promising.

Intelligent Tutor, Environment and Manual for Introductory Programming

Intelligent Tutor, Environment and Manual for Introductory Programming (ITEM/IP)

(Brusilovsky 1992) is a system designed to teach introductory programming to high-

school or beginning college students. The language used is called Turingal (Brusilovsky,

1991). The students are given a task and asked to work with a code editor to develop a

solution. The system maintains the student history and is able to make decisions as to

whether a task must be repeated or not. Work is assessed by comparing student solu-

tions against model solutions stored in the system. Support and guidance is provided

by demonstrating the incorrect behaviour detected in the student solution. The system

has been evaluated with good results.

2.3 Tutoring Systems for Programming 82

DISCOVER

DISCOVER (Ramadhan 1992, Ramadhan & du Boulay 1993) is system designed to

teach introductory programming. The language used is a simple pseudo-code lan-

guage specifically designed for DISCOVER. The system is equipped with two modules

that allow the student to work with or without guidance. The only support provided

in the non-guided component is a memory visualisation. The guided component is

more structured as it offers a set of predefined problems and monitors progress to-

wards the solution. The student is given the specification of a problem and then they

must find a solution by combining programming concepts from a menu. Solutions are

assessed by comparison with model solutions stored in the system. Partial analysis of

code modules is also possible. The system has not been adequately evaluated.

Episodic Learning Model Programming Environment

Episodic Learning Model Programming Environment (ELM-PE) (Weber & Mollenberg

1994) is a system designed for teaching LISP. The design is based on the fact that novice

programmers usually need explicit examples of what they have to develop. Normally,

references to similar problems successfully addressed in the past helps significantly.

According to Gentner et al. (1985) novices have a difficulty to recall analogies between

old and new problems. That means that there is an obvious need for support in that

part. ELM-PE is built on that premise. It teaches LISP by showing relevant examples to

students. Students develop programs in a code editor that provides support to prevent

syntax errors. Tutoring is done by a specialised module that provides code examples

that may be copied and modified by the student. There is also visualisations to show

the flow of program execution. The core of the system is a component that performs

cognitive diagnosis of the given solution and categorises the solution as good, sub-

optimal and buggy. Based on this diagnosis a hints, suggestions and relevant code

example may be shown. This is based on a rule-based system. ELM-PE has not been

adequately evaluated.

2.3 Tutoring Systems for Programming 83

Capra

Capra (Verdejo et al. 1993) is a system designed to teach program design at an elemen-

tary level. The designers recognised the need to teach something more than the syntax

and the semantics of a language. The design is based on a three-step workflow that

leads to a programming solution. The first step is to recognise the problem abstrac-

tion. Then, the second step is to identify the relationship to a class of solutions, and

finally the third step is to refine and produce a final answer. The final answer will have

to be known by the system. Only pre-stored model answers in the system’s knowl-

edge base are accepted. The core of the system is the modules that present students

with exercises and check problem-solving activities in order to check their comprehen-

sion. The obvious drawback is that comprehension is always checked against known

solutions and there is no room for creativity.

INTELLITUTOR

INTELLITUTOR (Ueno 1994) is a system designed to teach intermediate program-

ming. It is equipped with a sophisticated editor that is able to utilise built-in knowl-

edge about the language syntax to help students avoid mistakes. Once the solution is

written, another component is used to analyse the code and recognise students’ inten-

tions. This is supported by a knowledge base of alternative model solutions. If there

are errors identified, the system offers relevant advice on how to fix them. The system

is also adaptive and makes dynamic decisions on what knowledge to present to the

student based on a learner model. This model is continuously updated with informa-

tion that derives from user activity and indicates the perceived level of understanding.

The user model does not take into account the user knowledge though. The system

has not been adequately evaluated.

2.3 Tutoring Systems for Programming 84

2.3.5 Discussion

Tools used as programming aids and fully-fledged programming environments are

traditionally seen as enhancements of the development process that provide program-

mers with significant help. Using these tools, one can streamline the development

workflow, simplify and shorten the length of the procedures involved and make the

process more easily manageable. The tools presented above offer templates to help

with the conceptual design and generate code and offer different perspectives and vi-

sualisations. The ease to identify mistakes and debug code or test the validity of your

solutions is invaluable but that is normally the case for people that do professional

programming and they just want to automate the process as much as possible. These

people are more concerned with efficiency and throughput rather than learning. Con-

trary to that, novice programmers need to go through this process as slowly as possible

so that they can learn to recognise problems and learn from them. Programming aids

and sophisticated development environments that do all the work for them most likely

hinder the learning process rather than facilitate it and that is the case especially dur-

ing the first stages of learning. Furthermore, programming environments that offer

too much functionality in terms of enhancements impose a quite high learning curve

to the end user. It is very likely that all these features will initially intimidate the novice

learner and make learning of programming even more exclusive than it already is. The

real value of these aids is to utilise them to gain as much insight as possible for the ac-

tions that take place during learning and the semantics around them. This data can

then be used as feedback so that systems can have better information about student

state and understanding and provide suitable assistance. Programming aids of this

era are quite limited in terms of freedom and they lack support for intelligence and

adaptability. ITSs on the other hand offer excellent examples of intelligent support

and to some extent adaptability but in general they offer limited opportunities for ex-

ploration and user interaction takes place in an environment that is highly controllable

2.3 Tutoring Systems for Programming 85

and intrusive.

2.4 Automated Support Authoring Tools 86

2.4 Automated Support Authoring Tools

Technology enhanced tutoring systems naturally aim to provide learning materials to

students that are highly interactive and provide as much automated support as pos-

sible. The level of sophistication of those systems is positively correlated largely with

the cost of development. This becomes very evident in traditional ITS’s. According to

Woolf & Cunningham (1987) it takes roughly 200 to 1000 hours of development time

to create an hour of ITS instruction. This is one of the reasons that justify the very low

level of adoption of ITS technologies in schools and online learning platforms. The

complexity of those systems along with the difficulty to support them and provide

robust and stable services to students are additional problems (Murray 1997). The

cost of development is typically related to the fact that knowledge needs to be inserted

manually into these systems. That presupposes input from expensive resources like

domain experts, knowledge engineers and specialised system developers. In typical

ITS’s these people combine their efforts to create monolithic, tightly integrated solu-

tions that offer limited configurability without low-level programmatic interventions.

One solution to the problem is to logically separate authoring of automated support

from the development of platforms. Decoupling the two and making the authoring

tools more easily approachable by non-experts may be the key to enable people utilise

these technologies more. There have been attempts in the past to logically separate

the two and provide more flexible solutions that allow independent development of

materials with various levels of support. A description of these systems follows:

2.4.1 SQL-Tutor

SQL-Tutor (Mitrovic 1997) is an ITS designed to teach University undergraduate stu-

dents SQL. The goal of this system is to achieve effective one-to-one tuition with stu-

dents following a guided discovery learning approach. That means that the process

2.4 Automated Support Authoring Tools 87

is guided but students are given a certain degree of freedom to find the correct an-

swer through discovery. Students are supposed to use the system in conjunction with

traditional classes and some previous knowledge of database theory is assumed. The

scenario is that students work on their own as much as possible and the system inter-

venes only when students are unable to complete the task and ask for help. The system

is not equipped with a domain model but it is using rich and computationally tractable

student models to guide instruction. A constraint-based approach is used to develop

the user models in order to minimise the inherent complexity in them. These models

combine both student knowledge and domain knowledge. The assumption behind

this approach is that student understanding is not hidden in the student’s actions but

rather in the current state of the solution given. There is predefined databases and

problems in the system. The student is asked to deal with them and any solution state

is checked against sets of constraints. If a problem solution violates the constraints

then the system is able to intervene and provide support. A distinguishing feature of

the system is that knowledge (constraints) is not built-in and it can be inserted into

the system or modified through a GUI. That gives the flexibility to add constraints at

any time and with minimal development and administrative overhead. Getting the

knowledge is still a costly process and requires domain expertise and knowledge en-

gineering but at least there is no development involved.

2.4.2 ASPIRE

ASPIRE (Mitrovic et al. 2009) is a complete authoring and deployment environment

for constraint-based ITSs. It is designed to simplify the development of AI compo-

nents needed in SQL-Tutor, EER-Tutor and Normit (Mitrovic, 2012). Although, the

development of constraint-based tutors is less expensive in comparison to other ITS

methodologies, manual insertion of constraints is still a demanding task that requires

2.4 Automated Support Authoring Tools 88

substantial effort, time and expertise. An initial approach to simplify the development

of these components was to provide a web-based authoring interface called WETAS

(Web-Enabled Tutor Authoring System). ASPIRE (Authoring Software Platform for

Intelligent Resources in Education) is a more complete solution that provides both au-

thoring and deployment capabilities. Authoring is significantly simplified since the

system is able to generate the domain model automatically. ASPIRE consists of two

main components: The ASPIRE-Author is the authoring environment that enables do-

main experts to easily develop constraint-based tutors by providing high-level descrip-

tion of the domain along with examples of problems and the respective solutions. The

ASPIRE-Tutor is the platform that enables the deployment of the generated tutors. AS-

PIRE has been evaluated and shown that around 90% of the constraints needed can be

generated automatically. If domain experts have programming skills it allows manual

insertion and editing.

2.4.3 Diligent

Diligent (Angros Jr et al. 2002) is an authoring system for automated tutors in simulation-

based learning environments. The knowledge is inserted into the system through ob-

servation. An expert demonstrates the skills to be taught and the system observes and

learns. The system processes the recorded observations in order to derive meaning

and better understanding of the role of each step in the procedure. Training outputs

can be directly modified by the author before the training process is completed and the

learnt procedure is finalised. The author can also add the language that needs to be

used for the system to explain the procedure to students. The generated model can be

reviewed and modified even after the completion of the training phase. The model is

presented in a graphical form and it is directly editable by the author. The author can

also test the model by asking the system to use it to teach the respective skill. Diligent

2.4 Automated Support Authoring Tools 89

has been evaluated and has proved very valuable especially in complex, error-prone

procedures. Its applicability is, of course, limited in simulation-based learning envi-

ronments.

2.4.4 Disciple

Disciple (Tecuci & Keeling 1998, 1999, Tecuci et al. 1998) is a framework that can be

used to develop automated tutors for any domain of knowledge. The framework pro-

vides a very specific set of constructs and workflow that must be followed in order to

develop a tutor (learning agent). A fully trained tutor may be used to interact with

students, help them to solve problems and guide them through the learning process.

Domain-specific knowledge is inserted into the system by an expert using a variety of

methods like inductive learning from examples, explanation-based learning, learning

by analogy and learning by experimentation. Disciple gives a basic infrastructure of

a tutor that is like a template. The template has a very specific structure and requires

customisation before the actual tutor is developed. There are two interfaces that need

to be implemented. One interface is needed so that the expert can insert knowledge

into the system and another one is needed so that the system can communicate this

knowledge to the student during teaching sessions. Every instance of a tutor can only

be developed for training that is domain-specific and the domain knowledge is en-

capsulated within a problem solver component. That means that the above interfaces

and the underlying functionality are highly domain-specific and hardly reusable. The

extent and the sophistication of the problem solver depends on the scope and the pur-

pose of the tutor being developed. Development of those components require domain

expertise, knowledge engineering skills and specialised developers to implement the

components and apis. Depending on the complexity of the knowledge domain and

the respective semantic network the whole process can be very lengthy, expensive and

2.4 Automated Support Authoring Tools 90

require considerable effort.

2.4.5 Demonstr8

Demonstr8 (Blessing 1997) is an authoring system that can be used for the develop-

ment of automated model-tracing tutors for arithmetic domains. Knowledge is in-

serted into the system by experts in the form of production rules. Training is done

using a PBE (Programming By Example) approach and production rules are inferred

by the system. The system also provides the means to authors to further abstract the

generated productions if needed. A central component of the tutor is the student inter-

face. This is what gets created first and forms the basis for further development. This

interface is composed of cells that correspond to working memory elements (WMEs).

Not all WMEs have the same significance. The most significant ones are called higher-

order WMEs. Knowledge may be embedded in cells and therefore directly depicted in

the interface or exist in the background as knowledge functions. These functions oper-

ate as maps and are implemented as 2D arrays that store values for every permutation

of its inputs. The author selects an example problem and demonstrates the solution

as a procedure. The system then selects a suitable knowledge function for each step

in an automated fashion. It goes through all the functions trying to locate the one that

produces the same result. If there are many candidate functions, the author is asked to

select one. Every action performed by the author generates a rule. Once the rule is pro-

duced it gets displayed and the author can review and modify it by selecting a more

general or specific condition for it. Every rule must also be associated with a goal and

the skills it covers. The author must also provide four messages with increasing level

of detail for every rule in the system. Development of tutors using Demonstr8 requires

a lot of expertise and it can be a very lengthy and expensive process. The system is

domain-specific and cannot be used in more open-ended, non-procedural domains of

2.4 Automated Support Authoring Tools 91

knowledge.

2.4.6 CTAT

CTAT, Cognitive Tutor Authoring Tools (Koedinger et al. 2004, Aleven, McLaren, Se-

wall & Koedinger 2006, Aleven, Sewall, McLaren & Koedinger 2006) is an authoring

environment that can be used for the development and deployment of model-tracing

tutors. The tool allows two types of tutors to be developed: Cognitive tutors and

example-tracing tutors. Cognitive tutors are equipped with a model (production rules)

and can trace student activity while solving problems. They can be relatively generic

and new problems can be added to them with very little effort. Example-tracing tu-

tors are more problem-specific as they can contain a fixed trace from one particular

problem. Development starts by creating the student interface which entails stating

the problem and demonstrating the problem-solving procedure. The actions in this

procedure take the form of a behaviour graph that is visualised in a tree-like structure

- see figure 2.1. Then, the graph is annotated by adding hints in correct links and error

messages in incorrect links. Links must also be labeled with the skill associated with

the corresponding problem-solving step. Labels can then be used to generate a skill

matrix that shows the knowledge elements required to solve the particular problem.

CTAT has been evaluated and found very efficient compared with manual develop-

ment of tutors. The ratio of development time to instructional time with is 23:1 on av-

erage. An estimate of the respective ratio for manual development is 200:1 (Koedinger

et al., 2004).

2.4 Automated Support Authoring Tools 92

2.4.7 Automatic Rule Authoring System for CTAT

(Jarvis et al. 2004) This is an authoring environment that can be used to generate au-

tomatically Jess rules for CTAT. The idea is to utilise existing domain knowledge in

conjunction with examples of problem-solving actions to generate rules automatically.

Problem-solving actions are inserted through PBE as before. The author demonstrates

the process and correct steps are used as positive examples, whereas incorrect ones are

used as negative examples. The system has been evaluated with data from three do-

mains and found quite effective. Development time was reasonable but in some cases

the generated models proved to be overly general (Jarvis et al. 2004). The system may

be effective but development can be quite expensive as it requires a lot of expertise

in cognitive modelling and model tracing. Modelling must be especially detailed and

complete since the rule generation engine depends fully on the list of skills given on

the links. An incomplete skill set would result in an incomplete set of rules and that

makes the job of the domain expert especially demanding.

2.4.8 SimStudent

SimStudent (Matsuda et al. 2007) is another system developed to help generating pro-

duction rules within CTAT. The purpose in this case is to predict student performance.

The author demonstrates the problem-solving process and for each step there are three

inputs given to the system. The first is the interface component that is being modified

and has the focus. The second is the actual value entered by the author to that compo-

nent and the third is the actual skill being demonstrated. The system takes this input

and generates a production rule. The approach has been evaluated and shown promis-

ing results in predicting correct behaviour but disspointing results in predicting errors.

2.4 Automated Support Authoring Tools 93

2.4.9 GIFT

GIFT (Sottilare et al. 2012) is a modular CBTS (Computer-Based Tutoring System)

framework designed to simplify the development of automated tutoring systems for

military training and education. The motivation for this system is based on the premise

that modular design combined with standardised technologies can enhance reusabil-

ity, support authoring and optimization of CBTS strategies for learning, and lower the

development cost and skillset required for users to adopt CBTS solutions. GIFT targets

domain experts with little or no knowledge of computer programming or instructional

design. It provides various tools that enable rapid development of expert models and

other domain knowledge that generate fully-fledged ITSs.

2.4.10 The FRAME Approach

The Feedback Reasoning Analysis Model Events (FRAME) approach (Gutierrez-Santos,

Mavrikis, Magoulas et al. 2012) is a divide-and-conquer strategy intended to facili-

tate development and testing of automated support for ELEs. The motivation behind

this approach is that feedback integrated in ELEs is usually purely reactive (as op-

posed to supportive) as it does not take into account learner profiles as well as inter-

action history with the environment to provide adaptive and more personalised sup-

port. The provision of support at that level is a very challenging task as interaction

is highly unstructured and it is difficult to distinguish ”correct” from ”wrong” ap-

proaches. ”Wrong” approaches in this context might have a better impact in terms of

learning outcome. Furthermore, expertise from very different disciplines is required to

develop that type of support and this fragmentation typically hinders the development

process due to difficulties in communication and collaboration. The FRAME approach

deals with these issues by reducing the complexity of the development process. It first

recognises the three most important questions related to support:

• What is the situation now? (evidence)

2.4 Automated Support Authoring Tools 94

• Which aspect needs support? (reasoning)

• How should the support be presented for maximum efficacy? (presentation)

These questions relate to different aspects of the general problem and thus different

concerns regarding the development of support. The separation and compartmentali-

sation of concerns enables a more clear definition of the scope related to each compo-

nent and allows the definition of clear communication interfaces between them. That

allows contributors to focus on the component of interest and facilitates better collab-

oration between them as well as testing and validation of resulting components. A

conceptual data flow diagram that depicts the development process is figure 2.2.

The development flow moves towards the opposite direction of the data flow. The

first step is to establish the type of support required at the front end and how this

support should be communicated with the learner. The next step is to find out the

concepts related to the type of support required and the corresponding rules that need

to be evaluated in order to activate it. The final step is to identify or derive the evidence

that can be used to evaluate the corresponding rules and generate the related feedback

strategies.

2.4.11 Discussion

Authoring intelligent support, especially in exploratory settings, is a very complex

and resource intensive process. The cost of development is quite high and that makes

these solutions not attractive and feasible for implementers. Typical authoring en-

vironments are domain, platform or technology-specific solutions that offer outputs

of limited applicability to a wider range of problems. Authoring requires low-level

technical expertise and is not intended for the low-skilled teachers and learning tech-

nologists. Furthermore, solutions are typically focused on guided learning scenarios

and there is no system that offers the versatility to develop support for diverse and

heterogeneous learning components in exploratory settings.

2.4 Automated Support Authoring Tools 95

Figure 2.1: The CTAT system

Figure 2.2: The FRAME Approach

2.5 Integration and Interoperability 96

2.5 Integration and Interoperability

In the early 90’s, the advent of the Internet and the gradual advances of high-speed net-

works along with the increasing popularity of personal computers brought distributed

computing to the forefront (Chung et al. 1997). People started to look for solutions that

would give them the ability to reuse existing functionality potentially residing in dis-

parate and heterogeneous systems that may operate in the same or remote networks.

Different hardware, programming languages, operating systems and communication

mechanisms were obvious obstacles in this process. Initially two frameworks emerged

as standards to simplify network programming and distributed component-based soft-

ware architecture. These were CORBA and DCOM. Throughout the years these tech-

nologies were superseded by new ones that came to remedy shortcomings and satisfy

new business requirements. In this part we present the basic technologies emerged in

this area.

CORBA

The Common Object Request Broker Architecture (CORBA) is a framework for dis-

tributed software component development designed collaboratively by a consortium

of 700+ companies called the Object Management Group (OMG). This framework be-

came a standard that was used to facilitate the interoperability of systems deployed on

diverse platforms. The standard promises a system that abstracts hardware, operating

systems, programming languages and programming paradigms. The programmer can

work at a level that is neutral and provides methods that enable seamless integration

and interoperability of local or remote components. The core of this architecture is a

component that is called Object Request Broker (ORB). This can be thought of as a bus

over which software components located locally or remotely can seamlessly commu-

nicate and interact (Vinoski 1997). CORBA itself uses an object-oriented model but

that is not a mandatory requirement for systems that implement it. Pieces of function-

2.5 Integration and Interoperability 97

ality are exposed as abstract objects that have a specific interface with a set of methods.

Objects are uniquely identified by object references. When a client component requires

this functionality acquires a reference to the object that provides it through ORB. ORB

handles all the processes required to locate the object, prepare it to receive the request,

pass the request to it and return the reply to the client. CORBA has been criticized a

lot and is currently not as popular as it used to be. Technical shortcomings was one

of the reasons that affected acceptance. Technical complexity and specifically the com-

plexity of defining APIs is a big hurdle. A notable example of this is the amount of

code required for interface definitions in an object adapter. This is typically 200+ lines

of code for something that could be expressed with no more than 30 lines. Problems

with language mappings, the type system and insufficient features like the lack of sup-

port for versioning and security are issues that affected acceptance as well. Finally,

another practical problem is the difficulty to communicate through firewalls. CORBA

requires a port to be opened in firewalls for each service and network traffic is unen-

crypted. This may not be a problem for applications composed of components that

reside within the same network but for internetwork communications this is in serious

conflict with typical security policies.

DCOM

Distributed Component Object Model (DCOM) is another framework for distributed

software component development. This is a proprietary technology designed by Mi-

crosoft. The model is an extension of another technology called COM (Component

Object Model). COM is a model that enables a language-neutral definition and im-

plementation of software components that can be reused across different applications,

environments and machines. Internal implementation is encapsulated within the com-

ponent and only a set of well-defined interfaces is exposed to provide different views

of the object. DCOM is COM with an extra layer that takes care of remote procedure

calls to support remote invocation and use of objects. As with CORBA, interfaces are

2.5 Integration and Interoperability 98

defined at a higher level using an Interface Definition Language (IDL). Client compo-

nents acquire a reference (pointer) to one of the interfaces and invoke object methods

through that pointer that may be executed in different processes on the same of differ-

ent physical tiers. DCOM may be language neutral but it is not platform independent.

It runs only on Windows operating systems and the supported hardware and obvi-

ously this is a serious limitation in terms of interoperability. It also suffers from the

same practical problem as CORBA since it is difficult for components to communicate

through firewalls.

SOAP

Simple Object Access Protocol (SOAP) is a messaging protocol specification for ex-

changing structured information via web services. The advent of the WWW along

with the great success of XML and the decline of CORBA and DCOM lead Microsoft to

design an XML-based messaging protocol that could be used over the web as an alter-

native. SOAP was the outcome of this effort and was submitted to W3C for standard-

ization. The main design objectives were extensibility, neutrality and independence.

Extensibility means an architecture that allows more features to be added without vio-

lating existing ones. Neutrality means network protocol neutral as SOAP can operate

over HTTP, SMTP, TCP, UDP and JMS. Independence means that it can be used with

any language, programming model, operating system and hardware. SOAP allows

software components residing on disparate and heterogeneous systems to interoperate

seamlessly. They communicate through messages expressed in XML. Message negoti-

ation and transmission is typically done via HTTP or SMTP. HTTP and XML are like

universal standards and as such they are available in any platform. This is a big ad-

vantage. Another advantage over DCOM is that messages can pass through firewalls

with ease because the HTTP port is open by default to accommodate web services.

REST

2.5 Integration and Interoperability 99

Representational State Transfer (REST) is an architectural model that defines methods

to combine existing standard web technologies to create web services. Web services

that adhere to the model are called RESTful Web services (RWS). REST’s big advantage

is the fact that it doesn’t define new technologies and frameworks but rather combines

existing ones in certain ways to achieve communication and interoperability. REST

is stateless and can only be used over HTTP with a limited set of standard requests

(methods) allowed in services. Although, this might seem to be a limitation, it allows

REST solutions to be simple, efficient and easily implementable. Communication and

message passing is also faster since JSON is used to format messages instead of XML

and JSON is more lightweight than XML. The payload for responses can be expressed

in HTML, XML, JSON, or some other format. In general this is the prevalent tech-

nology today since it has superseded SOAP since it is simple, fast and more easily

implementable.

GraphQL

GraphQL (Hartig & Pérez 2017) is a conceptual framework that can be used for the

definition and development of web-based interfaces to databases. It consists of an

open-source graph query and manipulation language and a runtime environment that

can handle data operations. GraphQL was initially developed by Facebook but it is

currently maintained by the GraphQL Foundation. The motivation behind this project

was the need to resolve many of the shortcomings and inefficiencies of REST like the

lack of flexibility and efficiency. A typical problem with REST is that data operations

are exposed in the form of a set of web service endpoints that return fixed data struc-

tures. The assumption here is that it is very difficult to design an API in a way that

is able to provide client components with the exact data needed and that often results

in overfetching and underfetching of data. Overfetching occurs when the interface re-

turns more information than it is actually required and underfetching occurs when less

information is returned and additional requests must be made. GraphQL provides the

2.5 Integration and Interoperability 100

flexibility to client components to define with a high degree of specificity what data

operations are required. All data operations can then be requested through a single

endpoint. If multiple datasets are required, then all operations can be performed in

one request. This gives flexibility and certainly increases efficiency but comes at a cost

and that is limited caching and increased complexity. A requisite of this system is to

have a properly defined data API using the GraphQL Schema Definition Language

(SDL). It may not be worthwhile to use this framework for simple APIs.

oData

oData (Chappell 2011) is a protocol that specifies how REST can be used to define and

build simple and standardised web-based interfaces to databases. It is a technology de-

veloped originally by Microsoft in 2007 and then standardised at OASIS (Organization

for the Advancement of Structured Information Standards) in 2014. The principles are

similar to GraphQL since the idea is to give the ability to client components to specify

queries using URIs. Client components can consume, modify and publish data de-

fined in data models through simple HTTP requests. It gives a lot more power to the

client side than GraphQL though. In GraphQL the client component cannot ask for

anything the server does not explicitly handle. Contrary to that an oData client is free

to express any query, serialize it into a URI and execute it at the back end. This is seen

as a potential security threat and creates obvious difficulties in traceability of code and

optimisation.

gRPC

gRPC is an open-source high performance RPC (Remote Procedure Call) framework

developed by Google. Its focus is performance and scalability as it allows bidirec-

tional streaming over HTTP, flow control, multiplexing requests over a single connec-

tion, cancelation and timeouts. Services can be defined using the protocol buffers IDL

(Interface Definition Language). Protocol buffers is a platform and language neutral

2.5 Integration and Interoperability 101

mechanism for serialising structured data. Interface definition, development and de-

ployment is relatively fast and easy. gRPC is gaining popularity in the industry as it is

currently being used by many major corporations worldwide.

OpenAjax Hub

OpenAjax hub is a lightweight Javascript library developed to facilitate the interoper-

ability of web widgets within a web page. It is a technology defined and maintained

by the OpenAjax Alliance. The hub operates like a security manager entity that follows

the publish/subscribe paradigm. Individual web widgets that are integrated with the

web page through Ajax can be isolated and operate in their own secure sandboxes.

All the communication between these components passes through the hub which al-

lows or denies publish or subscribe requests. The hub is designed around the concept

of anonymous broadcasting. Producers and consumers are not aware of each other.

Point-to-point messaging, cross-component property management and remote proce-

dure calls are not supported. Since RPCs are not supported, asynchronous execution

though callback functions is not supported either. The hub addresses the inherent se-

curity problems of integration of third party components in web pages but fails to

provide an adequate solution for interoperability.

2.5.1 Technologies used in Learning Management Systems

Learning management systems (LMS) are platforms that host suites of tools to support

online course creation, maintenance and delivery. They also support administrative

tasks like student enrollment, cohort management, learning performance and report-

ing. They all have been designed to support extensibility in order to allow new func-

tionality to be added so that the systems can align with new, emerging requirements

and needs. The problem is, though, that architectural decisions, APIs, communica-

tion protocols and data formats are often proprietary and that is a serious limitation

2.5 Integration and Interoperability 102

in terms of extensibility. Initially, the LMSs developed in the early 90’s were imple-

mented as monolithic black boxes. Learning materials (courses) and other functional-

ity could be integrated with platforms but the components were too tightly coupled

with the host. Every integration was a special case that lead to high cost and limited

reusability. The first standards that emerged were about learning content represen-

tation. These were Dublin Core (Weibel et al. 1998), IMS Learning Resource Meta-

data and IEEE Learning Object Metadata (Barker 2005). Content creators could de-

velop courses using those standards and integrate them with compliant LMSs. There

was also a standard communication API developed for components that would like to

send notifications to hosts regarding commencement and completion of learning activ-

ities. This was the AICC Computer Managed Instruction (AICC) standard. As LMSs

started to mature and the need for more semantically rich integration was emerging

new standards arose. These standards addressed issues like integrating more complex

learning material than content like learning objects, whole courses and learner infor-

mation. Examples of these new standards include Shareable Content Object Reference

Model (SCORM) (Bohl et al. 2002), IMS Content Packaging (Wilson & Currier 2002)

and IMS Learning Design (Leo et al. 2004). These standards enabled the integration

of courses through a simple import/export mechanism. Another emerging standard

at that period was IMS Learning Tools Interoperability (LTI) (Severance et al. 2010)

that provided a technique for making tools hosted in different LMSs interoperable. In

the late 90’s LMSs started to follow the Service Oriented Architecture (SOA) paradigm

and the systems became more modularised and flexible. That allowed a more clear

separation between learning content, tools and learner information.

2.5.2 Epiphytic Integration Systems

This section presents a number of indicative systems that follow the epiphytic ap-

proach in integration. An epiphyte system is defined as a system that integrates with a

2.5 Integration and Interoperability 103

foreign system in a non-invasive manner (Paquette & Tchounikine 1999, Paquette et al.

1996, Richard et al. 2003). More specifically, there is no requirement for any changes

in the target system in order to perform the integration. The target system may be

completely unaware of the epiphytic application’s existence.

SEPIA

The Sepia System (Ginon et al. 2014) is a set of tools that can be used to generate

automated assistants to complement existing applications without the need for tight

integration and interoperability. The aim is to have the ability to develop support for

any native Windows or JVM application without accessing its APIs or recompiling the

application to get direct access to its internal components. The term used to describe

this type of integration is epiphytic. Thus, in this context, the automated assistants are

called epiphytic applications or epi-applications whereas the applications they sup-

port are called target-applications. User interactions with the target applications are

monitored by special components called epi-detectors. These are applications utilising

accessibility libraries that can monitor events and log activity at any level. As evidence

is collected rules are being evaluated and if certain conditions are satisfied the assis-

tant performs the consequent actions to provide support. These rules are inserted into

the system by domain experts through a special component called assistance designer

using a specialised language called aLDEAS. The actual execution of the assistance

operation is performed by another component called the generic assistance engine.

The Sepia system can only be executed as a native application and that carries all

the inherent administrative overheads related to that approach. It is also unable to

utilise domain knowledge that is embedded into the target system which may be nec-

essary for more advanced assistance scenarios. The definition of rules requires a lot

of expertise and working knowledge of a specialised language. Despite these short-

comings the system has been extensively used with various target applications includ-

2.5 Integration and Interoperability 104

ing learning environments and evaluations have shown that it has achieved its design

goals which is the provision of assistance through a non-invasive loosely coupled in-

tegration with diverse applications.

Epiphyte Recommender System for Web Applications

This is a technique proposed to enhance websites with recommender systems that pro-

vide real-time support to users (Richard & Tchounikine 2004). The motivation behind

this work is to promote a more effective use of the content presented in web pages and

prevent cases where content is unused, underused or misused. The distinguishing

feature of this approach is that the recommendation system can be deployed in a non-

invasive manner as it does not require any change at all in the original web application.

In fact the web application is completely unaware of its presence. The recommender

system operates as a proxy. The user communicates with the proxy and the request

is then being forwarded to the actual website. The proxy can operate in a different

physical or logical tier. The proxy intercepts all the user requests and utilises a model

of prototypical uses of the website to analyse the user trajectories and provide recom-

mendations accordingly. Recommendations are given in a separate little window that

is displayed along the main window of the webpage. There is no personalisation in

these recommendations as no user models exist in this approach. Prototypical models

are predefined in the system in the form of graphs. The system has been evaluated

and results have shown there despite the fact that there is one additional tier through

which web content must be transferred and processed there are no significant delays in

the process. The system manages to provide intelligent assistance in a pure epiphytic

way to web applications.

2.5 Integration and Interoperability 105

The iFrimousse Architecture

This is an architecture proposed to augment educational web portals like LMSs with

services that can help educators monitor learner activity in real time (Carlier & Renault

2010). The architecture aims to do that in an non-invasive manner as the components

that control logging and analysis of user trajectories operate as epiphytic applications.

In order to achieve that an n-tier architecture is imposed in conjunction with a proxy

so that clients cannot access the LMS directly. Since location based information is not

available in the HTML content served by the LMS, the request is intercepted by the

proxy and the content is processed through pattern matching and enhanced with spe-

cial tags. These tags are then being used in subsequent requests to log user activity

and extract location-based information. The data logs are processed and information

about the current state of students becomes available in mobile devices through web

services. This way tutors can have information about learner engagement in real time

and intervene to remedy problems during the learning sessions.

Eclipse Student (In)Activity Detection Tool

This is a tool intended to augment the eclipse IDE and provide real-time monitoring

of student progress (Karkalas & Gutierrez-Santos 2014a). The tool is designed to inte-

grate with the IDE in a non-invasive manner as a plugin. After installation the plugin

behaves as an integral part of the Eclipse platform and it gets automatically activated

whenever the user starts interacting with the IDE. There is no visual indication in the

interface that reveals the tool’s operation other than the stream of messages that get

displayed in the console tab. Once installed the tool can follow the roaming user pro-

file and monitor user activity in different machines without interruptions. The tool

consists of two components. The observer component is responsible for detecting user

activity and generating the corresponding indicators. The user interface component is

responsible for communicating the required information to tutors through native mo-

2.5 Integration and Interoperability 106

bile and web applications. Both components interoperate through web services that

handle data logging and retrieval operations. The motivation behind this work is to

provide real-time assistance to tutors and help them prioritise better the provision of

help in computer laboratories. The tool has been tested in real laboratories for stability,

fault tolerance and usability and found to have accomplished its design goals.

2.5.3 Discussion

Integration and especially interoperability has always been a difficult task that re-

quired technical ability and skills. Implementation is resource intensive and deploy-

ment entails a heavy workload in terms of administration and maintenance. Solutions

of the past suffered from excessive complexity in interface definitions, problematic

language mappings, insufficient type systems, lack of security (unencrypted network

traffic), inability to pass through firewalls and access different networks, lack of exten-

sibility without violating existing functionality and lack of platform independence.

Technologies have evolved a lot and modern solutions like GraphQL, oData and

gRPC are now offering significant advancements in functionality, simplicity, efficiency,

security and versatility. All of them can and should be used as references of good

paradigms in software integration.

The prevalent standard in integration of learning components with platforms nowa-

days is IMS LTI. LTI is mature and robust but fails to accommodate situations where

all its functionality is not required and introduces significant overheads. There is no

lightweight version of it for cases where the actual component to be integrated is a sim-

ple front-end web widget with no dependencies or other functional considerations.

This makes it an unattractive solution for simple components that are usually freely

available on the web. OpenAjax used to be the standard for implementing interoper-

ability of components in the context of a browser. Notable problems with it are the

lack of point-to-point messaging, cross-component property management and remote

2.5 Integration and Interoperability 107

procedure calls. Asynchronous execution though callback functions constrain a lot, in

an artificial way, the potential of combining different components together efficiently

in a browser.

An integration and interoperability mechanism for educational content that is im-

plemented as a simple front-end web widget should be able to accommodate the ad-

vancements in new integration technologies to allow existing functionality to be reused

with no artificial constraints. Solutions should be simple and lightweight and able

to travel across networks without restrictions and security concerns. Interface defi-

nitions should be small and functionality should be easily accessible and deployable

in browser-based solutions to avoid unnecessary network traffic and roundtrips with

back-end services. The component interfacing mechanism should be simple and stan-

dardised to allow easy integration but it should also be versatile enough to allow all

the required functionality residing in diverse components to manifest itself and be ex-

posed for external use. In most cases refactoring of third party components that are

freely available on the web is not possible, easily implementable or even desirable.

That means that epiphytic integration should be investigated for browser based so-

lutions. Finally, solutions should be simple, efficient and easily implementable with

minimal administrative overheads.

