
116

2019 6th Intl. Conference on Soft Computing & Machine Intelligence

Design and Implementation of Autonomic Simulator

Zulfiqar Ali

School of Computing

Ulster University

United Kingdom

e-mail: z.ali@ulster.ac.uk

Botond Virginas

Research and Innovation, BT

Ipswich, United Kingdom

e-mail: botond.virginas@bt.com

Bryan Scotney

School of Computing

Ulster University

United Kingdom

e-mail: bw.scotney@ulster.ac.uk

Darryl Charles

School of Computing, Eng & Intel. Sys

Ulster University

Londonderry, United Kingdom

e-mail: dk.charles@ulster.ac.uk

Anousheh Ramezani

School of Computing

Ulster University

United Kingdom.

e-mail: ramezani-a@ulster.ac.uk

telecommunication industry, where the prime objective is to

provide quality services to customers whilst obeying certain

financial constraints. Therefore, an autonomic system is

designed and developed in this study to determine a trade-off

between cost and quality. The developed simulator is capable

of responding to unforeseen changes appearing over time as

well as in business policy without human intervention. It learns

from data using a machine learning algorithm and performs

classification to assign the instances of data to corresponding

groups. Various experiments are carried out to observe the

performance and behaviour of the simulator.

Keywords-self-adaptive system; cost and quality; decision tree;

business policy; stability.

I. INTRODUCTION

Autonomic computing is an approach that equips a
system with an intelligent capability to modify its behaviour
during execution corresponding to the unpredicted dynamic
changeable environmental conditions or internal state
modification without human intervention [1, 2]. In addition
to robustness against changes, self-adaptive systems (SAS)
are also rapidly responsive in learning and converge to the
steady state [3, 4]. The objective of autonomic computing is
to give assistance to customers and construct complex
platform to reduce unforeseen issues such as errors and cost
[5]. Systems with autonomic computing provide a means to
modify the level of responsiveness and automation to handle
the complex platform in business organizations, including
telecommunications industries. An autonomic system can be
developed for providing a trade-off between cost and quality

by proposing a framework using suitable self-adaptive
approaches.

As investigated in [6], different methods can be
implemented for building SAS. The methods may be
classified in different categories: agent-based, model-based
[7], service-oriented, nature-inspired, architecture-based [8],
reflection-based, control theory, programming paradigms,
learning, formal modelling & verification, and requirements-
oriented. A recent study [9] also presented a comparison of
various approaches for developing SASs. Rainbow
framework is an architecture-based approach in which
adaptation is accomplished through the implementation of an
adaptation strategy chosen at runtime [10]. Model-Driven
approach is a framework that provides model-based support
for developing pervasive systems in order to add a resource
or eliminate resources from a system [11, 12]. Meta-Self is a
service-oriented framework that provides controllable and
dependable engineering requirements for supporting the
development of SASs [13]. Graph-based runtime adaptation
framework (GRAF) is a runtime adaptation framework
which exploits TGraphs and accompanying technologies, as
the enabling technology, for manipulating and modelling
runtime models [14]. The dynamic and unpredictable
circumstances of many systems challenge the stability and
Quality of Service. Self-adaptivity brings into concerns the
requirement for a shift to a wider concept of stability that
tackles runtime changes of systems and their environment, as
well as the runtime uncertainty. Moreover, a stable system
can reduce maintenance costs. From the standpoint of being
economic, stability is desirable to safeguard customers’
satisfaction and reputation of service provider. Lyapunov-
based approaches are applied to guarantee stability [15].

Abstract—Autonomic systems have broad scope in the

978-1-7281-4577-8/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 08,2022 at 11:13:10 UTC from IEEE Xplore. Restrictions apply.

