
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 1

Trust2Vec: Large-Scale IoT Trust Management
System based on Signed Network Embeddings

Sahraoui Dhelim, Nyothiri Aung, Tahar Kechadi, Huansheng Ning, Liming Chen and Abderrahmane Lakas

Abstract—A trust management system (TMS) is an integral
component of any IoT network. A reliable trust management
system must guarantee the network security, data integrity, and
act as a referee that promotes legitimate devices, and punishes
any malicious activities. Trust scores assigned by TMSs reflect
devices’ reputations, which can help predict the future behaviours
of network entities and subsequently judge the reliability of
different entities in IoT networks. Many TMSs have been
proposed in the literature, these systems are designed for small-
scale trust attacks, and can deal with attacks where a malicious
device tries to undermine TMS by spreading fake trust reports.
However, these systems are prone to large-scale trust attacks.
To address this problem, in this paper, we propose a TMS for
large-scale IoT systems called Trust2Vec, which can manage trust
relationships in large-scale IoT systems and can mitigate large-
scale trust attacks that are performed by hundreds of malicious
devices. Trust2Vec leverages a random-walk network exploration
algorithm that navigates the trust relationship among devices and
computes trust network embeddings, which enables it to analyze
the latent network structure of trust relationships, even if there
is no direct trust rating between two malicious devices. To detect
large-scale attacks, such as self-promoting and bad-mouthing, we
propose a network embeddings community detection algorithm
that detects and blocks communities of malicious nodes. The
effectiveness of Trust2Vec is validated through large-scale IoT
network simulation. The results show that Trust2Vec can achieve
up to 94% mitigation rate in various network settings.

Index Terms—IoT, trust management, network embedding,
bad-mouthing, self-promoting, device trust.

I. INTRODUCTION

THE wide deployment of Internet of Things (IoT) appli-
cations has created a large network of interconnected

physical devices, as well as virtual entities, such as agents.
Managing trust relationships among this huge number of
IoT devices is an important part of IoT security. A trust
management system is used to ensure network security and
data integrity in IoT [1]. A Trust management system (TMS)
can serve as a referee that promotes well-behaved entities and
punishes malicious devices within the network. To do so, a
TMS assigns a trust score for each entity in the network. A
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Trust score is a good indicator for predicting future behaviors
of the network entities and subsequently judging the reliability
of different entities in an IoT network. However, if malicious
entities manage to alter the trust scores, the trust and reputation
indicators might not reflect the genuine nature of network
entities. Therefore, the TMS may mistakenly punish reliable
entities and reward malicious entities. Furthermore, such a fake
trust score could pose a serious threat to the functioning of
the whole system and may enable network attackers to gain
access to sensitive information [2]. Trust among IoT devices
is usually measured and evaluated using two factors [3],
namely direct trust and indirect trust. The former represents
the personal experience of a given device with regards to
other network entities, it is usually computed by rating the
previous experience with these entities. The latter represents
the reputation score of a device, it is computed by aggregating
multiple ratings given by entities that interacted with the
device.

The most known trust-based attacks are self-promoting
attack [4] (also known as a good-mouthing attack) and bad-
mouthing attack [5]. In self-promoting attacks, malicious
devices attempt to illegally increase their trust scores (rep-
utation). The attack could be conducted by two nodes, or
by a large number of nodes that work together to achieve
their malicious purpose. In the most basic form of a self-
promoting attack, two nodes provide a false report for each
other to promote themselves as trustworthy entities, hence
increasing their trust scores (reputation). To mitigate the self-
promoting attack, a TMS must keep track of all previously
reported trust ratings, and detect and punish the entities that are
involved in such malicious activities. In bad-mouthing attack,
attackers usually give bad ratings to a victim entity in order
to lower its trust score and destroy its reputation among other
nodes. Figure 1 and Figure 2 show examples of self-promoting
and bad-mouthing attacks. In these figures, the white circles
denote normal entities, and the red circles denote malicious
entities that perform an attack. A solid arrow represents a
positive trust rating and a dashed arrow represents a negative
trust rating. Figure 1 (a) illustrates an example of small-
scale self-promoting, where two malicious nodes increase their
trust scores by repeatedly giving each other positive ratings.
Figure 1 (b) demonstrates that two malicious nodes undermine
the reputation of a legitimate node by continuously giving it
negative trust ratings. Such small-scale attacks can be easily
mitigated by controlling the rating behaviors of each entity in
the system. For example, to prevent self-promoting attacks,
a TMS can limit the number of positive trust ratings that
two entities are allowed to give to each other. Similarly, bad-
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mouthing attacks can be prevented by limiting the number
of negative trust ratings that an entity can assign to another.
However, things get more complicated when a group of entities
is collectively involved in self-promoting and bad-mouthing
attacks. For example, in Figure 2 (a) a group of malicious
nodes increase their trust score by giving each other positive
ratings without attracting any attention, achieve this in the
way that each node gives no more than one positive rating
to another node in the malicious group. Similarly, in Figure 2
(b) a group of malicious nodes performs bad-mouthing attacks
against a normal node by targeting it with unfair ratings.