2.6 Synthesis of Related Work and Revised Research Objectives 108

2.6 Synthesis of Related Work and Revised Research Objec-

tives

In this research project we are touching on a lot of areas of knowledge covering learn-

ing theories, teaching and learning approaches, teaching and learning of program-

ming, (educational) programming environments, intelligent tutoring systems, exploratory

learning systems, authoring tools for automated support and integration - interoper-

ability standards, techniques. In many cases there is no overlap or links between these

areas. Throughout this project research needs directed us to touch on those areas and

opportunities to create useful connections presented themselves. We started with a

review on teaching and learning programming in order to understand the fundamen-

tal concepts in the area, realise difficulties and shortcomings and identify opportuni-

ties for meaningful contributions. We established that the value we want to achieve

is to make teaching of introductory programming easier and one way of doing it is

to develop a system that facilitates exploratory learning in programming and offers

automated support and adaptability. A review on educational programming environ-

ments, specialised IDEs - debuggers, ITSs and ELEs gave us an in-depth understand-

ing of the theoretical and technical background behind these systems and that helped

formulating a more concrete idea about what we need to develop and how. We de-

veloped a prototype that teaches programming in an exploratory context and offers TI

support. This experience gave us positive results, good insights and the encourage-

ment to move on. The next component was to see how TD support can be given in an

exploratory context. For this we did a review on authoring tools for the development

of support and systems that offer it. We wanted to see what the state of the art is in

those systems, identify limitations, deficiencies and weaknesses and recognise oppor-

tunities for improvement and innovation. In the attempt to identify requirements for

the development of a new authoring system, the need to overcome a technical obstacle

related to integration and interoperability became clear. During a technical spike to

2.6 Synthesis of Related Work and Revised Research Objectives 109

address that problem we did a review on integration and interoperability standards

and technologies to inform the technical underpinning of the solution. After a number

of design iterations a prototype of an innovative authoring tool for the development

of automated support was developed. In the text that follows we provide in detail all

the links developed between different parts of the literature under each category when

this is applicable to the case discussed.

Educational Programming Environments

Most of the systems reviewed under this category are microworlds employing con-

structivism as the teaching approach. A comparative analysis between them revealed

interesting patterns and commonalities. One theme that seems to be repeating has the

following characteristics:

• The environment comprises elements

• The elements may be created, deleted, modified

• The elements respond to events

• Different types of events may be related to different types of elements

We find these characteristics in logo, karel, toontalk, alice, greenfoot, malt+ and scratch.

As these systems are typical examples of learning environments for programming that

offer opportunities for exploration, these observations heavily influenced the design

of authelo. One of the fundamental assumptions in authelo is that the learning envi-

ronment being enhanced comprises different types of elements that may be associated

with different types of events. This is reflected in the way authelo builds dynamically

part of its user interface so that it corresponds to the particularities of the associated

learning environment. Upon initialisation the learning environment is asked to pro-

vide details about the types of elements and types of events that may be found in its

virtual universe and authelo utilises this information to dynamically create its inter-

face. This way the author can use the same tool and the same concepts to define rules

2.6 Synthesis of Related Work and Revised Research Objectives 110

for different environments. This is clearly related to the facilitation of reusability re-

search objective.

Another common characteristic found in those environments is that most of them

focus on reducing the complexities of the programming language used. Logo, for ex-

ample, uses a relatively easy language with a small learning curve to lower the entry

threshold and enable primary school children to engage with programming. The same

pattern is seen in Malt+ and Scratch that uses a block-based language. Karel uses a

small set of commands with very simple syntax for the same reason. Toontalk uses

a self-taught programming environment to significantly reduce the cognitive load re-

quired to start programming and thus lower the entry threshold. The same concept of a

self-taught visual programming language is also used by Greenfoot. The concept of re-

ducing the cognitive load and thus reducing the entry threshold for prospective users

is something that influenced a lot of our thinking throughout this research project. This

is reflected in the design of FLIP and especially the design of authelo because the same

idea can also be applicable to learning designers and authoring of automated sup-

port. In FLIP the cognitive load is reduced through adaptive automated support on

common misconceptions. In authelo the cognitive load is reduced through the com-

partmentalisation of different concerns in the design process, the application of the

example-tracing design pattern, the unification of the entire design process in a sin-

gle logical tier and the ability to express authoring concepts using high-level language

constructs. The intention to create different levels of expressing the same concepts in

the context of authelo using LFT is following exactly the same reasoning. A high-level

language specialised in authoring feedback aims to achieve exactly the same thing as

logo in Logo microworld. This concept is related to the simplification of authoring

research objective as stated in 2.1.

The fact that all the systems mentioned in the previous paragraphs follow more or

less the same design pattern (elements, events) but use different languages to achieve

the same objective reveals another interesting concept. The language can be thought

2.6 Synthesis of Related Work and Revised Research Objectives 111

of as a component that is logically distinct and separate from the environment. That

leads to an intriguing thought. What if we can mix and match languages and learn-

ing environments? People knowledgeable in one language would be able to use any

system in this case and benefit from its comparative advantages. If the intention is to

learn different languages using a system that is well established and of high quality,

then it may be possible to reuse the same system with many different languages. The

same argument also stands for newly defined languages especially designed to facil-

itate specific learning objectives. This notion of language neutrality is related to the

facilitation of reusability research objective.

Another observation that was revealing is one of the main principles behind the

design of BlueJ. This is the ascertainment that the learning environment should reflect

the paradigm of the language being taught. This helps the learner better conceptualise

the elements of the subject being taught because they use the same abstractions during

the learning process. In the context of BlueJ this is classes and objects rather than

lines of code or files in projects. In the context of authelo this is types of elements

and types of events. In authelo this need becomes even more apparent and necessary

given the potential diversity of the learning objects combined with it. The same notion

is also reflected in the data format of the action indicators generated in the example

tracing process to help the designer understand the current state of the learner and

configure the rules for the automated support. In both cases authelo is able to adapt to

the paradigm of the learning object being used and help the designer understand the

semantics and conceptualise the process better and more accurately. This is related to

both research objectives.

An interesting feature behind the BlueJ design argumentation is that learners should

get immediate feedback in response to their actions during the learning process. Learn-

ers can visually inspect the results of their actions and that forces them to face problems

immediately. This is something that influenced our thinking when designing FLIP and

authelo. In FLIP there is an automated process that is continuously running in the

2.6 Synthesis of Related Work and Revised Research Objectives 112

background to detect potential issues with the code. Once there is something worth

discussing with the learner a discreet indicator appears that informs the user in a non

intrusive manner. Learning in FLIP is supposed to take place in a non-controllable

way but the feedback is always immediately available for the same reasons as in BlueJ.

The same concepts are also being considered in the design of authelo. Authelo offers

an environment where the author can iterate over the same problem multiple times

and get immediate feedback about the correctness of the approach followed without

having to recompile, reload and repeat the learner actions for the particular task. This

gives the author clarity about the flaws of the solution and streamlines the process.

The same approach is also followed in the type of support developed through authelo

for the learners. The outcome of authelo is formative and summative feedback that is

immediately available at any time during the lifetime of the learning activity. Learners

are free to consult this information at the time that is convenient for them to overcome

obstacles in the learning cycle. This concept is related to the simplification of authoring

research objective.

The user interface of Greenfoot was designed with the ”gradual transition to cod-

ing” principle in mind. The idea is to let the learners engage with the content initially

without code and once they feel comfortable with the concepts allow them to inter-

act using lower level constructs. This reduces the initial cognitive load required as

it smoothens out the learning curve and thus increases the chances of the learner to

engage further and remain in the learning process longer. This principle gave us a di-

rection when making decisions related to LFT and its potential uses. One of the main

objectives behind LFT is to enable the definition of new high-level languages to hide

details and allow easier manipulation of difficult concepts. Ultimately, at a GUI level

these abstractions could be translated into graphical elements like the ones used in

block-based languages to eliminate the need for the designer to memorise terms and

semantics. This is related to both research objectives.

Another system that influenced our thinking is Salespoint. The assumptions and

2.6 Synthesis of Related Work and Revised Research Objectives 113

considerations behind the design of Salespoint are that typical real-life projects are

needed in the learning process to allow for ill-defined learning scenarios to be ex-

ploited through exploration. In this context it is especially difficult to support large

student cohorts with limited resources. Salespoint is more a framework rather than a

specific learning environment that has a narrow design orientation. Despite the fact

that there was no microworld materialising these concepts in any of its incarnations

we have seen, it inherently allows basic exploration and the discovery of knowledge

in a constructivist way. Its design considerations are in line with established views in

the literature claiming that ELEs are particularly useful for ill-defined domains (Lynch

et al. 2006), they tend to be used with large cohorts of students where students tend

to work in unpredictable ways. ELEs require significantly more support than other

systems (Kirschner et al. 2006, Kynigos 1992, Mayer 2004) and support must be ap-

propriate for that type of learning in order to lead to meaningful learning outcomes

(Mavrikis et al. 2013). This influenced a lot our orientation towards exploratory learn-

ing and strengthened our belief that this is an area with a lot of potential as well as

significant pragmatic constraints especially with regard to the development of auto-

mated support. Research in the area also revealed that it is possible to delegate part

of this support to intelligent components (Bunt et al. 2001, Mavrikis et al. 2013). That,

combined with the fact that very few attempts have been made to reduce the complex-

ity of the authoring process and thus the entry threshold for both programmers and

end-users (Blessing et al. 2007) lead us to the pursuit of a technology to complement

that deficiency. This is related to both research objectives.

Programming Environments and Debugging Aids

These are software development environments equipped with enhancements that help

users eliminate mistakes and build more concise and semantically correct code. A com-

mon theme that emerges from a comparative analysis of those systems can be sum-

marised as follows:

2.6 Synthesis of Related Work and Revised Research Objectives 114

Layered architecture: Most of these systems are equipped with different kinds of en-

hancements like automatic syntax highlighting, syntax checking and verification, code

formatting, dynamic compilation / interpretation, dynamic visualisation of outputs

etc. All of these components are being combined and used in different ways depend-

ing on the development scenarios implied by the different architectures used. In some

systems like PECAN, MEMO-II, SUPPORT and ASA the notion of a layered archi-

tecture is more prevalent and well articulated. Especially in PECAN we see a system

composed of three major categories of functionalities applied in an incremental fashion

to gradually enhance the level of support required. This system inspired the layered

architecture designed to support the development of web-based automated tutors in

programming. This is related to the simplification of authoring research objective.

Language neutrality: Most of the systems developed in this era try to introduce a neu-

tral language to express algorithmic concepts that are then translated into other real

languages. We see this in PECAN, SCHEMACODE, DSP, BACCII and ASA. This is

typically done through flow diagrams or even specialised pseudo languages like the

Schematic Pseudo Code language is SCHEMACODE. The idea is to use a common

language to help users systematically document code, understand better flow con-

trol and develop problem solving skills easier. None of these languages achieved the

level of acceptance to become standards for these purposes. In the case of specialised

languages the typical problem was the complexity and thus the steep learning curve

implied. This notion of language neutrality inspired the work we have done with LFT.

The premise in our case is that the de facto platform for the development of contempo-

rary educational systems is the web browser. In the context of the web browser the de

facto underlying and common language used in all systems is JavaScript. The idea to

be able to define existing or new languages and use transpilers to generate JavaScript

code dynamically to enable learners to take advantage of different learning environ-

2.6 Synthesis of Related Work and Revised Research Objectives 115

ments with a known language or different languages with a known environment and

achieve better learning or software development is the same as in the programming

environments in the 80s. The difference here is that the learners are not expected to

learn a different language to accomplish the learning tasks. On the contrary they are

expected to use the language or system of preference for the learning activity and not

stumble on artificial technical obstacles. The difficult part in this case is the specifica-

tion of the new language. This task is done by a skilled developer only once. This is

related to both facilitation of reuse and simplification of authoring.

Intrusiveness: Systems in this category typically interact with learners or users in a

very controllable and intrusive way. Users’ actions are being continuously monitored

and once there is an element in the code that deviates from what the system expects

there is immediate feedback that interrupts the development process and forces users

to rectify it. Systems blamed for being too instructive in this respect are ASA, SUP-

PORT, STRUEDI, Example-Based Programming System and Software Design Labora-

tory. This for us was an example to avoid as it strengthened our belief that the intent

should be exactly the opposite. Educational systems for learning programming should

keep students engaged with the learning tasks for as long as possible. Interruptions in

the learning cycle (Kolb et al. 1984) must be kept to a minimum and for that to happen

help should be always available and given discreetly and in small increments in order

to help the learners overcome issues that cannot deal with unsupported (Vygotskiı̆

et al. 1978). Interestingly enough, a system that belongs to the same era named GE-

NIUS aspired to achieve these very same objectives. The idea was to get the students

to discover the problems themselves by keeping them engaged with the problem for as

long as it takes to identify them. Support was given through a conversational compo-

nent in the form of hints to suggest corrections. This system inspired to a great extent

the design of FLIP. This is related to both research objectives.

2.6 Synthesis of Related Work and Revised Research Objectives 116

Irrational code: Some of the systems in this category aimed to recognise patterns in

the code that suggest some form of misconception and suggest possible corrections in

an automated manner. This is a case where the code is syntactically correct but se-

mantically incorrect. Typically systems that offer automated support for this utilise a

knowledge base where these patterns are stored along with a reasoner that checks the

representation of the current state against these patterns to determine the problem and

generate the response. Systems that have related features to this are the University

of Washington Illustrating Compiler, LAURA, The Debugging Assistant and GENIUS.

These systems especially LAURA and The Debugging Assistant influenced a lot our

direction to investigate further common student misconceptions and combine code

quality tools with a knowledge base and a reasoner to provide support for them in

FLIP. This is related to both research objectives.

Intelligent Tutoring Systems

These are systems specifically designed for educational purposes. They are typically

equipped with sophisticated technology used to provide individualised support and

adapt the level of instruction according to learner needs. These systems are intelligent

and able to perform automated assessment and control the student trajectory through-

out the learning process with the aim to achieve high level cognitive objectives. The

three main architectural components typically found in those systems are a knowl-

edge base to hold the domain knowledge on problems, solutions, and known errors,

a learner model to hold information about the student and the level of understand-

ing and a virtual tutor to orchestrate the learning process. This general architectural

scheme at a high level influenced significantly the way FLIP was designed and im-

plemented as all three components are present in the design. This is related to the

simplification of authoring research objective.

Some of the issues identified in the previous category of systems can also be found

here. For example these systems allow very little room for creativity as only known

2.6 Synthesis of Related Work and Revised Research Objectives 117

solutions are accepted. An indicative example of that is Capra. This is, of course, iden-

tified as an example to avoid as it contradicts with the fundamental principles of ex-

ploratory learning. This had an effect on our decision to move away from strict guided

learning and consider task dependent and independent support under exploratory

settings.

Although in these systems it is recognised that students learn better when immedi-

ate feedback is always available, stated clearly in Lisp tutor, this support is given in an

intrusive way that interrupts the learning process if there is something in the code that

indicates a problem. As analysed in the previous section this is considered a deficiency

in the process with a potentially negative impact and it was recognised as an example

to avoid. This influenced the general orientation of the work presented in this thesis

and thus it is not directly related to specific research objectives.

A common theme that emerges from the comparative analysis in this category is

that these systems are fairly monolithic, tightly integrated solutions that offer limited

configurability without low-level programmatic interventions. Thus, they are costly

to develop and maintain and offer very little flexibility and reusability. This helped us

realise that componentizing and decoupling AI components as well as creating exter-

nal tools to develop them could move things forward. This would allow reusability of

existing components as well as less expensive development and make these systems

more approachable to people and educational institutions. This realisation influenced

our decision to move towards reusability and simplification of authoring. This is re-

lated to both research objectives.

Finally, there is a system under this category that was quite inspiring and influ-

enced the architectural design of authelo. This is the Graphical Instruction in LISP. The

distinguishing characteristic of this system is that it allows the students to develop so-

lutions in both directions. They can either start from the data and work forward to the

solution or start from the solution and work backwards. The latter was quite unusual

at the time but later on with the adoption of Test Driven Development and Behaviour

2.6 Synthesis of Related Work and Revised Research Objectives 118

Driven Development it became the norm in software engineering. This reverse pro-

cess is also used by the FRAME approach to facilitate development and testing of

automated support for ELEs. According to this approach we first establish the level

of support required, then we find the related concepts and the corresponding rules to

activate it and finally we compose the evidence required to evaluate those rules. Both

systems significantly influenced the architectural design of authelo. This is related to

the simplification of authoring research objective.

Exploratory Learning Systems

In this category we have systems designed and developed specifically for educational

purposes. These systems allow learners to discover knowledge through exploration

and are typically equipped with intelligence and adaptability to support them. The

number of systems we find in this category is not as big as in other categories and

that possibly indicates that there is room for more work to be done. The key takeaway

from the literature review is that they have very sophisticated technology that may

include identifying student activities, proposing group formations, recognising learner

behaviours, providing personalised support etc. Intelligence is typically built into the

systems as there is no authoring interface available. Learning in this context offers a lot

of opportunities but requires a significant amount of support. Automated support can

significantly improve the effectiveness of the process but development in this context

can be a very complex and resource-intensive process. Systems in this category tend to

be domain specific with very little reusability allowances and there is very little work

done in exploratory learning on programming. All these findings imply that there is

room for contribution in this area and that played a significant role in the direction we

followed throughout this research project towards exploratory learning.

One of the systems reviewed, Annie, is a domain-independent, generic platform

intended to host exploratory learning environments. To an extent this inspired the de-

sign and development of MLP. This is related to both research objectives.

2.6 Synthesis of Related Work and Revised Research Objectives 119

Automated Support Authoring Tools

These systems are generally ITSs with separate AI components and authoring tools to

develop them. A common theme that emerges from the comparative analysis in this

category can be summarised as follows:

High entry threshold: Development in most of the systems presented in this category

typically requires expert knowledge and knowledge engineering skills. This charac-

teristic can be found in SQL-Tutor, ASPIRE, Disciple and Demonstr8. This implies

that even though there might be an authoring environment available, the difficulty to

utilise it for the development of automated support may be prohibitive and not cost

effective. This influenced our thinking into pursuing ways to lower the entry threshold

for prospective users and make it more accessible to less skilled people. This relates to

the simplification of authoring research objective.

Genericity: All the systems (SQL-Tutor, ASPIRE, Diligent, Demonstr8, CTAT) apart

from two offer solutions that are domain and platform specific. Only Disciple and

GIFT claim to be domain independent but they are platform specific. GIFT claims to

be platform independent but it imposes several restrictions regarding integration and

interoperability of external components and it is not possible to develop support for

components residing outside of the platform. This is another characteristic that gave

us a research direction towards solutions that are more domain and platform inde-

pendent and thus as generic as possible. This led us to perform research on epiphytic

integration systems like SEPIA and the iFrimousse architecture to resolve the problem

of tight integration with platforms. This relates to both research objectives.

Authoring paradigm: All the systems allow manual insertion and editing of knowl-

edge. Some also offer a more user friendly GUI (SQL-Tutor, CTAT). In some of them

2.6 Synthesis of Related Work and Revised Research Objectives 120

knowledge is inserted directly by experts (SQL-Tutor, ASPIRE) whereas in others ex-

perts give a demonstration that is then translated into knowledge (Diligent, Disciple,

Demonstr8). The only paradigm that significantly reduces the complexity of the pro-

cess is the one given in CTAT. In this case knowledge is inserted by example. An expert

does the learning activity as a student and this generates a tree that is then annotated

to generate rules. This is very efficient compared to manual development. CTAT and

all its derivatives played a crucial role in the design of authelo. A variation of the

example-tracing approach was used to provide a domain independent alternative that

can be used in an exploratory context. This was a significant research contribution that

relates to the simplification of authoring research objective.

Authoring strategy: The strategy employed to perform the authoring process of au-

tomated support in all the systems presented in this category assumes that all of it is

done by an expert in knowledge engineering that may also be a domain expert. This

scenario may be adequate in systems that follow the guided learning paradigm but it

is very limited in the context of exploratory learning. In exploratory learning author-

ing of support is a much more complex process of a multidisciplinary nature. Many

experts may be required to combine their efforts at different parts of the process and

this makes development even more demanding and challenging. This requires a strat-

egy to alleviate this difficulty and this was addressed in the FRAME approach. This

is a divide-and-conquer strategy intended to facilitate development and testing of au-

tomated support for ELEs. This approach reduces the complexity of the development

process by separating and compartmentalising the concerns. That allows for a more

clear definition of scope and communication interfaces and enables better communi-

cation and testability. The development flow moves backwards as it starts with the

presentation of support, it then moves to the reasoning component and finally ends

with the collection of evidence to support the reasoning. This strategy also played a

crucial role in the design of authelo. This is reflected in both the architecture of authelo

2.6 Synthesis of Related Work and Revised Research Objectives 121

as well as the authoring paradigm used. This is related to the simplification of author-

ing research objective.

Integration and Interoperability

This section describes architectures, frameworks and protocols designed to enable in-

tegration and interoperability of local and remote software components. An analysis

of these technologies revealed common issues that should be taken into account when

considering what to adopt or avoid and to what extent.

Abstraction and APIs: Although, even at the very beginning of this type of engineer-

ing, the design objective was to abstract everything including hardware, operating

systems and programming languages and paradigms there were big hurdles to over-

come heterogeneity. One of these hurdles was the high technical complexity in devel-

oping APIs for software components. We see this in both CORBA and DCOM. This

along with other technical shortcomings were some of the factors that affected the ac-

ceptance of these technologies. The realisation of the difficulty to design a method

to define simple and generic APIs with no implementation overheads that allow for

diversity to manifest itself through them was crucial when we designed the interfac-

ing of components in WIIL. This is related to the facilitation of reuse research objective.

Inter-network communication: Another shortcoming was the difficulty of software

components to communicate with each other through firewalls. This problem was

partially resolved with a compromise after the HTTP protocol started to be used for

communication. HTTP is simple, it can carry complex data and even other protocols

through tunnelling. Most people allow HTTP to pass through firewalls and that makes

it a good candidate for data that travels across networks. In this project one of the basic

assumptions stated is that the de-facto platform for educational software is the browser

and consequently the protocol natively supported in this context (HTTP). This affected

2.6 Synthesis of Related Work and Revised Research Objectives 122

the work performed during the technical spike to develop WIIL. This is related to the

facilitation of reuse research objective.

Artificial overheads: This is related to the current and prevalent standard in integra-

tion of learning components with platforms (LTI). Integrating web learning compo-

nents with web-based platforms typically requires a stringent procedure to be followed

in order to ensure the robustness and stability of the intended system. Although it is

difficult to argue with this statement there is a certain category of web components

and a very populated one, that indicates the need for a lightweight alternative espe-

cially regarding the launch and initialisation protocol. This again played a role during

the work performed to develop WIIL and is related to the facilitation of reuse research

objective.

Cross-component management: The prevalent standard at the time WIIL was de-

veloped for interoperability of web components within the browser was OpenAjax.

This system was like a central hub operating under a publish / subscribe scheme and

anonymous broadcasting. There were a number of artificially imposed deficiencies

in the name of safety and security diminishing significantly the potential of this sys-

tem. These were the inability to perform p2p messaging, cross component property

management, RPC and callbacks. This again affected significantly the design and de-

velopment of WIIL and it is related to the facilitation of reuse research objective.

3
Exploring Possibilities

123

124

As explained in 1.3 this project follows the design thinking approach to make teaching

programming easier. This is based on the following reasoning pattern:

WHAT + HOW → ”make teaching programming easier”

The first component of this pattern that is to be addressed is the WHAT needs to be

done so that we can achieve the desired value.

The material presented in this chapter is supported by the following papers: (Karkalas

& Gutiérrez-Santos 2014b, Karkalas & Gutierrez-Santos 2014c, Karkalas & Santos 2014,

Karkalas & Gutierrez-Santos 2015).

3.1 Literature Review and Domain Analysis - An Outline 125

3.1 Literature Review and Domain Analysis - An Outline

This step, starts with a literature review in the areas of teaching and learning pro-

gramming in order to get familiar with the fundamental concepts in the area of in-

terest. Then, a domain analysis (Prieto-Diaz 1990, Ferré & Vegas 1999) follows on

educational software for teaching and learning programming. Domain analysis is a

common techique used in software engineering to help designers and engineers gain

a better understanding of the level of applied technical expertise in existing software

and make well-informed decisions about reusability of architectures, techniqes, meth-

ods, technologies and components. This analysis typically involves the study of all the

available material that derives from the software development life cycle including his-

tory of design decisions, testing plans, evaluations, manuals etc. The findings of this

process follow:

• Learning programming is difficult (refer to 1.1.2 and 2.3)

• Teaching programming is expensive (refer to 1.1.2 and 2.2)

• Supporting learning programming is limited due to limited resources (refer to

2.2)

• Learning Programming in an exploratory manner offers more opportunities for

learning and is more natural (refer to 2.2)

• The need for support in exploratory learning is much higher than in guided

learning (refer to 2.2)

• A possible solution to this is to offer automated support (refer to 1.1.3 and 2.2)

• Current systems that offer opportunities for exploration lack automated support

(refer to 1.1.4)

3.1 Literature Review and Domain Analysis - An Outline 126

After this cycle we started formulating an idea about the WHAT needs to be accom-

plished. This is a system that facilitates exploratory learning in programming and

offers automated support and adaptability.

3.2 Educational Ethnographic Study 127

3.2 Educational Ethnographic Study

At this stage we want to verify the above findings and have a closer understanding

of the issues under consideration. The methodology chosen to accomplish this led us

to immerse ourselves in the reality of these problems and have a first hand experience

of the situation. We did an educational ethnographic study (Pole & Morrison 2003,

Noblit 2003, Mills & Morton 2013) that involved the researcher taking part in three

University courses as a TA and lecturer. The general aim of this was to collect quali-

tative information about the subjective reality of lived experiences of people involved

in a specific educational context. As part of this study we also did a thematic analysis

(Guest et al. 2011) in order to identify common themes and useful patterns in the data.

The exact objectives for this follow:

• Verify findings in the literature

• Understand better the area of interest

• Understand processes, flaws and weaknesses in the currently used teaching ap-

proaches

• Identify potential opportunities for improvement, innovation

• Understand how learners approach learning

• Understand how learners solve their problems

This part of the research was conducted in computer laboratories where students were

undertaking programming assignments and practical training. We were involved in

the process as tutors and in this capacity we provided help and guidance. The ap-

proach was exploratory as there was no hypothesis to confirm. We used direct ob-

servation and non-structured interviews to record issues that took place in laboratory

sessions of three introductory programming courses that involved 111 students in to-

tal. We used an observation sheet to summarise the findings of the session. Two of

3.2 Educational Ethnographic Study 128

the courses were postgraduate modules taught in Java comprising 42 and 44 students

respectively and the remaining one was an undergraduate course taught in JavaScript.

The research was conducted at the Department of Computer Science and Information

Systems, Birkbeck, University of London during the academic years 2012-13 and 2013-

14. The Java courses were fast paced, intense courses and covered much more material

and in greater depth. Therefore, the data collection part for these courses took place

only for the first four sessions of each term. The data collection was carried out by two

teaching assistants and the lecturer. The teaching assistants collected the data which

was then reviewed by the lecturer. I was a teaching assistant in the Java courses and

the lecturer of the JavaScript course. The findings of this process follow:

• Students require a significant amount of support, especially during the early

stages of learning

• Students have common initial misconceptions in programming

• Students require two types of support. TI (Task-Independent) support - sup-

port for common misconceptions and TD (Task Dependent) support - support

for tasks given to them for practice

• Labs are very busy especially during the early stages of learning

• Support provided to the students is limited and may not be adequate

• The learning cycle is frequently interrupted and students may not be able to

progress, feel intimidated and excluded

The outcome of this cycle is that we verified the research findings of the previous step,

the need for exploratory learning and the need for automated support. We also saw

how learners and teachers behave under stress and how that affects their self-efficacy.

We saw how difficult it is to provide adequate, relevant and bias-free support to a very

3.2 Educational Ethnographic Study 129

diverse cohort and how difficult it is to prioritise support requests in a busy environ-

ment. The thematic analysis revealed the distinction between TI and TD support and

the clear need of having an automated solution for the former, since, according to the

literature there is no system that provides it.

3.2.1 The Data Collection Process

The purpose of this process was pure observation as the intent was to perform edu-

cational ethnography. We did not want to intervene with a purpose to change things,

measure the impact of those changes etc, as that would fall under the scope of action

research. The observation areas set were based on the objectives presented in section

3.2. These areas are depicted in the observation sheet presented in Appendix 3. As

one of the concerns was to keep the data anonymised, the only demographic informa-

tion recorded was the name and level of the course, the number of students and tutors

present and the date.

The purpose of using the observation sheet was to facilitate the recording of inci-

dents. Incidents are not only issues that relate to student problems that may require

some attention from the available tutors but they may be observations related to other

things like the effectiveness of a teaching approach, the tension or disappointment of

students facing a difficult task, situations where tutors have to make decisions about

whom to support when all students in the class have their hands up and time is press-

ing. These are just a few examples of the numerous issues that may be worth recording

in such an environment.

The original planning for this observation was to use one observation sheet per

session per observer and record all incidents that seem to have some value and rel-

evance with the observed variables. According to the plan the tutors would record

incidents on the spot, devote sufficient time to each incident and if deemed necessary

3.2 Educational Ethnographic Study 130

allow some time for a non-structured interview with the student involved. The plan at

a theoretical basis seemed to be complete and adequate but in practice it proved to be

very ambitious especially during the first sessions of the courses. The reality in those

classes was that students were thrown a lot of material to cover and very little time

to process it. Programming was not coming naturally to the majority of the students.

Normally at the beginning of the process a mental leap was required as students en-

gaged with mind twisting activities in the lab. The time for this new knowledge and

skills to develop was very little and students quite often felt despair and tried to grab

every opportunity to get some help in the process. Help of course is limited as the

available resources are also limited (time and tutors). As a result of that tensions de-

veloped and tutors worked overtime even after the end of the sessions to accommo-

date these needs. When even that was not enough tutoring continued via email and

even phone calls. Using the observation sheet under these conditions proved to be

impossible. The only compromise that seemed to be sensible at the time was to let the

session end and then spend some time to reflect, to recollect the issues of interest and

record them a posteriori. Sometimes if an issue was stimulating enough there were

discussions among the tutors to determine a generally acceptable opinion. Using the

observation sheet like that was suboptimal as it was not following the plan but in the

end this gave us enough insight about the points of interest.

One of the things that emerged from the process and somewhat changed the record-

ing routine was the actual code produced by the students. After the first couple of

sessions of the first course we realised that this may be a valuable source of informa-

tion and we decided to record it as well. Instinctively the tutors started using the box

under section 5 for it but after a while we decided to introduce a structural change in

the sheet to make this more official and semantically correct. Until that time section 6

was what is now shown as section 7 in the present version of the sheet. It was quite

interesting to see how divergent thinking led students to develop solutions we had

not even imagined ourselves and to also think of the potential misconceptions these

3.2 Educational Ethnographic Study 131

may be related to. If the type of issue was already known we just agreed to write a

descriptive title of the problem, otherwise a snippet of code along with some textual

or diagrammatic indicators for the interesting parts were given. This component was

then used to inform the concept inventory of common student initial misconceptions

presented in 3.3.

Perhaps the most valuable learning from this process was the realisation that it

is immensely more difficult for an observer to observe oneself than to observe oth-

ers. There are certain things that require very careful and unbiased introspection to

reveal themselves like the reasons and justification of certain behaviours. Spending

consistently more time with one student and neglecting another is a typical example

of something worth recording as this may not be related to the actual need of help re-

quired by these students. To uncover the true reasons behind this and try to see how

this might affect the learning process is a very difficult task.

3.2.2 Managing Bias and Subjectivity

The observation areas considered during the data collection process are the following:

1. General info

2. Learners and the learning process

(a) Understand how learners approach learning

(b) Understand how learners solve their problems

3. Teachers and the teaching process

(a) Understand processes

(b) Identify flaws and weaknesses

(c) Recognise good practices

4. Verify findings in the literature

3.2 Educational Ethnographic Study 132

5. Further understanding of the area of interest

6. Student code

7. Identify potential opportunities for improvement and innovation

The data recordings expected in those sections are in almost all the cases qualitative.

The only two exceptions are in section 1 where there are fields about student and tutor

participation and in section 4 where findings from the literature review that preceded

require confirmation. In both cases the expectation was to have a single quantitative

value per field per session. In the remaining sections the expectation was to have

potentially multiple qualitative recordings per field per session.

The fields in section 1 were used to monitor the tutor:student ratio in the sessions.

The fields in section 4 required a boolean value indicating the subjective opinion of

the observer for each statement - whether they agree with it or not given their recent

experience from the session.

As mentioned in section 3.2.1 the completion of the sheet did not go according to

plan. This was partially justified due to circumstances that we did not foresee during

the design of the sheet like the very uneven distribution of workload across the dif-

ferent stages of the courses. One thing that made the situation worse was the ratio

between tutors and students. The plan for this ratio was to be around

3 : 42 − 3 : 44 ≈ 14

for the Java courses but in reality most of the time it was 2:44=22. These courses were

quite intensive and a single tutor handling 22 people and observing at the same time

was not a trivial task. We realised soon enough that a realistic approach for this was to

let ourselves do the teaching first and reflect later. This worked quite well as long as

we were disciplined and didn’t leave things for the next day.

The initial plan for the parsing of the data was to be done once a week but this was

3.2 Educational Ethnographic Study 133

not effective. Even if tutors are very conscientious, consistent and they try to articulate

observations carefully there is always a chance to not use the right wording to express

something. This is especially true in multicultural and multilingual environments like

courses taken by international students. In many cases the only way to ensure that

the data reflects the intended meaning is to negotiate or verify this meaning with the

observer. The longer the time between observation and verification the more likely

it is for important information to be lost, overlooked or even worse, misinterpreted.

When the information is recent and all the contextual details are fresh one can have a

much more complete picture of the observation and draw well informed conclusions

about causes, implications, consequences etc. For most of the observation sheets pars-

ing was done the very next day if not after the session. This way the chance to obtain

invalid or incomplete information due to miscommunication or misinterpretation was

minimised. The primary objective at the stage of parsing was to determine the true

meaning of the observation and retain as much of the contextual information as possi-

ble in the form of sidenotes. We did not perform any further processing on the data at

that stage. The data was inserted into plain text files in a sequence. We used distinct

files for each (sub)section of the observation sheet.

3.2.3 Thematic Analysis

After the observations were finished the data collected was processed to determine

the main themes. The derivation of themes was done starting with a 1:1 mapping

between observation areas and themes and through analysis of the data we tried to

determine the components to change. Analysis entails regrouping of the data items

and identification of relationships and patterns. That gave us new information and

insight that led either to rearranging, merging, expanding or even defining new themes

and thematic sections. The resulting themes follow:

1. Theme: Literature verification

3.2 Educational Ethnographic Study 134

2. Theme: Learners and the learning process

(a) Learner attitude

(b) Learner emotional state

(c) Learner behaviour

(d) Learning approaches

3. Theme: Teachers and the teaching process

(a) Understand processes

(b) Flaws and weaknesses

(c) Good practices

4. Theme: Potential opportunities for improvement, innovation

5. Theme: Coding issues

(a) Task dependent

(b) Task independent

Summarization of the data collected under each theme gave us insight that influenced

directions for further research. The findings in theme No 5 for example informed the

work presented in section 3.3. The learnings from theme No1 combined with learnings

in other themes gave a very strong verification of the research findings from previous

steps. A lot of useful information was revealed and articulated and that helped us in

the steps that followed. We quote some indicative examples:

Learner Attitudes

Learners usually have the preconception that the more help they receive the better for

their learning. If they receive little help there is a chance to feel neglected or to think

3.2 Educational Ethnographic Study 135

that the tutor is not knowledgeable, motivated or conscientious enough to provide ad-

equate support. The truth of course is that help should be just enough so that they can

carry on with the learning task without interruptions. It is useful to know about this

attitude in advance and handle the situation appropriately.

Learner emotional state

We observed that learners become frustrated when they think they run out of options

and the code still refuses to cooperate. The emotional state can play a significant role

in their learning and the learning of others when working in a group.

Learner behaviour

We observed that in every cohort there are some people that are excessively talkable

and sociable. These are typically extrovert students that have no resistance to monopo-

lise tutors’ time given every opportunity, even if they don’t really need the help. There

are also people that behave in exactly the opposite way. This is even worse because in

this case the problem does not manifest itself and requires intuition and empathy by

tutors to uncover.

Learning approaches

Some students when they stumble on a problem they think that the solution is readily

available somewhere and they try to solve it by trial and error using answers that they

may not even understand. Other students try to understand the problem and once

they have a possible solution they try it out. If this is successful they realise they learnt

something and they move on to the next challenge.

Understand processes

Teaching and learning takes place under very pressing conditions. The material is sub-

stantial, time and resources are limited and the aim is to have completed everything

3.2 Educational Ethnographic Study 136

before the end of the session in order to be ready for the following one that might be

the very next day.

Flaws, Weaknesses

Time is limited and tutors give short answers instead of thorough ones in order to sup-

port more students. Support may be biased and given in different ways to different

people. Support may not be personalised enough due to lack of preparation and pre-

vious knowledge. Support time may not be evenly distributed among the students

that require it. Students are given a lot of material to process under pressing circum-

stances as there is limited time and resources available. The work must be completed in

time because the next session might be the very next day. Under these circumstances,

tutoring takes place at a really hectic pace and is done in a reactive as opposed to a

proactive fashion. In other words tutors end up chasing problems instead of anticipat-

ing and dealing with them in an orderly manner.

Good practices

Tutors that managed to monitor the progression of some students were able to provide

more targeted support and see better results in their performance.

Potential opportunities

If there is a way to recall previous experiences and knowledge about student engage-

ment and performance, support decisions will be much more well educated and ap-

propriately targeted. If help is more available and better prioritised there will be fewer

interruptions and less frustration.

