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telecommunication industry, where the prime objective is to 

provide quality services to customers whilst obeying certain 

financial constraints. Therefore, an autonomic system is 

designed and developed in this study to determine a trade-off 

between cost and quality. The developed simulator is capable 

of responding to unforeseen changes appearing over time as 

well as in business policy without human intervention. It learns 

from data using a machine learning algorithm and performs 

classification to assign the instances of data to corresponding 

groups. Various experiments are carried out to observe the 

performance and behaviour of the simulator.        

Keywords-self-adaptive system; cost and quality; decision tree; 

business policy; stability. 

I. INTRODUCTION 

Autonomic computing is an approach that equips a 
system with an intelligent capability to modify its behaviour 
during execution corresponding to the unpredicted dynamic 
changeable environmental conditions or internal state 
modification without human intervention [1, 2]. In addition 
to robustness against changes, self-adaptive systems (SAS) 
are also rapidly responsive in learning and converge to the 
steady state [3, 4]. The objective of autonomic computing is 
to give assistance to customers and construct complex 
platform to reduce unforeseen issues such as errors and cost 
[5]. Systems with autonomic computing provide a means to 
modify the level of responsiveness and automation to handle 
the complex platform in business organizations, including 
telecommunications industries.  An autonomic system can be 
developed for providing a trade-off between cost and quality 

by proposing a framework using suitable self-adaptive 
approaches. 

As investigated in [6], different methods can be 
implemented for building SAS. The methods may be 
classified in different categories: agent-based, model-based 
[7], service-oriented, nature-inspired, architecture-based [8], 
reflection-based, control theory, programming paradigms, 
learning, formal modelling & verification, and requirements-
oriented. A recent study [9] also presented a comparison of 
various approaches for developing SASs. Rainbow 
framework is an architecture-based approach in which 
adaptation is accomplished through the implementation of an 
adaptation strategy chosen at runtime [10]. Model-Driven 
approach is a framework that provides model-based support 
for developing pervasive systems in order to add a resource 
or eliminate resources from a system [11, 12]. Meta-Self is a 
service-oriented framework that provides controllable and 
dependable engineering requirements for supporting the 
development of SASs [13]. Graph-based runtime adaptation 
framework (GRAF) is a runtime adaptation framework 
which exploits TGraphs and accompanying technologies, as 
the enabling technology, for manipulating and modelling 
runtime models [14]. The dynamic and unpredictable 
circumstances of many systems challenge the stability and 
Quality of Service. Self-adaptivity brings into concerns the 
requirement for a shift to a wider concept of stability that 
tackles runtime changes of systems and their environment, as 
well as the runtime uncertainty. Moreover, a stable system 
can reduce maintenance costs. From the standpoint of being 
economic, stability is desirable to safeguard customers’ 
satisfaction and reputation of service provider. Lyapunov-
based approaches are applied to guarantee stability [15]. 

Abstract—Autonomic systems have broad scope in the 
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In this study, a self-adaptive system (autonomic simulator) 
using machine learning is designed and implemented. The 
autonomic process in the simulator evolves iteratively over 
time in discrete stages. The time between successive stages, 
which might be, for example one week or a month, depends 
on the nature of the problem. At each stage, the outcomes of 
process instances up to that point are analysed to achieve 
high-level organisational objectives in terms of costs and 
user experience (quality). The autonomic process can be 
started through an in-practice algorithm, which divides data 
into two groups, or by assigning data directly to any of the 
groups. A machine learning approach is applied to learn from 
data for generation of models. There are various machine 
learning algorithms, including Support Vector Machine, 
Naive Bayes, Decision Tree, Random Forest and Neural 
Networks [16, 17, 18, 19]. In this study, Classification and 
Regression Tree (CART) is used to generate models for 
classification of instances [20]. One of the positive aspects of 
CART is that it does not require any assumptions of linearity 
in the data, unlike some other approaches such as regression 
models [21]. The process will continue until trade-off is 
reached between cost and quality (an external decision 
criteria) or enough elements of each category are available to 
generate more models. Various experiments are performed to 
analyse the proposed simulator. 

The rest of the paper is organised as follows: Section II 
describes the main functionality of the proposed simulator. 
All components of the simulator, including statistics of the 
dataset and objective function for cost and quality are 
discussed in this section. Section III illustrates the learning of 
the autonomic simulator and provides experimental results. 
Finally, Section IV draws some conclusions and suggests 
future directions. 

II. PROPOSED AUTONOMIC SIMULATOR 

All major components of the proposed autonomic 
simulator to explain its functionality are illustrated in this 
section. In addition, the use case of the developed simulator 
with statistics of the dataset is also explained. 

A. Customer Services Dataset 

All experiments are performed using the historical data of 
BT customer services. Customers make calls to customer 
services to place new orders or to register complaints, and 
they should be dealt with a priority for better customer 
experience when they reach at a certain duration of calls. If 
customers are unable to receive attention when needed, then 
resolution of customers’ issues will be delayed, and this 
phenomenon can be referred to as a failure.  The failure cases 
in the dataset are simulated using the static algorithm with a 
threshold of 200 minutes. Any customer with the duration of 
more than 200 minutes is considered as a failure case. Due to 
confidentiality, the static algorithm cannot be disclosed. 