117

In this study, a self-adaptive system (autonomic simulator)
using machine learning is designed and implemented. The
autonomic process in the simulator evolves iteratively over
time in discrete stages. The time between successive stages,
which might be, for example one week or a month, depends
on the nature of the problem. At each stage, the outcomes of
process instances up to that point are analysed to achieve
high-level organisational objectives in terms of costs and
user experience (quality). The autonomic process can be
started through an in-practice algorithm, which divides data
into two groups, or by assigning data directly to any of the
groups. A machine learning approach is applied to learn from
data for generation of models. There are various machine
learning algorithms, including Support Vector Machine,
Naive Bayes, Decision Tree, Random Forest and Neural
Networks [16, 17, 18, 19]. In this study, Classification and
Regression Tree (CART) is used to generate models for
classification of instances [20]. One of the positive aspects of
CART is that it does not require any assumptions of linearity
in the data, unlike some other approaches such as regression
models [21]. The process will continue until trade-off is
reached between cost and quality (an external decision
criteria) or enough elements of each category are available to
generate more models. Various experiments are performed to
analyse the proposed simulator.

The rest of the paper is organised as follows: Section II
describes the main functionality of the proposed simulator.
All components of the simulator, including statistics of the
dataset and objective function for cost and quality are
discussed in this section. Section III illustrates the learning of
the autonomic simulator and provides experimental results.
Finally, Section IV draws some conclusions and suggests
future directions.

II. PROPOSED AUTONOMIC SIMULATOR

All major components of the proposed autonomic
simulator to explain its functionality are illustrated in this
section. In addition, the use case of the developed simulator
with statistics of the dataset is also explained.

A. Customer Services Dataset

All experiments are performed using the historical data of
BT customer services. Customers make calls to customer
services to place new orders or to register complaints, and
they should be dealt with a priority for better customer
experience when they reach at a certain duration of calls. If
customers are unable to receive attention when needed, then
resolution of customers’ issues will be delayed, and this
phenomenon can be referred to as a failure. The failure cases
in the dataset are simulated using the static algorithm with a
threshold of 200 minutes. Any customer with the duration of
more than 200 minutes is considered as a failure case. Due to
confidentiality, the static algorithm cannot be disclosed.

The dataset contains 834,235 customers’ journeys. In the
dataset, 33,904 customers have a failure (abbreviated as
FAIL), and need priority/escalation in their matters through
human involvement. The remaining customers (800, 331),
abbreviated as NOR (normal), are handled in due time and
don’t need any kind of special attention. The number of calls

made by FAIL and NOR customers are 812,360 and
2,424,113, respectively. So, the total number of calls in the
dataset is more than 3 million (3,236, 473), where each call
is an instance and represented by a row in the dataset. Each
call contains various attributes such as unique identifier for a
customer, age of broadband, television, and landline
connections.

To improve the customer experience, ideally, each
customer should be dealt with a priority, but it is not cost-
effective nor essential essential because most of the time
customers’ issues are resolved within a given timeframe.
From the statistics of the dataset, it can be observed that the
average number of calls by FAIL customers is approximately
24, whereas, for NOR customers the average is 3, which
indicates that the matter is resolved without causing any
trouble to the customers. So, the proposed simulator will
determine whether a customer should be escalated or not?

Although the simulator must be reliable in decision
making, it is vital that it should achieve a trade-off between
cost and quality. In other words, by giving priority to every
customer, the user experience would improve significantly,
but result in increase of cost. Similarly, if many customers
who need escalation are ignored, this would result in a bad
reputation for an organization, which is also not acceptable.
Therefore, the simulator should be optimal in the context of
cost and quality. The functionality of the simulator is
described in the following subsections.

B. Different Starting Conditions of the Simulator

The dataset is divided into discrete stages, say periods,
with the assumption that each period represents data over a
month. Every period contains 30,000 instances
approximately, and the autonomic process takes a period
each time for processing.

The simulator can be initiated using various starting
conditions. One of the ways to generate starting conditions is
direct allocation of all instances in any of the groups or their
portioning into different groups. The other way to create the
conditions is the use of the static algorithm. The following
three staring conditions are created by adjusting a variable
baseScore of the static algorithm. The values of the variable
are determined through experiments.

For the first starting condition, all instances are assigned
to a group (say Group1), where customers do not need
escalation. For this starting condition, the autonomic process
escalates customers’ issues by shifting the instances from
Group1 to Group2 (where all customers need escalation).
This is referred to as the forward autonomic process. For the
second starting condition, all instances can be allocated to
Group2. Moreover, for the third starting condition, the
instances can be partitioned into both groups (Group1 and
Group2).