3.3 Common Student Misconceptions in Elementary Programming 137

Table 3.1: Procedural Programming Concepts
Procedural Programming Concepts
ID Topic D

1 PA1 Parameters/Arguments I
2 PA2 Parameters/Arguments II
3 PA3 Parameters/Arguments III
4 PROC Procedures/Functions/Methods
5 TYP Types *
6 BOOL Boolean Logic
7 COND Conditionals *
8 SVS Syntax vs Semantics
9 AS Assignment Statements *
10 SCO Scope

3.3 Common Student Misconceptions in Elementary Program-

ming

One of the main findings of the previous step was the conclusion that the students

have common initial misconceptions in elementary programming. A by-product of

the analysis and one with a very significant value to us was the misconceptions them-

selves. Although, this was not one of the initial objectives, it caught our attention

early enough and we systematically recorded and categorised programming issues in

terms of misconceptions. In that respect the process followed is similar to Grounded

Theory (Strauss & Corbin 1997). We intentionally did not use findings in the liter-

ature throughout this process because we did not want to constrain our perception

and therefore influence the results. Our findings were then compared with existing

classifications of already recognised misconceptions in the literature.

After the data was collected we classified it using the Concept Inventory (CI) pre-

sented in Goldman et al. (2008). According to the results, the following categories

were applicable in our sample 3.1, 3.2:

We did not expect our sample to exhaustively cover all the concepts identified by

the Delphi experts in Goldman et al. (2008). The concepts covered were 16 out of 32

3.3 Common Student Misconceptions in Elementary Programming 138

Table 3.2: Other Concepts
Other Concepts

ID Topic D
Object Oriented Concepts

1 PVR Primitive and Ref Variables *
Algorithmic Design Concepts

1 IT2 Iteration/Loops II *
2 IT3 Iteration/Loops III
3 IT4 Iteration/Loops IV
4 IT5 Iteration/Loops V
5 REC Recursion
6 AR1 Arrays I *
7 AR2 Arrays II
8 AR3 Arrays III

in the CI (50%). The 3 concepts in the grey area were not part of the original CI pro-

posed in Goldman et al. (2008). After all the actual misconceptions that emerge in a

course may depend on many factors like the students’ background, the language and

programming paradigm used, the material covered, the intended learning outcomes

and so on. Assuming that these things remain fixed for our courses, the aim was to

identify what is the actual need of our students in terms of help. The fact that the

concepts identified cover a large part of the Delphi CI and overlap at a proportion of

60% with the student misconceptions identified in Kaczmarczyk et al. (2010) is an in-

dication that the elicitation process was effective. The asterisk under the ’D’ column

in the above table indicates that the same concept was also found in Kaczmarczyk

et al. (2010). There were no object-oriented misconceptions identified (apart from one)

since JavaScript is a prototype object-based (class-less) language and the related mis-

conceptions would not be relevant. Furthermore, most of the difficult aspects of object

oriented development, like inheritance, were not part of the JavaScript introductory

course. Also, it was probably very difficult for the program design concepts to reveal

themselves in the code, at least in this initial stage. There have been recorded incidents

in the lab regarding design-related concepts but there was no usable code involved.

3.3 Common Student Misconceptions in Elementary Programming 139

Therefore, this category was excluded from the set.

3.3.1 Importance of Student Misconceptions

Students are unique individuals with their own distinct particularities. They may have

different educational, social, cultural backgrounds, different aspirations, preferences,

skills and aptitudes. However, always, and regardless of subject, they tend to expe-

rience common problems during the learning process and especially during the early

stages of it. This increases tutor workload substantially during those phases. Tutors

learn these common student misconceptions through experience and they gradually

become more ready to deal with those problems since they know what to anticipate

with future cohorts. Undoubtedly, this is one of the skills that are perceived as being

essential for competent teachers.

Of course, the actual misconceptions that emerge in a course may depend on many

factors like the background of the particular student cohort, the language and pro-

gramming paradigm used, the material covered, the teaching approach used, the in-

tended learning outcomes, the level of support provided and so on. All of these factors

may influence, to an extent the misconceptions that emerge but there is always a core

body of concepts that the majority of the students have problems with.

These misconceptions are an essential tool in teaching. A teacher equipped with

this knowledge is better prepared to deal with students’ problems. Teaching can be

more relevant, focused and adaptable to cover what students really need. Also, hav-

ing this knowledge makes teaching more efficient, concise and relevant in the sense

that similar problems are dealt with in the same way. Teachers don’t have to waste

precious time to explore the problem or improvise. They have a well thought plan as

to how this needs to be approached and they execute it. Having this part solved, they

only need to see how to adjust their teaching to the particular needs and wants of indi-

vidual students. This is evidently an essential component of teaching any subject and

3.3 Common Student Misconceptions in Elementary Programming 140

computer programming is no exception.

3.4 Understanding Challenges by Developing a Prototype 141

3.4 Understanding Challenges by Developing a Prototype

According to the results of the previous step we established that there are two types

of support an automated system could provide. Observations revealed the common

student misconceptions and the emerging need of providing support for them. Since

this type of support is not related to specific problems or tasks given to students we

could name it Task Independent (TI) support and distinquish it from its complement

which is Task Dependent (TD) support. Another important fact is that, according to the

literature, there is no system that provides TI support specifically. This is an ambiguous

outcome in the sense that it may be an indication that there is no actual need for it. So,

that is something that remains to be verified. One way to do that is to create a system

and put it to test with real students (Henson & Knezek 1991, Wong 1993). That, as

an objective, conforms with our need, at that stage, to see what the methodological,

architectural and technical difficulties are in developing such a system from scratch.

Therefore, the natural next step is to try to develop an exploratory system that offers

free exploration and provides TI support on demand. The exact objectives for this

follow:

• Study the technical feasibility for this type of support

• Discover and realise requirements for building such a system

• Explore opportunities to make a lean design that saves development time and

effort

• See if there is a real need for it in an authentic educational context

The outcome of this process is a system called FLIP Learning that allows free explo-

ration and offers automated TI support and adaptability. The design and development

process of this system led to the following learnings:

3.4 Understanding Challenges by Developing a Prototype 142

• The web browser is the de facto development platform for educational software

and that is the platform used for FLIP Learning.

• Development of FLIP was technically feasible but not easy.

• An architectural framework (layered architecture) that can be used as a roadmap

for the development of automated tutors was designed.

• The need to consider different parts of the architecture as distinct components

was identified. This relates to the need for componentization and consequently

interoperability between them.

• An opportunity to reuse existing functionality and make the development easier

was identified and exploited (code quality tools). This relates to the need for

reusability.

• There is an abundance of web components (widgets) that are freely available on

the web and can be utilised for educational purposes. This, again, relates to the

need for reusability.

• Reusability of existing functionality implies integration and interoperability. There

are many different approaches and technical challenges to consider.

Throughout this process we developed a more concrete understanding of what is

needed to develop such a system and we realised the technical challenges for reusabil-

ity and interoperability. We designed an architectural framework that is suitable for

web-based automated tutors in programming and discovered opportunities for mak-

ing this process less expensive. The materialised system derived from this process can

now be used to verify the need for TI support.

3.5 Developing FLIP 143

3.5 Developing FLIP

This part starts with the premise that if common misconceptions are known and the

teaching techniques to deal with them are also known then a software component spe-

cialising in those problems can be developed. This component can be integrated with

automated tutors to give them the ability to deal with student problems in any context

and regardless of the given learning task. Common student misconceptions represent

a significant proportion of teaching, especially in the early stages and thus shifting this

component to automated tutoring is important and adds value to the system. Auto-

mated tutors need to know what teachers know when they deal with common student

misconceptions and for that we need a machine processable body of knowledge that

encompasses all these misconceptions as well as the teaching decisions / actions to ad-

dress them. The following sections describe a simple method to derive a usable com-

ponent that enhances the teaching ability of automated tutors. This process involves

the derivation of a concept inventory (CI) that captures these misconceptions, the de-

sign of a visual rule editor that can simplify the production of rules and the design of

a simple reasoning mechanism that can process those rules to derive actionable deci-

sions in teaching. There is an actual implementation of the rule editor and the reasoner

that can be used to showcase the capability. Both components can easily be integrated

with learning platforms and reused to enhance any customisable programming tutor

on the web. That can simplify a lot the authoring process of such tutors.

3.5.1 Knowledge Elicitation

In practical terms student misconceptions in programming correspond to certain for-

mations of source code. These formations (patterns) could effectively be represented

as sets of characteristics in the form of logical expressions. The first step in the process

of modelling is to identify the patterns that indicate such misconceptions. As stated be-

fore, what we need to cover is common misconceptions in elementary programming. It

3.5 Developing FLIP 144

is assumed that this knowledge covers the basic concepts in an introductory program-

ming course and does not fully cover the complexities of the programming language

used or the more advanced object-oriented or other features of it. The intention is to

capture only the misconceptions that correspond to basic language use and elemen-

tary algorithmic thinking. The concepts elicitation for the construction of the CI was

a derivative of a wider ethnographic research that took place in computer laboratories

used by University students for practical training in programming.

3.5.2 Knowledge Representation

For this part a rule-based representation technique (Newell 1962, Buchanan & Duda

1983, Duda & Shortliffe 1983) was used. This technique is efficient, easily imple-

mentable and particularly suited for problem-solving contexts such as programming.

It involves production rules containing if-then or situation-action pairs.

The following are typical rule components:

• Initial state

• Goal state

• Legal operators, i.e. things you are allowed to do

• Operator restrictions, i.e. factors which constrain the application of operators

In a rule-based system, much of the knowledge is represented as rules, that is, as

conditional sentences relating statements of facts with one another to identify the ini-

tial state. There is also the consequent part that states what action must be taken in case

the rule is executed. The assumption in this case is that rules are generated by experts

and form the knowledge base of a system that can automate certain tasks based on this

knowledge. In the domain of programming the conditional part of these rules corre-

sponds to one or more characteristics identified in the code. These are the facts that

3.5 Developing FLIP 145

show the current student understanding of the task. This is where the CI comes into

play when developing an intelligent tutoring system (ITS) for programming. Experts

can translate the concepts in the CI into the conditional part of those rules. The conse-

quent part of the rules corresponds to the action that needs to take place in case they

fire. There is no definitive guide as to what this part must include. This part mostly

reflects the educational side of the process and more specifically the teaching approach

followed. In an ITS this could take the form of cues, references to the documentation,

visual indicators in the code, code tracing and code refactoring. For this part a visual

rule definition language was implemented and made available through a web-based

editor - see figure 3.1. The name we use for it is rule editor (RE). Experts can utilise the

RE to synthesise rules and then inject them into a system that is able to process them.

Typically, the processing engine for such rules is a reasoner.

Figure 3.1: The Rule Editor

3.5 Developing FLIP 146

As shown in figure 3.1, this tool has the following features:

• It gives a unique identifier to the rule along with the misconception it associates

with from the corresponding CI.

• It also gives a description of the (practical) issue that corresponds to the concept

along with the recommended solution for it. The issue and the solution can both

be thought of as parts of the consequent.

• The conditional part comprises statements that identify certain properties in the

code and statements that combine these properties together using operators. This

part shows the current student understanding.

• The consequent, apart from the issue and the solution can include references that

explain the problem in more detail (like documentation) and refactoring direc-

tives.

• The rule, as a whole, can then be exported in the form of a JSON object and

inserted into a knowledge base.

The above rule represents a common misconception that typically reveals itself when

novice programmers declare variables without considering scope constraints. This is

a common problem in any language but it becomes especially evident with languages

that support variables with function scope. A particular example is Javascript that

supports the declaration of variables with the keyword var. These variables confuse

novice programmers as they can refer to them even outside the block they are declared

in without any issues. Let’s consider the following example:

var x = [2,5,1,8,8,9];

for(var i = 0; i <= 5; i++)

{

var sum = 0;

3.5 Developing FLIP 147

sum += x[i];

}

alert(sum);

This code would produce the facts given in figure 3.2 regarding student understand-

ing.

Based on this information an expert could express a rule that identifies the issue and

offers some form of support to the learner. A flow diagram that could help in this

process is given in figure 3.3.

This diagram reflects the rule we composed with the rule editor earlier and it reads as

follows:

1. variable v1 (variable in the rule) is a var (var is variable in the code)

2. v1 is not null (if there is no v1 we stop the process)

3. variable v2 is a block (the area enclosed with curly braces in the code)

4. v2 is not null (if there is no v2 we stop the process)

5. variable v3 is the location of v1 (the location the variable that corresponds to v1

in the code)

6. variable v4 is the location of v2 (the location the variable that corresponds to v2

in the code)

7. v4 contains v3 (if the block does not contain the variable we stop the process)

8. variable v5 is a structure (the for loop in the code)

9. variable v6 is something that relates to v5 (something that relates to the for loop)

10. v6 is the same as v2 (the block identified earlier relates to the for loop)

11. variable v7 is the location of v5 (the location of the for loop)

3.5 Developing FLIP 148

This is the initial state of the rule that identifies the problem. The consequent comprises

the parts shown in figure 3.4:

It is up to the learning environment to decide on how to utilise the consequent.

Ideally these three components should be used as different levels of adaptive support

based on some criterion. The refactoring component is a direct instruction on how to

resolve the problem in an automated fashion. The hosting system should be able to

utilise this information and refactor the code by changing the location of variable v1

(v3 is the location of v1 in the code) and place it just before the location of v5 (v7 is the

location of v5 - the for loop). More examples like the above are presented in Appendix

A.

3.5.3 Knowledge Processing

The processing engine for the above rules was designed and implemented as a rule-

based expert system. This is the component that handles student misconceptions that

need to be resolved. This component can help the host learning environment to inter-

act with the student when a misconception is identified and support is requested. It

takes the role of the teacher and repetitively exchanges information with the student in

order to assess the current situation, identify the problems and provide individualised

support whenever possible. An abstract view of this component is given in figure 3.5.

This system accepts two inputs: rules (misconceptions) and facts (current student

understanding). Rules are inserted by experts and form the knowledge base of the

system. The conditional part of these rules corresponds to one or more characteristics

identified in the code. The consequent part of the rules corresponds to the action that

needs to take place in case they fire. The rule formation takes place in the Knowledge

Acquisition Component (KAC) and then the resulting structures are stored perma-

nently in the Knowledge Base (KB). Experts can utilise the RE that is part of the User

Interface (UI) to synthesise rules and instruct the KAC on how these rules should be

3.5 Developing FLIP 149

constructed.

Facts are inserted dynamically into the system as the learners insert code into the

editor. The fact formation takes place in the Fact Acquisition Component (FAC). The

insertion process in this case may not be direct. Users may initiate this by selecting a

part of code in the editor and ask for help or the system can monitor student activity

and initiate the process implicitly. The reasoner invokes FAC to generate the facts. The

facts are objects that are formed as a result of static code analysis. The selected code is

parsed and analysed and the resulting constructs (if any) depict the code status. The

patterns identified in the code are effectively transformed into a vector of characteris-

tics. These characteristics take the form of atomic formulae (variable/predicate pairs)

and are submitted into the Working Memory (WM) as facts.

If there are facts that satisfy the conditional part of one or more rules, then these

rules get selected by the Rule Activation Component (RAC) and placed in the Agenda

(A). If there are more than one rules in A then the system has to select one. One way

to do this is to select the rule that corresponds to the simplest concept in the list. That

means the one with the lower number of references to characteristics of the code. Firing

the rule entails the execution of its consequent. This can be either some form of output

to the user through the Student Support Component (SSC) or the creation of a new

fact. In this case the fact is inserted into WM directly by A. The process carries on until

there is no active rule to be processed or in other words until there is no misconception

to be resolved.

As teaching takes place, the system provides feedback to the user in the form of

help and/or questions. If the user is asked a question by the reasoner, then the answer

may result in a direct formation of a fact through FAC. Feedback may also be given in

the form of justifications as to how the decisions have been made by the reasoner. This

service is provided by the Explanation Component (EC).

3.5 Developing FLIP 150

3.5.4 The PoC

FLIP Learning stands for Flexible, Intelligent and Personalised Learning. FLIP is an

exploratory learning environment designed for teaching introductory programming

to University students through inquiry-based scenarios and open-ended ill-defined

problems (Savery 2006). The main design objective in FLIP is to enable students to

work on tasks continuously and learn without interruptions. The idea is to provide

timely and individualised support on any issue that hinder the learning cycles even

if the task the student is working on is not known. This is based on the premise that

laboratory sessions are very busy especially during the early stages of learning. There

is limited time and human support in those sessions and that combined with the dif-

ficulty that tutors have to prioritise properly and make bias-free and well-informed

decisions about the type and level of support needed might have a negative impact on

the effectiveness of the process.

Learning in a computer laboratory is the sequence of actions that take place during

a learning cycle (Kolb et al. 1984, Konak et al. 2014). There is a pattern that students

follow when they engage with a task. The sequence of actions they execute follows a

cyclical process. In every round students attempt to code something that brings them

closer to the completion of the task at hand. Sometimes this is interrupted by the in-

herent inability of the student to move forward. That can be a lack of knowledge or

a misconception. In some cases the only way to overcome the problem is to receive

enough and relevant help in a timely fashion. Typically, the tutor intervenes and pro-

vides the help needed so that the student can move on and complete the cycle. The

student conceptualises the issue and then confirms the validity of the new knowledge

through active experimentation. In busy laboratories these interruptions may be very

frequent and support may not be enough. If these cycles get interrupted, then learning

gets interrupted and if support is not adequate or it cannot be provided timely, then

inevitably the learning process becomes less effective.

3.5 Developing FLIP 151

FLIP is designed to overcome these problems by moving a lot of the workload from

human tutors to an intelligent agent that is able to provide individualised support on

demand. Support is task-independent (TI) in the sense that it may not be related to the

task the students work on. FLIP is equipped with a knowledge base that corresponds

to the CI presented above and a reasoner designed according to the scheme presented

in 3.5.3. Both are loosely coupled pluggable components that may easily be reused in

any other learning system. Support is also adaptive. There is a component that en-

capsulates a simple user model that monitors the misconceptions encountered so far

as well as the level of support requested. Initially, the level of support provided for a

misconception is as little as possible. If support is not enough, subsequent iterations

will provide more detail and materials. Support includes simple cues and suggestions,

references to documentation, visualisations using code tracing and direct coding sug-

gestions using refactoring in the editor. If the student has repeatedly used the reasoner

for the same misconception at the highest level of support then the system generates an

event that provokes the intervention of a human tutor to resolve the issue. The screen-

shot given in figure 3.6 shows a number of misconceptions identified by the reasoner.

The student has selected the one that seems to be more relevant to the problem and

an explanation is given. The explanation is not enough and the user requests more

help. A reference to the relevant part in the documentation is provided - see figure 3.7.

More help is requested and a tutorial is given that includes a video that describes how

the coding should be done - see figure 3.8. If this is not enough and more support is

requested the solution is shown - see figure 3.9. The next level of support is a code

tracing visualisation that shows what is happening in the computer’s memory as the

code gets executed - see figure 3.10. Finally, the last level of support is code refactor-

ing - see figure 3.11. All these levels of support can be changed by using the RE and

updating the particular rule.

3.5 Developing FLIP 152

Figure 3.2: Facts

3.5 Developing FLIP 153

Figure 3.3: Sample Rule

3.5 Developing FLIP 154

Figure 3.4: The Consequent

Figure 3.5: The Reasoner Architecture

3.5 Developing FLIP 155

Figure 3.6: Misconceptions identified by FLIP

Figure 3.7: Initial Support

3.5 Developing FLIP 156

Figure 3.8: Third Level of Support

Figure 3.9: Fourth Level of Support

3.5 Developing FLIP 157

Figure 3.10: Fifth Level of Support

Figure 3.11: Sixth Level of Support

3.6 An Important Outcome: The Intelligent Tutor Layered Architecture 158

3.6 An Important Outcome: The Intelligent Tutor Layered Ar-

chitecture

Nowadays the web browser has become the de facto target platform for software ap-

plications and educational applications is no exception. This inevitably influences the

way we design those systems. One of the first things we need to consider is the fact

that the machine language of the browser is JavaScript. Any other language developed

to work on a browser must be ultimately executed by a JavaScript engine. Teaching a

programming language in this context unavoidably is affected by the particularities of

this language and its runtime environment. Students have to execute code in this en-

vironment during the learning process and get feedback that will help them complete

their exercises. The nature and level of feedback as well as the time that gets generated

highly depends on how this environment operates. Server-side approaches that may

utilise other runtime environments introduce latency and don’t scale well. Therefore

we don’t consider them as viable approaches. JavaScript is an interpreted language. As

such it does not provide messages that you would normally get from a compiler about

syntax problems. You expect to receive such messages at run time. It is self-evident

that the sooner a coding problem becomes known to the programmer the better. This

way the problems are more evenly distributed in time and the programmer does not

have to face all of them at the end of the development cycle. The proposed architecture

for the development of intelligent tutors in this context comprises six layers. The first

five layers were used for the development of FLIP Learning.

Layer 1 (L1) : Syntax Checking A system that teaches programming typically comes

with a code editor because students need the means to insert code into it. That is why

such systems, normally, look like specialised integrated development environments

(IDEs). Depending on the level of sophistication of the system, its editor might be

equipped with features that help in coding. In our case this also means help in the

3.6 An Important Outcome: The Intelligent Tutor Layered Architecture 159

learning process. Therefore, in an automated tutor, the first layer of support is typi-

cally implemented within the code editor. Modern code editors can be thought of as

components that may be integrated with learning platforms to offer a service. Typical

code editors natively support syntax checking based on other web components like

code quality tools. These tools perform static code analysis and recognise the structure

of the code and the individual language constructs used. This can then be used for

automated code indentation, highlighting and syntax checking. All of these can take

place as the learner types in the code. Ideally, it should be possible for these features

to be switched on and off to accommodate different teaching approaches and learning

scenarios.

Layer 2 (L2) : Code Quality Checking The level of support implemented in the ed-

itor, normally cannot go beyond syntax checking. In other words, the editor may be

able to do what a compiler does in a compiled language. Highlighting syntax errors is

essential but not enough and that is because syntax errors may not be related to poten-

tial student misconceptions. For this a different component must be used. The second

layer should be implemented by a separate component that performs full code quality

analysis. This can be a similar component to the one used in the code editor but in this

case it is used directly and its API is not hidden within the editor. Direct access entails

more options in terms of configurability. Typically, in this layer we are looking to cap-

ture cases where there are suspicious patterns in the code that might indicate student

misconceptions. The assumption here is that the code in terms of syntax is valid and

we may not have logical errors either, but the code indicates that the student has im-

plemented something without following good programming practices. An example of

that could be a variable declaration that indicates that the student has not understood

the notion of variable scope. The misconceptions captured in this layer correspond to

a proper subset of the CI presented in 3.3. This layer corresponds to a preprocessing

phase that takes place before execution. Problems identified at that stage can be ig-

3.6 An Important Outcome: The Intelligent Tutor Layered Architecture 160

nored by the learner as they will not prevent execution. The level of support that is

possible at that stage includes cues, references to documentation, code segmentation,

visualisations and code refactoring.

Layer 3 (L3) : Beyond Code Quality Checking The third layer is expected to cover

all the cases that a typical code quality tool cannot identify. This, again, must be im-

plemented as a separate component or a composition of components. At this level we

must go deeper and utilise tools that can parse student code, perform static analysis

on it and transform it into an equivalent representation that gives us all the structural

and language properties of the code in a form that can be processable by reasoners. We

need to define rules that cover all the remaining cases in the CI that the previous layer

fails to detect. As indicated above this component is expected to respond to known

student misconceptions / problems that are not necessarily related to bad coding prac-

tices and therefore may not be detectable by code-quality control tools. Examples of

such misconceptions are off-by-one errors when using arrays in iterative loops, good

use of variable types, implicit type conversions and unnecessary code repetition.

Layer 4 (L4) : Task-Specific Problem Checking The assumption in the two previous

layers is that the student is given support on known common misconceptions that have

to do with the understanding of language rules and algorithmic thinking in general.

This is what the CI covers, but students in practical sessions may be given certain tasks

to complete that relate to some project or assignment. This imposes an additional ob-

jective that is obviously not covered by layers 2 and 3. In this case support must be

specific to the requirements of the task or as we say it is task dependent (TD). Respec-

tively, we can think of all the cases covered by the CI as task independent (TI) support.

This level of support is more difficult to conceptualise and implement. There is nothing

static or known in advance and it is difficult to anticipate certain student behaviours,

especially if the level of freedom in the working environment is relatively high which

3.6 An Important Outcome: The Intelligent Tutor Layered Architecture 161

is typically the case in exploratory learning environments. In this case we need to start

from the actual requirements of the given task. The requirements typically may cover

the following two aspects of a problem: The task specifies what needs to be achieved

and it may also specify how the solution must be implemented. So, it is the the what

and the how that we need to provide support for. In inquiry-based learning scenarios

the latter might not be very restrictive. Nevertheless, we need to have a process in

place through which adequate support may be provided for both.

The what is something that indicates our expectation about what the target situa-

tion should be. This is normally reflected by the outcome of the whole process. That is

the output generated by executing the code and the artifacts created in the learning en-

vironment as a result of that. The how reflects the decisions the student made through-

out this process as to how to approach the problem. In terms of code this reflects certain

algorithms that might have to be used so that the resulting system behaves or performs

as expected. For that part we may have in our disposal indicators of student activity

that reflect the strategy the student followed in order to get to this point. All of this

information needs to be translated into a form that provides us with a representative

view of the system at its final stage so that we can assess both the implementation de-

tails and the outcome. The outcome typically can be assessed through dynamic code

analysis and testing. Dynamic code analysis presupposes that the code gets compiled

and executed in a runtime environment. That can provide indicators about the actual

memory footprint and processing power needed to execute the code. If responsive-

ness and overall performance are requirements then these indicators could give some

feedback about how well those requirements have been addressed. Dynamic testing

could be used to assess the correctness of the output in terms of data. The system is

given data as input and examines the resulting data after the processing takes place.

This component can also examine the artifacts that get generated as a result of the

processing in the learning environment. That could be a geometrical shape and all of

its characteristics in an environment like Geogebra. This component typically checks

3.6 An Important Outcome: The Intelligent Tutor Layered Architecture 162

flaws in the what part of the requirements. The how may be assessed using static code

analysis and machine learning or other techniques. Static code analysis can provide

us with a representation of the code that is machine processable and shows whether

certain programming patterns have been used. Machine learning techniques could be

used to process a series of programs in order to learn how to identify those patterns

and then use the resulting models to tell us, with some degree of confidence, whether

new code is similar to the pattern we expect. If, for example, there is a requirement that

says that the bubble sort algorithm should be used in a solution, then this component

may be able to provide the student with feedback that shows the extent to which the

approach followed is in line with the given requirements.

Layer 5 (L5) : Adaptability Having the means to provide automated support in teach-

ing may not be enough if this support does not take into account the individual char-

acteristics of students. Not all students learn in the same way. Individual students

experience different problems during the learning process and deal with those prob-

lems in different ways depending on their idiosyncrasies and abilities. Each student

is a different case, and the things that differentiate them from each other can signif-

icantly influence the learning process. Students expect individualised support that

reflects their particular approaches and practices. Tutors, on the other hand, are ex-

pected to make bias-free and well-informed decisions about the type and level of sup-

port needed in every case and respond accordingly. The latter presupposes that tutors

have a deep knowledge of students’ profiles and the ability to analyse previous activity

on the spot in order to provide suitable and adequate support in every case. Support

in this context is a multi-faceted and complex task that requires a lot of preparation,

expertise, time and resources. Decisions must be based on a multitude of criteria and

a considerable amount of data about students. Human tutors, regardless of expertise,

have a difficulty to recall such information and make these decisions on the spot with

accuracy. Failing to provide individualised support to students can be a serious draw-

3.6 An Important Outcome: The Intelligent Tutor Layered Architecture 163

back as it may exclude some students from the learning process. In multicultural and

diverse environments this may be especially problematic.

Automated tutoring can be made adaptable based on a multitude of criteria. The fol-

lowing is by no means an exhaustive list:

• Learner profile (assuming profiling techniques have been used and there is a

learner model used to represent students in the system). This might be needs,

aspirations, preferences, competencies, interests, knowledge, priorities, social-

cultural background, gender, age, profession, skills, hobbies, values and atti-

tudes. It may also be personality and behavioral traits.

• Learner past activity. This may be the types of actions the learner decided to take

at certain points in time in their attempts to deal with tasks.

• Frequency and intensity of support already provided. There are students that

tend to ask for more support than others and that may reflect their attitude and

not a real need for support. There are also students that feel intimidated and tend

to ask for less support that whan they actually need. The system should be able

to detect those behaviours and prioritise accordingly.

• Level of support already provided. If support has already been provided to a

certain level and more support is required, the system should be able to adjust

the level of help to accommodate the learning need.

• Time the support is requested. There are cases where there is a time limit beyond

which the learners are not allowed to continue. As the task progresses towards

completion the system might have to adjust the level of support to enable the

students finish in time. There are also cases where different types of support

are adequate or suitable to different phases of the learning process. Time-related

adjustments should be possible in an adaptive system.

3.6 An Important Outcome: The Intelligent Tutor Layered Architecture 164

Adaptable support is an essential feature of ITSs. The intention must be to provide the

students with individualised help to the greatest possible extent so that they can safely

diagnose their problems, understand their misconceptions and consequently embed

the new concepts into their knowledge structures.

Layer 6 (L6) : Analytics

Learning analytics modules have become essential features of ITSs. The general aim

of learning analytics is to provide learners and tutors with formative and summative

feedback about the learning process. At that level of abstraction this layer may be

confused with the intelligent support presented in layers 1-4. The difference is crucial

though and it lies primarily in the intention. Intelligent support help aims to detect

potential misconceptions and help students to overcome them. Analytics, on the other

hand, are update reports that aim to increase student awareness about their current

state in relation to what is required/expected by the learning environment. Students

are supposed to utilise this information to continuously align themselves with the ex-

pectations in terms of how the environment should be utilised and the learning objec-

tives that have been set.

Analytics may also be implemented for teachers and learning designers. Teachers

can utilise formative feedback to make better and more well-informed decisions about

how to intervene during the learning process. They can also utilise summative feed-

back to see what the students achieved, their issues during the process and prepare

themselves accordingly for subsequent sessions. Learning designers are primarily in-

terested in summative feedback. The intention in this case is to analyse student activity

and system utilisation in relation to the learning objectives and performance in order

to revisit the design and make evidence-based decisions on how to improve it. Areas

of interest in these analyses may be learner trajectories, platform usage, volume and

intensity of learning environment usage. In exploratory learning environments where

constructivist approaches are highly encouraged it may also be expected to measure

3.6 An Important Outcome: The Intelligent Tutor Layered Architecture 165

the level of creativity the students exhibit.

Another aspect of this layer that is worth mentioning is the possibility to utilise

intelligent support to enhance the analytical capability of the analyst. By analyst here

we mean learner, tutor or designer. Information presented by analytics dashboards can

be overwhelming and that makes interpretation of the results difficult, time consuming

and possibly less actionable and effective. Components that help the analyst focus on

the information of interest and recommendations about appropriate actions can reduce

the cognitive load needed for the analyses and result in a more effective utilisation of

the system.

3.7 Usability Testing 166

3.7 Usability Testing

At that stage FLIP is a system that is readily available for testing and experimentation.

The next step is to conduct a usability testing (Barnum, 2020) to verify hypotheses

regarding the need for TI support. The exact objectives for this part follow:

• Test FLIP with real users and verify that it is usable

• Verify that there is an actual need for TI support in programming

• Verify that users are willing to take advantage of TI support provided in auto-

mated manner

3.7.1 Participants

FLIP was tested with a cohort of MSc students at the Department of Computer Sci-

ence and Information Systems, Birkbeck, University of London. The prerequisite for

this test was to have participants with some or little experience in programming and

not a strong background in IT. Students of a particular conversion MSc were targeted

based on the assumption that they fit this profile. These students did not have a strong

background in computing and had already some exposure to programming but not

much. This combined with the fact that we had relatively easy access to them made

them good candidates. An open invitation was addressed to students with an interest

to attend two free introductory practical sessions in JavaScript. Students joined this

short course on a volunteer basis. The decision to follow a non-random sampling tech-

nique for the selection of participants is justified due to the fact that we were looking

for a population with certain characteristics that we had access to. This is referred to

as volunteer sampling in the literature (O’leary 2017).

3.7 Usability Testing 167

3.7.2 Method

The purpose of the test was to verify that there is indeed a need for that type of sup-

port and that students are willing to utilise automated support to satisfy that need.

Two sessions took place in June 2014. The material given to the students was a se-

ries of exercises with incremental difficulty split in two worksheets (one per session).

These worksheets are given in appendix 4. The same cohort attended both sessions

but participation dropped in the second session. The first one involved 13 students

and the second one 5 students. The sessions were automatically recorded by FLIP and

there were 4062 user activity indicators intercepted.The indicators have the following

form:

ID: Timestamp

DATE: Date

USERID: Unique identifier for the user

ISSUER: [system|user] Entity generating the data

MISCONCEPTION: Unique identifier for the misconception identified

STATE: [activated|fired] State of the rule that generates support

MLEVEL: [1-5] Level of support provided

As the student experiments in FLIP the code is continuously monitored by the system

and suspicious code patterns are identified and recorded in the form of these indica-

tors. If the user utilises support on a specific issue, the corresponding rule gets exe-

cuted and its consequent does the tutoring. If support for the same issue is requested

more than once, then the level of support changes as well as the consequent. In this ex-

periment we wanted to measure the level of user engagement with support related to

common misconceptions. That is the identification of misconceptions in student code

and the number of times a user utilised support for each identified misconception.

3.7 Usability Testing 168

Table 3.3: Misconception Indicators
users indicators indicators/user 1st level 2nd level 3rd level L1% L2% L3%

session 1 13 1283 98.6 996 316 5 74.98 24.63 0.4
session 2 5 556 112.2 413 138 5 74.28 24.82 0.9

3.7.3 Results

These indicators revealed that 23 distinct problems (code patterns) were identified.

After reviewing the data we concluded that 14 of those were important and related to

common misconceptions in the CI. That was 1839 indicators in total. As depicted in

the table that follows, the average number of indicators per user in both sessions was

around 100 and only 3 out of 5 levels of support were used by the students. The statis-

tics don’t seem to deviate between sessions as in both cases level one support equates

to approximately 75% of the indicators, level two support is around 25% and level

three support is a bit less than 1%. The average level of support given by the system

for these misconceptions was 1.25 out of 5 which is relatively small. That is probably

because the users had already some programming experience and could resolve the

problems in just one or two iterations without further help. The level of human sup-

port during those sessions was minimal and the students seemed not to have problems

communicating with the automated tutor to overcome issues. The fact that students

managed to complete their exercises with minimal human support in a language they

had no experience of is an indication that the system worked. The fact that there was

utilisation of the automated support clearly shows that the CI and the implemented

rules are valid and address common student problems. It also shows that the students

need that kind of support and are willing to utilise automated tutors to receive it.

3.7.4 Discussion

In conclusion, FLIP was used effectively by University students in two sessions. Stu-

dents were able to accomplish the tasks given to them with minimal human guidance

and support. Usage data was collected and analysed. Findings indicate that TI support

3.7 Usability Testing 169

was used and learners were happy to direct their support requests to an automated tu-

tor.

We consider this result a good first indicator that gives us a positive outcome re-

garding TI automated support in exploratory learning. Although this satisfies our

objectives at that stage as it gives us a good result and enough insight for the parts

that follow, we recognise that it requires further research in order to achieve a more

credible outcome. The sampling method used for this experiment cannot satisfy rep-

resentativeness. That makes the above results not generalizable as it is likely that the

students who decided to join this experiment were somehow different than the ones

that didn’t (convenience sampling). Although sampling on a volunteer basis method-

ologically contradicts research credibility, it is an acceptable way to test a system that

has very particular requirements (O’leary 2017). In our case there were specific selec-

tion criteria used that satisfy specific requirements for the test. This makes the outcome

valid and transferable to cohorts with the same characteristics.

This step effectively concludes phase 1. The experiences and findings acquired

throughout this phase strengthen our belief about what is needed to make teaching of

programming easier. The WHAT is clearly a system that allows learning programming

through exploration and provides TI and TD support. The equation takes now the

following form:

”ELE with automated support” + HOW → ”make teaching programming easier”

4
Completing the Working Principles

170

171

As mentioned in 3.7, at that point we are fairly confident that what we need in order to

achieve the desired value is an ELE that teaches programming and offers automated TI

and TD support. In the previous chapter the research findings along with the experi-

ence acquired through participatory observation and the development of a prototype

gave us a very good insight about the problems in teaching and learning program-

ming as well as the respective challenges at both a theoretical and a technical level.

The outcome of the usability testing, although not generalisable, gave us a very use-

ful indication of the applicability of this type of support in a real world educational

context and the level of acceptance and usability of that type of support for a certain

category of learners. This makes the WHAT component of the reasoning pattern more

concrete. We tested a real system with real users and we learnt something from the

process. This system was developed from scratch based on a domain analysis of ex-

isting systems and all the educational and technical challenges along the way gave us

knowledge and insight about how to build such applications. Therefore, from the work

already done we also have findings that give some substance to the HOW component

as well. The layered architecture, the need for web-based design, componentization,

reusability, interoperability and ultimately the need to find ways to make tutors in an

easy and cost-effective way are learnings that we take away from phase 1 and we feed

them back into phase 2 to help us discover the rest of the HOW component. The HOW

component at that stage needs to be complemented with elements related to the provi-

sion of TD support in the context of exploratory learning systems. Therefore, the aim

for this phase is to investigate this area further and find ways to tackle this type of sup-

port along with the technical aspects of componentization, reusability, interoperability

and authoring of intelligent tutors.