The dataset contains 834,235 customers’ journeys. In the 
dataset, 33,904 customers have a failure (abbreviated as 
FAIL), and need priority/escalation in their matters through 
human involvement. The remaining customers (800, 331), 
abbreviated as NOR (normal), are handled in due time and 
don’t need any kind of special attention. The number of calls 

made by FAIL and NOR customers are 812,360 and 
2,424,113, respectively. So, the total number of calls in the 
dataset is more than 3 million (3,236, 473), where each call 
is an instance and represented by a row in the dataset. Each 
call contains various attributes such as unique identifier for a 
customer, age of broadband, television, and landline 
connections.  

To improve the customer experience, ideally, each 
customer should be dealt with a priority, but it is not cost-
effective nor essential essential because most of the time 
customers’ issues are resolved within a given timeframe. 
From the statistics of the dataset, it can be observed that the 
average number of calls by FAIL customers is approximately 
24, whereas, for NOR customers the average is 3, which 
indicates that the matter is resolved without causing any 
trouble to the customers. So, the proposed simulator will 
determine whether a customer should be escalated or not?   

Although the simulator must be reliable in decision 
making, it is vital that it should achieve a trade-off between 
cost and quality. In other words, by giving priority to every 
customer, the user experience would improve significantly, 
but result in increase of cost. Similarly, if many customers 
who need escalation are ignored, this would result in a bad 
reputation for an organization, which is also not acceptable. 
Therefore, the simulator should be optimal in the context of 
cost and quality. The functionality of the simulator is 
described in the following subsections. 

B. Different Starting Conditions of the Simulator  

The dataset is divided into discrete stages, say periods, 
with the assumption that each period represents data over a 
month. Every period contains 30,000 instances 
approximately, and the autonomic process takes a period 
each time for processing.  

The simulator can be initiated using various starting 
conditions. One of the ways to generate starting conditions is 
direct allocation of all instances in any of the groups or their 
portioning into different groups. The other way to create the 
conditions is the use of the static algorithm. The following 
three staring conditions are created by adjusting a variable 
baseScore of the static algorithm. The values of the variable 
are determined through experiments.  

For the first starting condition, all instances are assigned 
to a group (say Group1), where customers do not need 
escalation. For this starting condition, the autonomic process 
escalates customers’ issues by shifting the instances from 
Group1 to Group2 (where all customers need escalation). 
This is referred to as the forward autonomic process. For the 
second starting condition, all instances can be allocated to 
Group2. Moreover, for the third starting condition, the 
instances can be partitioned into both groups (Group1 and 
Group2).  

In this study, we are considering the simulator with the 
first starting condition (forward autonomic process). 

C. Modes of Simulator 

There are two important modes of the simulator: offline 
and online modes. In the offline mode, the simulator learns 
from data through a machine learning algorithm and 
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generates models. In this study, we have implemented CART, 
which generates models in the form of decision trees. Later, 
these decision trees are used for the classification of 
instances in online mode. The simulator shifts instances into 
Group2 if they are expected to have a failure (in our current 
case, which is the forward autonomic process). 

D. Recursive Autonomic Process     

When the autonomic process starts, first it generates a 
decision rule if the criterion of acceptance is satisfied. The 
process may take several periods to find a rule. Once  a rule  
is found, then it is applied to the subsequent period to shift 
the instances that are expected to have a failure from Group1 
to Group2. After shifting, the remaining instances in Group1 
will be used to determine another rule. If the second rule is 
found, then both rules will be applied to the next period one 
by one to shift instances, and the remaining instances will be 
used to determine a new rule. The process will continue until 
there are not enough instances remaining to determine a new 
rule or a trade-off between cost and quality is achieved. 

The decision criteria for acceptance of a rule depends on 
the performance metrics, which is defined in the following 
section. 

E. Performance Metrics  for Acceptance Criteria of Rule 

 The accuracy (ACC) is computed for the acceptance 
criteria to make sure that the accepted rules are reliable and 
accurate in shifting of instances from one group to another. 
The accuracy is calculated using the relation given in Eq. (1). 

     
ACC is used to evaluate all rules that are generated using 

a cross validation approach. 

F. K-Fold Cross Validation 

K-fold cross validation is a reliable approach to capture 
intra-variation of data. This approach divides the data into 
disjoint subsets. Each time one of the subsets is used to 
evaluate a generated rule, the remaining k-1 subsets are used 
to train the machine learning algorithm. The number of 
instances for the folds is a user input, and the autonomic 
simulator automatically determines the value of k (number of 
folds). ACC is computed for all generated decision trees. The 
rule which satisfies the selection criteria is accepted for 
shifting of instances. 