In this study, we are considering the simulator with the
first starting condition (forward autonomic process).

C. Modes of Simulator

There are two important modes of the simulator: offline
and online modes. In the offline mode, the simulator learns
from data through a machine learning algorithm and

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 08,2022 at 11:13:10 UTC from IEEE Xplore. Restrictions apply.

118

generates models. In this study, we have implemented CART,
which generates models in the form of decision trees. Later,
these decision trees are used for the classification of
instances in online mode. The simulator shifts instances into
Group2 if they are expected to have a failure (in our current
case, which is the forward autonomic process).

D. Recursive Autonomic Process

When the autonomic process starts, first it generates a
decision rule if the criterion of acceptance is satisfied. The
process may take several periods to find a rule. Once a rule
is found, then it is applied to the subsequent period to shift
the instances that are expected to have a failure from Group1
to Group2. After shifting, the remaining instances in Group1
will be used to determine another rule. If the second rule is
found, then both rules will be applied to the next period one
by one to shift instances, and the remaining instances will be
used to determine a new rule. The process will continue until
there are not enough instances remaining to determine a new
rule or a trade-off between cost and quality is achieved.

The decision criteria for acceptance of a rule depends on
the performance metrics, which is defined in the following
section.

E. Performance Metrics for Acceptance Criteria of Rule

 The accuracy (ACC) is computed for the acceptance
criteria to make sure that the accepted rules are reliable and
accurate in shifting of instances from one group to another.
The accuracy is calculated using the relation given in Eq. (1).

ACC is used to evaluate all rules that are generated using

a cross validation approach.

F. K-Fold Cross Validation

K-fold cross validation is a reliable approach to capture
intra-variation of data. This approach divides the data into
disjoint subsets. Each time one of the subsets is used to
evaluate a generated rule, the remaining k-1 subsets are used
to train the machine learning algorithm. The number of
instances for the folds is a user input, and the autonomic
simulator automatically determines the value of k (number of
folds). ACC is computed for all generated decision trees. The
rule which satisfies the selection criteria is accepted for
shifting of instances.

G. Selection Criteria to Accept Rule

An appropriate selection criterion to accept a rule for
shifting of instances is crucial. If a rule is not accepted
carefully, it will shift the wrong instances to the other group.
Resultantly (in the case of the forward process), it will not
only increase the cost by allocating human effort to escalate
customers’ issues when it is not necessary, but also
compromises the quality as failure instances will stay in the
same group when they should have been escalated. The
following criterion is implemented to accept a rule.

max()ACC threshold

 (2)

According to this criterion, a rule will be accepted if the
maximum value of ACC is greater or equal to a threshold. In
this study, initially, the threshold is 70%. Some more
experiments can be performed in the future to analyse the
impact of the threshold on the behaviour of the proposed
simulator.

H. Trade-off between Cost and Quality

One of the terminating conditions for the recursive
process is a trade-off between cost and quality. The objective
function, given by Eq. 3, is optimised to determine the trade-
off.

In the objective function, TotalCosti represents the sum
of costs associated with escalation of matters (EscCost) and
failure of instances (FailureCost) for any ith period. For the
forward recursive process, SI stands for the number of
shifted instances to Group2 and RFI means remaining failure
instances in Group1 after shifting. Moreover, SI is the sum of
truly and erroneously shifted instances, and P (positive class
for the forward process) denotes the total failure instances in
a period. In addition, x and y are the costs for each escalation
and failure instance, respectively. In this study, we assumed
that the cost of one failure instance is double than an
escalation instance, i.e., y= 2x.

0

0

minimise()

where

＃

() ＃

and

100

 with 100

iTotalCost

TotalCost EscCost FailureCost

SI x RFI y

TP FP x P TP y

F F
Quality

F

P TP
F

TotalInst

 (3)

Furthermore, Quality represents the reduction in the
failure rate (F) for the ith period with respect to the initial
failure rate (F0), where the failure rate is a percentage of the
failure instances in a period and TotalInst denotes the total
number of instances in a period. The performance and
behaviour of the simulator are analysed in the following
section.