The material presented in this chapter is supported by the following papers: (Karkalas,

Mavrikis & Charlton 2015, Karkalas & Mavrikis 2016, Karkalas et al. 2016, Karkalas,

Bokhove, Charlton & Mavrikis 2015).

172

4.1 Literature Review and Domain Analysis - An Outline 173

4.1 Literature Review and Domain Analysis - An Outline

At that point we focus on the TD side of automated support. For this type of support

there are several systems that have been developed in the past. These systems can pro-

vide us with a lot of material in terms of features, architectures, technical requirements,

teaching and learning approaches. We need this information so that we can get more

familiar with the area and see if there is room for improvement and innovation. The

aim is to find out more about the HOW component of the reasoning pattern. That is

how we can achieve the WHAT. The exact objectives for this part follow:

• Familiarisation with the area

• Identification of limitations, deficiencies and weaknesses of current approaches

• Identification of opportunities for improvement and innovation

• Identification of architectures, methods, techniques and technologies that may be

reused and combined to remedy problems

To achieve all the above, the review was directed in three areas:

• Existing systems that offer automated support (automated tutors)

• Existing systems that offer exploratory learning

• Existing authoring systems for the development of automated tutors

The outcome of this review is that there are a lot of learning systems that offer oppor-

tunities for exploratory learning and abstractions to keep the learning curve as shallow

as possible yet these systems lack automated support and adaptability. On the other

hand there are Intelligent Tutoring Systems (ITSs) that utilise very sophisticated tech-

nologies to provide support and adaptability but they offer limited opportunities for

exploration and the learning process typically takes place in a quite controllable man-

ner.

4.1 Literature Review and Domain Analysis - An Outline 174

On the authoring side, we could say that authoring tools for automated support

are typically oriented towards guided learning. From a technical point of view, these

systems seem to be tightly coupled with specific platforms and technologies and offer

domain-specific solutions. In terms of usability these tools are intended for people

with a high level of technical and domain expertise. That means that, in general, the

entry threshold for end users is quite high and development of automated support is

quite expensive. The findings of interest can be summarised as follows:

• There is very little work on authoring automated support for exploratory learn-

ing (refer to 2.2 and 2.4)

• There is no authoring tool that can develop domain-independent support for any

learning environment (refer to 2.4)

• There is no authoring tool that can develop automated support for diverse web

widgets that may not be compliant with integration and interoperability stan-

dards (refer to 2.4)

• There is work that simplifies the authoring process for guided learning that may

be transferable to exploratory learning settings (CTAT) (refer to 2.4.6 and 2.4.7)

• There is work on systems architecture that simplifies the authoring process in

exploratory learning settings (FRAME) (refer to 2.4.10)

• There is work on systems architecture that may be able to give answers to the

dependency problems on specific platforms and domains (SEPIA) (refer to 2.5.2)

4.2 User Centric Design through a Requirements Elicitation Workshop 175

4.2 User Centric Design through a Requirements Elicitation

Workshop

At that point we have enough information regarding previous work and we need a

fresh look at the design considerations for building an authoring tool. All that is a

significant step forward but we need the users’ perspective to have a more holistic

and user centric view of what is needed. Therefore, the next step is to conduct a re-

quirements elicitation workshop (Millard et al. 1998). In this workshop (see 4.3.1)

we used participatory design methods to elicit the challenges potential users would

face in developing support for three well known exploratory learning environments.

Participatory design is a well-accepted method for attempting to solve a complicated

design problem with the active involvement of people from different backgrounds and

different expertise (Vines et al. 2013, Bødker & Kyng 2018). We chose three different

web-based environments that are quite diverse in nature and not compliant with any

integration and interoperability standard. The participants were designers and ed-

ucators with expert knowledge on the respective environments. They were given a

scenario describing the context of the exercise so that they can understand how to po-

sition themselves as authors of automated support in that context. They were asked

to design and develop a learning activity for their respective environment giving de-

tails about misconceptions expected, landmarks that can indicate important states of

the constructions and the expected feedback. The outcome of this process was a num-

ber of use cases of specific learning activities developed in three well-known ELEs:

GeoGebra, Malt+ and FractionsLab. The experts provided us with complete usage sce-

narios for each activity that include potential student misconceptions, landmarks and

the respective feedback that the system is expected to provide to students.

The information collected from this workshop helped us form an initial idea of the

development requirements both at high and low level. The high level requirements

relate to how automated support is supposed to be authored and presented and what

4.2 User Centric Design through a Requirements Elicitation Workshop 176

is required in terms of analysis and reasoning so that the required level of support is

produced. That in turn gave us insight about the requirements related to the data ac-

quisition and processing so that we can have the required artifacts to do the reasoning.

That led to the specification of the lower level requirements concerned with the techni-

cal components required to accommodate the composition of evidence. The high level

requirements follow:

• compatibility with any web widget that may carry some educational value

• ability to intercept user actions and configure logging on the widgets

• ability to develop automated support based on the logs for widgets operating in

open and exploratory settings

• ability to generate support based on rules and analysed evidence

• ability to make support available on demand in a non-intrusive manner

• ability to operate with limited technical and domain expertise

The following list gives us the low level requirements:

• need for methods to make the widgets generate and expose the required data

• need for methods to transfer this data between tiers

• need for methods to efficiently store that data and make it processable so that it

can be used for answering queries to the reasoning part

Naturally, the low level requirements need to be addressed and satisfied first before

we move on with the high level ones. Therefore, the decision at that stage is to focus

on the second list.

These requirements seem to be quite reasonable especially in a context where there

are many interoperable and diverse components involved. Even the authoring tool

4.2 User Centric Design through a Requirements Elicitation Workshop 177

itself could be thought of as a component and as such it should be able to integrate

and interoperate with any learning environment in a loosely coupled manner as an

external entity. In a context like this the architectural design should not be a concern

for potential authors. Integration should be seamless and all the underlying technical

details regarding APIs and data interchange should be hidden from the author. The

author should not be concerned with how the data gets collected, transfered, stored

and processed. All of this should be very simple and transparent. Having these things

in mind we carry on with a technical spike in an attempt to resolve these issues.

4.3 Implementation of WIIL 178

4.3 Implementation of WIIL

The low level requirements identified in the previous step led to the development of

a technique that can be used to overcome web component heterogeneity and achieve

seamless integration and interoperability between any web component and its host

environment. After a literature review on the subject the technique was designed and

a prototype (Henson & Knezek 1991, Wong 1993) was implemented and named Web

Integration and Interoperability layer (WIIL). It was developed to provide the means

to combine web components with hosting platforms like learning platforms and au-

thoring tools and increase reusability of both.

This part of the project concludes with a new technique that is designed, implemented

and tested successfully. This technique enables seamless integration and unrestricted

two-way communication between web components and their environment with min-

imal technical overhead. This output gives an answer to two problems: reusability of

any web component that carries some educational value and reusability of web-based

authoring tools with those environments. This gives us a more concrete picture of that

HOW in the reasoning pattern.

4.4 The Web Integration and Interoperability Layer (WIIL) 179

4.4 The Web Integration and Interoperability Layer (WIIL)

This section presents a technique that enables integration and interoperability of web

components with learning platforms. Traditionally, integration and interoperability is

an issue related to merging third party learning components with Learning Manage-

ment Systems (LMS). LMSs have been adopted and used for decades by large educa-

tional institutions like Universities. These institutions have heavily invested in them

and consequently they have become heavily dependent on them. LMSs are nowadays

being treated as large-scale enterprise-wide applications and considerations like stabil-

ity and reliability are primary concerns in this context. A natural consequence of that

is that integrating new functionality and instructional content became more difficult

(Severance et al. 2010).

The need to integrate LMSs with third party components in a controllable way

and maintain stability, security and reliability led to an architectural approach that

offers the ability to decouple functionality into independent and self-sufficient compo-

nents that interoperate via standardised communication protocols potentially over a

network (González et al. 2009). That, in turn, led to the development of a new market

for learning components which are typically self-sufficient, fully-fledged web-based

applications equipped with their own security infrastructure.

The need for these applications to integrate with LMSs without sacrificing stability

led to the development of standards like the IMS Learning Tools Interoperability (LTI)

specification and OpenAjax (see 2.5). Strictly speaking OpenAjax is not specifically

related to educational software applications but it has been used a lot in the EdTech

domain. It is an industry initiative to enable interoperation of web components in the

context of a web browser. These standards solved a problem but LMSs became too

restrictive for educational innovation (Mott 2010).

Educators want the freedom to easily develop formations of components that are

available on the web and make them part of their educational practice with little or

4.4 The Web Integration and Interoperability Layer (WIIL) 180

no configuration overhead in a way that resembles systems like Gurram et al. (2008)

which is a browser-based application composition environment and run-time system

that simplifies development on top of existing complex systems. Systems like Personal

Learning Environments (PLE) (Severance et al. 2008) or Personal Learning Networks

(PLN) and Open Learning Network (OLN) (Mott 2010) seem to be more in line with

what educational innovation needs as the logic behind them is radically different and

promises greater flexibility, portability, adaptability and openness. In this section we

propose a technique that is a lightweight alternative to IMS LTI and OpenAjax and is

especially suited to simple client-side widgets that have no back-end dependencies and

potential security risks. This is based on the premise that nowadays there is a wealth

of widgets that are freely available on the web and could be utilised for educational

purposes but existing integration and interoperability mechanisms are too stringent

and restrictive to allow easy development of educational web mashup applications.

The technique is called WIIL and provides learning content authors the ability to utilise

any type of web component with minimal development and administrative overhead.

It also promises robustness, better functionality than OpenAjax and efficiency.

4.4.1 Web Components

As explained above, the motivation for this work was to enable teachers and learning

technologists to make use of simple web components that are available on the web

to synthesise new and compelling learning activities. The technique can be used with

any web component, regardless of whether the component was originally designed for

educational purposes or not or the component is implemented as a simple web page

or it is a fully-fledged web-based application. However, the technique is primarily

intended for a certain category of components, specifically the ones that cannot be

easily integrated with learning platforms using standardised techniques like IMS LTI.

A typical candidate component has the following characteristics:

4.4 The Web Integration and Interoperability Layer (WIIL) 181

• It is either an individual widget or it is a part of a JavaScript library that offers a

logically interrelated collection of tools.

• It is freely available and no copyright or license issues abide. Potential users are

free to execute, copy, amend and distribute the software.

• It offers an API through which its functionality can be made available to the

users. Through this API it is possible to load, initialise, get/set its state and

intercept user/system interactions with it.

• It executes solely in the browser and there are no dependencies on other compo-

nents at the back-end. Back-end dependencies may be acceptable only if there is

no need for administrative control and potential security risks.

• It may include a visual part but that is not strictly necessary.

• There is no registration requirement for using the component.

• It is hosted in a public Content Delivery Network (CDN) or it is downloadable

and able to be hosted locally.

• It is not possible or feasible to amend its implementation to make it compatible

with a potential host or extend it with some interoperability method remotely.

4.4.2 Design Considerations

The primary design objective of this work was to overcome component heterogeneity

and minimise the technical support and administrative overhead for integration with

a platform. The technique should be generic enough to accommodate any widget re-

gardless of its design idiosyncrasies. It should be equally easy to integrate components

that implement the standard W3C widget interface and components that come with

non-standard widget-specific interfaces. The technique should impose no constraints

4.4 The Web Integration and Interoperability Layer (WIIL) 182

on the type of interface the component supports, and of course, the component’s inter-

face should not determine in any way the functionality that the component is able to

expose after the integration.

A secondary design objective was runtime efficiency in terms of responsiveness

and resource utilisation. The method should be able to support efficient two-way com-

munication between the hosting platform and the component without the need for

expensive round trips to a back-end server which is always the case with LTI. Even

widgets that have no back-end dependencies have to implement server components in

order to become LTI-compliant. Back-end dependencies require round trips between

the tiers and that introduces network traffic and latency. Adding artificial and unneces-

sary dependencies on the network and the back end is problematic if the components

to integrate are simple front-end widgets. Efficiency is also related to the memory

footprint and the processing requirements of the technique. This becomes even more

important if we consider that the deployment platform is inherently poor in resources

- the browser. Therefore, implementation should be lightweight enough in order not

to burden the browser excessively.

A third consideration was cross-component communication. The approach we fol-

lowed was that cross-component communication should be safe and guarantee the

security and the integrity of the interoperating components but at the same time it

should not be artificially constrained which is typically the case with OpenAjax. It

should be up to the designer / implementer to decide what functionality is exposed

from component interfaces and how it can be used by the rest of the system. Issues

like component packaging, deployment, description and general architectural issues

regarding distribution of learning widgets for the web (Wilson et al. 2007, 2008) were

not considered in this design. The considerations that played a crucial role in this part

follow:

• Component heterogeneity: Nowadays the plethora of components in the web

4.4 The Web Integration and Interoperability Layer (WIIL) 183

is overwhelming. These components are disparate and heterogeneous and their

exposed APIs are always dissimilar. Integration with a platform requires a tech-

nique that is generic and independent of widget-specific functionality. The method

should be able to overcome variability by providing a very simple interface, us-

able by any type of component.

• Platform compliance: Another consideration is the potential to re-use the method

in future platforms as well. The method should not be dependent on platform-

specific functionalities and idiosyncrasies.

• Registration: The integration process should not require the execution of pro-

tracted and cumbersome procedures. It should be possible to register the com-

ponent with the platform with minimal effort and technical expertise.

• Communication: Once the component is embedded in the platform, it should be

relatively easy and inexpensive (in terms of resource utilisation and complexity)

to exchange messages with its host. Passing messages should be based on a con-

nectionless communication protocol and rely on system stability at both ends of

the channel.

• Roles: A crucial question is whether it is acceptable to consider the host (plat-

form) and the guest (component) nodes as two equal entities in this relationship.

In this case, implementation is simple and can be used globally by both sides in

the same way. In the case that host and guest need to be treated unequal, the

method should be based on the assumption that there are certain host and guest-

specific functionalities that must be implemented. If this is deemed unnecessary,

it obviously must be avoided.

• Browser security restrictions: Modern browsers are not very tolerant with pages

that intermix content from different domains and most web components will

4.4 The Web Integration and Interoperability Layer (WIIL) 184

most likely originate from foreign domains. The method should be able to over-

come security constraints and browser specific idiosyncrasies.

• Performance: Building a system as a dynamic and arbitrary collection of het-

erogeneous components, implies that these entities have their own space and

distinct purpose in the system. It makes sense for these components to be able

to operate in parallel and communicate asynchronously with the platform. In

multi-processor systems this is not just a matter of asynchronous behaviour, but

it can also make a huge difference in the overall performance of the application.

• Memory: Memory footprint is becoming a serious issue in browser-based fat-

client implementations. The interoperability part must not be a substantial bur-

den in the memory balance.

• Security: Security is always a major issue when integrating foreign and poten-

tially non-trusted components with a system. The tendency is to create integra-

tion methods with artificial barriers in order to prevent developers from making

dangerous mistakes. This approach obviously may have a major impact on the

functionality that is eventually exposed and reused. The method in this project

should allow for maximum flexibility in terms of what is exposed and what is

not. It should allow both secure containment of unsafe material and unrestricted

exposure of data and operations wherever needed. It should be up to the de-

signer/developer to decide what is secure and what is not.

4.4.3 Browser Security

One of the design considerations mentioned above that deserves some clarification and

analysis is browser security. Nowadays, one of the major issues in web development

is security and since web browsers are the natural deployment platform for this type

of development special attention has been given to the way content and functionality

4.4 The Web Integration and Interoperability Layer (WIIL) 185

operates in them. Traditionally, one of the major threats in web development has been

the mixing of content coming from different domains. Allowing a foreign component

to take control of the browser or even other foreign components hosted in the same ap-

plication has been a major concern in web development. That lead to the development

of stringent rules and conditions under which foreign components must behave and

operate in the browser. One of these rules is the so-called Same-Origin Policy (SOP)

enforced by all modern browsers. This is a policy that aims to prevent unauthorised

access to confidential information by malicious scripts and thus protect data integrity.

Intermixing learning components - objects from different domains to develop mashup

educational applications is like trying to contravene this policy. The question is how

can that be done in a way that is appropriate from a technical point of view and does

not violate what the policy is supposed to prevent. One other consideration here is

that the method must not be browser dependent. Although browser vendors are try-

ing to adhere to standards and they design and implement browsers accordingly, there

are many cases where browsers exhibit non-standard behaviours that are difficult to

predict and accommodate.

A very common method that is being used a lot by web developers is to simply

reference the components directly as JavaScript libraries in the host page. The compo-

nents in this case inherit the domain of the containing page and that alleviates the SOP

problem without hassle. This way, without any elaborate integration mechanisms,

components can operate under the same origin in the same space and have direct ac-

cess to each other. Direct and unrestricted access, though, may not be safe or desirable.

Mixed content coming from both secured (HTTPS) and unsecured (HTTP) origins is

another problem with this technique. The browser may not allow that. The actual be-

haviour is browser-specific and that makes the approach somewhat problematic. An-

other problem is that participating components, regardless of origin, will operate un-

der the same context as a single-threaded application since JavaScript engines follow

the single-threaded execution model. From a performance viewpoint this is obviously

4.4 The Web Integration and Interoperability Layer (WIIL) 186

not desirable. Another important consideration is code organisation. In this approach,

code coming from different sources, gets executed in the same global namespace and

that is potentially risky. Implementers of these components may not be aware of each

others’ design and coding assumptions and practices. Accidental name clashes that

invalidate operations and data are very common consequences of that method.

Another method for performing cross-origin requests is JavaScript Object Notation

with Padding (JSONP). This method is essentially based on the same premise as the

previous one. Instead of making an HTTP request to retrieve the code of the foreign

web component we integrate it as a script. JavaScript scripts inherit the same origin

as the enclosing page and therefore code or data received as a result of this request

automatically becomes an integral part of the receiver. The difference between this

method and the previous one is that it is presumed that the service to be integrated

is JSONP-aware and that implies that this method presupposes a great deal of control

over the component source and JSONP-aware services. This violates one of the design

considerations mentioned in 4.4.2 and, in addition to that, the method suffers from the

same problems mentioned above.

A very clean way to circumvent the SOP check is to not make any cross-origin re-

quests at all in the browser. Instead, the requests can be made by another logical tier

that operates elsewhere. SOP restrictions do not apply on server-side components. Re-

quests are sent from the browser to a server-side proxy that has the same origin as the

page. The proxy handles the interaction with the services and sends back the results

to the page. This approach is much cleaner than the previous ones but the downside

is that it requires an additional server-side component. That introduces unnecessary

complexity, network load, latency and dependencies. According to the design con-

siderations presented in 4.4.2 this is not desirable. Furthermore, as before, the code

coming from different sources ends up being executed in the same context and that

suffers from the same problems mentioned above.

A fourth alternative to the above is Cross-origin Resource Sharing (CORS). CORS

4.4 The Web Integration and Interoperability Layer (WIIL) 187

assumes that we have access to the server side part of the component and we can

configure the HTTP response with a header that instructs the browser to ignore the

SOP. This is obviously not possible with components that we cannot download and

host locally in our own servers. Additionally, even if we do have access to the server,

there is no guarantee that a firewall will not remove the additional header. Finally,

browser incompatibility may be an additional problem. Another alternative is to not

use HTTP at all and use websockets instead. SOP is only applicable in HTTP and that

makes websockets an attractive solution. In this scenario it is the websocket server

that does the security checks and allows the caller to receive the content. However,

that seems to open the door to SOP violations and we expect that it will be resolved in

future browser implementations. Therefore, it may not be a viable, long-term, solution.

Furthermore, it assumes access and administrative control of the server side part of the

component which may not be possible in most of the cases.

The only method that seems to overcome all of the above issues is to embed the

component to the page as an external page in a sandbox. In practical terms this can be

done in HTML using an IFRAME element that encapsulates a separate page contain-

ing the external component. The component is kept isolated in a sandbox and executes

in its own context as a separate application that operates in parallel with the enclosing

page and other components. That satisfies both the requirement of code safety and per-

formance - parallel execution. The component can interoperate with its host through

a messaging system that is inherently supported by HTML5 (Järvinen 2011). Com-

ponents and the hosting page can operate concurrently and communicate with each

other through bi-directional asynchronous message passing. In this scenario execution

and data interchange takes place entirely in the browser and there is no network and

server overhead involved.

4.4 The Web Integration and Interoperability Layer (WIIL) 188

4.4.4 The Technique

The technique proposed can be logically divided into two parts: node interfacing and

communication protocol. We use the term node as a generic term to refer to the com-

ponents to be integrated. Since integration in this context involves a platform and its

external components we also use the terms host and guest to respectively identify both.

The latter naming convention does not carry different semantics in terms of implemen-

tation. The nodes are treated as equals and two-way unrestricted communication be-

tween them is assumed. Conceptually, each part becomes more abstract as it is encap-

sulated within a wrapper layer that decouples its interface from its internal specifics.

The wrappers provide the ability to selectively externalise the node functionality in a

way that is generic - not node-specific. Node functions are exposed through the def-

inition of a public interface that maps internal implementations to publicly available

methods. These methods can then be callable by the communicating parties through

message passing. Message exchange is facilitated by the wrappers that alleviate the

SOP problem and provide a seamless integration mechanism.

Component Registration and Public API

From an architectural point of view the wrapper is just a software component that

encapsulates another software component with the intention to extend it, reduce it,

change it and impersonate it. In software engineering there is a well known OOP

technique that is being used to associate classes with objects and other classes that is

called composition. This exact paradigm is being used as the architectural basis for the

wrapper.

In more practical terms, the wrapper is expected to be a JavaScript library that is

referenced by the two components to be integrated. This library can be either local or

external. The very same library is referenced by both, regardless of whether the com-

ponent is a host or a guest component. As explained in 4.4.4 both parts are treated as

4.4 The Web Integration and Interoperability Layer (WIIL) 189

equals so implementation of the wrapper is always the same. The library materialises

an instance factory that can be used to instantiate a singleton object to represent the

wrapper. The instance factory handles requests of wrappers. Every time it is asked for

one it checks whether the singleton exists and returns it if it does. If not it creates it

first. The factory makes sure that only a single wrapper exists per node and that keeps

things simple and easily manageable. Once the wrapper is instantiated, it can be used

by the implementer to declare the node and its interface. The implementer is typically

a learning designer with technical skills and enough knowledge at a technical level

to understand how the node is organised internally in order to register it, declare its

public interface and make decisions about the data format for inbound and outbound

requests. Integration entails two registrations. The host must register its guest and

respectively the guest must register its host. This way both components know about

each other and establish a trust relationship between them. Without this trust, com-

munication between them will not be possible. Depending on the case the integration

might be performed by the same person or two different implementers. This depends

on whether the implementer has access to the source code of both systems. If one of

them resides on a remote and inaccessible server and migration is not possible, then

the only way to perform integration at that end is to get somebody with access to that

system to do it. Integration scenarios vary depending primarily on the level of sophis-

tication of the guest component and the nature of its implementation. If the component

is implemented as a library then the implementer will have to turn it into a web page

first so that this page can then be referenced by the host’s iframe. If it is already re-

leased in the form of a web page then the only action required is to add a reference

of the WIIL library to this page and add a few lines of JavaScript code to perform the

registration. Registration is performed as part of the component initialisation process

where the component registers itself with the local instance of WIIL, declares its pub-

lic interface and registers a trusted peer component along with the domain it belongs

to. The exact same process must be performed at both ends for the integration to be

4.4 The Web Integration and Interoperability Layer (WIIL) 190

successful. In most cases there is only one person that performs integration at both

ends because web components are typically plain JavaScript objects with known and

accessible APIs that can easily be embedded into web pages. Once both registrations

are successful the two components can start exchanging messages.

The wrapper provides a very basic API for those operations:

• setComponentID(componentID)

• register(peerName, peerComponent)

• setForeignDomain(domain)

• pushFunction(functionName, functionRef)

The first one can be used to register the component with the WIIL wrapper. The argu-

ment is just an identifier given as a text string.

The second one can be used to register a peer component by associating an identifier

with a reference of the object holding the component.

The third one can be used to inform the wrapper about the foreign domain that needs

to be trusted.

The last one can be used to define the component’s public API. Typically, the latter is

used multiple times to declare public methods and associate them with the compo-

nent’s internal API.

The following code snippet is a typical example of how this API can be used to register

a component with WIIL and expose its public API:

4.4 The Web Integration and Interoperability Layer (WIIL) 191

//This statement uses the publicly available instance factory named

//Wiil to create an instance of a wrapper object

var wiil = Wiil.getInstance();

//This informs the wrapper that the component it will be handling

//is called ‘malt’.

var componentID = "malt";

wiil.setComponentID(componentID);

//The following statements register the enclosing page (host) as

//peer with name ‘host’ and informs about the trusted domain

var peerName = "host";

wiil.register(false, peerName, parent);

wiil.setForeignDomain(‘somedomain.com’);

//This is the public interface of the component

//This method is used to initialise the state of the component

//state is an object holding all the necessary info to initialise

//the component

wiil.pushFunction

(

"setState",

function(state) {

if (state.isEmpty()) {

maltWidget.resetState();

}

else {

4.4 The Web Integration and Interoperability Layer (WIIL) 192

maltWidget.setState(state);

}

}

);

//This method returns the state of the component instance as an

//object

wiil.pushFunction

(

"getState",

function() {

return maltWidget.getState();

}

);

//Finally, this method returns an object that shows the types of

//elements we can have in a malt instance and the events they can be

//associated with

wiil.pushFunction

(

"getMetaData",

function()

{

return maltWidget.getEvents();

}

);

4.4 The Web Integration and Interoperability Layer (WIIL) 193

As shown above, the public methods refer to the component’s internal API to actu-

ally perform the operations. This allows us to selectively expose the portion of the

API that is needed for the purposes of the application we are building. It also allows

us to semantically enhance this API or transform it to accommodate security or other

requirements imposed by the design. What is also important to understand here is

that there is no restriction as to what we expose. There is no standardised interface

in terms of the component itself. This provides flexibility as we accommodate and fa-

cilitate component diversity so that we can take advantage of whatever functionality

may be available and useful in components. Promoting diversity does not necessar-

ily mean heterogeneity. Nodes interface with each other through a very simple and

standard API and that means that all interoperating parts appear to be homogenous in

the platform in that respect. The API of the wrapper is not the same as the API of the

enclosed component that is exposed through the wrapper. This is explained in more

detail in section 4.4.4.

Security

As indicated in section 4.4.3 the most suitable approach to integration is to use sand-

boxes to isolate implementations of foreign components and make them interoperable

with the platform through wrappers that facilitate interfacing and communication. In

a browser context sandboxes are typically implemented as IFRAME elements. As these

elements may contain foreign code the SOP restriction is also applicable to them and

that means that somehow this needs to be addressed and handled. In this scenario it all

comes down to trust. If both interoperating components trust each other then message

passing is possible. In terms of implementation, there are two ways to do this.

The first approach is to explicitly declare that the nodes have the same origin. This

can be done programmatically by setting the property document.domain to the same

domain name at both ends. A system called Subspace (Jackson & Wang 2007) is using

4.4 The Web Integration and Interoperability Layer (WIIL) 194

this technique to implement cross-domain communication for web mashup applica-

tions. In this system communication takes the form of a closure exchange between

nodes. A closure is a function that remembers its lexical context or otherwise the envi-

ronment it was created in. If it is called in a foreign environment - another node, it may

still have access to the resources it remembers. Unfortunately, the actual behaviour of

this method depends on the browser and that makes this approach potentially prob-

lematic. After experimenting with this we have also established that resetting the do-

main property may not have the expected result as the port number may implicitly be

set to null (empty) by that process. This behaviour is again browser-dependent and

that makes this approach unacceptable.

The second approach is to make the interoperating parts aware of each other so

that each one checks the legitimacy of requests received before executing something or

responding to the sender. This is the approach selected as it satisfies the design consid-

erations mentioned in 4.4.2 and does not violate in any way the security restrictions im-

posed by SOP. The wrapper should provide the ability for a node to register the nodes

it trusts so that communication between them can be allowed. Component registration

is just another operation that is implemented as part of the wrapper’s functionality. It

is perfectly possible for this operation to be externalised as part of the public interface

of the node. That opens the door to remote registration of components. In other words

a foreign component should be able to register itself with a node as a trusted compo-

nent without the implementer of this component knowing about it. This potentially

facilitates easy integration but is obviously insecure, unless there is a list of known do-

mains registered with the wrapper that can be used to restrict access to unknown and

untrusted components.

4.4 The Web Integration and Interoperability Layer (WIIL) 195

Node Interfacing

As mentioned in section 4.4.4 component diversity is allowed but hidden within the

wrapper. That provides simplicity in terms of node interfacing and at the same time

promotes component diversity. The wrapper provides a very generic interface through

which basic communication can be carried out. The interface comprises the following

two methods:

• sendMessage(message)

• receiveMessage(event)

This simple system allows bidirectional communication between the nodes. Requests

and data are passed to wrappers in the form of a message object. This message gets

constructed and sent by the sender as an object. The receiver gets notified about the

message with an event that carries it as one of its properties. Message passing in the

HTML5 system is carried out using events. WIIL is using a standard format for the

messages and provides a public method that can be used to construct one according to

a template. The format follows:

• origin: This property serves as the unique identifier of the component that sends

the message. It is not the same as the homonymous property of the event ob-

ject that carries it when in transit. The latter corresponds to the domain of the

sender. This property is just some text that uniquely identifies the component in

the system.

• content: This property can contain data of any type. The purpose in this case is

to send some data and let the receiver decide what to do with it.

• command: This is an instruction (command) that is possibly sent along with

some data in the form of arguments. The intention in this case is to utilise

4.4 The Web Integration and Interoperability Layer (WIIL) 196

receiver-specific functionality and perform some processing there. This function-

ality is exposed in the form of a public interface that the receiver makes available

to other communicating parties through the wrapper. The command can only be

given as a string (text).

• args: This is an array of values that accompany the command. These values are

addressed to a method of the receiver’s public interface. That method is what the

command property refers to.

• callback: This is a string value (text) that corresponds to a function exposed in

the public interface of the sender. The receiver, upon receipt of the message,

performs the requested operation and then sends the resulting value as argument

to the callback function of the sender. This property permits the asynchronous

continuation of the same logical process in the sender after a remote call in the

receiver is completed.

Figure 4.1: The WIIL stack

The method exposed by the wrapper to create a message is:

createMessage(content, command, args, callback)

The format of messages allows nodes to exchange information and pass it to one an-

other for internal consumption or send instructions for remote execution of functions.

If callback is provided then the result of remote processing can be sent back to the

sender of the request for further processing. Interoperating parts are secure because

they don’t have direct access to each other’s functionality. Direct references to func-

tions are not available. Processing requests are sent in the form of text and get evalu-

4.4 The Web Integration and Interoperability Layer (WIIL) 197

ated by the wrapper before execution. The receiving wrapper uses this text to identify

the actual function that needs to be called and request the operation.That provides a

level of control that allows the integrator to decide what should be available and how

much scrutiny is needed before execution.

Since the format of the message is fixed, there has to be some validation in place in

case the interoperating parts violate it.

A simple set of validation rules apply. A message object is not valid if:

• command is not a string

• args is not an array

• callback is not a string

• both content and command are not given

• args is given without a command

• callback is given without a command

These rules are enforced by wrappers by default. As explained above components are

expected to be very diverse and therefore their public APIs exposed through wrappers

are expected to be diverse as well. On the other hand platform - widget interoper-

ability should be based on a standardised and uniform way of communication. Using

message objects to enable interprocess communication satisfies this requirement. This

technique allows us to keep a simple and uniform interface that facilitates basic com-

munication for any type of node (component or platform) and at the same time we

accommodate the utilisation of node-specific functionalities without constraints. Once

a message is received by a node, WIIL internally processes the request. If it is a request

4.4 The Web Integration and Interoperability Layer (WIIL) 198

to perform an operation and not just a message that needs to be logged, it passes it on

to a special executor method that selects the appropriate method from the component’s

public API to execute. WIIL is also equipped with an alternative executor method that

is intended to be used internally by the integrator. If the integrator wants to utilise

the component’s public API from inside in order to avoid accessing directly the actual

API, the following method can provide direct access - not through messaging:

executeLocalCall(id, args)

This way WIIL can also be used as an API management service that provides a stan-

dardised interface to components usable locally or remotely.

Communication Protocol

There is no standard communication protocol proposed for interoperating compo-

nents. The specifics and the complexity of the protocol used depend on the particular

use case and problem we are trying to accommodate. We quote a list of four commu-

nication scenarios that illustrate how a communication protocol could be used:

a. The guest component wants to inform the host platform that it is properly initialised,

fully functional and available.

content: ’ready’

command: null

args: null

callback: null

This scenario assumes that once the guest becomes fully functional, an uninterruptible

communication channel based on HTML5 messaging becomes available. If the host-

ing platform knows that the guest component exists and is available, then it is safe to

4.4 The Web Integration and Interoperability Layer (WIIL) 199

assume that the component will remain available throughout the whole session. In re-

ality, of course, that may not be true because it is possible that the guest crashes or the

element holding the sandbox is removed from the host’s DOM for some reason. The

communication protocol could be used in a more connection oriented manner in this

case and check for availability at certain time intervals to ensure stability and robust-

ness.

b. The component simply wants to send a message to the other party. There is no in-

struction for processing through a method call in this case. It is entirely up the receiver

component to decide what to do with the information received. The message format it

exactly the same as before. The difference of course is that the previous content carries

special semantics that may be part of the protocol.

content: ’some content’

command: null

args: null

callback: null

c. The component wants to utilise a service provided by the other party. The request

is to execute a remote method that gives access to the service. The resulting value may

be required to be passed back to the caller.

content: null

command: ’add’

args: [2,3,4]

callback: ’display’

In this case the caller asks the callee to execute the method add and perform addition

of three integer values. The result is expected to be sent back using another message

4.4 The Web Integration and Interoperability Layer (WIIL) 200

as an argument to the method call ’display’ which is going to be executed by the caller.

d. The component wants to send some data and instruct the other party explicitly what

to do with it. In this case there is no callback as the sender is not expecting anything

back:

content: null

command: ’logActions’

args: [{action1},{action1},..,{actionN}]

callback: null

The above scenarios illustrate simple uses of the message object to accommodate dif-

ferent communication requirements. The frequency of message exchange and the se-

mantics of the values being exchanged may be used to define more complex commu-

nication scenarios to accommodate different needs.

Component Installation

Third-party components are considered external to an application and therefore an in-

stallation is typically required prior to their use. This type of process can take many

forms in web-based applications. The physical component may be needed for local

installation. In Moodle, for example, plug-ins must physically become part of the ap-

plication codebase. Another case is to get a reference to a component that is hosted

externally which means that it resides in a remote machine. If this component is LTI-

compliant, there is a registration process that provides configuration parameters and

a method of authentication, typically OAuth. Configuration parameters include the

URL referencing the component, the user credentials under which a trust relationship

can be established and launch instructions. User credentials are a consumer key and

shared secret in Moodle. WIIL is designed to work with components hosted remotely

4.4 The Web Integration and Interoperability Layer (WIIL) 201

that are not LTI-compliant. In this context installation is much simpler and registra-

tion is more lax since authentication is not required. A mutual trust relationship can

be established by injecting the trusted foreign domain names to the nodes using the

wrappers.

The Launch Protocol

One of the things we are trying to avoid with WIIL is the unnecessary steps required

for component launch in the LTI world. This is based on the premise that not all com-

ponents are the same. Treating simple client-based web components as fully fledged

web-based applications is like introducing artificial complexities that hinder the inte-

gration process with no apparent benefit. A comparison between the LTI launch pro-

cess and the WIIL launch process will clarify things. The LTI approach assumes that

there is always some back-end functionality implemented as part of the component to

be integrated. The process follows:

1. The component to be integrated is selected by the user in the LMS client environ-

ment and a launch request is sent to the LMS server.

2. The LMS server knows what information is required for the particular compo-

nent and prepares a message as an HTML form. This is typically information

regarding authorisation to use the component combined with initialisation set-

tings. This form is then sent back to the LMS client.

3. As soon as the form is received by the LMS client, it gets automatically submitted

to the server-side part of the component to be integrated.

4. If all the information required is there, the component provider sends back to

the LMS client an instance of the component. This is the client-side part of the

component that is pre-populated with all the necessary values to instantiate and

initialise itself in the LMS environment.

4.4 The Web Integration and Interoperability Layer (WIIL) 202

5. Session information is maintained through messages being passed via cookies

during server round trips.

Figure 4.2: The LTI Protocol

This launch protocol is obviously a very long-winded process for simple components

that don’t include any native server-side logic to process authentication, authorisation

and initialisation information. According to LTI, in any case, this information must be

submitted as a form through a HTTP POST request to a back-end service. That implies

that there has to be some component at the back end to receive and process the request

before releasing the code for the component. For simple web widgets with no server-

side code that means the deployment of an extra processing tier to play the role of the

server and unnecessary network traffic between tiers. All that introduces extra cost

in terms of complexity, latency and resource utilisation. In the WIIL world things are

much simpler. An alternative launch protocol follows:

1. The component to be integrated is selected by the user in the LMS client environ-

ment and a request to get its code is sent to the hosting server.