G. Selection Criteria to Accept Rule 

An appropriate selection criterion to accept a rule for 
shifting of instances is crucial. If a rule is not accepted 
carefully, it will shift the wrong instances to the other group. 
Resultantly (in the case of the forward process), it will not 
only increase the cost by allocating human effort to escalate 
customers’ issues when it is not necessary, but also 
compromises the quality as failure instances will stay in the 
same group when they should have been escalated.  The 
following criterion is implemented to accept a rule. 

 
max( )ACC threshold

   (2) 

According to this criterion, a rule will be accepted if the 
maximum value of ACC is greater or equal to a threshold. In 
this study, initially, the threshold is 70%. Some more 
experiments can be performed in the future to analyse the 
impact of the threshold on the behaviour of the proposed 
simulator.       

H. Trade-off between Cost and Quality 

One of the terminating conditions for the recursive 
process is a trade-off between cost and quality. The objective 
function, given by Eq. 3, is optimised to determine the trade-
off.  

In the objective function, TotalCosti represents the sum 
of costs associated with escalation of matters (EscCost) and 
failure of instances (FailureCost) for any ith period. For the 
forward recursive process, SI stands for the number of 
shifted instances to Group2 and RFI means remaining failure 
instances in Group1 after shifting. Moreover, SI is the sum of 
truly and erroneously shifted instances, and P (positive class 
for the forward process) denotes the total failure instances in 
a period. In addition, x and y are the costs for each escalation 
and failure instance, respectively. In this study, we assumed 
that the cost of one failure instance is double than an 
escalation instance, i.e., y= 2x. 
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Furthermore, Quality represents the reduction in the 
failure rate (F) for the ith period with respect to the initial 
failure rate (F0), where the failure rate is a percentage of the 
failure instances in a period and TotalInst denotes the total 
number of instances in a period. The performance and 
behaviour of the simulator are analysed in the following 
section. 

III. EXPERIMENTAL RESULTS AND BEHAVIOUR OF 

SIMULATOR 

Several experiments are performed to observe the 
performance of the simulator.  

The forward process is started by assigning all instances 
into Group1. As no rule exists, there is no shifting of 
instances. Using the first period, the first rule is generated by 
satisfying the selection criteria. The rule is accepted when 
ACC is more than 70%. A summary of the forward process 
during execution is provided in Fig. 1 and learning of the 
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autonomic process by generating new rules as time evolves is shown in Fig. 2.  
 

 
 

 
Figure 1. Summary of the forward process during execution. 

 
Figure 2. Learning of autonomic process (offline mode) and optimal point for cost and quality. 

 
Figure 3. All generated rules during learning applied on a randomly selected period (online mode). 

Fig. 1 shows that the first rule is found in the first period. 
This rule is applied on the second period, and it shifted 1479 
instances to Group2 for escalation of the customers’ issues. 
LRSO represents the number of instances shifted by the most 

recent rule. So far, we have only one rule; therefore, the first 
and the most recent rule are same. The failure rate informs 
that 23% failure instances still existed in period 2; initially it 
was 27%. Moreover, reduction describes that the quality 

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 08,2022 at 11:13:10 UTC from IEEE Xplore.  Restrictions apply. 



120

(reduction in failure instances) is improved by 15%. After 
shifting of 1479 instances, the forward autonomic process 
updated Group1. Then, the remaining instances in Group1 
determine the second rule. Now, both rules are applied to the 
instances in period 3, and they shifted 2582 instances. The 
number of instances shifted by the last rule (second rule) is 
1089. The failure rate reduced to 21%, and the quality is 
improved by 26% using the two rules.  

Fig. 2 shows the trend of failure rate as time progressed. 
After 25 periods, 24 rules are generated, which reduced the 
failure rate from 27% to 6% and the number of failure 
instances reduced by 78%.  In addition, Fig. 2 shows that 
when the first rule was accepted, ACC was 88%, and for the 
second rule was 90%. Similarly, the ACC for all rules is 
shown. The percentage in blue colour describes the quality 
achieved for each period. A red asterisk on period 18 shows 
the optimal point for cost and quality. The total cost is 
minimum at this point, which means that 7862 instances can 
be afforded for escalation, with the quality of 76%. This 
learning procedure represents the offline mode of the 
forward process.  

Now all learned rules are applied to a randomly selected 
period, which represents the online mode of the autonomic 
process. After applying all 24 generated rules on the selected 
period, the performance of the simulator is shown in Fig. 3. 
The optimal point for this period is also achieved at the 18th 
period, with 7663 shifted instances and quality of 76%. The 
location of the optimal point may vary as it is not necessary 
that all periods contain the same number of failure instances. 
In Fig. 2 and 3, the business policy is adjusted to 20% which 
means that only 20% of the instances suggested by a rule 
will be shifted to Group2.  

IV. CONCLUSION 

A simulator to achieve high level organisational 
objectives in the context of cost and user experience is 
designed and implemented in this study. The adaptiveness in 
the proposed simulator is introduced by applying a machine 
learning approach that iteratively analyses the simulator at 
each stage. Iterative learning makes the simulator responsive 
to the unforeseen changes. In the future, the responsiveness 
of the simulator as well as its behaviour when business 
policy changes during execution will be observed. Moreover, 
the other cases when all instances are allocated to Group2 
and/or they are partitioned to both groups will be considered. 
This will help to determine whether the simulator will 
converge to the same point when starting conditions are 
different. Moreover, the criteria for the stability of the 
simulator will be found and implemented. 
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