III. EXPERIMENTAL RESULTS AND BEHAVIOUR OF

SIMULATOR

Several experiments are performed to observe the
performance of the simulator.

The forward process is started by assigning all instances
into Group1. As no rule exists, there is no shifting of
instances. Using the first period, the first rule is generated by
satisfying the selection criteria. The rule is accepted when
ACC is more than 70%. A summary of the forward process
during execution is provided in Fig. 1 and learning of the

TP TN

ACC
TP FN TN FP

(1)

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 08,2022 at 11:13:10 UTC from IEEE Xplore. Restrictions apply.

119

autonomic process by generating new rules as time evolves is shown in Fig. 2.

Figure 1. Summary of the forward process during execution.

Figure 2. Learning of autonomic process (offline mode) and optimal point for cost and quality.

Figure 3. All generated rules during learning applied on a randomly selected period (online mode).

Fig. 1 shows that the first rule is found in the first period.
This rule is applied on the second period, and it shifted 1479
instances to Group2 for escalation of the customers’ issues.
LRSO represents the number of instances shifted by the most

recent rule. So far, we have only one rule; therefore, the first
and the most recent rule are same. The failure rate informs
that 23% failure instances still existed in period 2; initially it
was 27%. Moreover, reduction describes that the quality

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 08,2022 at 11:13:10 UTC from IEEE Xplore. Restrictions apply.

120

(reduction in failure instances) is improved by 15%. After
shifting of 1479 instances, the forward autonomic process
updated Group1. Then, the remaining instances in Group1
determine the second rule. Now, both rules are applied to the
instances in period 3, and they shifted 2582 instances. The
number of instances shifted by the last rule (second rule) is
1089. The failure rate reduced to 21%, and the quality is
improved by 26% using the two rules.

Fig. 2 shows the trend of failure rate as time progressed.
After 25 periods, 24 rules are generated, which reduced the
failure rate from 27% to 6% and the number of failure
instances reduced by 78%. In addition, Fig. 2 shows that
when the first rule was accepted, ACC was 88%, and for the
second rule was 90%. Similarly, the ACC for all rules is
shown. The percentage in blue colour describes the quality
achieved for each period. A red asterisk on period 18 shows
the optimal point for cost and quality. The total cost is
minimum at this point, which means that 7862 instances can
be afforded for escalation, with the quality of 76%. This
learning procedure represents the offline mode of the
forward process.

Now all learned rules are applied to a randomly selected
period, which represents the online mode of the autonomic
process. After applying all 24 generated rules on the selected
period, the performance of the simulator is shown in Fig. 3.
The optimal point for this period is also achieved at the 18th
period, with 7663 shifted instances and quality of 76%. The
location of the optimal point may vary as it is not necessary
that all periods contain the same number of failure instances.
In Fig. 2 and 3, the business policy is adjusted to 20% which
means that only 20% of the instances suggested by a rule
will be shifted to Group2.

IV. CONCLUSION

A simulator to achieve high level organisational
objectives in the context of cost and user experience is
designed and implemented in this study. The adaptiveness in
the proposed simulator is introduced by applying a machine
learning approach that iteratively analyses the simulator at
each stage. Iterative learning makes the simulator responsive
to the unforeseen changes. In the future, the responsiveness
of the simulator as well as its behaviour when business
policy changes during execution will be observed. Moreover,
the other cases when all instances are allocated to Group2
and/or they are partitioned to both groups will be considered.
This will help to determine whether the simulator will
converge to the same point when starting conditions are
different. Moreover, the criteria for the stability of the
simulator will be found and implemented.

ACKNOWLEDGMENT

This work was supported by BTIIC (BT Ireland
Innovation Centre), funded by BT and Invest Northern
Ireland.

REFERENCES

[1] H. Tabassum and S. Sagar, “International Journal of Advanced
Research in Approaches and Concepts of Self Optimization in
Autonomic Computing Systems,” vol. 6, no. 2, pp. 31–34, 2016.

[2] F. D. Macías-Escrivá, R. Haber, R. Del Toro, and V. Hernandez,
“Self-adaptive systems: A survey of current approaches, research
challenges and applications,” Expert Syst. Appl., vol. 40, no. 18, pp.
7267–7279, 2013.