4.4 The Web Integration and Interoperability Layer (WIIL) 203

2. The code is released by the server and the component gets loaded and instanti-

ated within a sandbox (guest) in the LMS client environment.

3. Once the component is available and fully functional it notifies the LMS client

that it is ready to be used.

4. The LMS client sends a message with initialisation information to the component

and the component gets initialised.

5. Subsequent correspondence between the LMS client and the component is local

and may involve processing requests and activity updates.

Figure 4.3: The WIIL protocol

This launch protocol does not involve any server-side processing because there is noth-

ing to be processed. The only thing that may be processed is initialisation data that is

sent directly to the component at the front end. Once the component is instantiated at

the client side it starts operating in a disconnected mode as if it were an integral part of

the original platform. All subsequent communication is local and takes place directly

4.4 The Web Integration and Interoperability Layer (WIIL) 204

between the component and the enclosing platform. Network traffic and latency is

minimal, processing is faster and responsiveness is better. Implementation is simpler

and much faster.

Cross-component Communication

Typically the framework used for this part does not deviate a lot from the basic prin-

ciples of OpenAjax. In the OpenAjax world cross-component communication takes

place through managed or unmanaged hubs. A component may take the role of a

producer that publishes messages to the hub and/or a consumer that subscribes to re-

ceive messages from the hub. The hub is designed around the concept of anonymous

broadcasting. Producers and consumers are not aware of each other. Point-to-point

messaging, cross-component property management and remote procedure calls are

not inherently supported. In WIIL communication between components is possible

only through the platform’s wrapper. In that respect this wrapper plays the role of a

hub. Components live in their own secure environment (sandbox) and exchange in-

formation with the platform through message passing but this is where the similarities

end.

An important difference in WIIL is that the platform itself is a component. In this

case communication is direct and unrestricted. System integrators are allowed to ex-

pose a widget functionality (or part of it) and make it available to its host and vice

versa. Components are able to exchange messages and to make remote procedure calls.

Property management is also possible through the same mechanism. Communicating

parties are fully aware of each other’s exposed functionality and are free to utilise it. A

distinguishing feature of this system is the ability to perform asynchronous operations

in the sender after a remote procedure call is completed via callbacks.

4.4 The Web Integration and Interoperability Layer (WIIL) 205

4.4.5 The Ladders Activity - A PoC

In this section we present a sample web-based application that shows how different

web components can be integrated with a platform and interoperate using WIIL. A

learning activity has been developed using Geogebra and uploaded to Geogebra Tube

with the name ”Ladders” 1 . Geogebra Tube allows sharing and delivery of the compo-

nent through a URL. Referencing this link from a web page instantiates the component

and exposes its API to the page. Once the component is instantiated user activity can

be intercepted through events and made available to the host platform through WIIL.

If the host wants to be notified every time the user changes something in the construc-

tion it exposes a method to be called by the guest every time the corresponding event

handler of the widget is invoked. In this activity the student uses the sliders to change

values in variables. User activity data along with the current state of the construc-

tion are sent through the wrappers to the host. Once the data is received the wrapper

transparently handles unpackaging of the content and delivers the data directly to the

requested method. The host inserts the data into a local in-memory JavaScript database

that is linked to visualisations on the page. As the student interacts with the tool and

the data changes in the database, the host displays real-time user activity and perfor-

mance statistics in histograms. The visualisations are themselves separate components

hosted in their own guest sandboxes and communicate with the host using the same

mechanism. The platform is also equipped with a rule-based expert system that pro-

vides real-time intelligent support to the student. If the student does something that

seems to be in the right direction the host platform displays a message to reinforce

this action. The same system can also be used by the student to request help during

the activity and check whether the objective has been accomplished or not. The plat-

form is merely a coordinator in this process and all the functionality becomes available

through WIIL from the underlying components.

1https://www.geogebra.org/m/s48ThHqF

4.4 The Web Integration and Interoperability Layer (WIIL) 206

Figure 4.4: The Ladders Interface

4.4.6 GeoGebra Coding - A PoC

In this section we demonstrate a different integration scenario. Again, we use a Ge-

oGebra component, but this time the component lives natively in the hosting page. In

this case it is not GeoGebra Tube that is being used as a factory of activities. GeoGebra

Coding 2 is a fully fledged learning environment designed to help people learn pro-

gramming. It features a GeoGebra component that exposes its functionality through a

custom JavaScript API and a Blockly component that provides full JavaScript function-

ality as well as a custom category of blocks to facilitate operations in GeoGebra. Learn-

ers are given the option to use either JavaScript or Blockly to code their projects and

GeoGebra in this context is used as a microworld or creative playground for learners

that want to learn programming through experimentation with geometry. The GeoGe-

bra Coding widget exposes its own public API through WIIL. The hosting platform is

able to communicate with it and retrieve information about elements, events and op-

erations that take place in the environment. The current student state can be exported

or imported in the form of XML or JSON. Indicators of student activity notify the host

2http://geogebraworld.s3-website-eu-west-1.amazonaws.com/

4.4 The Web Integration and Interoperability Layer (WIIL) 207

every time something changes in GeoGebra or the code editors. The host receives this

data through its own methods that have been exposed via WIIL. The data is inserted

into a local in-memory database that lives in the browser. It is then processed by the

platform to provide basic support in learning activities on demand.

Figure 4.5: The Blockly Interface

4.4.7 Results

Test results with various experimental platforms showed that the method works as

expected and fulfils its original design goals. The method is able to effectively deal

with component heterogeneity and seamlessly integrates disparate components into a

seemingly homogeneous whole. Registration, instantiation and initialisation of these

components is simple and efficient. Operation is safe and the system performs well

when the components asynchronously communicate with the platform. The method

overcomes browser security restrictions and the overhead in terms of memory and

processing power needed is minimal. It is estimated that the experimental imple-

mentation has successfully processed approximately 37,000 events so far. Sample tests

4.4 The Web Integration and Interoperability Layer (WIIL) 208

Figure 4.6: The JS Interface

showed that messages are being exchanged with 0% loss at a speed that allows a very

smooth interaction between different components. In future versions of the system we

envisage to implement an on-line editor that simplifies the integration process by in-

serting wrapper boilerplate code to the nodes and by providing the ability to visually

manipulate them.

4.5 Learning Environment vs Platform 209

4.5 Learning Environment vs Platform

Many times the terms environment and platform are being used interchangeably in

the learning domain. This is a potential cause of confusion and thus we need to dis-

tinguish between the two and clarify the differences. We can think of a learning envi-

ronment as a virtual space within which learners perform actions with the intention to

achieve learning. eXpresser 3, Geogebra 4, Scratch 5. are examples of learning environ-

ments. Typically, a learning environment specialises in a specific domain of knowledge

and utilises certain environment-specific approaches, tools and interfaces to achieve its

purpose. A learning platform, on the other hand, is a system that hosts one or more

learning environments and other components or services that potentially interoperate

with each other with the intention to support learning. A learning platform in this

respect can be thought of as the infrastructure that facilitates the integration and in-

teroperation of these components so that their synthesis can achieve its purpose. In

practical terms a learning platform covers a very broad range of systems that may

vary in terms of integration, or other architectural aspects. Typical examples of learn-

ing platforms are LMSs like Moodle and Blackboard, but in reality a learning platform

could be just a simple web page that combines geogebra with other complementary

components that provide services like intelligent support.

3https://migenproject.wordpress.com/
4https://www.geogebra.org/
5https://scratch.mit.edu/

4.6 An architectural aspect of Learning Platforms 210

4.6 An architectural aspect of Learning Platforms

Currently there are many learning platforms available offering a wide range of services

to educational institutions. From an architectural point of view these platforms can be

categorised as follows:

4.6.1 Tightly Coupled

In this category we have systems that implement proprietary platform-specific APIs

and the components and dashboards they provide are tightly integrated into the host-

ing environments. Usually tools of that category are well-tested and robust solutions

but customisation and reusability is limited if non-existent. These tools are usually

black boxes that provide standard functionality in a very fixed context. The intention

of these systems is to provide learning material as well as feedback to students and

teachers. Systems like that include Blackboard (Bradford et al. 2007), Khan Academy

and several other bespoke platforms tightly coupled with the application they support.

Khan Academy 6 offers some extensibility through plugins but these plugins are tightly

integrated with the platform. A notable example is ALAS-KA (Ruipérez-Valiente et al.

2015).

4.6.2 Loosely Coupled

These are systems that have the same objectives and general characteristics mentioned

above but implement a more component-based architecture. In such systems the learn-

ing platform is composed of pluggable components that implement standard inter-

faces. Typically it is possible for these components to be used in different platforms

and form alternative environments but quite often these interfaces are not compatible

across platforms. A system that follows this approach is Moodle. There are plugins

that can be used with Moodle and provide similar functionality as above. An example

6https://www.khanacademy.org/

4.6 An architectural aspect of Learning Platforms 211

is Moodog (Zhang et al. 2007).

4.7 Learning Platforms as Ecosystems of Diverse Components 212

4.7 Learning Platforms as Ecosystems of Diverse Components

As pointed out in section 2.1 nowadays there is a wealth of web components that are

freely available on the web and these components as well as their combinations offer

opportunities for supporting learning. Teachers and learners want to have the free-

dom to synthesise their own learning environments (PLE, OLE) in a way that resem-

bles web-based mashup applications. In this context the objective is to reuse already

existing functionality wherever possible and intermix it with new technologies in or-

der to synthesise new and innovative solutions. The benefit of increased reusability is

not just increased functionality but also reduced design/development time and cost.

Therefore, this becomes increasingly important where there are time and budget con-

straints imposed. Constraints in this case should not be seen as obstacles but as unique

opportunities to rethink about architecture and find new ways to design learning en-

vironments.

In this section we are using the term ecosystem instead of platform to show that

in an ideal system we expect to have a community of independent components that

may be used in various different formations to provide potentially meaningful and

innovative solutions. These components are expected to be heterogeneous and dis-

parate but able to integrate with the ecosystem and interoperate with each other. The

various compositions may appear as different learning platforms that have their own

logic, objectives, constraints and idiosyncrasies. The ecosystem acts as a hub for for-

eign components. These components may be stand-alone components or parts of other

systems that live on the web and offer freely themselves and their services. These in-

clude components that may or may not have been designed for educational purposes.

Facebook components that offer collaboration services, online code editors and output

consoles, OWL reasoners for AI applications are just a few notable examples.

These components may have been designed for different purposes and may fol-

low different architectures. As a consequence of that they may not be able to directly

4.7 Learning Platforms as Ecosystems of Diverse Components 213

integrate with the ecosystem. The ecosystem, in this case, provides the infrastruc-

ture that enables these components to live together and operate effectively within its

bounds. The integration process naturally involves homogenisation. After this process

is completed, these components become services that live in the ecosystem. Services

may be utilised directly or they may be combined to synthesise other more complete

or enhanced services. For example, we may need a service that provides us with an

intelligent code editor that features debugging, visualisations and task-independent

(TI) support in coding. This could be a composite service that utilises three individual

components that offer the functionality required.

4.8 Implementation of AuthELO 214

4.8 Implementation of AuthELO

Having the integration and interoperability hurdle out of the way, we move on to

designing and developing a prototype (Henson & Knezek 1991, Wong 1993) for the

authoring tool. According to the findings from 4.2 (User Centric Design) the tool needs

to satisfy the following high level requirements:

• compatibility with any web widget that may carry some educational value

• ability to intercept user actions and configure logging on the widgets

• ability to develop automated support based on the logs for widgets operating in

open and exploratory settings

• ability to generate support based on rules and analysed evidence

• ability to make support available on demand in a non-intrusive manner

• ability to operate with limited technical and domain expertise

The first of those requirements has already been satisfied with the development of

WIIL. We know that SEPIA can be used as the high level architectural framework to

overcome monolithic solutions. We also know that CTAT is a promising approach that

with some modifications is worth pursuing further in the exploratory terrain. CTAT

is simple but not simple enough in exploratory learning settings and for that reason

we complement it with FRAME to make the process more compartmentalised and

consider different parts separately to lower the cognitive load.

The outcome of this process is a prototype, named AuthELO. AuthELO was de-

signed and developed following the above considerations as general guidelines. From

an operational point of view the approach is exactly the same as the one used by CTAT.

The difference is that instead of visualising the possible paths we visualise the inter-

cepted user data and facilitate the authoring process through a view that follows the

4.8 Implementation of AuthELO 215

FRAME architecture. The tool is able to dynamically learn the characteristics of inter-

est from any learning environment attached to it and build dynamically its interface

to facilitate easy configuration of data logging. It is also able to perform dynamic and

continuous testing of automated feedback in a sandbox with minimal administrative

overhead. The outcome of the process is easily deployable as a plug-in that accompa-

nies the learning activity in any context. What remains to be done is to evaluate the tool

(Nieveen & Folmer 2013) and see whether it makes development of automated tutors

for exploratory learning easier. If that is the case, then that is a significant step forward

towards the desired value. In fact, at this stage it seems that even the desired value can

be made more specific to better describe the contribution of this work. Therefore, the

new form of the reasoning pattern changes to the following:

”ELE with automated support” + ”HOW” → ”make authoring of automated support

for teaching programming easier”

4.9 AuthELO 216

4.9 AuthELO

Programming is by nature an exploratory activity and as such it is learnt better in envi-

ronments that support and promote creative expression and exploration. For this rea-

son we consider task-dependent intelligent support only in the context of exploratory

learning environments that can be used to teach programming like the ones presented

in 2.1. These environments typically present themselves as virtual worlds (microworlds)

offering the ability to create, modify, manipulate, delete objects, respond to events and

manipulate the environment itself. Educational tasks in this context are highly inter-

active, exploratory activities that can be very effective in supporting learners’ devel-

opment of conceptual knowledge but they require a significant amount of intelligent

support. Research in the area has demonstrated that it is possible to delegate part of

this support to intelligent components (Bunt et al. 2001, Mavrikis et al. 2013). How-

ever, development of automated support requires technical skills and there have been

very few attempts to reduce the entry threshold for both programmers and end-users

(Blessing et al. 2007).

As shown in section 2.4 there have been many systems developed in the past that

can be used for the production of learning material that is interactive and provides

automated intelligent feedback to students. All of these systems are typically domain-

specific solutions that require low-level technical expertise and usually offer fairly lim-

ited and not easily generalisable output. That seriously limits the applicability of these

tools to a wider range of learning scenarios and imposes a high entry barrier for low-

skilled authors.The aspirational goal behind the development of authoring tools for

many years has been to enable users with low technical expertise to create and modify

content, including ideally their adaptive features according to their own pedagogical

strategies (Gaffney et al. 2010, Murray 2016, Harris 2002). However, the usability of

such tools and particularly the time required to invest in learning them, are factors that

affect teachers’ engagement in the design process of authoring (Karoui et al. 2016). It is

4.9 AuthELO 217

important to understand that teachers have different expertise, needs and motivations

and authoring tools should meet their different expectations.

What we see as a viable approach in the context of exploratory learning is a system

that is generic (not domain-specific) and versatile enough to accommodate automated

support in situations where interaction with the learner is not fully structured. The sys-

tem should be able to provide an authoring interface through which users with limited

knowledge-engineering and programming skills can develop automated support for

any educational task. This tool should be able to simplify the authoring process to the

extent that the cognitive load needed for the author is minimal so that authoring activ-

ities can be focused on the problem at hand and not wasted in the low-level technical

details needed for the implementation.

4.9.1 Design

At a conceptual and architectural level we see an authoring tool for intelligent support

in this context as a system that resembles SEPIA (refer to 2.5.2). SEPIA is designed so

that automated support can be added in the form of an epiphytic application that is

external to the learning environment. Integration does not require changes in the tar-

get environment and interoperation is not based on domain specific models and tools.

From a more practical viewpoint our approach is very close to the example-tracing ap-

proach (refer to 2.4.2) introduced by Aleven et al. (2009, 2016) as this approach seems

to require the least amount of cognitive load for the author. According to this method,

the author develops feedback by doing the learning activity like a student. The system

generates a tree-like diagram that depicts the current state of the student. The author

can utilise this information to infer the current student understanding about the given

task. Then, the author can decide about the type and level of support needed and

annotate the diagram accordingly to determine the behaviour of the intelligent tutor.

Although this approach is simple and allows non-expert developers such as learning

4.9 AuthELO 218

designers or teachers to author automated support, it is fairly limited in the sense that

it is domain-specific and not generalisable beyond structured tasks. Structured interac-

tion may be adequate for traditional ITSs but in the context of exploratory learning it is

problematic since it covers only a very limited range of the possible alternative paths.

In an exploratory learning environment these paths are potentially infinite since typi-

cally there are very few restrictions that constrain the learner trajectories and ability to

do things.

Our approach is a variant of the example-tracing method. The method is essen-

tially the same but we are not using the visualisation part that shows the potential

paths simply because it is impossible to represent visually all the possible states in such

diverse domains and open environments. The authoring tool must be generic enough

to accommodate dynamic learning scenarios that take place in exploratory learning

environments. In these environments support is expected to be task-dependent but

tasks may not be fully controllable and structured. In this context, authoring must be

based on activity indicators (data) that become available as the author interacts with

the environment. The author tries to cover as much as possible of the potential student

trajectories by executing the activity multiple times and gather data that is represen-

tative of those paths. This information can then be utilised to form sensible rules that

determine the generation of automated feedback. Author-generated data as well as

student-generated data may be used to revisit the initial design so that we can achieve,

after multiple iterations, a model that is representative of the common student miscon-

ceptions for the particular task.

The example-tracing approach along with the fluidity of the data-based modelling

approach tackle the domain specificity problem and unstructured interactions but the

entry threshold for non-tech savvy authors is quite high. Since, there is no visual pro-

gramming involved anymore and knowledge engineering techniques must be applied

on user activity logs the technical difficulty seems to be prohibitive for non-skilled

users. In our attempt to remedy this problem we first decided to decompose the au-

4.9 AuthELO 219

thoring process and thus reduce the complexity of the authoring task. Our method-

ology was based on previous work presented in the FRAME approach (Gutierrez-

Santos, Mavrikis, Magoulas et al. 2012) - see figure 2.2 (refer to 2.4.10). According to

this approach, the complexity of the authoring task can be reduced and made more

manageable through the compartmentalisation of different concerns regarding the dif-

ferent aspects of the problem that may require different approaches and expertise.

Considering these aspects separately reduces the skill threshold required to deal with

the problem in its entirety. In practice the development of support using this method

goes backwards and resembles to an extent the Model-View-Controller (MVC) archi-

tectural pattern in software design. Development tasks move towards the opposite

direction of the data flow as it is presented in the diagram 2.2. Authors start from the

presentation component and gradually move towards the underlying concepts that

need to be addressed and development of components that intercept user or system

activity and produce evidence.

Our design is influenced by the view that an exploratory learning system should

not intervene in the process in an intrusive manner (Mavrikis et al. 2013). Support

should not be provided in order to manipulate the students and control their behaviour

which is typically the case in traditional ITSs. Support should be as discreet as possible

and inform the users for potential issues but not interrupt the learning cycles and the

educational process. That, of course, does not contradict with the fact that support

should always be available on demand. Learners may not be able to exploit the full

potential of exploratory learning environments if there is not enough support available

to direct them (Mayer 2004, Klahr & Nigam 2004, Kirschner et al. 2006).

Taking all of the above into account we used a design-thinking approach that in-

volved the development of a prototype and multiple re-design iterations. The starting

point in this process was to identify the challenges potential users would face in de-

veloping functionality for each part of the authoring process and especially the parts

that deal with reasoning and the acquisition of evidence that can support it. For this

4.9 AuthELO 220

we used participatory design methods involving expert designers and educators. For

the reasoning part we collected a number of use cases of specific learning activities

developed in three well-known ELEs. The experts provided us with complete usage

scenarios for each activity that include potential student misconceptions, landmarks

that can indicate important states of the constructions and the respective feedback that

the system is expected to provide to students. This information helped us form an

initial idea of what is needed for the reasoning part and they also were transformed

into batteries of tests for a technical evaluation of the prototype tool. Having this infor-

mation about the reasoning part enabled us to identify requirements for the evidence

part.

Decomposing the authoring process is a crucial step to reduce the complexity but

it is not enough if low level technical knowledge is needed regarding the architec-

ture of the learning platform and coding is needed to acquire and process user data

and domain knowledge. The architectural design of the learning platform should not

be a concern for potential authors. Understanding the architecture of the system and

coding for integration and interoperability is typically work for programmers and not

learning designers and teachers. Acquiring and processing data and domain knowl-

edge is, though, work for authors of automated support but if coding in a 3GL is

needed, then that part becomes especially difficult for them. Compartmentalising the

concerns and providing a different authoring component for each eases the difficulty

but not enough. There have to be two additional levels of abstraction to make this

process more accessible to users with limited technical expertise. The first level is

to design and implement high-level, ideally declarative, languages for each compo-

nent. This gives the opportunity to skilled learning designers that want to have a lot of

control to produce fine grained solutions to accommodate sophisticated support sce-

narios. A tool that may be used for the production of such languages is presented in

6.4 (LFT). A first attempt to identify the requirements for a high-level specialised lan-

guage for the data acquisition part was made in a discovery workshop we conducted

4.9 AuthELO 221

in 2018 at UCL Knowledge Lab (Mavrikis et al. 2019). Participatory design methods

were used again, involving three experienced ICT teachers with enough programming

background to teach computing but not necessarily enough to develop applications

as professional programmers. They were all skilled in basic JavaScript and they were

supported to develop 15 different activities in MALT+ and the corresponding auto-

mated support using the prototype tool. One of the objectives of this workshop was

to see how authoring takes place and identify difficulties, commonalities and patterns

in their solutions that could provide the basis of a higher-level language for evidence

acquisition. The findings revealed the following requirements:

• No of actions performed by the learner since the beginning of the session

• No of actions involving a given element

• The first action that involves a given element

• The last action that involves a given element

• All the actions that involve a given element

• The time elapsed since the session started

The second level is a visual programming environment that encapsulates the abstrac-

tions and the functionality provided by the first one to enable development without

the need to learn a programming language. This could be a block-based interface like

scratch or blockly. That gives the opportunity to low skilled designers or teachers to

develop simple support scenarios with ease and gives easier and faster access to the

same functionality to skilled learning designers. This requirement was confirmed in

the same workshop at the UCL Knowledge Lab. For this part six newly qualified teach-

ers who were studying at the UCL masters in Education and Technology were carefully

selected based on a non-random sampling strategy. These students had a range of ex-

pertise in using technology in educational settings, but no programming background.

4.9 AuthELO 222

One of the key findings of the session was the need for an easy to learn and use lan-

guage based on block coding. The students identified the need and proposed various

language constructs that could be used to express concepts in this context.

4.9.2 Architecture

As mentioned previously, we think that the web browser is the de facto deployment

platform for educational software nowadays. Therefore, the proposed architecture

considers an authoring tool that is a native HTML5 application with no external de-

pendencies and is physically and logically decoupled from learning platforms. The

tool should be able to interoperate with any other web component (widget) that may

be used as a learning environment as long as the latter is equipped with an API. That

implies that it must be generic enough to accommodate interfacing with diverse ar-

chitectures, APIs and data models. Implementing any platform-specific or proprietary

functionality would make it deviate from that principle and therefore is not desirable.

The design should follow the SOA paradigm so that the service can be utilised through

standardised communication protocols and data formats.

As mentioned above, the tool may be physically and logically decoupled from the

learning platform but after it has been ”virtually” integrated the whole system should

look unified and homogeneous. From the users’ perspective we see integration as a

very simple procedure that involves a single step. This is to provide a URL along with

parameters that give information about how to instantiate the learning object (envi-

ronment) to be configured and where to store the configuration data. This information

is stored in the learning platform and is used whenever an author wants to configure

logging and automated feedback for a learning object. The author initiates this process

in the learning platform and implicitly gets redirected to the authoring tool (AT). The

tool then creates an instance of the learning object (typically a web widget) that lives

in its own private and secure space (sandbox). The two software components oper-

4.9 AuthELO 223

ate as independent applications in parallel (asynchronously) within the same browser

instance. The interfacing between them is done by the Web Integration & Interoper-

ability Layer introduced in (Karkalas, Bokhove, Charlton & Mavrikis 2015, Karkalas,

Mavrikis & Charlton 2015). WIIL is a thin layer that can be used to integrate own or

third party web components with a platform. It can also provide a simple but efficient

communication mechanism so that the integrated components can interoperate with

each other. Once the learning object is instantiated, it sends to AT its environment-

specific metadata. This is information about the types of elements that can exist in the

environment and the types of events that these elements can generate. This data is

maintained in local in-memory databases at the AT side of the browser. The AT uses

this information to construct dynamically a graphical user interface for the configura-

tion of user activity logging. Something that needs to be noted here is the dynamic

nature of this process. There are no presumptions about the information that is re-

ceived from the widgets. Different widgets may provide different metadata and that,

in turn, may result in the formation of different interfaces.

This GUI becomes immediately available to the author and the author can use it to

set up data logging rules that have an immediate effect on how the instance behaves.

The rules are stored in local databases in AT and they are also sent to the learning object

so that the respective event handlers can be registered. After registration, the widget

is able to generate data according to what the author prescribed in the configuration

interface. This data becomes directly available to the author for inspection. The author

uses this information to make decisions about what feedback needs to be provided to

the students. This part of the configuration is also stored in local databases. The log-

ging and feedback configuration is then passed by the tool to the learning platform, so

that these settings can become available to the actual learning object instances that are

going to be used by students. The learning platform sends these settings as part of the

initialisation parameters during the widget launch process.

4.9 AuthELO 224

Figure 4.7: The Architecture

4.9.3 Integration at a Technical Level

The basic ingredient that makes authelo versatile and not tightly integrated with spe-

cific platforms and learning objects is WIIL. As seen in 4.4 WIIL can be used to provide

a seamless integration between a platform (host) and a learning object (guest). This

scheme can have many levels and result in a chain of components encapsulated one

into another. In order to understand integration of authelo with interrelated compo-

nents we have to consider two distinct cases.

Authoring phase

During authoring authelo is used like a learning platform that can host the learning en-

4.9 AuthELO 225

vironment of choice. In this scenario authelo is implemented as a web page equipped

with WIIL and able to incorporate any WIIL enabled learning object. The learning ob-

ject to be enhanced is referenced in an iframe element and once registration is done

the two nodes start communicating with each other through HTML messaging. The

learning object informs authelo about its environment-specific characteristics like the

types of elements and the types of events available and authelo generates dynamically

its authoring interface to accommodate these requirements. The author at that stage

can start setting up logging rules and the learning activity to experiment with. All

the information generated by those activities will then have to be stored somewhere.

Authelo is not itself a learning platform, although it might appear as one. The infor-

mation that derives from its operation should persist and made available for future

reference by software running this activity in learner terminals. In order for this to

happen authelo must communicate this information to a learning platform. Integrat-

ing authelo with a learning platform is equally easy as integrating it with the learning

object. The difference in this case is that authelo is the guest and the learning platform

its host. Once registration is done both systems can start operating in parallel and the

author of automated support can save logging, support and evaluation rules to the

platform. Saving in this case entails sending this information to the host platform in

messages and letting the platform decide where and how to store it. This way authelo

can stay as neutral and independent as possible from implementation details specific

to its interoperating peers. It is just a component in the middle that handles informa-

tion generated by the author and the learning object.

Deployment phase

Once the authoring is done and all the related information is stored in the platform

database the learning activity along with the automated support created for it can be

deployed in student terminals. A student terminal can be thought of as a learning plat-

form implemented as a web page that can incorporate a learning object in an iframe.

4.9 AuthELO 226

Let us call this platform the activity player. A cut-down version of authelo imple-

mented as a library must be referenced by this player. This gives the player all the

necessary equipment to store locally information about logging, support and assess-

ment rules as well as the infrastructure to execute those rules and provide assistance.

Once the player gets instantiated and information about the learning activity becomes

available the authelo infrastructure gets populated with the respective rules and auto-

mated support is ready to be used. Information about the learning activity entails the

instantiation of the enclosed learning component in its iframe. Both the host (player)

and the guest components are integrated through WIIL and once registration is done

communication between them can begin. The student can start interacting with the

learning object and activity indicators will start flowing from the widget to the host.

The host will activate the logging rules to select the indicators of interest and store

them in local in memory databases for authelo use. Once the learner hits a button

to request support the corresponding rules will get evaluated and assistance will be

displayed. The data generated either from the widget or from authelo itself like the

support provided can then be sent off to the database of choice by the player. Authelo

is completely unaware of this data and platform-specific operations. Again, as in the

previous scenario authelo operates like the intermediary that intercepts data, activates

given rules and displays assistance in a totally neutral and disconnected manner.

4.9.4 The PoC

This section presents a tool that has been designed according to the methodology and

architecture presented in the two previous sections. The name of the tool is AuthELO

and stands for feedback ”Authoring for Exploratory Learning Objects”. AuthELO can

be used to configure user activity logging rules and rules that dictate how automated

feedback for exploratory learning objects (ELOs) can be generated based on these logs.

ELOs are web widgets that instantiate highly interactive exploratory learning environ-

4.9 AuthELO 227

ments. ELOs are expected to be highly diverse and there is no assumption about archi-

tectures, APIs, communication protocols or data formats. AuthELO was designed to

harness the heterogeneity of those ELOs and provide a simple, common and efficient

authoring interface for automated support. A central design objective of AuthELO was

to normalise the discrepancies between the ELOs and give the ability to non-experts

to easily develop or modify feedback that is provided to students based on their in-

teraction. The design is based on the following five main requirements as they were

formulated after multiple re-resign iterations:

• Authors must be able to dynamically configure what data will be logged by a

learning object during a session with a user. This can be data generated from

interactions between the user and the widget and derivative data that gets gen-

erated by the widget itself as a result of some event.

• Authors must be able to specify rules about real-time feedback that should be

provided to the students. These rules should be based on log data that is dynam-

ically generated as the student engages with the activity.

• It should be possible for authors to configure all the available widgets through a

common interface. This interface should be able to hide the diversity of poten-

tially heterogeneous learning components that might be offered in the system.

• The tool must not impose barriers in terms of skills and technological expertise.

Teachers with a certain degree of IT literacy should be able to use it for authoring

interactive learning material.

• The tool must be able to offer opportunities for exploratory authoring of feed-

back reducing the cognitive load that is expected for non-structured tasks of ex-

ploratory activities.

The main screen of the tool presents the instantiated ELO along with a table view

of the user activity logs. User activities that are being logged appear in that list and

4.9 AuthELO 228

are selectable by the author. Selecting a user action reveals the underlying data of

the respective indicator in JSON format under the ’Action’ section of the page. That

provides the author with a very good view of the data and can be used for an initial

data exploration or the configuration of data handling and feedback rules, figure 4.8.

Figure 4.8: The Widget View

The author can use this instance of the ELO to do the activity like a student and check

the coherence and logical flow of the expected interactions. This process generates

data. The data that is being captured reflects the data logging rules that have been

previously configured in the system. The configuration of logging rules is a part of

the authoring process that is not depicted in the FRAME diagram because it is implied

that the learning platform takes care of it in the background. The second tab shows the

configuration options for this part, figure 4.9.

This part of the interface is generated by AuthELO dynamically based on the meta-

data that is received from the enclosed ELO. Although this is ELO-dependent infor-

mation this interface is able to dynamically accommodate any discrepancies in terms

4.9 AuthELO 229

Figure 4.9: The Logging View

of element types and events between diverse ELOs. The author can combine element

types, events and potentially names of individual elements to configure logging rules.

Once inserted, a rule becomes immediately effective and the ELO starts generating

data. Rules are stored in a local database in AuthELO and they are also sent to the

widget through WIIL so that the respective event handlers can be registered. After reg-

istration, the widget is able to generate data according to what the author prescribed.

Data logging is essential because ideally we want to prevent data flooding from hap-

pening by logging every little unnecessary detail.

Evidence detection is the next part and that requires some data pre-processing so

that we can transform the data logs to usable information that reflects the concepts

to be supported. This processing can be done by using JavaScript in the analysis tab,

figure 4.10. If the analyst is a competent programmer then fully-fledged JavaScript

can be used to accommodate very fine and detailed processing. In addition to that,

there is also a JavaScript library available that provides a high-level interface to the

4.9 AuthELO 230

most common data collection and analysis requirements of typical authors. The lan-

guage constructs available reflect the requirements identified in 4.3.1. This library is

the first step towards the design of a high-level language specialised for that part of

the processing. The high-level language constructs that are available follow:

• actions.size()

• actions.noOfActionsBy([property],[element])

• actions.firstActionBy([property],[element])

• actions.lastActionBy([property],[element])

• actions.actionsBy([property],[element])

• actions.timeElapsed()

They all become available through an object with a global scope named ’actions’.

Figure 4.10: The Analysis View

4.9 AuthELO 231

The system log view provides a real-time view of errors or potential problems identi-

fied by the system as the author writes code in the editor. The author can also utilise

this view to display their own logs and debug their code. Once the data needed is

collected and properly formed they can be made available to the Feedback tab, fig-

ure 4.11. This is the place where decisions are made regarding when and how the

feedback is going to appear. Feedback rules are split in two categories. The first cat-

egory concerns the ’what’ needs to be produced and the second concerns the ’how’

implementation should be done. The editor titled ’Assessment Authoring’ informs the

learner about how much of the expected output has already been created. The ’Feed-

back Authoring’ editor is used for rules that generate instructions that help the user

overcome problems and move towards the designated target. These editors can refer

to artifacts generated in the analysis tab.

Figure 4.11: The Feedback View

The last tab is titled ’Messages’ and can be used to create named variables that hold

pieces of text that we want to display as messages to the learner - see figure 4.12. These

4.9 AuthELO 232

variables can be directly referenced in the authoring tab to generate messages.

Figure 4.12: The Messages View

Once all the above steps are completed and there is a feedback support scenario in

place, the author can go back to the first tab to test the rules, figure 4.13. The rules

have immediate effect in the authoring environment and can be tested without any

administrative and redeployment overheads. The author can reset the logs and start

the activity from the beginning to generate the data needed to simulate the problem.

Feedback can be requested using the buttons under the ELO.

4.9 AuthELO 233

Figure 4.13: Feedback Testing

5
Evaluation of AuthELO

234

5.1 First Evaluation 235

AuthELO is a central contribution of this work. It is designed based on data collected

and findings derived during the thesis and it is also a component designed to address

needs that emerged during this thesis. As a design it needs to be evaluated and po-

tentially go through re-design iterations until the design objectives are satisfied. For

this purpose there are two evaluation cycles that complement this process. In order

to have a comprehensive coverage, for the first part of the evaluation we use learning

technologists whereas for the second part we use industry experts.

5.1 First Evaluation

The first evaluation started with a workshop involving the three learning designers

that contributed to the initial design of authELO. This study was targeted to JavaScript

developers (and not teachers) as at this stage AuthELO did not support high level

abstractions like block-based coding for the development of feedback.

The workshop was divided into three parts. In the first part, the participants were

asked to develop automated support on their respective widgets for the same usage

scenarios used in the design stage. The time required to develop the scenarios was

recorded. In the second part the experts were interviewed in order to identify key

phases in the authoring process. The common denominator of those phases was a se-

ries of seven steps that seem to give the basic workflow followed in the development

process. This workflow was an important finding because it was used in subsequent

steps to help with the qualitative evaluation of findings and ultimately to further in-

form subsequent re-design iterations of authELO. The final part involves evaluation of

authELO via a usability testing. The aim of this test was to measure speed, efficiency

and user satisfaction.

To facilitate the process and have a meaningful comparison, we followed three dif-

ferent approaches based on the particularities of the widget:

5.1 First Evaluation 236

1. Geogebra: To our knowledge, there is no standard way of authoring feedback

on dynamic geometry activities like GeoGebra. We followed our previous work

(Karkalas, Bokhove, Charlton & Mavrikis 2015, Karkalas, Mavrikis & Charlton

2015) and provided an experimental platform that takes advantage of Geogebra’s

API and allows quick integration of widgets and event handling capabilities to

ease the work of the programmers. A widget was preconfigured to generate

every possible event for every element present in the construction and the data

was collected in the central repository of the learning platform.

2. FractionsLab: FractionsLab was developed in C# in Unity (Hansen et al. 2015).

For authoring feedback the developer wrote code for a particular task, after a

framework for support had been developed in the Unity Development Environ-

ment.

3. MALT+: This is an HTML-based widget developed in JavaScript. For authoring

feedback the corresponding developer first established an approach to handle

key events from the environment and then wrote code in JavaScript.

We allowed this way the strength of each platform, programming language and de-

veloper expertise to manifest itself rather than setting up the three developers to fail.

After the task, we interviewed the developers to identify key phases in the process,

which we summarise below:

1. find the item(s) of interest in the construction

2. consult the documentation of the widget to see how they are represented in the

data

3. go to the back-end database server or intercept data locally (e.g. consulting the

browser console) to determine how events from the system can provide evidence

for determining the feedback

5.1 First Evaluation 237

4. write the code that uses this evidence to generate the message

5. reset (e.g. reload or in some cases re-compile) the system and start again the

activity

6. perform all the actions needed to form the state that generates the feedback

7. check whether the feedback is correct and either move on or repeat the process

This cycle of actions requires a significant amount of time if the author needs to move

back and forth between the server and the client part of the application multiple times.

This is the case even if both the client and server components reside in the same phys-

ical tier. Configuration for the data logging may not be needed but the fact that the

database may be filled with irrelevant data makes retrieval and processing more diffi-

cult. The fact that new code cannot have immediate effect and the author has to reset

the system and go through the activity steps again is possibly the biggest obstacle in

this process. Things become even more complicated if the author makes a mistake.

This process can be an exhaustive experience for the author. It is pretty obvious that

the process as a whole imposes a high cognitive load and reduces the effectiveness of

the authoring task.

The third component of the workshop was a usability test. The aim of this test

was to measure efficiency in terms of speed and ease of use. In particular the metrics

(Seffah et al. 2006) used follow.

AuthELO is considered as a successful tool if:

• (speed) A non-expert using authELO can achieve at least 20% time gain in devel-

opment of automated support comparing to an expert without authELO

• (ease of use) A non-expert using authELO can develop the same level of support

as an expert without authELO

5.1 First Evaluation 238

The experts were randomly allocated to a different widget. To ensure that the odds are

the same for all participants a random generator app was used as follows:

1. The three participants as well as their respective widgets were numbered. Ini-

tially they all have their own widgets.

2. The facilitator (researcher) runs the app once to get a random number between 1

and 3

3. The participant selected runs the app as many times as necessary to get a number

(between 1 and 3) different to their own number - allocation 1

4. The remaining participant that still has a widget is allocated the widget of the

participant in step 3

5. The remaining participant is allocated the only widget available

Three representative learning activities, one for each widget, were selected and used

for this part. There was a short familiarisation session with the particularities of wid-

gets, the respective activities/usage scenarios and authELO. For the familiarisation

session there was also a process to follow. The first phase was the familiarisation with

the widgets. For this there were three 1:1 sessions that took place sequentially. The

widget expert gave a short tutorial to the non-exert on the allocated widget. The sec-

ond phase was the familiarisation with the activities and authelo. For this there were

again three 1:1 sessions that took place sequentially between the facilitator and the

non-experts.

This part was necessary because the users were not knowledgeable on the widgets.

Then, the users were asked to develop support for the given activities through auth-

ELO. Again, the time required to develop the scenarios was recorded and the experts

were asked to evaluate the level of support developed by the non-experts. Then a dis-

cussion on the findings based on the key phases of the authoring process took place in

5.1 First Evaluation 239

order to have a more qualitative evaluation and justify the outputs. The quantitative

results are given in table 5.1:

Table 5.1: Time Savings with AuthELO
Native AuthELO %

GeoGebra 245 135 44.8
FractionsLab 330 250 24.2
MALT+ 103 82 20.3

It is evident that there are substantial time saving possibilities with AuthELO. Espe-

cially if we take into account the fact that in the first experiment the authors did not

have to configure data logging at all and they could start directly with authoring the

feedback, we can see that in all cases the task was completed by a different developer

in a shorter time than the original expert in this tool. Observing the developers us-

ing AuthELO we confirmed that, despite the short familiarisation session, developers

were able to select the items of interest and check directly whether the widget gen-

erates the data required. The data gets displayed dynamically as the author interacts

with the widget. There is no need to consult the widget documentation for anything or

to switch context and query the back-end database. We think that this is a really impor-

tant point, contributing significantly to reducing the overall time, particularly because

otherwise one needs to spend a significant amount of time going through the events

that generate data, especially in the context of exploratory learning objects. This is not

something we can expect the average teacher to have the training or time to do. The

feedback code has immediate effect and messages can be generated on the spot. There

is no need to reset the system and repeat the activity. Testing the changes is a matter of

pressing a button. Mistakes can easily be fixed. Syntax problems appear dynamically

as the author is typing the code. Author messages that display values for debugging

are presented in the front page when the logic for the feedback is checked. In conclu-

5.1 First Evaluation 240

sion the whole cycle is performed at one place and the available utilities simplify and

speed up the process.

After the workshop a re-design iteration of authELO followed to address impor-

tant findings like the basic workflow of the development process. The new version of

authELO was then evaluated again with the same criteria as before but this time in

the context of a real project. Two of the participants in the evaluation workshop that

specialise in Malt+ were selected to take part in this experiment. The purpose of this

evaluation was to confirm previous findings after changes in the design.

This evaluation was a quasi experiment - single group study (Privitera & Delzell

2019) that took place in the context of a real project. The aim of the experiment was

again to evaluate the tool with regard to the same variables as above: speed and ease

of use. The conditions under which this part took place did not allow us to have full

control over the process. Instead of having a control and a test group we used a single

group of two designers completing the same task in the same context twice. The task

was to integrate Malt+ with a learning platform and develop automated support for a

number of activities. The only difference - and thus the independent variable - in the

second iteration was the involvement of authELO in the authoring process.

After the experiment we interviewed the designers and asked them to provide de-

velopment estimates for both iterations. The results clearly confirm the findings ob-

tained from previous studies. The designers were able to develop the same level and

quality of support in approximately half the time with authELO. They said that in the

first iteration it took them two weeks of full-time work to develop the required level

of support. The same task with authELO took them four days full-time. The designers

also responded positively to questions about usability and satisfaction. The outcome

is positive but we need to consider the issues raised regarding the internal validity of

such an experiment. For example, the fact that the second time the designers perform

the same task may have a positive correlation with the improved performance due to

a learning effect (Zhang et al. 2014). Even if that is the case, the estimated difference is

5.1 First Evaluation 241

substantial and it seems safe to assume that it exceeds estimates for the learning effect.

Finally, the fact that the process took place in the context of a real project adds more

ecological validity to the experiment.

5.2 Second Evaluation 242

5.2 Second Evaluation

The second evaluation was conducted utilising the qualitative method of focus group

(O’leary 2017). The group comprised five top software engineers senior to lead level

working as part of an elite team responsible for the R&D of a major consulting com-

pany in the software industry. These people typically work on research projects and

develop prototypes. They are accustomed to dealing with diverse technologies and do

rapid development of high quality.

The aim of this session was to obtain time estimations from industry experts about

the development of the basic infrastructure for a system like authELO and the key

phases in the authoring process identified in the previous step. We also wanted to

have qualitative evaluations of existing and proposed features from people that have

industry background and high expertise in areas related to the underlying technolo-

gies used. The benefit from that was to have a more complete evaluation that covers

areas likely to be overlooked by regular mainstream users. The target group of users

for authelo is learning technologists and skilled teachers. Top software engineers in

the industry have very different profiles, experiences and technical abilities than these

users. In that respect these are lead users and not mainstream ones (Urban & Von Hip-

pel 1988). Lead users are the ones that have everyday experiences of similar problems,

they may have already thought of possible solutions for those problems and they will

bring those experiences in the discussion to uncover issues, complement solutions and

verify accomplishments. Lead users are users that experience these problems years

ahead of the majority of regular users (Ulrich & Eppinger 2011) and this is why their

input is very valuable when evaluating new designs.

The participants were given a guiding worksheet and the session started with a

presentation of the subject with the researcher as a facilitator. An example activity

developed in Malt+ was given as a point of reference during the presentation. Then

the developers were given access to authELO and a short familiarisation session with

5.2 Second Evaluation 243

the technology took place. After this session the participants were given some time

to brainstorm, discuss their understanding of the system and try to identify similari-

ties with problems they had previously experienced in their line of work. During this

discussion there were many references to previous projects and similar challenges es-

pecially with regard to integration and interoperability. The final part was to get the

participants to fill in the given worksheet with time estimates and their qualitative

evaluation.

The worksheet was divided in three sections covering the basic infrastructure, AI

authoring and the participant opinion on authoring automation features. The final part

was a discussion about weaknesses and suggestions for improvements.

We can’t really have a meaningfull direct comparison between the two cases (with

or without authELO) as far as the basic infrastructure is concerned because without

authELO a developer typically has to go through all the steps needed to set up the

infrastructure. The only comparable component between the two scenarios is integra-

tion and interoperability because this is the only part of the process that is not fully

automated. The average time needed to integrate a new component with the platform

is 180 minutes and that is about 40% of the time needed to do the same without auth-

ELO - see table 5.2. If we count all the rest of the components needed, then a developer

using authELO would need only 7.18% of the time required without it.

The second part is about the AI authoring process. In this case the developers tried

to overestimate and think of the worst case scenario - see table 5.3. There are certain

steps in the process that don’t have to be done in authELO, like logging rules. That

alone seems to be giving a big advantage to authELO. The developers gave the same

estimate even in code writing for feedback rules which may not be true in reality, given

that authELO provides a high-level interface for that purpose. They also responded

that they would need the same number of iterations in both cases. Nevertheless, in

total, authELO seems to be able to perform the same task in half the time.

The third part was about rating authoring automation features. The developers

5.2 Second Evaluation 244

were given five Likert scale (1-10) and two open-ended questions. The first five ques-

tions were about distinctive features of authELO. As shown in table 5.4 they all gave

top rating for all the features. The feature that was given the lowest rating was the

high-level language specialised in feedback authoring. This was no surprise as these

people were all competent programmers and possibly thought that using a lower level

language would give them more control over the process.

The two open ended questions where:

1. Any suggestions for additional features?

2. Any obvious limitations?

In that part two suggestions were given. One is to provide more information about

the components and instructions on how to use them. The other one was about the

language. They said that it would be preferable to have a prompted, text-based parser

instead of a block-based visual language. That would be faster to use. Again, this is

said from the perspective of experienced programmers and is obviously not applicable

to low skilled learning designers and teachers. The limitation identified was that there

is no standard structure for components and therefore a developer is needed to add

them to the system. That requires some technical Knowledge as there will be cases

where the integrator will have to write WIIL implementations for the various com-

ponent APIs. This is true, but inevitable if you have to deal with non-standard and

diverse components.

In conclusion we could say that although the overall estimations confirmed the

time gains achieved in the previous steps the engineers did not seem to significantly

appreciate the contribution of authELO regarding the key steps of the authoring pro-

cess with a notable exception of evidence preparation. The fact that they had a very

high level of technical expertise played a role on that. In the qualitative part of the

evaluation they gave top ratings to all the distinctive features of authELO. They also

5.2 Second Evaluation 245

expressed their preference on a high-level language specialised to authoring rather

than a block-based visual programming environment.

Table 5.2: Results for Part 1 - AuthELO
Manual AuthELO Gain

Part 1 - Infrastructure time(min) time(min) %
Database 180 0
Web server 180 0
Server-side components 564 0
Web page 516 0
Client-side components 612 0
Integration & Interoperability 456 180 60.53%
Total in min 2508 180 92.82%
Total in hours 41.8 3.0 92.82%

5.2 Second Evaluation 246

Table 5.3: Results for Part 2 - AuthELO
without AuthELO with AuthELO Gain

Part 2 - Automated Feedback
Authoring

time(min) time(min) %

find elements of interest in
the construction (using UI or
the docs)

300 300 0.00%

consult the API docs to see
what events they respond to
and what data they generate

180 180 0.00%

write code to intercept only
the events of interest and ex-
clude irrelevant data (logging
rules)

240 0 100.00%

interact with the widget to
generate some data (do the
learning activity)

264 264 0.00%

check the data in the db and
analyse, aggregate as appro-
priate (prepare data for the
decision making part)

192 48 75.00%

write code to determine what
help may be useful for the
learner based on the data (ai
support rules)

408 408 0.00%

recompile, reset system and
do learning activity again to
generate the same data

396 0 100.00%

check the messages gener-
ated by the ai support code
(testing)

336 0 100.00%

number of iterations you
think needed to get the
desired outcome from the
above process

9.6 9.6 0.00%

Total in min 2316 1200 48.19%
Total in hours 38.6 20 48.19%

5.2 Second Evaluation 247

Table 5.4: Results for Part 3 - AuthELO
AuthELO Features Rating (1-10)

visual definition of logging rules and instant deploy-
ment

9.4

real-time visual inspection of data generated as you
interact with environment

9.6

instant (local) deployment and testing of AI support
without having to save, recompile, reset and repeat
the activity

9.6

high level language specialised in authoring AI sup-
port (no JavaScript)

8.6

visual language (block-based) specialised in AI sup-
port

9

6
Addressing new Requirements

248

249

The material presented in this chapter is supported by the following paper: (Mavrikis

et al. 2019).

6.1 Requirements Elicitation 250

6.1 Requirements Elicitation

The findings of the last evaluation of authELO revealed a new requirement. This is

the need to have a more high-level language specialised in authoring feedback. An

iteration to revisit the design was needed (Nieveen & Folmer 2013). In order to ad-

dress this requirement we organised a requirements elicitation workshop (see 4.3.1)

with two categories of participants: ICT teachers with some programming skills and

EdTech students with no programming skills. The ICT teachers were asked to develop

support for a number of activities in Malt+ using authELO. The teachers completed

the assignment using support and under supervision. In a parallel session the group

of EdTech students were asked to do the same at a much higher level. The students

proposed language constructs that could be used to express concepts in that context.

Results: The outputs from the first session were analysed and a common pattern for the

data acquisition part was identified. This gave the requirements for the development

of the high-level language. The outputs from the second session were studied and

confirmed that there is indeed a need for a block-based language for less skilled people

in the sense that these people would be able to develop simple support scenarios if

there was such a language available.

6.2 Making Authoring Simpler 251

6.2 Making Authoring Simpler

The previous step revealed the requirements for the high-level language constructs

needed to make the evidence acquisition part easier. In order to address this issue

and improve authELO, a JavaScript library was developed to provide these constructs

in the current system. This was an easy and cost-effective improvement to lower the

entry threshold. The next step is to develop a proper language on top of JavaScript

that specialises in authoring, which itself is a separate requirement.

6.3 Implementation of LFT 252

6.3 Implementation of LFT

The third and final step of this research was an attempt to address the requirement of

developing a high-level language specialised in authoring feedback. Instead of doing

that, we designed and developed a tool that can be used for the specification of new

languages that can be executed in a web browser. The tool is called Lingua Franca

Transformer (LFT) and can be used to facilitate the authoring process of a new or

an existing language and generates transpilers from that language to JavaScript (see

3.5). The transpilers allow real-time execution of any language in the browser with no

server-side dependencies.

Result: The tool was used to develop several languages including LOGO, a version of

Scheme and Java 7. These languages were used to experiment with and manipulate

learning environments like the well-known LOGO turtle environment. The benefit is

two-fold: the ability to speak any language in the browser context increases reusability

of web components. People can use the language of preference to manipulate wid-

gets. In particular, learning designers can teach any programming language with any

learning environment. In addition we give the ability to skilled designers to develop

a high-level specialised language of their preference for authoring feedback and thus

increase the reusability of authELO.

The final form of the reasoning patterns is the following:

”ELE with automated support” + ”authELO” → ”make authoring of automated

support for teaching programming easier”

AuthELO is the final outcome for the HOW component as it gives us the means to

achieve the aspired value. Alongside the final product, a series of methods, processes,

tools, techniques, that embrace the working principle are given as artifacts that provide

added value. These artifacts can either be re-used as individual values to complement

6.3 Implementation of LFT 253

other projects or help other researchers and practitioners as a roadmap that shows

proven and effective ways to develop similar projects.

6.4 The Lingua Franca Transformer (LFT) 254

6.4 The Lingua Franca Transformer (LFT)

The programming language used to teach programming to beginners is a vehicle that

carries all the concepts that need to be taught in a CS1 course. Languages may differ

in how specialised they are, how close they are to the physical architecture of the ma-

chine (high or low level), what programing paradigms they support, how expressive

they are and so on. All of this means that not all languages may be suitable to teach

elementary programming. Depending on the approach and what the orientation of the

course is, one language may be better or more suitable than the other and that is not

static. As existing languages evolve and improve and new languages develop, there is

always the question of which one is the most suitable one to play that crucial role in

the learning process. This, obviously, is an ongoing and endless debate that has been

addressed and discussed numerous times in the academic literature (Levy 1995, Ka-

plan 2010, Van Roy et al. 2003, Van Roy & Haridi 2003, Kruglyk & Lvov 2012, Reges

2002). We are not going to attempt to give an answer to this question here simply be-

cause there isn’t one. It all depends on the criteria used by the people designing and

teaching the course. Choosing between languages is not really the problem. Taking

advantage of what we need from them is. What we should be able to do is to easily

switch from one language to the other to address different needs and learning objec-

tives in the process. This need becomes more apparent in microworlds where you have

the ability to use constructions to learn programming. Typically, these environments

are tied to a specific language. The language used in Turtle Graphics (Solomon & Pa-

pert 1976, Papert 1980) and Malt+ (Kynigos & Latsi 2007) is LOGO and the one used

in Greenfoot (Henriksen & Kölling 2004) is Java. It would be really nice to have the

ability to use the same environments with other languages like C# and Python. That

would multiply the usefulness of those environments as it would offer the opportu-

nity to educators to take advantage of the strengths of different languages to convey

different concepts using well tested and familiar to students interfaces. Therefore, an

6.4 The Lingua Franca Transformer (LFT) 255

interesting question is: would it be possible to reuse existing learning environments

with languages other than the ones they natively support?

The de facto platform for deployment of educational software nowadays is the

web browser. This offers a lot of flexibility in terms of development, administration

and deployment but at the same time it introduces barriers in terms of what can be

executed in such a platform. The most obvious concerns are the limitations of memory

and processing resources in this context. The not so obvious concern but crucial in

this discussion is that the machine language of the browser is JavaScript. That reveals

an additional problem which is the fact that no matter how we express ourselves in

terms of language the common denominator is always JavaScript and execution takes

place in the underlying JavaScript engine supported by the browser. This is both good

and bad. It is good because it is guaranteed that standard Javascript will always be

the same in any platform and that means that no recompilation is needed for different

machine and platform architectures. This guarantee of uniformity gives independence,

flexibility and reduces the cost of developing solutions. On the flip side though, it is

also bad because, to an extent, the limitations and particularities of JavaScript will

always be a limiting factor to what can be expressed and executed in the context of a

web browser.

This section presents a system called the ”Lingua Franca Transformer” (LFT). As

its name suggests this is a tool intended to be used for transformations from any lan-

guage to JavaScript. JavaScript is the lingua franca in the browser world. If another

language needs to be used, then the only way to use it is to produce the equivalent

code in JavaScript. LFT is a tool that can be used to develop the definition of any

language, new or existing one, and automatically generate the respective transpiler to

JavaScript. The outcome of this process is a JavaScript library that can be injected into

any system and make it agnostic of the language it represents. That opens the door to

using existing learning environments like Malt+ with different languages like Java. It

also opens the door to transforming or enhancing systems like web-based Geogebra so

6.4 The Lingua Franca Transformer (LFT) 256

that they can be used for teaching programming without any constraints in terms of

language. New programming languages may be defined with the same ease as exist-

ing ones. That means that the tool can be used as a vehicle for experimentation for new

languages designed to be used particularly for educational purposes. It also may be

used to develop high-level specialised languages sitting above JavaScript to facilitate

easier coding by people less skilled in programming. This can be especially useful in

authoring environments like the one proposed in 4.3.

6.4.1 Architecture

As explained above LFT is primarily intended to be used for design of new languages

and transformations between those languages and JavaScript. This is based on the

premise that the web component we need to programmatically manipulate exposes an

interface in JavaScript. The typical use of such a widget would require instructions

expressed in JavaScript to be sent directly to the component through its API, image

6.1.

Figure 6.1: Typical widget manipulation

If system logic needs to be expressed in an alternative language, we need a mecha-

nism to transform this code dynamically into JavaScript before we send it off to the

component, image 6.2.

This transformation mechanism needs to know the formal specification of the language

that is to be used as input. That means that the syntax rules need to be available so that

a parser that understands the language can be developed and used to process the text,

6.4 The Lingua Franca Transformer (LFT) 257

Figure 6.2: Widget manipulation with other languages

image 6.3.

Figure 6.3: Widget manipulation with any language

That changes dramatically the way we programmatically interact with components.

Instead of just using a component by sending instructions in its native language, we

now send instructions along with the syntax rules of the language that these instruc-

tions are written in. If this process is fully dynamic and there are no assumptions

about the language being used as input, then that gives us a great deal of flexibility in

the sense that the language may be changed even in the middle of a session without

that affecting anything in the process. Even this extreme use case is perfectly possible

with LFT.

LFT, image 6.4, accepts the formal specification of a language in the form of syntax

rules and generates a parser for that language. It also accepts the syntax rules for the

output language so that it can generate the new code in the appropriate format. All

of this information is embedded in the parser. The parser can then be used to process

the given code and produce an equivalent representation in the intended form. Typi-

cally, in LFT this form is an Abstract Syntax Tree (AST) that conforms to the ESTree 1

1https://github.com/estree/estree

6.4 The Lingua Franca Transformer (LFT) 258

Figure 6.4: The LFT Architecture

specification, formerly known as SpiderMonkey AST. This is not mandatory but rather

a convention used for convenience. AST is a tree-like representation of the syntactic

structure and the language constructs found in the source code. It is abstract in the

sense that it does not depict every little detail found in the syntax or the semantics

of the code but only the structure. The ESTree specification is one of the well-known,

standard formats for JavaScript ASTs. In LFT the ESTree AST serves as the common

language denominator because its specification is much simpler than that of JavaScript

itself. It also allows easier manipulation of the code and automated conversion into

JavaScript via code generators. The final step is to dynamically evaluate the JavaScript

code and execute the instruction in the component. LFT is not restrictive to using a

particular tree representation as an intermediary form. An alternative scenario that

converts one language directly into another is possible. If, for example, the native API

exposed by a component is in LOGO and there is no code generator based on ASTs

for LOGO, it is perfectly possible to generate a parser that transforms any language

directly into LOGO. The difference is that this process will be more difficult because

the specification of the target language will have to be given in full and inserted into

LFT.

6.4 The Lingua Franca Transformer (LFT) 259

6.4.2 The Language Specification Syntax

In formal language theory the syntax rules for the language specification is called for-

mal grammar. That is a set of production rules that dictate how valid strings from the

language alphabet can be formed. There are different formalisms that can be used to

express formal grammar. LFT utilises the formalism called Parsing Expression Gram-

mar (PEG). PEG formalises a language in terms of an analytic grammar and that means

that syntax rules correspond more directly to the structure and the semantics of the

parser that is generated for that language. PEG is a generalisation of the Top-Down

Parsing Language (TDPL) which is a highly minimalist analytic grammar formalism

developed for top-down parsers. PEG is designed specifically to accommodate the

needs of programming language and compiler writing and is considered more power-

ful than traditional LL and LR formalisms. LFT uses a parser generator implemented

in JavaScript and called PEG.js. This implementation accepts syntax rules in PEG and

allows inline statements expressed in JavaScript. That means that we can embed syn-

tax rules for the output language in the same document. The benefit from that is that

the parser derived from this process is able to reshape the resulting AST and/or trans-

form it to the syntax of the output language. Without that, we would need another

software component to process the resulting tree and reshape it so that it conforms

with the ESTree specification. The following is a very simple example of a language

specification given in PEG:

text = words:(w:word space? {return w;})* {return words;}

word = letter+

letter = [a-zA-Z0-9]

space = " "

Parsing starts with the rule given first. The initial rule is called text and references two

other rules named word and space respectively. These rules need to be defined as well.

The rule word is defined as one or more letters. Letter is defined as any alphabetical or

6.4 The Lingua Franca Transformer (LFT) 260

numerical character (English alphabet). Space is defined as the whitespace character.

Going upwards, text is defined as any sequence of word tokens optionally followed

by a space. The JavaScript snippets give instructions to the parser to return only the

matched word tokens, not the spaces. If this specification is given to LFT along with

the text ”hello world” as input, the output will be the following tree:

[

[

"h",

"e",

"e",

"l",

"o"

],

[

"t",

"h",

"e",

"r",

"e"

]

]

6.4.3 The Tool

The tool is designed to facilitate the authoring process of syntax rules for new and

existing languages in PEG. The assumed target language is the ESTree specification.

The interface is split in panels organised as tabs. The first tab shows the editor that can

be used to author the syntax rules for the input language - see figure 6.5. On the right

6.4 The Lingua Franca Transformer (LFT) 261

there is another editor that can be used to test these rules with some text expressed in

the language being specified. If the rules are well formed and the input is valid the

resulting AST is displayed in another frame. This part of the interface can be used

for the specification of any output language and ESTree output is not assumed. If the

target language is ESTree then a more careful inspection of the output is needed. For

that there is an additional tab that allows the author to perform a comparative analysis

of the output between the statements given in the new language and JavaScript. The

comparisons tab gives two editors, one for each language - see figures 6.6, 6.7. The

author is supposed to provide equivalent statements in both languages to express the

same operation and examine carefully the generated ASTs.

Figure 6.5: The LFT Editor

If the ASTs don’t match up then there is a mistake in the PEG syntax. An automatic

comparison is performed and differences are highlighted in a third frame.

The next tab is called Testbed and is designed to give an idea of how the newly defined

6.4 The Lingua Franca Transformer (LFT) 262

Figure 6.6: The LFT Comparisons Section

language could be used to manipulate a turtle in a Microworld. Both turtle graphics

and text I/O interfaces are available and directly usable by the new language. The

screenshot in figure 6.8 shows a complex shape drawn by LOGO code dynamically

transpiled to JavaScript in LFT. The LOGO language specification was developed from

scratch in LFT as a proof of concept.

As the transformation takes place, this part of the interface provides real time informa-

tion about the well-formedness of the syntax rules, the validity of the source code and

the state of the operations that take place, figure 6.9.

In addition to all the above an interactive AST for the code given in the testbed is given

in the last tab, figure 6.10:

6.4.4 Implementation Details

LFT operates as an authoring tool. Its primary task is to allow an author to build an

effective transpiler from one language to another. This task entails the development

of a correct specification for an input language along with correct transformation rules

6.4 The Lingua Franca Transformer (LFT) 263

Figure 6.7: The LFT Comparisons Section

Figure 6.8: The LFT Testbed Section

6.4 The Lingua Franca Transformer (LFT) 264

Figure 6.9: LFT Real-time Updates

Figure 6.10: LFT Interactive AST Visualisation

for an output language. If the syntax rules given are valid and the process is suc-

cessful the output is a parser. In the context of LFT the parser is a JavaScript object

that gets generated dynamically by a third party component found in the PEG.js2 li-

2https://pegjs.org/

6.4 The Lingua Franca Transformer (LFT) 265

brary. This component is a parser generator that conforms to the PEG formalism as

presented in 6.4.2. Once the parser is created it can be used to parse code expressed

in the input language and generate code expressed in the output language dynami-

cally. LFT was designed to allow transformations between any two languages but its

primary goal is to allow the creation of transpilers to JavaScript. As stated previously

the purpose for this is to enable the use of different languages in the context of web

browsers. Therefore, the expected target language is typically an Abstract Syntax Tree

(AST) that conforms to the ESTree3 specification. This specification is the most com-

mon and standard format for JavaScript AST. Once the parser is created the next step

is to enter a sample text in the input language and let the parser generate the respec-

tive AST for inspection. The AST is formatted appropriately and placed in a graphical

control to enable visual inspection. A third-party library called JSON Viewer4 is used

for the formatting. Further tests are done in the ‘Comparisons’ tab and that entails the

automatic comparison and visual inspection of ASTs that are supposed to be identical.

The test at that stage is to give two equivalent statements, one in the input language

and the other in JavaScript and check if the resulting ASTs are exactly the same. Pars-

ing the JavaScript code is done by a tool named Esprima5. Automatic comparison is

performed by a third party component called objectDiff6. This checks both ASTs, de-

tects discrepancies in the structures and displays visual indicators of the differences.

This allows for a much more succinct testing of the parser conformity with the ESTree

specification. The final and ultimate test is to evaluate the parser in the challenging

context of a microworld. This entails writing code in the input language to control

and manipulate a turtle in a turtleworld. This environment is an own component built

specifically for this project. The environment was developed in HTML5, JavaScript

and Raphael7. The API exposed by this microworld expects to be used in JavaScript.

3https://github.com/estree/estree
4https://github.com/abodelot/jquery.json-viewer
5https://esprima.org/
6https://github.com/NV/objectDiff.js
7http://raphaeljs.com/

6.4 The Lingua Franca Transformer (LFT) 266

Therefore, the ESTree AST generated by the parser must be transformed to Javascript

before it gets executed. For this a third-party component named Escodegen8 is used.

The visualisation that shows the interactive AST for the code given in the testbed is

done with the third-party library named D39. Finally, all the text editors used in this

project are implemented using the third-party library called Ace10.

8https://github.com/estools/escodegen
9https://d3js.org/

10https://ace.c9.io/

7
The Microworld Learning Platform

267

7.1 A Conceptual Overview 268

7.1 A Conceptual Overview

Overall, the artifacts produced in this thesis can be combined in a way that follows the

abstract factory software design pattern - see figure 7.1.

Figure 7.1: Abstract Factory Pattern

Figure 7.2: Abstract Factory Pattern in Detail

As depicted in figures 7.1 and 7.2, we start from an abstract factory. This is a combi-

nation of the layered architecture and WIIL. This part acts as a model that shows the

conceptualisation of a system that represents an intelligent tutor. It describes the log-

ical components expected in such a system and shows how these components could

be combined together to achieve the required functionality. Apart from the conceptual

part, there is also the technical specification of how these components can integrate

with a platform and interoperate with each other. This part is collectively called Meta-

Authoring Framework (MAF). This framework can be used to create systems that act

as factories of instances that represent intelligent learning environments. A factory is

7.2 The Platform 269

a software application that utilises LFT to create language-neutral programming tu-

tors, or existing learning environments like Malt+ along with AuthELO to generate

enhanced tutors equipped with intelligence and adaptability. Concrete instances of

WIIL are used to integrate these components together and make them interoperable

so that authors can join them together to synthesise new environments with minimal

effort and cognitive load. The factory presented in this thesis is Microworld Learning

Platform. This factory can be used both as a development and as a deployment plat-

form for enhanced programming tutors. The outcome of the authoring process is typ-

ically an instance of an intelligent tutor equipped with functionality that corresponds

to some or all of the layers prescribed in the architecture. The instances presented in

this thesis are FLIP, Malt+, GeoGebra Coding and the LOGO tutors.

7.2 The Platform

This chapter presents a platform that has been developed to demonstrate how the

knowledge discovered and the methods, techniques and technologies proposed in this

thesis can be combined together to allow learning designers, technologists and teach-

ers to synthesise intelligent, automated tutors for programming with ease using non-

standard and heterogeneous web components. As explained in the previous section,

this platform conceptually represents a factory of programming tutors. It encompasses

all the ingredients prescribed in the Meta-Authoring Framework (MAF) which is the

conceptual aspect of it. All the knowledge required to define appropriate combina-

tions and join the components together is embedded into this platform. Therefore it

inherently supports the integration and interoperation of diverse web components in

ways that satisfy the layered architecture in order to develop automated tutors en-

hanced with extra knowledge and functionality. Existing knowledge about common

misconceptions, or newly developed knowledge for certain tasks may be integrated

with learning environments to provide adaptability and intelligence. All of this is done

7.3 The Basic Workflow 270

with minimal development and administrative overhead. Once web components are

integrated with the platform, the author can perform all of these operations seamlessly

with minimal cognitive load and effort. This factory can be used both as a develop-

ment and as a deployment platform for enhanced programming tutors. The outcome

of the authoring process is typically an instance of an intelligent tutor equipped with

functionality that corresponds to some or all of the layers prescribed in the architec-

ture. Currently, the platform supports the development of instances based on FLIP,

Malt+, GeoGebra Coding and LOGO tutors.

7.3 The Basic Workflow

Since this is both a development (authoring) and a deployment platform, the front-

page is the starting point for both teachers and students - see figure 7.3. There is a

rudimentary security infrastructure in place to allow learning designers authenticate

themselves and authorise operations in the platform.

Authors are assumed to be teachers and therefore initially they are presented with their

profile screen - see figure 7.4. The main parts in that screen are learning activities,

classes and students. The platform allows the teacher to create classes, individual stu-

dents and allocate students to classes. It also allows them to create instances of learning

activities based on learning environments supported by the system. These instances,

once created, may be customised so that they can present some initial construction that

facilitates best the learning scenario planned for the session and the intended learning

outcomes. Learning environments and their instances are integrated with the system

through WIIL.

Once a learning activity is ready for deployment, the author can simply select a class

of students and drag and drop both entities to the bottom of the page under the section

’Current Session’. That automatically shows the students associated with the selected

class, figure 7.5.

7.3 The Basic Workflow 271

Figure 7.3: The MLP Frontpage

In the meantime students may be instructed to use the same interface to access the

activity player, figure 7.6.

Through this interface they select their teacher, the class they belong to and finally their

name in that class. There is no security here. The intention is to provide hassle-free

access to the activity. They then press a button to connect their player to the platform,

figure 7.7.

Once connected the interface gets updated immediately at both ends (student and

teacher), figure 7.8.

Once all the students are connected the teacher deploys the activity with a push of a

button, figure 7.9.

This action presents the activity to the student terminals and the session commences.

7.3 The Basic Workflow 272

Figure 7.4: The Author’s Homepage

The students work with the task given and the system processes automatically their

interactions to adapt the activity and provide support if needed. The platform provides

two buttons at the top of the page for that - see figure 7.10. The button check may be

used by the student to ask for an evaluation of the work done so far and an estimate of

how much is completed. The button help may be used to ask the system for assistance

on the process and/or the concepts or skills involved.

Help is provided through an intelligent assistant that presents itself as an owl. The as-

sistant is initially hidden and appears only after the user requests help. It responds to

these requests with cues, instructions, suggestions etc. This assistant is not part of the

original Microworld, in this case Malt+. It is dynamically inserted by the platform af-

ter the learning environment is integrated with authELO. AuthELO is used to develop

task-specific support for the activity and the means to communicate that support to

the students. The two components operate seamlessly as one and the mechanics of the

7.3 The Basic Workflow 273

Figure 7.5: Activity Deployment

Figure 7.6: The Students’ Terminal

whole process are completely transparent to the end users, students and authors. All

the user interactions get intercepted by the learning environment and passed through

WIIL to authELO for processing. If help is requested, authELO, behind the scenes,

evaluates the facts along with the available rules and activates the part that generates

the answer. The answer is then communicated back to the user through the assistant.

This process is completely transparent and hidden from the author or even the inte-

7.3 The Basic Workflow 274

Figure 7.7: Connecting to the System

Figure 7.8: Synchronous Operation between Teacher and Students

grator of the components. Integration is merely a matter of registering the component

with the platform and setting up its interface. After that all the rest takes place au-

tomatically by the platform itself. That means that the whole process is performed

in exactly the same way regardless of which learning environment is used and which

component is used to enhance it. Once the time for the activity elapses the teacher ter-

minates the session by pressing the ’Complete’ button. That removes the activity from

the student terminals and the display switches back to the initial screen. The teacher

can then go back to the activity card and download the data related to the session for

analysis. This includes all the activity indicators generated by the learning environ-

ment during the session.

7.3 The Basic Workflow 275

Figure 7.9: Activity in Student Terminal

Figure 7.10: Real-time Support

7.4 Creating and Enhancing Instances of Learning Components 276

7.4 Creating and Enhancing Instances of Learning Components

Learning environments that have already been integrated with the platform serve as

factories for instances of learning objects. Under the ’My activities’ section the button

add can be used to create an instance, figure 7.11. This instance can then be further

developed so that an initial construction can be added or the environment can be cus-

tomised appropriately for the activity. For this the button build must be used. During

the customisation phase there is a lot of information generated. All of this data is gen-

erated in the native environment of the instance itself and is then passed back to the

platform through WIIL. The hosting platform stores this data in an internal database

and associates it with the instance. If and when this instance ever gets deployed, this

information is retrieved from the database and sent through WIIL to the student ter-

minal so that the learning component can be properly initialised for the activity that

follows. The same process takes place even when the component gets loaded in the

authoring environment for editing.

Enhancing the learning component with intelligent support and adaptivity can be

initiated with the button AI. This action loads the component and initialises it in the

same way that it would instantiate it in the student’s terminal. The difference is that in

this case the component is loaded from within the authoring environment of authELO,

figure 7.12. AuthELO communicates with the component and asks for component-

specific details like the type of elements available in the environment and the respec-

tive events associated with them. All of this information is then used to dynamically

create the interface for the ’Logging’ screen where the author can specify with rules

what elements are of interest and which events need to be intercepted, figure 7.13.

Once that is done, the user can go over to the widget tab in authELO and check whether

the user activity for the intended elements is properly logged. Interacting with the en-

vironment should display new entries under the Activity Log section. The next step is

to go over to the Analysis tab to prepare the data needed for authoring the feedback

7.4 Creating and Enhancing Instances of Learning Components 277

and assessment rules, figure 7.14. Once all the required data is processed and given

the expected form, we go over to the Feedback tab to insert the rules for feedback and

assessment, figure 7.15. These rules refer to the outcome of the analysis to evaluate the

current state of the learner and generate support. If long messages are needed to com-

municate the consequent part of the rules, then the Messages tab may be used to create

named variables to facilitate easy management and referencing of those messages, fig-

ure 7.16. This part is expected to be heavily used by teachers with very limited IT skills

that want to refine enhancements prepared by learning technologists. The last step is

to check the rules for validity, figure 7.17. This is done in the Widget screen. The au-

thor does the activity like a student and tries to generate feedback related to the rules

they just added to the system. If everything seems to function properly the author can

save the rules from the authELO environment and embed them into the activity.