[3] M. Stefanovic, R. Wang, and M. G. Safonov, “Stability and
Convergence in Adaptive Systems,” pp. 1923–1928, 2004.

[4] A. Paz and H. Arboleda, “A Model to Guide Dynamic Adaptation
Planning in Self-Adaptive Systems,” Electron. Notes Theor. Comput.
Sci., vol. 321, pp. 67–88, 2016.

[5] M. C. Huebscher and J. A. Mccann, “A survey of Autonomic
Computing,” ACM Comput. Surv., vol. 40, no. 3, pp. 1–28, 2008.

[6] C. Krupitzer, F. M. Roth, S. Vansyckel, G. Schiele, and C. Becker,
“A survey on engineering approaches for self-adaptive systems,”
Pervasive Mob. Comput., vol. 17, no. PB, pp. 184–206, 2015.

[7] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” FoSE 2007 Futur. Softw. Eng., pp.
37–54, 2007.

[8] J. Cámara, A. Lopes, D. Garlan, and B. Schmerl, “Adaptation impact
and environment models for architecture-based self-adaptive
systems,” Sci. Comput. Program., vol. 127, pp. 50–75, 2016.

[9] C. Krupitzer, M. Pfannemüller, V. Voss, and C. Becker, “Comparison
of Approaches for developing Self-adaptive Systems,” 2018.

[10] A.-C. Huang, B. Schmerl, P. Steenkiste, D. Garlan, and S.-W. Cheng,
“Rainbow: architecture-based self-adaptation with reusable
infrastructure,” Computer (Long. Beach. Calif)., vol. 37, no. 10, pp.
46–54, 2004.

[11] V. P. Carlos Cetina, Pau Giner, Joan Fons, “A Model-Driven
Approach for Developing Self-Adaptive Pervasive Systems,”
Models@RT, 2008.

[12] B. Magableh, “A Framework for Evaluating Model-Driven Self-
adaptive Software Systems,” pp. 1–11, 2019.

[13] G. Di Marzo Serugendo, J. Fitzgerald, and A. Romanovsky,
“MetaSelf,” no. May, p. 457, 2010.

[14] M. Amoui, M. Derakhshanmanesh, J. Ebert, and L. Tahvildari,
“Achieving dynamic adaptation via management and interpretation of
runtime models,” J. Syst. Softw., vol. 85, no. 12, pp. 2720–2737,
2012.

[15] R. J. Lian, “Design of an enhanced adaptive self-organizing fuzzy
sliding-mode controller for robotic systems,” Expert Syst. Appl., vol.
39, no. 1, pp. 1545–1554, 2012.

[16] N. Couellan, S. Jan, T. Jorquera, and J. P. Georgé, “Self-adaptive
Support Vector Machine: A multi-agent optimization perspective,”
Expert Syst. Appl., vol. 42, no. 9, pp. 4284–4298, 2015.

[17] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, “Machine
learning: A review of classification and combining techniques,” Artif.
Intell. Rev., vol. 26, no. 3, pp. 159–190, 2006.

[18] F. Lolli, E. Balugani, R. Gamberini, and B. Rimini, “Quality cost-
based allocation of training hours using learning-forgetting curves,”
Comput. Ind. Eng., vol. 131, pp. 552–564, May 2019.

[19] M. Praveena and V. Jaiganesh, “A Literature Review on Supervised
Machine Learning Algorithms and Boosting Process,” Int. J. Comput.
Appl., vol. 169, no. 8, pp. 32–35, 2017.

[20] C. Yu, "Adaptive Japanese Teaching Optimization Based on
Classification and Regression Tree," in 2017 International Conference
on Robots & Intelligent System (ICRIS), 2017, pp. 15-18.

[21] J. Chen, Y. Lin, and Y. Leu, "Predictive model based on decision tree
combined multiple regressions," in 2017 13th International
Conference on Natural Computation, Fuzzy Systems and Knowledge
Discovery (ICNC-FSKD), 2017, pp. 1855-1858.

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 08,2022 at 11:13:10 UTC from IEEE Xplore. Restrictions apply.