Figure 7.11: Creating a new Activity

7.4 Creating and Enhancing Instances of Learning Components 278

Figure 7.12: Enhancing an Activity with Automated Support

Figure 7.13: Configuring Logging Rules

7.4 Creating and Enhancing Instances of Learning Components 279

Figure 7.14: Preparing the Facts for the Feedback Rules

Figure 7.15: Developing the Feedback Rules

7.4 Creating and Enhancing Instances of Learning Components 280

Figure 7.16: Editing Feedback Messages

Figure 7.17: Checking Rule Validity

8
Contributions

281

8.1 Part 1 - Facilitate Reuse 282

The contributions achieved in this work are presented as individual components in

sections 8.1., 8.2 and 8.3. The first two sections correspond to the research objectives

stated in section 1.2 and the last one covers non-categorised contributions. In section

8.4 there is an overview of the project that shows how all these components are com-

bined together in a coherent whole that gives more added value than its parts.

8.1 Part 1 - Facilitate Reuse

In this part there are two contributions:

WIIL The first one is a technique that enables seamless integration and interoperability

of web components with learning platforms with minimal administrative and devel-

opment overhead. The name of the technique is Web Integration & Interoperability

Layer (WIIL). The technique overcomes diversity and heterogeneity of components

and provides a cost-effective and efficient way to reuse existing and new technologies

that do not comply with integration and interoperability standards.

LFT The second one is an authoring tool that can be used to define languages other

than JavaScript that may be executed on a web browser. The premise here is that the

web browser is the defacto platform for the deployment of educational software. The

tool enables the development of language-specific compilers that do the transcoding

from any language into JavaScript which is the machine language of web browsers.

The name of the tool is Lingua Franca Translator (LFT) and it offers a fully fledged

IDE that can be used to simplify the development of the syntax rules needed to spec-

ify any language. This language can then be exported and used in any web-based

environment to take advantage of all the functionality that may be exposed by this en-

vironment. In other words if there is a component that does 3D dynamic geometry in

the browser, then this component, without any changes, may be manipulated by any

8.2 Part 2 - Simplify Authoring 283

of the languages developed with LFT. That maximises the usefulness of existing web

components and language neutrality gives us the ability to utilise them for teaching

programming with any language.

Definition of programming languages can also be helpful with authoring auto-

mated support. High-level specialised languages may be defined to assist authors

express themselves in a more succinct, efficient and meaningful way when author-

ing intelligent support for learning activities. This can be a significant enhancement

in authELO and satisfy the relevant requirement that emerged during the evaluation

process.

8.2 Part 2 - Simplify Authoring

In this part there are three contributions:

Common Student Misconceptions This part presents the research that has been con-

ducted to derive common student misconceptions for elementary programming. It

also presents the research approach used for knowledge elicitation, the concept inven-

tory compiled with the findings, the techniques and tools for representing those con-

cepts in a knowledge base along with rules that determine how they can be utilised to

support learners and the reasoning mechanisms that can process those rules to mate-

rialise intelligent support in a real learning environment.

Intelligent Tutor Layered Architecture This part defines the architectural design for

systems that foster intelligent tutoring for programming. It presents the different as-

pects of such a system and the way the respective components relate to each other. The

architecture presented uses a layered approach to gradually enhance the level of sup-

port provided in an incremental manner. Its use is not expected to be exhaustive as not

all components are mandatory. The intention of this design is to be used as a roadmap

8.3 Part 3 - Miscellaneous 284

for the construction of intelligent tutoring systems specialised in programming.

AuthELO This part presents both a process for designing authoring tools for the de-

velopment of automated support and a real tool that instantiates these learnings. The

tool is able to seamlessly integrate with any web component, dynamically configure it

and enhance it with automated support. It is not dependent on specific technologies

and platforms. It can operate autonomously or in conjunction with existing systems

in a loosley coupled manner. It produces solutions for any domain and is particularly

suited to open and exploratory learning environments. It simplifies the authoring pro-

cess and makes it more accessible to low skilled designers. It is fast, efficient and sim-

plifies both development and deployment of support in a secure and non-disruptive

way.

8.3 Part 3 - Miscellaneous

In this part there are two contributions:

FLIP This part presents a PoC designed for teaching introductory programming through

inquiry-based learning scenarios in an open and exploratory manner. Its main objec-

tive is to enable students work continuously and minimise interruptions in the learning

process. It provides automated support on demand on common student misconcep-

tions and adaptability based on student activity.

MLP This part presents a PoC that shows how all the above contributions can be

combined together and real, usable systems be realised. The name of this PoC is Mi-

croworld Learning Platform.

8.4 How it all fits together 285

8.4 How it all fits together

This section shows how the outcome of this work as it is described in more detail in

previous sections can be seen as a coherent whole that translates the challenges in 1.2.1

into actual contributions. The following figure depicts all the contributions in relation

to the categories and the challenges described in 1.2.1.

The main contribution that lies in the centre of the graph is AuthELO. AuthELO is

both a process for designing authoring tools for the development of automated sup-

port and a real materialised tool that can transfer this value directly to educational

practice. What makes AuthELO unique and innovative is its ability to cope with di-

verse components that operate in exploratory settings.

Figure 8.1: Contributions Chart

8.4 How it all fits together 286

Facilitate Reuse

AuthELO is able to communicate and interoperate with learning components through

a generic and lightweight integration and interoperability technique named WIIL. WIIL

does not presuppose compliance with interoperability standards. Its purpose is to en-

able seamless integration and interoperability between diverse components with min-

imal overhead. This makes AuthELO reusable and able to unify in the same process

and the same interface the authoring support for diverse learning components. LFT is

another authoring environment that potentially increases reusability of learning com-

ponents and reduces even further the difficulty of the authoring process in AuthELO. It

does that through the definition of languages that can be directly usable in the browser

to facilitate both goals.

Simplify Authoring

The Intelligent Tutoring Layered Architecture is a framework intended to be used as

a roadmap that shows how these components can be combined together in meaning-

ful ways in order for the authors to synthesise useful and compelling learning envi-

ronments. The Common Student Misconceptions is a concept inventory developed

as a byproduct of this research that may be used to simplify the development of au-

tomated support for environments that support learning programming through free

exploration.

PoCs

Finally, FLIP and MLP is software that has been developed throughout the research

project and can be used to demonstrate how the previously mentioned components

can be translated into real and usable systems.

9
Future Work

287

9.1 Visual Integration Editor for WIIL 288

In various parts of this text there are mentions of areas where there is potentially room

for further investigation and improvement. The reasons to leave those parts for future

work were primarily time constraints and in some cases the danger to move to an area

that is outside the scope of this thesis. In this section we are giving a more detailed

presentation of these cases.

9.1 Visual Integration Editor for WIIL

WIIL is a thin software layer that operates in the same context as the component it

represents and functions as an enhancement that selectively exposes its public API

and semantically enhances it where needed. All of this, currently, requires human

intervention in terms of examining the component and its internal implementation

and coding the missing parts in the WIIL library, like pushing public methods. Coding

WIIL is fairly straightforward since it is done in a very controllable manner through

WIIL’s API but the argument here is that it could be done using visual aids from a

specialised IDE. The component to be integrated could be preloaded along with WIIL

and queried dynamically to provide a visual view of what functionality is available

and in what form. This would take advantage of the fact that functions in JavaScript

are first-class citizens and therefore they are represented in memory as values. That

makes them transferable, processable and in general available for examination and

manipulation. This feature would eliminate the need to manually discover the parts to

be exported as public API which was identified as a serious limitation of the method

by reviewers.

Ideally, the integrator should be able to utilise a visual programming environment

that dynamically queries the component and provides all the necessary information to

generate the code needed to complement WIIL.

9.2 Use AuthELO to handle Common Student Misconceptions 289

9.2 Use AuthELO to handle Common Student Misconceptions

TI and TD support are treated in this text as different types of support because they

are and as a result of that the way support is designed and implemented for these

cases is fundamentally different. A rule-based representation technique is used to rep-

resent concepts related to common student misconceptions. Knowledge is inserted

manually through an editor that allows coding in a visual language and processing is

done through a specialised reasoner. The question is whether we could use authELO

as a single interface through which a designer would be able to handle both types of

support in order to simplify the process. If, for example, an editor enhanced with a

parser and a code analyser could be integrated with authELO as a component so that

we could intercept code written by the student and represent it as a vector of charac-

teristics (variable/predicate pairs), then we should be able as designers to identify the

current student state and write rules in authELO to provide support for it. AuthELO

is a much easier to use interface and it would be really valuable to utilise it as a single

and common interface for both cases.

9.3 Enhance AuthELO with high-level Authoring Languages

The primary design goal of authELO is to minimise the cognitive load required by the

designer to develop automated support for learning objects. This goal is partially ful-

filled with the current implementation that offers a high-level programming interface

based on JavaScript. Although, this is a set of language constructs tailored for author-

ing support the fact that designers must express themselves using a language makes

the technology inaccessible by certain categories of people like low skilled designers

and teachers. The use of LFT may be used to derive a much simpler language, not

necessarily C-like in syntax, to focus on support and further help skilled designers to

express analysis and reasoning statements. On top of that, it would be really benefi-

9.4 Enhance AuthELO with Machine Learning Techniques 290

cial if we could build a block-based visual programming environment like scratch, to

enable people that possess algorithmic thinking skills but lack the ability to code in an

artificial language to develop simple feedback scenarios without support. The latter

was a clear user recommendation derived from the evaluation process.

9.4 Enhance AuthELO with Machine Learning Techniques

As mentioned in the previous section the primary design goal of authELO is to min-

imise the cognitive load required by the designer. If the system could be fed with

activity indicators coming from student sessions and identify the patterns of interest

in the student behaviour automatically, then the work required by the designers would

be very much simplified. We believe that this is the natural next step in this process

and we envisage to continue investigating towards this direction after the completion

of this work.

Bibliography

Adam, A. & Laurent, J.-P. (1980), ‘Laura, a system to debug student programs’, artificial

intelligence 15(1-2), 75–122.

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. R. (2006), The cognitive tutor

authoring tools (ctat): preliminary evaluation of efficiency gains, in ‘International

Conference on Intelligent Tutoring Systems’, Springer, pp. 61–70.

Aleven, V., Mclaren, B. M., Sewall, J. & Koedinger, K. R. (2009), ‘A new paradigm for

intelligent tutoring systems: Example-tracing tutors’, International Journal of Artificial

Intelligence in Education 19(2), 105–154.

Aleven, V., McLaren, B. M., Sewall, J., Van Velsen, M., Popescu, O., Demi, S., Rin-

genberg, M. & Koedinger, K. R. (2016), ‘Example-tracing tutors: Intelligent tutor

development for non-programmers’, International Journal of Artificial Intelligence in

Education 26(1), 224–269.

Aleven, V., Sewall, J., McLaren, B. M. & Koedinger, K. R. (2006), Rapid authoring of

intelligent tutors for real-world and experimental use, in ‘Sixth IEEE International

Conference on Advanced Learning Technologies (ICALT’06)’, IEEE, pp. 847–851.

Amershi, S. & Conati, C. (2006), Automatic recognition of learner groups in exploratory

learning environments, in ‘International Conference on Intelligent Tutoring Sys-

tems’, Springer, pp. 463–472.

291

BIBLIOGRAPHY 292

Amir, O. & Gal, Y. (2013), ‘Plan recognition and visualization in exploratory learning

environments’, ACM Transactions on Interactive Intelligent Systems (TiiS) 3(3), 1–23.

Angros Jr, R., Johnson, W. L., Rickel, J. & Scholer, A. (2002), Learning domain knowl-

edge for teaching procedural skills, in ‘Proceedings of the first international joint

conference on Autonomous agents and multiagent systems: part 3’, pp. 1372–1378.

Barker, P. (2005), ‘What is ieee learning object metadata/ims learning resource meta-

data’, CETIS Standards Briefing Series, JISC (Joint Information Systems Committee of the

Universities’ Funding Councils) .

Barnum, C. M. (2020), Usability testing essentials: ready, set... test!, Morgan Kaufmann.

Beard, M. & Barr, A. (1976), ‘The basic instructional program student manual.’.

Becker, B. W. (2001), Teaching cs1 with karel the robot in java, in ‘ACM SIGCSE Bul-

letin’, Vol. 33, ACM, pp. 50–54.

Bellaby, G., McDonald, C. & Patterson, A. (2003), Why lecture, in ‘Proceedings of the

4thn annual Conference of the LTSN’, Citeseer, pp. 228–231.

Bergin, J., Stehlik, M., Roberts, J. & Pattis, R. (1997a), Karel+: A Gentle Introduction to the

Art of Object-oriented Programming, Wiley.

Bergin, J., Stehlik, M., Roberts, J. & Pattis, R. (1997b), Karel++: A gentle introduction to

the art of object-oriented programming, Vol. 1, Wiley New York.

Bergin, J., Stehlik, M., Roberts, J. & Pattis, R. (2005), Karel J Robot: A gentle introduction

to the art of object-oriented programming in Java, Dream Songs Press.

Bernardini, A. & Conati, C. (2010), Discovering and recognizing student interaction

patterns in exploratory learning environments, in ‘International Conference on In-

telligent Tutoring Systems’, Springer, pp. 125–134.

BIBLIOGRAPHY 293

Blessing, S. B. (1997), ‘A programming by demonstration authoring tool for model-

tracing tutors’.

Blessing, S., Gilbert, S., Ourada, S. & Ritter, S. (2007), ‘Lowering the bar for creating

model-tracing intelligent tutoring systems’, Frontiers in Artificial Intelligence and Ap-

plications 158, 443.

Blikstein, P. (2013), Gears of our childhood: constructionist toolkits, robotics, and phys-

ical computing, past and future, in ‘Proceedings of the 12th international conference

on interaction design and children’, pp. 173–182.

Blikstein, P. & Krannich, D. (2013), The makers’ movement and fablabs in education:

experiences, technologies, and research, in ‘Proceedings of the 12th international

conference on interaction design and children’, pp. 613–616.

Bødker, S. & Kyng, M. (2018), ‘Participatory design that matters—facing the big issues’,

ACM Transactions on Computer-Human Interaction (TOCHI) 25(1), 1–31.

Bohl, O., Scheuhase, J., Sengler, R. & Winand, U. (2002), The sharable content object

reference model (scorm)-a critical review, in ‘Computers in education, 2002. pro-

ceedings. international conference on’, IEEE, pp. 950–951.

Bonar, J. & Cunningham, R. (1988), ‘Bridge: An intelligent tutor for thinking about

programming’, Artificial Intelligence and Human Learning: Intelligent Computer-Aided

Instruction. J. Self. London, Chapman and Hall 432.

Bradford, P., Porciello, M., Balkon, N. & Backus, D. (2007), ‘The blackboard learning

system: The be all and end all in educational instruction?’, Journal of Educational

Technology Systems 35(3), 301–314.

Brown, J. S. & Burton, R. R. (1978), ‘Diagnostic models for procedural bugs in basic

mathematical skills*’, Cognitive science 2(2), 155–192.

BIBLIOGRAPHY 294

Brusilovsky, P. (1992), ‘Intelligent tutor, environment and manual for introductory pro-

gramming’, Educational & Training Technology International 29(1), 26–34.

Brusilovsky, P., Schwarz, E. & Weber, G. (1996), Elm-art: An intelligent tutoring system

on world wide web, in ‘Intelligent tutoring systems’, Springer, pp. 261–269.

Buchanan, B. G. & Duda, R. O. (1983), Principles of rule-based expert systems, in ‘Ad-

vances in computers’, Vol. 22, Elsevier, pp. 163–216.

Bunt, A., Conati, C., Huggett, M. & Muldner, K. (2001), On improving the effectiveness

of open learning environments through tailored support for exploration, in ‘Proceed-

ings of AIED 2001, 10th World Conference of Artificial Intelligence and Education’,

Citeseer, pp. 365–376.

Bunt, A., Conati, C. & Muldner, K. (2004), Scaffolding self-explanation to improve

learning in exploratory learning environments., in ‘International Conference on In-

telligent Tutoring Systems’, Springer, pp. 656–667.

Calloni, B. A. & Bagert, D. J. (1994), Iconic programming in baccii vs. textual program-

ming: which is a better learning environment?, in ‘Proceedings of the twenty-fifth

SIGCSE symposium on Computer science education’, pp. 188–192.

Carlier, F. & Renault, V. (2010), Educational webportals augmented by mobile devices

with ifrimousse architecture, in ‘2010 10th IEEE International Conference on Ad-

vanced Learning Technologies’, IEEE, pp. 236–240.

Carroll, J. (1987), ‘M., rosson, mb (1987). paradox of the active user’, Interfacing thought:

cognitive aspects of human-computer interaction, John M. Carroll (Ed.). MIT Press, Cam-

bridge, MA, USA pp. 80–111.

Carroll, J. M. (1982), ‘The adventure of getting to know a computer’, Computer (11), 49–

58.

BIBLIOGRAPHY 295

Carroll, J. M. (1990), ‘The nurnberg funnel: designing minimalist instruction for prac-

tical computer skill’.

Carroll, J. M., Mack, R. L., Lewis, C. H., Grischkowsky, N. L. & Robertson, S. R. (1985),

‘Exploring exploring a word processor’, Human-computer interaction 1(3), 283–307.

Carroll, J. & Mazur, S. (1986), ‘Learning lisa’, IEEE Computer 91, 35–49.

Chakrabarti, A. (2010), ‘A course for teaching design research methodology’, AI EDAM

24(3), 317–334.

Chappell, D. (2011), ‘Introducing odata’, Data Access for the Web, The Cloud, Mobile De-

vices, and More pp. 1–24.

Chen, M. (1995), ‘A methodology for characterizing computer-based learning environ-

ments’, Instructional Science 23(1-3), 183–220.

Chung, E., Huang, Y., Yajnik, S., Liang, D., Shih, J. C., Wang, C. & Wang, Y. (1997),

‘Dcom and corba side by side’, Step by Step, and Layer by Layer http://www. cs. wustl.

edu/˜ schmidt/submit/Paper. html .

Cocea, M., Gutierrez-Santos, S. & Magoulas, G. (2008a), Challenges for intelligent sup-

port in exploratory learning: the case of shapebuilder, in ‘1st International Workshop

on Intelligent Support for Exploratory Environments’, CEUR Workshop Proceed-

ings.

Cocea, M., Gutierrez-santos, S. & Magoulas, G. D. (2008b), S.: The challenge of intelli-

gent support in exploratory learning environments: A study of the scenarios, in ‘In:

Proceedings of the 1st International Workshop in Intelligent Support for Exploratory

Environments on European Conference on Technology Enhanced Learning’, Cite-

seer.

BIBLIOGRAPHY 296

Cocea, M. & Magoulas, G. (2009a), Context-dependent personalised feedback prioriti-

sation in exploratory learning for mathematical generalisation, in ‘International Con-

ference on User Modeling, Adaptation, and Personalization’, Springer, pp. 271–282.

Cocea, M. & Magoulas, G. D. (2009b), ‘Hybrid model for learner modelling and feed-

back prioritisation in exploratory learning’, International Journal of Hybrid Intelligent

Systems 6(4), 211–230.

Cocea, M. & Magoulas, G. D. (2010), Group formation for collaboration in ex-

ploratory learning using group technology techniques, in ‘International Confer-

ence on Knowledge-Based and Intelligent Information and Engineering Systems’,

Springer, pp. 103–113.

Cooper, S., Dann, W. & Pausch, R. (2000), ‘Alice: a 3-d tool for introductory program-

ming concepts’, Journal of computing sciences in colleges 15(5), 107–116.

Corbett, A. T. & Anderson, J. R. (1993), Student modeling in an intelligent program-

ming tutor, in ‘Cognitive models and intelligent environments for learning program-

ming’, Springer, pp. 135–144.

Cronin, P., Ryan, F. & Coughlan, M. (2008), ‘Undertaking a literature review: a step-

by-step approach’, British journal of nursing 17(1), 38–43.

Dann, W., Cooper, S. & Pausch, R. (2000), Making the connection: programming with

animated small world, in ‘ACM SIGCSE Bulletin’, Vol. 32, ACM, pp. 41–44.

Deek, F. P. & McHugh, J. A. (1998), ‘A survey and critical analysis of tools for learning

programming’, Computer Science Education 8(2), 130–178.

Dorst, K. (2011), ‘The core of ‘design thinking’and its application’, Design studies

32(6), 521–532.

Duda, R. O. & Shortliffe, E. H. (1983), ‘Expert systems research’, Science 220(4594), 261–

268.

BIBLIOGRAPHY 297

Fällman, D. (2004), Design oriented-research versus research-oriented design, in

‘Workshop Paper, CHI 2004 Workshop on Design and HCI, Conference on Human

Factors in Computing Systems, CHI’, Citeseer, pp. 24–29.

Ferré, X. & Vegas, S. (1999), An evaluation of domain analysis methods, in ‘Proceedings

4th CAiSE Workshop on Exploring Modelling Methods for Systems Analysis and

Design’, Citeseer, pp. 1–13.

Forcheri, P. & Molfino, M. T. (1994), ‘Software tools for the learning of programming:

A proposal’, Computers & Education 23(4), 269–276.

Gaffney, C., Dagger, D. & Wade, V. (2010), ‘Authoring and delivering personalised

simulations-an innovative approach to adaptive elearning for soft skills.’, J. UCS

16(19), 2780–2800.

Gal, Y., Yamangil, E., Shieber, S. M., Rubin, A. & Grosz, B. J. (2008), Towards collabo-

rative intelligent tutors: Automated recognition of users’ strategies, in ‘International

Conference on Intelligent Tutoring Systems’, Springer, pp. 162–172.

Gentner, D., Landers, R. et al. (1985), Analogical reminding: A good match is hard to

find, in ‘Proceedings of the international conference on systems, man and cybernet-

ics’, pp. 607–613.

Ginon, B., Jean-Daubias, S., Lefevre, M., Champin, P.-A. et al. (2014), Adding epiphytic

assistance systems in learning applications using the sepia system, in ‘European

Conference on Technology Enhanced Learning’, Springer, pp. 138–151.

Glinert, E. P. & Tanimoto, S. L. (1984), ‘Pict: An interactive graphical programming

environment’, Computer (11), 7–25.

Goldman, K., Gross, P., Heeren, C., Herman, G., Kaczmarczyk, L., Loui, M. C. & Zilles,

C. (2008), Identifying important and difficult concepts in introductory computing

BIBLIOGRAPHY 298

courses using a delphi process, in ‘Proceedings of the 39th SIGCSE technical sympo-

sium on Computer science education’, pp. 256–260.

González, M. A. C., Penalvo, F. J. G., Guerrero, M. J. C. & Forment, M. A. (2009), Adapt-

ing lms architecture to the soa: an architectural approach, in ‘Internet and Web Ap-

plications and Services, 2009. ICIW’09. Fourth International Conference on’, IEEE,

pp. 322–327.

Gravemeijer, K. & Cobb, P. (2006), ‘Educational design research’, J. Van den Akker, K.

Gravemeijer, S. McKenney, & N. Nieveen (Eds.) pp. 17–51.

Grudin, J. (2009), ‘Ai and hci: Two fields divided by a common focus’, Ai Magazine

30(4), 48–48.

Guest, G., MacQueen, K. M. & Namey, E. E. (2011), Applied thematic analysis, sage pub-

lications.

Guimarães, M. A. M., de Lucena, C. J. P. & Cavalcanti, M. R. (1994), ‘Experience using

the asa algorithm teaching system’, ACM SIGCSE Bulletin 26(4), 45–50.

Gurram, R., Mo, B. & Gueldemeister, R. (2008), A web based mashup platform for

enterprise 2.0, in ‘Web Information Systems Engineering–WISE 2008 Workshops’,

Springer, pp. 144–151.

Gutierrez-Santos, S., Cocea, M. & Magoulas, G. (2010), A case-based reasoning ap-

proach to provide adaptive feedback in microworlds, in ‘International Conference

on Intelligent Tutoring Systems’, Springer, pp. 330–333.

Gutierrez-Santos, S., Geraniou, E., Pearce-Lazard, D. & Poulovassilis, A. (2012), ‘De-

sign of teacher assistance tools in an exploratory learning environment for algebraic

generalization’, IEEE Transactions on Learning Technologies 5(4), 366–376.

BIBLIOGRAPHY 299

Gutierrez-Santos, S., Mavrikis, M. & Magoulas, G. (2010), Layered development and

evaluation for intelligent support in exploratory environments: the case of mi-

croworlds, in ‘International Conference on Intelligent Tutoring Systems’, Springer,

pp. 105–114.

Gutierrez-Santos, S., Mavrikis, M., Magoulas, G. D. et al. (2012), ‘A separation of con-

cerns for engineering intelligent support for exploratory learning environments’,

Journal of Research and Practice in Information Technology 44(3), 347.

Hannafin, M., Land, S. & Oliver, K. (1999), ‘Open learning environments: Founda-

tions, methods, and models’, Instructional-design theories and models: A new paradigm

of instructional theory 2, 115–140.

Hansen, A., Mavrikis, M., Holmes, W. & Geraniou, E. (2015), Designing interactive

representations for learning fraction equivalence, in ‘Proceedings of the 12th Inter-

national Conference on Technology in Mathematics Teaching, Faro, Portugal’.

Harris, J. (2002), ‘An introduction to authoring tools’, ASTD’s Learning Circuits online

magazine .

Hartig, O. & Pérez, J. (2017), ‘An initial analysis of facebook’s graphql language’.

Henriksen, P. & Kölling, M. (2004), Greenfoot: combining object visualisation with

interaction, in ‘Companion to the 19th annual ACM SIGPLAN conference on Object-

oriented programming systems, languages, and applications’, pp. 73–82.

Henry, R. R., Whaley, K. M. & Forstall, B. (1990), ‘The university of washington illus-

trating compiler’, ACM SIGPLAN Notices 25(6), 223–233.

Henson, K. L. & Knezek, G. A. (1991), ‘The use of prototyping for educational software

development’, Journal of Research on Computing in Education 24(2), 230–239.

BIBLIOGRAPHY 300

Hohmann, L., Guzdial, M. & Soloway, E. (1992), Soda: A computer-aided design envi-

ronment for the doing and learning of software design, in ‘International Conference

on Computer Assisted Learning’, Springer, pp. 307–319.

Holland, J., Mitrovic, A. & Martin, B. (2009), ‘J-latte: a constraint-based tutor for java’.

Huitt, W. (2003), ‘Constructivism’, Educational psychology interactive .

Isoda, S., Shimomura, T. & Ono, Y. (1987), ‘Vips: A visual debugger’, IEEE Software

(3), 8–19.

Jackson, C. & Wang, H. J. (2007), Subspace: secure cross-domain communication for

web mashups, in ‘Proceedings of the 16th international conference on World Wide

Web’, pp. 611–620.

Jalali, S. & Wohlin, C. (2012), Systematic literature studies: database searches vs. back-

ward snowballing, in ‘Proceedings of the 2012 ACM-IEEE international symposium

on empirical software engineering and measurement’, IEEE, pp. 29–38.

Järvinen, H. (2011), Html5 web workers, in ‘T-111.5502 Seminar on Media Technology

BP, Final Report’, p. 27.

Jarvis, M. P., Nuzzo-Jones, G. & Heffernan, N. T. (2004), Applying machine learning

techniques to rule generation in intelligent tutoring systems, in ‘International Con-

ference on Intelligent Tutoring Systems’, Springer, pp. 541–553.

Jenkins, C. W. (2012), ‘Microworlds: Building powerful ideas in the secondary school.’,

Online Submission .

Jenkins, T. (2002), On the difficulty of learning to program, in ‘Proceedings of the 3rd

Annual Conference of the LTSN Centre for Information and Computer Sciences’,

Vol. 4, pp. 53–58.

BIBLIOGRAPHY 301

Johnson, W. L. & Soloway, E. (1985), ‘Proust: Knowledge-based program understand-

ing’, Software Engineering, IEEE Transactions on (3), 267–275.

Kaczmarczyk, L. C., Petrick, E. R., East, J. P. & Herman, G. L. (2010), Identifying stu-

dent misconceptions of programming, in ‘Proceedings of the 41st ACM technical

symposium on Computer science education’, pp. 107–111.

Kafai, Y. B. & Burke, Q. (2013), ‘Computer programming goes back to school’, Phi Delta

Kappan 95(1), 61–65.

Kahn, K. (1996), ‘Toontalktm—an animated programming environment for children’,

Journal of Visual Languages & Computing 7(2), 197–217.

Kaplan, R. M. (2010), Choosing a first programming language, in ‘Proceedings of the

2010 ACM conference on Information technology education’, pp. 163–164.

Karkalas, S., Bokhove, C., Charlton, P. & Mavrikis, M. (2015), Towards configurable

learning analytics for constructionist mathematical e-books., in ‘AIED Workshops’.

Karkalas, S. & Gutierrez-Santos, S. (2014a), Eclipse student (in) activity detection tool,

in ‘European Conference on Technology Enhanced Learning’, Springer, pp. 572–573.

Karkalas, S. & Gutiérrez-Santos, S. (2014b), Enhance teaching and learning of com-

puter programming in exploratory learning environments using intelligent support,

in ‘2014 IEEE 14th International Conference on Advanced Learning Technologies’,

IEEE, pp. 765–767.

Karkalas, S. & Gutierrez-Santos, S. (2014c), Enhanced javascript learning using code

quality tools and a rule-based system in the flip exploratory learning environment,

in ‘2014 IEEE 14th International Conference on Advanced Learning Technologies’,

IEEE, pp. 84–88.

BIBLIOGRAPHY 302

Karkalas, S. & Gutierrez-Santos, S. (2015), Intelligent and adaptive student support in

flip-early computer programming, in ‘Doctoral Consortium on Computer Supported

Education’, Vol. 2, SCITEPRESS, pp. 23–27.

Karkalas, S. & Mavrikis, M. (2016), Feedback authoring for exploratory learning ob-

jects: Authelo, in ‘CSEDU 2016-Proceedings of the 8th International Conference on

Computer Supported Education’, Vol. 1, Science and Technology Publications, Lda,

pp. 144–153.

Karkalas, S., Mavrikis, M. & Charlton, P. (2015), The web integration & interoperabil-

ity layer (wiil)-turning web content into learning content using a lightweight inte-

gration and interoperability technique, in ‘International Conference on Knowledge

Engineering and Ontology Development’, Vol. 2, SCITEPRESS, pp. 139–146.

Karkalas, S., Mavrikis, M., Xenos, M. & Kynigos, C. (2016), Feedback authoring for ex-

ploratory activities: The case of a logo-based 3d microworld, in ‘International Con-

ference on Computer Supported Education’, Springer, pp. 259–278.

Karkalas, S. & Santos, S. G. (2014), Intelligent student support in the flip learning sys-

tem based on student initial misconceptions and student modelling., in ‘KEOD’,

pp. 353–360.

Karoui, A., Marfisi-Schottman, I. & George, S. (2016), Mobile learning game authoring

tools: assessment, synthesis and proposals, in ‘International Conference on Games

and Learning Alliance’, Springer, pp. 281–291.

Kirschner, P. A., Sweller, J. & Clark, R. E. (2006), ‘Why minimal guidance during

instruction does not work: An analysis of the failure of constructivist, discovery,

problem-based, experiential, and inquiry-based teaching’, Educational psychologist

41(2), 75–86.

Klahr, D. & Nigam, M. (2004), ‘The equivalence of learning paths in early science in-

BIBLIOGRAPHY 303

struction: Effects of direct instruction and discovery learning’, Psychological science

15(10), 661–667.

Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B. & Hockenberry, M. (2004),

Opening the door to non-programmers: Authoring intelligent tutor behavior

by demonstration, in ‘International Conference on Intelligent Tutoring Systems’,

Springer, pp. 162–174.

Köhne, A. & Weber, G. (1987), Struedi: A lisp-structure editor for novice programmers,

in ‘Human–Computer Interaction–INTERACT’87’, Elsevier, pp. 125–129.

Kolb, D. A. et al. (1984), Experiential learning: Experience as the source of learning and

development, Vol. 1, Prentice-Hall Englewood Cliffs, NJ.

Kölling, M. (2010), ‘The greenfoot programming environment’, ACM Transactions on

Computing Education (TOCE) 10(4), 14.

Kölling, M. & Henriksen, P. (2005), Game programming in introductory courses with

direct state manipulation, in ‘Proceedings of the 10th annual SIGCSE conference on

Innovation and technology in computer science education’, pp. 59–63.

Kölling, M., Quig, B., Patterson, A. & Rosenberg, J. (2003), ‘The bluej system and its

pedagogy’, Computer Science Education 13(4), 249–268.

Kölling, M. & Rosenberg, J. (1996), ‘An object-oriented program development environ-

ment for the first programming course’, ACM SIGCSE Bulletin 28(1), 83–87.

Konak, A., Clark, T. K. & Nasereddin, M. (2014), ‘Using kolb’s experiential learning

cycle to improve student learning in virtual computer laboratories’, Computers &

Education 72, 11–22.

URL: http://linkinghub.elsevier.com/retrieve/pii/S0360131513002984

Kraemer, E. & Stasko, J. T. (1998), ‘Creating an accurate portrayal of concurrent execu-

tions’, IEEE concurrency 6(1), 36–46.

BIBLIOGRAPHY 304

Kruglyk, V. & Lvov, M. (2012), Choosing the first educational programming language,

in ‘ICT in Education, Research and Industrial Applications: Integration, Harmo-

nization and Knowledge Transfer: Proceedings of the 8th International Conference

ICTERI 2012’, Kherson, pp. 188–189.

Kynigos, C. (1992), Insights into pupils’ and teachers’ activities in pupil-controlled

problem-solving situations: A longitudinally developing use for programming by

all in a primary school, in ‘Mathematical Problem Solving and New Information

Technologies’, Springer, pp. 219–238.

Kynigos, C. (2015), Constructionism: Theory of learning or theory of design?, in ‘Se-

lected regular lectures from the 12th International Congress on Mathematical Edu-

cation’, Springer, pp. 417–438.

Kynigos, C. & Latsi, M. (2007), ‘Turtle’s navigation and manipulation of geometrical

figures constructed by variable processes in a 3d simulated space.’, Informatics in

education 6(2), 359–372.

Lahtinen, E. & Ahoniemi, T. (2005), Visualizations to support programming on differ-

ent levels of cognitive development, in ‘Proceedings of The Fifth Koli Calling Con-

ference on Computer Science Education’, pp. 87–94.

Laubsch, J. H. & Eisenstadt, M. (1981), Domain specific debugging aids for novice

programmers., in ‘IJCAI’, pp. 964–969.

Leo, D. H., Pérez, J. I. A. & Dimitriadis, Y. A. (2004), Ims learning design support for the

formalization of collaborative learning patterns, in ‘IEEE International Conference

on Advanced Learning Technologies, 2004. Proceedings.’, IEEE, pp. 350–354.

Levy, S. P. (1995), ‘Computer language usage in cs1: Survey results’, ACM SIGCSE

Bulletin 27(3), 21–26.

BIBLIOGRAPHY 305

Lor, R. (2017), Design thinking in education: a critical review of literature, in ‘IACSSM;

ACEP, Conference Proceedings’, pp. 24–26.

Lynch, C. F., Ashley, K. D., Aleven, V. & Pinkwart, N. (2006), Defining ill-defined do-

mains; a literature survey, in ‘Intelligent Tutoring Systems (ITS 2006): Workshop on

Intelligent Tutoring Systems for Ill-Defined Domains’.

Malone, T. W. (1980), What makes things fun to learn? heuristics for designing instruc-

tional computer games, in ‘Proceedings of the 3rd ACM SIGSMALL symposium and

the first SIGPC symposium on Small systems’, pp. 162–169.

Malone, T. W. (1982), Heuristics for designing enjoyable user interfaces: Lessons from

computer games, in ‘Proceedings of the 1982 conference on Human factors in com-

puting systems’, pp. 63–68.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M. & Rusk, N. (2008), ‘Programming

by choice: urban youth learning programming with scratch’, ACM SIGCSE Bulletin

40(1), 367–371.

Matsuda, N., Cohen, W. W., Sewall, J., Lacerda, G. & Koedinger, K. R. (2007), ‘Predict-

ing students’ performance with simstudent: Learning cognitive skills from observa-

tion’, Frontiers in Artificial Intelligence and Applications 158, 467.

Mavrikis, M., Gutierrez-Santos, S., Geraniou, E. & Noss, R. (2013), ‘Design require-

ments, student perception indicators and validation metrics for intelligent ex-

ploratory learning environments’, Personal and ubiquitous computing 17(8), 1605–1620.

Mavrikis, M., Karkalas, S., Cukurova, M. & Papapesiou, E. (2019), Participatory design

to lower the threshold for intelligent support authoring, in ‘International Conference

on Artificial Intelligence in Education’, Springer, pp. 185–189.

Mayer, R. E. (2004), ‘Should there be a three-strikes rule against pure discovery learn-

ing?’, American Psychologist 59(1), 14.

BIBLIOGRAPHY 306

McCalla, G. & Murtagh, K. (1985), GENIUS: An experiment in ignorance-based automated

program advising, University of Saskatchewan, Department of Computational Sci-

ence.

McKenney, S. & Reeves, T. C. (2014), Educational design research, in ‘Handbook of

research on educational communications and technology’, Springer, pp. 131–140.

McKenney, S. & Reeves, T. C. (2018), Conducting educational design research, Routledge.

Melles, G., Anderson, N., Barrett, T. & Thompson-Whiteside, S. (2015), Problem find-

ing through design thinking in education, in ‘Inquiry-based learning for multidis-

ciplinary programs: A conceptual and practical resource for educators’, Emerald

Group Publishing Limited.

Millard, N., Lynch, P. & Tracey, K. (1998), Child’s play: using techniques developed to

elicit requirements from children with adults, in ‘Proceedings of IEEE International

Symposium on Requirements Engineering: RE’98’, IEEE, pp. 66–73.

Mills, D. & Morton, M. (2013), Ethnography in education, Sage.

Mitrovic, A. (1997), ‘Sql-tutor: a preliminary report’.

Mitrovic, A. (2003), ‘An intelligent sql tutor on the web’, International Journal of Artificial

Intelligence in Education 13(2), 173–197.

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J. &

McGuigan, N. (2009), ‘Aspire: an authoring system and deployment environment

for constraint-based tutors’, International Journal of Artificial Intelligence in Education

19(2), 155–188.

Montori, V. M., Wilczynski, N. L., Morgan, D. & Haynes, R. B. (2003), ‘Systematic re-

views: a cross-sectional study of location and citation counts’, BMC medicine 1(1), 1–

7.

BIBLIOGRAPHY 307

Morales Gamboa, R. & Gamboa, R. M. (2000), ‘Exploring participative learner mod-

elling and its effects on learner behaviour’.

Morgado, L. & Kahn, K. (2008), ‘Towards a specification of the toontalk language’,

Journal of Visual Languages & Computing 19(5), 574–597.

Mott, J. (2010), ‘Envisioning the post-lms era: The open learning network’, Educause

Quarterly 33(1), 1–9.

Mukherjea, S. & Stasko, J. T. (1994), ‘Toward visual debugging: integrating algo-

rithm animation capabilities within a source-level debugger’, ACM Transactions on

Computer-Human Interaction (TOCHI) 1(3), 215–244.

Murray, T. (1997), ‘Expanding the knowledge acquisition bottleneck for intelligent tu-

toring systems’, International Journal of Artificial Intelligence in Education 8(3-4), 222–

232.

Murray, T. (1999), ‘Authoring intelligent tutoring systems: An analysis of the state of

the art’.

Murray, T. (2016), ‘Coordinating the complexity of tools, tasks, and users: On theory-

based approaches to authoring tool usability’, International Journal of Artificial Intelli-

gence in Education 26(1), 37–71.

Myers, B. A., Chandhok, R. & Sareen, A. (1988), Automatic data visualization for

novice pascal programmers., in ‘VL’, pp. 192–198.

Neal, L. R. (1986), Cognition-sensitive design and user modeling for syntax-directed

editors, in ‘Proceedings of the SIGCHI/GI conference on Human factors in comput-

ing systems and graphics interface’, pp. 99–102.

Neal, L. R. (1989), ‘A system for example-based programming’, ACM SIGCHI Bulletin

20(SI), 63–68.

BIBLIOGRAPHY 308

Newell, A. (1962), Some problems of basic organization in problem-solving programs,

Technical report, Rand corp santa monica ca.

Nieveen, N. & Folmer, E. (2013), ‘Formative evaluation in educational design research’,

Design Research 153, 152–169.

Noblit, G. W. (2003), Reinscribing critique in educational ethnography: Critical and

postcritical ethnography, in ‘Foundations for Research’, Routledge, pp. 197–218.

Noss, R. & Hoyles, C. (1996), Windows on mathematical meanings: Learning cultures and

computers, Vol. 17, Springer Science & Business Media.

O’leary, Z. (2017), The essential guide to doing your research project, Sage.

Olsen, K. A., Harnes, P., Pedersen, B. & Tosse, O.-J. (1988), The dsp system-a visual

system to support teaching of programming, in ‘[Proceedings] 1988 IEEE Workshop

on Visual Languages’, IEEE, pp. 199–206.

Papert, S. (1980), ‘Mindstonns’, New York: Basic Rooks 607.

Papert, S. (1993), ‘The children’s machine’, TECHNOLOGY REVIEW-MANCHESTER

NH- 96, 28–28.

Paquette, G., Pachet, F., Giroux, S. & Girard, J. (1996), ‘Epitalk: Generating advisory

agents for existing information systems’, Journal of Artificial Intelligence in Education

7, 349–379.

Paquette, G. & Tchounikine, P. (1999), Towards a knowledge engineering method for

the construction of advisor systems, in ‘AI-Ed’99’, number 50, IOS Press, pp. 753–

755.

Patsopoulos, N. A., Analatos, A. A. & Ioannidis, J. P. (2005), ‘Relative citation impact

of various study designs in the health sciences’, Jama 293(19), 2362–2366.

BIBLIOGRAPHY 309

Pattis, R. E. (1981), Karel the robot: a gentle introduction to the art of programming, John

Wiley & Sons, Inc.

Pawar, U. S., Pal, J. & Toyama, K. (2006), Multiple mice for computers in education in

developing countries, in ‘2006 International Conference on Information and Com-

munication Technologies and Development’, IEEE, pp. 64–71.

Pearce, D., Mavrikis, M., Geraniou, E., Gutiérrez, S. & Kahn, K. (2008), An environment

for expressing mathematical generalisation using pattern construction and analysis,

in ‘Workshop for HCI for Technology Enhanced Learning, at HCI2008 Culture, Cre-

ativity, Interaction’.

Pearce, D. & Poulovassilis, A. (2009), The conceptual and architectural design of a

system supporting exploratory learning of mathematics generalisation, in ‘European

Conference on Technology Enhanced Learning’, Springer, pp. 22–36.

Pearce-Lazard, D., Poulovassilis, A. & Geraniou, E. (2010), The design of teacher assis-

tance tools in an exploratory learning environment for mathematics generalisation,

in ‘European Conference on Technology Enhanced Learning’, Springer, pp. 260–275.

Peylo, C., Teiken, W., Rollinger, C.-R. & Gust, H. (2000), An ontology as domain model

in a web-based educational system for prolog., in ‘FLAIRS Conference’, pp. 55–59.

Plomp, T. (2013), ‘Educational design research: An introduction’, Educational design

research pp. 11–50.

Pole, C. & Morrison, M. (2003), Ethnography for education, McGraw-Hill Education

(UK).

Prieto-Diaz, R. (1990), ‘Domain analysis: An introduction’, ACM SIGSOFT Software

Engineering Notes 15(2), 47–54.

Privitera, G. & Delzell, L. (2019), ‘Quasy-experimental and single-case experimental

designs’, Research methods for education pp. 333–370.

BIBLIOGRAPHY 310

Provenzo Jr, E. F. (1991), Video kids: Making sense of Nintendo., Harvard University Press.

Ramadhan, H. (1992), An intelligent discovery programming system, in ‘Proceedings

of the 1992 ACM/SIGAPP Symposium on Applied computing: technological chal-

lenges of the 1990’s’, pp. 149–159.

Ramadhan, H. & du Boulay, B. (1993), Programming environments for novices,

in ‘Cognitive models and intelligent environments for learning programming’,

Springer, pp. 125–134.

Reges, S. (2002), ‘Can c# replace java in cs1 and cs2?’, ACM SIGCSE Bulletin 34(3), 4–8.

Reiser, B. J., Anderson, J. R. & Farrell, R. G. (1985), Dynamic student modelling in an

intelligent tutor for lisp programming., in ‘IJCAI’, pp. 8–14.

Reiser, B., Ranney, M., Lovett, M. C. & Kimberg, D. Y. (1989), Facilitating students’

reasoning with causal explanations and visual representations, Technical report,

PRINCETON UNIV NJ COGNITIVE SCIENCE LAB.

Reiss, S. P. (1985), ‘Pecan: Program development systems that support multiple views’,

IEEE Transactions on Software engineering (3), 276–285.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,

Millner, A., Rosenbaum, E., Silver, J., Silverman, B. et al. (2009), ‘Scratch: program-

ming for all’, Communications of the ACM 52(11), 60–67.

Richard, B. & Tchounikine, P. (2004), ‘Enhancing the adaptivity of an existing web-

site with an epiphyte recommender system’, New review of hypermedia and multimedia

10(1), 31–52.

Richard, B., Tchounikine, P. & Jacoboni, P. (2003), An architecture to support naviga-

tion and propose tips within a dedicated web site, in ‘Proceedings IEEE/WIC Inter-

national Conference on Web Intelligence (WI 2003)’, IEEE, pp. 278–284.

BIBLIOGRAPHY 311

Rieman, J. (1996), ‘A field study of exploratory learning strategies’, ACM Transactions

on Computer-Human Interaction (TOCHI) 3(3), 189–218.

Robillard, P. N. (1986), ‘Schematic pseudocode for program constructs and its com-

puter automation by schemacode’, Communications of the ACM 29(11), 1072–1089.

Robins, A., Rountree, J. & Rountree, N. (2003), ‘Learning and teaching programming:

A review and discussion’, Computer Science Education 13(2), 137–172.

Ruipérez-Valiente, J. A., Muñoz-Merino, P. J., Leony, D. & Kloos, C. D. (2015), ‘Alas-ka:

A learning analytics extension for better understanding the learning process in the

khan academy platform’, Computers in Human Behavior 47, 139–148.

Saaty, T. L. (1990), ‘How to make a decision: the analytic hierarchy process’, European

journal of operational research 48(1), 9–26.

Savery, J. R. (2006), ‘Overview of problem-based learning: Definitions and distinc-

tions’, Interdisciplinary Journal of Problem-based Learning 1(1), 3.

Schlosser, R. W., Wendt, O., Bhavnani, S. & Nail-Chiwetalu, B. (2006), ‘Use of

information-seeking strategies for developing systematic reviews and engaging in

evidence-based practice: the application of traditional and comprehensive pearl

growing. a review’, International Journal of Language & Communication Disorders

41(5), 567–582.

Schmalhofer, F., Kühn, O., Charron, R. & Messamer, P. (1990), ‘An implementation and

empirical evaluation of an exploration environment with different tutoring strate-

gies’, Behavior Research Methods, Instruments, & Computers 22(2), 179–183.

Schmalhofer, F., Kühn, O., Messamer, P. & Charron, R. (1990), ‘An experimental evalua-

tion of different amounts of receptive and exploratory learning in a tutoring system’,

Computers in human behavior 6(1), 51–68.

BIBLIOGRAPHY 312

Seffah, A., Donyaee, M., Kline, R. B. & Padda, H. K. (2006), ‘Usability measurement

and metrics: A consolidated model’, Software quality journal 14(2), 159–178.

Severance, C., Hanss, T. & Hardin, J. (2010), ‘Ims learning tools interoperability: En-

abling a mash-up approach to teaching and learning tools’, Technology, Instruction,

Cognition and Learning 7(3-4), 245–262.

Severance, C., Hardin, J. & Whyte, A. (2008), ‘The coming functionality mash-up in

personal learning environments’, Interactive Learning Environments 16(1), 47–62.

Shimomura, T. & Isoda, S. (1991), ‘Linked-list visualization for debugging’, IEEE Soft-

ware 8(3), 44–51.

Shneiderman, B. (1993), ‘1.1 direct manipulation: a step beyond programming lan-

guages’, Sparks of innovation in human-computer interaction 17, 1993.

Solomon, C. J. & Papert, S. (1976), A case study of a young child doing turtle graphics

in logo, in ‘Proceedings of the June 7-10, 1976, national computer conference and

exposition’, pp. 1049–1056.

Soloway, E. (1986), ‘Learning to program= learning to construct mechanisms and ex-

planations’, Communications of the ACM 29(9), 850–858.

Sottilare, R. A., Brawner, K. W., Goldberg, B. S. & Holden, H. K. (2012), ‘The gen-

eralized intelligent framework for tutoring (gift)’, Orlando, FL: US Army Research

Laboratory–Human Research & Engineering Directorate (ARL-HRED) .

Strauss, A. & Corbin, J. M. (1997), Grounded theory in practice, Sage.

Sykes, E. R. & Franek, F. (2003), A prototype for an intelligent tutoring system for stu-

dents learning to program in java (tm), in ‘Proceedings of the IASTED International

Conference on Computers and Advanced Technology in Education, June 30-July 2,

2003, Rhodes, Greece’, pp. 78–83.

BIBLIOGRAPHY 313

Sylvester, A., Tate, M. & Johnstone, D. (2013), ‘Beyond synthesis: Re-presenting hetero-

geneous research literature’, Behaviour & Information Technology 32(12), 1199–1215.

Tecuci, G. & Keeling, H. (1998), Developing intelligent educational agents with the dis-

ciple learning agent shell, in ‘International Conference on Intelligent Tutoring Sys-

tems’, Springer, pp. 454–463.

Tecuci, G. & Keeling, H. (1999), ‘Developing an intelligent educational agent with dis-

ciple’, International Journal of Artificial Intelligence in Education 10(3-4), 221–237.

Tecuci, G., Wright, K., Lee, S., Boicu, M., Bowman, M. & Webster, D. (1998), A learning

agent shell and methodology for developing intelligent agents, in ‘AAAI-98 Work-

shop: Software Tools for Developing Agents’, pp. 37–46.

Thomas, J. M. & Young, R. M. (2011), Dynamic guidance for task-based exploratory

learning, in ‘International Conference on Artificial Intelligence in Education’,

Springer, pp. 369–376.

Ueno, H. (1994), ‘Integrated intelligent programming environment for learning pro-

gramming’, IEICE Transactions on information and systems 77(1), 68–79.

Ulrich, K. & Eppinger, S. (2011), EBOOK: Product Design and Development, McGraw Hill.

Urban, G. L. & Von Hippel, E. (1988), ‘Lead user analyses for the development of new

industrial products’, Management science 34(5), 569–582.

Van Haaster, K. & Hagan, D. (2004), ‘Teaching and learning with bluej: an evaluation

of a pedagogical tool.’, Issues in Informing Science & Information Technology 1.

van Joolingen, W. R. & Zacharia, Z. C. (2009), Developments in inquiry learning, in

‘Technology-enhanced learning’, Springer, pp. 21–37.

Van Roy, P., Armstrong, J., Flatt, M. & Magnusson, B. (2003), ‘The role of language

paradigms in teaching programming’, ACM SIGCSE Bulletin 35(1), 269–270.

BIBLIOGRAPHY 314

Van Roy, P. & Haridi, S. (2003), Teaching programming broadly and deeply: the ker-

nel language approach, in ‘Informatics Curricula and Teaching Methods’, Springer,

pp. 53–62.

Verdejo, M. F., Fernández, I. & Urretavizcaya, M. T. (1993), Methodology and design is-

sues in capra, an environment for learning program construction, in ‘Cognitive Mod-

els and Intelligent Environments for Learning Programming’, Springer, pp. 156–171.

Verschuren, P. & Hartog, R. (2005), ‘Evaluation in design-oriented research’, Quality

and Quantity 39(6), 733–762.

Vihavainen, A., Paksula, M. & Luukkainen, M. (2011), Extreme apprenticeship method

in teaching programming for beginners, in ‘Proceedings of the 42nd ACM technical

symposium on Computer science education’, ACM, pp. 93–98.

Vines, J., Clarke, R., Wright, P., McCarthy, J. & Olivier, P. (2013), Configuring participa-

tion: on how we involve people in design, in ‘Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems’, pp. 429–438.

Vinoski, S. (1997), ‘Corba: integrating diverse applications within distributed hetero-

geneous environments’, IEEE Communications magazine 35(2), 46–55.

Virtanen, A. T., Lahtinen, E. & Järvinen, H.-M. (2005), Vip, a visual interpreter for learn-

ing introductory programming with c++, in ‘Proceedings of The Fifth Koli Calling

Conference on Computer Science Education’, pp. 125–130.

Vygotskiı̆, L. S., Cole, M. & John-Steiner, V. (1978), ‘Mind in society’.

Weber, G. & Mollenberg, A. (1994), ‘Elm-pe: A knowledge-based programming envi-

ronment for learning lisp.’.

Weibel, S., Kunze, J., Lagoze, C. & Wolf, M. (1998), ‘Dublin core metadata for resource

discovery’, Internet Engineering Task Force RFC 2413(222), 132.

BIBLIOGRAPHY 315

Wilson, S. & Currier, S. (2002), ‘What is ims content packaging’, CETIS Standards Brief-

ings Series, JISC .

Wilson, S., Sharples, P. & Griffiths, D. (2007), ‘Extending ims learning design services

using widgets: Initial findings and proposed architecture’, Current Research on IMS

Learning Design and Lifelong Competence Development Infrastructures p. 3.

Wilson, S., Sharples, P. & Griffiths, D. (2008), Distributing education services to per-

sonal and institutional systems using widgets, in ‘Proc. Mash-Up Personal Learning

Environments-1st Workshop MUPPLE’, Vol. 8, pp. 25–33.

Wong, S. C. (1993), ‘Quick prototyping of educational software: an object-oriented ap-

proach’, Journal of educational technology systems 22(2), 155–172.

Woolf, B. & Cunningham, P. A. (1987), ‘Multiple knowledge sources in intelligent

teaching systems’, IEEE Expert 2(2), 41–54.

Zelkowitz, M. V., Kowalchack, B., Itkin, D. & Herman, L. (1989), A support tool

for teaching computer programming, in ‘Issues in software engineering education’,

Springer, pp. 139–167.

Zhang, H., Almeroth, K., Knight, A., Bulger, M. & Mayer, R. (2007), Moodog: Tracking

students’ online learning activities, in ‘EdMedia+ Innovate Learning’, Association

for the Advancement of Computing in Education (AACE), pp. 4415–4422.

Zhang, L., Zou, X. & Kan, Z. (2014), ‘Improved strategy for resource allocation in repet-

itive projects considering the learning effect’, Journal of Construction Engineering and

Management 140(11), 04014053.

Zopounidis, C. & Doumpos, M. (2002), ‘Multicriteria classification and sorting meth-

ods: A literature review’, European Journal of Operational Research 138(2), 229–246.

BIBLIOGRAPHY 316

Zschaler, S., Demuth, B. & Schmitz, L. (2014), ‘Salespoint: A java framework for teach-

ing object-oriented software development’, Science of Computer Programming 79, 189–

203.

A
Sample Rules

A.1 Understanding the Role of Variable Declaration

This is a very simple rule that illustrates the misconception related to the meaning of

variable declaration. This is a common problem with novice developers that redeclare

an existing variable instead of simply referencing it. Some languages are too lenient

with this as there is no mechanism to detect the problem and subsequent declarations

are silently interpreted as simple references to the variable. If there is no compiler to

detect the error early enough this may end up being a reccuring problem that hinders

317

A.2 Understanding the Difference Between Variable Values and Literal Values 318

the development of other concepts.

A code example that illustrates the problem:

var x = new Array(5);

var x = 5;

alert(x);

The description of the rule follows:

• variable v1 is a var (var declaration in the code)

• v1 is not distinct (there are multiple declarations of the same identifier)

• if v1 is false stop the process

• if v1 is true activate the rule

The subsequent of this rule could be a suggestion to remove the word from all refer-

ences to the variable that follow the initial declaration.

A.2 Understanding the Difference Between Variable Values and

Literal Values

This is another common problem that reveals itself quite frequently. Students declare a

variable and assign a value to it but they don’t use it in subsequent operations. Instead

they refer to the literal value directly.

A code example that illustrates the problem:

var x = 5;

var y = 3;

A.2 Understanding the Difference Between Variable Values and Literal Values 319

Figure A.1: Understanding the Role of Variable Declaration

var z = 5 - 3;

if(5>3)

{

z = 14;

}

In the code snippet above there are two instances of that problem (lines 3 and 5).

The description of the rule follows:

• variable v1 is a var (var declaration in the code)

• v1 is not null (if there is no v1 we stop the process)

• variable v2 is a literal (a literal value in the code)

A.3 Understanding the Necessity of Variables/Constants 320

• v2 is not null (if there is no v2 we stop the process)

• variable v3 is the value of variable v1 (let’s say x in the code)

• v2 can be found in v3 (the literal value used in declaration of x)

• variable v4 is a literal (a literal value in the code)

• v4 is not null (if there is no v4 we stop the process)

• v4 is not equal to v2 (these are two distinct instances of literals - if not stop)

• variable v6 takes the value of the literal in V2 (in this case 5 - declaration of x)

• variable v7 takes the value of the literal in V4 (in this case 5 - either line 3 or 5)

• v6 is equal to v7 (if the two literal values are the same activate the rule, otherwise

stop)

The subsequent of this rule could be a suggestion to replace the literal values with the

variable identifier they correspond to.

A.3 Understanding the Necessity of Variables/Constants

This is a situation where students use the same literal value in various places in the

code instead of having a variable or constant.

A code example that illustrates the problem:

var x = new Array(5); //5

var i = 0;

while(i<5) //5

{

A.3 Understanding the Necessity of Variables/Constants 321

Figure A.2: Understanding the Difference Between Variable Values and Literal Values

if(x[i]===’stop’)

{

break;

}

i++;

}

A.3 Understanding the Necessity of Variables/Constants 322

if(i===5) //5

{

alert(’there is no stop’);

}

In the code snippet above there are three instances of that problem as indicated by the

comments.

The description of the rule follows:

• variable v1 is a literal (a literal value in the code)

• v1 is not null (if there is no v1 we stop the process)

• variable v2 takes the value of the literal in V1 (in this case 5, line 1)

• variable v3 is a literal (a literal value in the code)

• v3 is not null (if there is no v3 we stop the process)

• variable v4 takes the value of the literal in V3 (in this case 5, line 4)

• v4 is equal to v2 (if the two literal values are the same carry on, otherwise stop)

• v3 is not equal to v1 (if these are two distinct instances of literals activate the rule

otherwise stop)

The subsequent of this rule would be a suggestion to replace the literal values with

references to a variable.

A.4 Understanding the Necessity of Variables when Referring to Array Length 323

Figure A.3: Understanding the Necessity of Variables/Constants

A.4 Understanding the Necessity of Variables when Referring

to Array Length

There are situations where students declare arrays and refer to their length using a

literal value. This is most likely the case when a traversal is performed with a loop.

Regardless of whether the array size remains the same or not, in general, it is good

A.4 Understanding the Necessity of Variables when Referring to Array Length 324

practice to refer to the array itself and ask for its length, given that the language sup-

ports it, or measure the length and store the information in a variable. In any case it is

the variable that should be used to refer to this value in the code and not a literal.

A code example that illustrates the problem:

var x = [2,5,1,8,9];

var sum = 0;

for(var i = 0; i < 5; i++)

{

sum += x[i];

}

alert(sum);

The description of the rule follows:

• variable v1 is an array (an array value in the code)

• v1 is not null (if there is no v1 we stop the process)

• variable v2 is a for (a for control structure in the code)

• v2 is not null (if there is no v2 we stop the process)

• variable v3 takes the condition test of the for structure referenced by V2

• variable v4 takes the length of the array referenced by V1

• variable v5 is a literal (a literal value in the code)

• v5 is not null (if there is no v5 we stop the process)

A.5 Understanding off-by-one Errors with Arrays in Loops 325

• variable v6 takes the value of the literal location in code referenced by v5

• v7 takes the value of the literal in V5 (in this case 5)

• v7 is equal to v4 (if the literal value is equal to the array length move on otherwise

stop)

• v8 takes the value of the for location in code referenced by v2

• v8 contains v6 (if the literal is located within the for loop move on, otherwise

stop)

• v5 can be found in v6 (if the literal value is used in the condition test of the for

loop activate the rule, otherwise stop)

The subsequent of this rule would be a suggestion to replace the literal values with a

reference to the array length property.

A.5 Understanding off-by-one Errors with Arrays in Loops

This is a very common mistake that even experienced programmers make sometimes

especially when they switch between languages that support different array indexing

schemes. The problem is that novice programmers fail to understand that when doing

an array traversal in a zero-based indexed array they have to stop referencing elements

just before the iterator becomes equal to the length of the array.

A code example that illustrates the problem:

var x = [2,5,1,8,9];

var sum = 0;

for(var i = 0; i <= 5; i++)

A.5 Understanding off-by-one Errors with Arrays in Loops 326

Figure A.4: Understanding the Necessity of Variables when Referring to Array Length

{

sum += x[i];

}

alert(sum);

A.5 Understanding off-by-one Errors with Arrays in Loops 327

The description of the rule follows:

• variable v1 is an array (an array value in the code)

• v1 is not null (if there is no v1 we stop the process)

• variable v2 is a for (a for control structure in the code)

• v2 is not null (if there is no v2 we stop the process)

• variable v3 takes the body of the for structure referenced by V2

• v1 can be found in v3 (if the array is in the body of the loop move on, otherwise

stop)

• variable v4 is a var (var declaration in the code - variable i in this case)

• v4 is not null (if there is no v4 we stop the process)

• variable v5 takes the subscript of the array referenced by V1 ([i] in the code ex-

ample)

• v4 can be found in v5 (if variable i can be found in the array’s subscript move on,

otherwise stop)

• variable v6 takes the condition test of the for structure referenced by V2

• v4 can be found in v6 (if variable i can be found in for condition test move on,

otherwise stop)

• variable v7 takes the length of the array referenced by V1 (in this case 5)

• variable v8 is a literal (a literal value in the code)

• v8 is not null (if there is no v8 we stop the process)

• variable v9 takes the value of the literal referenced by V8 (literal 5 in this example)

A.5 Understanding off-by-one Errors with Arrays in Loops 328

• v9 is equal to v7 (if the literal value is equal to the array length move on, other-

wise stop)

• v8 can be found in v6 (if the literal value can be found in the condition test move

on, otherwise stop)

• variable v11 is an operator (an operator in the code)

• v11 is not null (if there is no v11 we stop the process)

• variable v12 takes the value of the operator referenced by V11 (¡= in this example)

• v13 takes the value of the operator ¡=

• v13 is equal to v12 (if the operator found is ¡= move on, otherwise stop)

• v11 can be found in v6 (if the operator can be found in the condition test move

on, otherwise stop)

• variable v15 takes the location of the operator referenced by V11 (¡= in this exam-

ple)

• variable v16 takes the location of the for loop referenced by V2

• v16 takes the location of the for loop referenced by V2

• v16 contains v15 (if the operator is located within the for loop move on, otherwise

stop)

• v17 takes the value of the operator ¡ (give the value that is needed for refactoring

the operator, activate the rule)

In this case the assuption is that the language supports only zero-based indexes for ar-

rays. Therefore, we know that traversal cannot go beyond n-1. The very last statement

in the rule definition encodes within the rule a value that is supposed to be used for

refactoring the code, if the rule gets executed.

A.5 Understanding off-by-one Errors with Arrays in Loops 329

Figure A.5: Understanding off-by-one Errors with Arrays in Loops

The subsequent of this rule would be a suggestion to replace the operator used in the

test with another one.

B
Literature Review Strategy Used

In every research project it is essential to study and understand what has already

been achieved in the area under investigation. Typically this is done through finding,

analysing, evaluating, and synthesising the contents of related empirical and concep-

tual publications. Academic publications comprise a large corpus of documents that

continuously grows at an exponential rate and that makes the selection of relevant

sources a challenging process. The strategy to identify and select relevant sources may

have a significant impact in the timeframe and the overall effectiveness of the process.

The general strategy used in this work to approach and select existing knowledge was

330

331

a combination of the Pearl Growing technique (Schlosser et al. 2006) and the Snow-

balling technique (Jalali & Wohlin 2012). Initially iterative searchers were performed

on information sources and databases based on criteria to identify the key review pa-

pers in the area. Keywords of important papers found were gradually introduced into

the searches to refine queries for relevant sources. Review papers offer a solid starting

point for research projects as they can give a first clear outline of the literature in the

area without too much detail (Sylvester et al. 2013). Their overarching purpose is to

synthesise the literature in a field and provide a clear overview of the area in question.

They also offer references to the most useful primary sources (Cronin et al. 2008) and

they are typically cited more often than any other type of published article (Cronin

et al. 2008, Montori et al. 2003, Patsopoulos et al. 2005). This characteristic significantly

increases the chances to find relevant work both prior and after the publication date of

the article. After analysis of the review papers the next step was to identify and select

the references of interest and process them individually. Citations of these papers of-

fer new references and the process carries on until there is no more relevant work to

consider. This technique is called backward snowballing. In some cases the forward

snowballing technique was also used to identify more recent papers than the sources.

The Google scholar engine was used for both cases.

C
Observation Sheet

332

333

Section 1: General Info
Date: Course Level:
Course Title:
No of Participants Students: Tutors:

Section 2: Learners and the Learning Process
2.1 Understand how learners approach learning

2.2 Understand how learners solve their problems

Section 3: Teachers and the Teaching Process
3.1 Understand processes

3.2 Identify Flaws and Weaknesses

3.3 Recognise Good Practices

Section 4: Verify Findings in the Literature
Learning programming is difficult
Teaching programming is expensive
Supporting learning programming is limited due to...
Learning programming in exploratory settings offers more opportunities
Learning programming in exploratory settings is more natural
The need for support in exploratory learning is higher than in guided learning

Section 5: Further Understanding of the Area of Interest
Notes that reveal hidden aspects or shed light to particular areas of interest

334

Section 6: Student Code
Area for code that requires attention

Section 7: Identify Potential Opportunities for Improvement and Innovation
Area for spontaneous brainstorming based on the recent personal experience

D
Usability Test Material

D.1 Day 1

1 Logical Propositions

Consider the following statements:

• Two trees gave 2 apples of variety A each.

• 4 more apples are available in a food refrigerator storage but only half of them

335

D.1 Day 1 336

are of variety A.

• All apples of variety A undergo 2 levels of food quality testing.

– Test 1 result = 2

– Test 2 result = 3

• Apples of variety A can move to the next production phase only if

– the apples available are at least 2 and

– the tests give different results

Create variables for the items in the above description and give appropriate values.

Create logical propositions for each statement using those variables. Evaluate the last

proposition and consider the result (display the result in the console). Is this what you

expected?

2 BMI

The body mass index (BMI) is a measure that uses your height and weight to work out

if your weight is healthy. The formula is BMI = kg/m2 where kg is a person’s weight

in kilograms and m2 is their height in metres squared. Write a program that calculates

your BMI. Use variables for height and weight. Values must be given in cm and kg

respectively. Compare the result with an online BMI calculator.

3 BMI+

Extend the solution you gave for exercise No 2 and make your code accept input from

the user. Values must be given dynamically so that your program can be reusable by

any number of users without modifications. [Note: check the type of input values be-

D.1 Day 1 337

fore you use them in calculations.. is this what you expect?]

4 BMI++

Extend the solution you gave for exercise No 3 so that the code generates a classifica-

tion in textual form along with the index value. For adults the classifications are the

following:

• underweight (under 18.5)

• normal weight (18.5 to 24.9)

• overweight (25 to 29.9)

• obese (30 or more)

[Note: check if you can reduce the number of conditions in your control structure]

5 BMI+++

Extend the solution you gave for exercise No 4 so that the code can perform input

validation. The accepted ranges follow:

Height: shortest (0.5m) - tallest (2.5m)

Weight: lightest (2kg) - heaviest (600kg)

The program should not permit invalid input. If a value is out of range the code

prompts the user to input it again. The process stops only when valid input is received.

[Note: which type of loop is more appropriate for this type of control?]

6 BMI Statistics

D.1 Day 1 338

Write a program that accepts any number of BMI values in a row and displays the min,

max and average of those values in the console. The values must be given dynamically

by the user at runtime and input stops when the value -1 is given. Input validation is

not necessary.

[Notes: which type of loop is more appropriate for this type of control?, is the result

what you expect? check the type of input values]

7 BMI Statistics+

Write a program that accepts 10 BMI values in a row and displays the average of those

values in the console as well as the values above the average. The values must be given

dynamically by the user at runtime. Input validation is not necessary.

[Notes: which type of loop is more appropriate for this type of control?]

8 BMI Statistics++

Write a program that accepts any number of BMI values in a row and calculates a fre-

quency distribution table for the classifications given in exercise 4. Input validation is

not necessary. The distribution table should be displayed on the screen in the following

form:

underweight [3]: ***

normal weight [1]: *

overweight [2]: **

obese[4]: ****

D.2 Day 2 339

D.2 Day 2

1 Integer Division

Numeric values are represented in JavaScript floating point signed numbers. There is

no concept of integer value in the language. Therefore, integer division is not natively

supported. The division operator always returns a floating point number.

Write the function quotient(n,d) that takes two values as arguments (numerator

and denominator) and computes the quotient of the division operation. The value

should be returned as an integer. The function should be able to deal with negative

numbers as well.

[Note: you may find the method toString() and the function parseInt() useful in your

implementation]

2 Binary to Decimal Conversion

Write the function binToDec(bin) that takes a number in binary and returns the same

number in decimal. The input should be given as an array of integers (zeroes and

ones). You should not assume a specific length for the array. You can compare your

results with the function parseInt(bin.join(””), 2) that performs the same operation.

[Note: you may find the method Math.pow() useful in your implementation]

3 Russian Peasant Multiplication

Write the function peasantMult(a,b) that takes two integer values and performs multi-

plication using the Russian peasant algorithm.

[Note: you may find the quotient function useful in your implementation]

D.2 Day 2 340

4 Russian Peasant Multiplication+

Amend the previous function so that it performs the same operation without using the

multiplication operator and the quotient function.

[Note: you may find the shift operators useful in your implementation]

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	The Need for Programming Skills
	The Need for Automated Support
	The Need for more accessible AI
	The Need for Intelligent Exploratory Learning Environments
	The Need for Flexible Integration and Interoperability

	Research Objectives
	Challenges Translated into Research Objectives

	Research Methodology
	Literature Review
	Reasoning Behind the Research Project - Design Thinking
	The Project Step by Step

	Thesis Outline

	Related Work
	Educational Programming Environments
	Turtle Graphics in LOGO
	Karel
	Toontalk
	Alice
	BlueJ
	Greenfoot
	SALESPOINT
	Malt+
	Scratch
	Discussion

	Exploratory Learning Systems
	Exploratory Learning
	Exploratory Learning Environments
	Discussion

	Tutoring Systems for Programming
	Programming Environments
	Debugging Aids
	Intelligent Tutoring Systems
	Intelligent Programming Environments
	Discussion

	Automated Support Authoring Tools
	SQL-Tutor
	ASPIRE
	Diligent
	Disciple
	Demonstr8
	CTAT
	Automatic Rule Authoring System for CTAT
	SimStudent
	GIFT
	The FRAME Approach
	Discussion

	Integration and Interoperability
	Technologies used in Learning Management Systems
	Epiphytic Integration Systems
	Discussion

	Synthesis of Related Work and Revised Research Objectives

	Exploring Possibilities
	Literature Review and Domain Analysis - An Outline
	Educational Ethnographic Study
	The Data Collection Process
	Managing Bias and Subjectivity
	Thematic Analysis

	Common Student Misconceptions in Elementary Programming
	Importance of Student Misconceptions

	Understanding Challenges by Developing a Prototype
	Developing FLIP
	Knowledge Elicitation
	Knowledge Representation
	Knowledge Processing
	The PoC

	An Important Outcome: The Intelligent Tutor Layered Architecture
	Usability Testing
	Participants
	Method
	Results
	Discussion

	Completing the Working Principles
	Literature Review and Domain Analysis - An Outline
	User Centric Design through a Requirements Elicitation Workshop
	Implementation of WIIL
	The Web Integration and Interoperability Layer (WIIL)
	Web Components
	Design Considerations
	Browser Security
	The Technique
	The Ladders Activity - A PoC
	GeoGebra Coding - A PoC
	Results

	Learning Environment vs Platform
	An architectural aspect of Learning Platforms
	Tightly Coupled
	Loosely Coupled

	Learning Platforms as Ecosystems of Diverse Components
	Implementation of AuthELO
	AuthELO
	Design
	Architecture
	Integration at a Technical Level
	The PoC

	Evaluation of AuthELO
	First Evaluation
	Second Evaluation

	Addressing new Requirements
	Requirements Elicitation
	Making Authoring Simpler
	Implementation of LFT
	The Lingua Franca Transformer (LFT)
	Architecture
	The Language Specification Syntax
	The Tool
	Implementation Details

	The Microworld Learning Platform
	A Conceptual Overview
	The Platform
	The Basic Workflow
	Creating and Enhancing Instances of Learning Components

	Contributions
	Part 1 - Facilitate Reuse
	Part 2 - Simplify Authoring
	Part 3 - Miscellaneous
	How it all fits together

	Future Work
	Visual Integration Editor for WIIL
	Use AuthELO to handle Common Student Misconceptions
	Enhance AuthELO with high-level Authoring Languages
	Enhance AuthELO with Machine Learning Techniques

	Bibliography
	Sample Rules
	Understanding the Role of Variable Declaration
	Understanding the Difference Between Variable Values and Literal Values
	Understanding the Necessity of Variables/Constants
	Understanding the Necessity of Variables when Referring to Array Length
	Understanding off-by-one Errors with Arrays in Loops

	Literature Review Strategy Used
	Observation Sheet
	Usability Test Material
	Day 1
	Day 2