Fig. 1: (a) small-scale self-promoting attack. (b) small-scale
bad-mouthing attack

Fig. 2: (a) large-scale self-promoting attack. (b) large-scale
bad-mouthing attack

While existing trust frameworks can mitigate small-scale
trust-related attacks, managements frameworks that considered
large-scale trust-related attacks have not been seen yet. On
the other hand, network embedding algorithms have been
proven effective when dealing with large-scale graphs and
networks [6]. Therefore, in this paper, we propose a trust
management framework, dubbed as Trust2Vec, for large-scale
IoT systems, which can manage the trust of millions of
IoT devices. Trust2Vec can mitigate large-scale trust attacks
that are performed by hundreds of malicious nodes. Our
contributions can be summarized as follows:

• Propose a trust management framework that can mitigate
large-scale and small-scale trust-related attacks, such as
self-promoting and bad-mouthing attacks.

• Develop a random-walk network algorithm that navigates
the trust relationships among devices and computes trust
network embeddings. The algorithm enables the proposed
system to analyze the latent network structure of trust
relationships.

• We developed a parallelization method for trust attack
detection in large-scale IoT systems. Parallelizing made
the TMS highly scalable and can manage a large number
of network devices with less computational cost.

The rest of the paper is organized as follows: Section
II reviews existing research about trust management in IoT.
Section III describes the system design of the proposed trust
management framework, and how Trust2Vec is used to detect
trust-related attacks. Section IV presents the evaluation details
and experiment results. We conclude the paper and outline
future research directions in Section V.

II. RELATED WORK

Trust management in IoT is a well-established research
topic in the literature. Guo et al. [7] proposed a data col-
lection method for IoT using UAV that uses a trust score
to evaluate the reliability of data collection devices. They
concluded that using trust as an evaluation metric for UAV
data collection can significantly increase the data accuracy
and reduce data collection costs. Similarly, Liang et al. [8]
investigated the usage of trust management in UAV-assisted
IoT. They proposed a trust evaluation scheme to identify
the trust of the mobile vehicles by dispatching the UAV to
obtain the trust messages directly from the selected devices as
evidence. Kumar et al. [9] introduced a smart city networking
architecture that leverages a trust computational module to
distinguish unreliability and trustworthiness among smart city
sensors and devices. Fang et al [10] proposed a trust man-
agement framework, in which the devices in the cluster start
to detect the nearby devices within sensing range, compute
their trust value, and report to a pre-elected cluster head. The
latter calculates the aggregated trust score of each device in
the cluster. The cluster head is periodically re-elected by the
network devices with the cluster. Chen et al. [11] introduced
IoT-HiTrust, a 3-tier cloud-cloudlet-device hierarchical trust-
based service management protocol for large-scale mobile-
cloud IoT systems. Their proposed trust model combines
friendship similarity, and social contact similarity to compute
the trust score of network devices. In their study, the trust
score is represented as a random variable in the range of [0, 1]
following the Beta (α, β) distribution. The numbers of positive
and negative experiences of an IoT device are represented
as binomial random variables. They computed the indirect
trust as a weighted sum of service ratings reported by other
IoT devices, such that trust reports of socially similar devices
are prioritized. Bahutair et al. [12] introduced a generic trust
management framework that can operate for crowdsourced IoT
services. Their framework leverages a multi-perspective trust
model that obtains the implicit features of crowd-sourced IoT
services. Each entity is represented by a set of characteristics
that contribute to the entity’s influence on trust. The trust fea-
tures are fed into a machine-learning algorithm that manages
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the trust model for crowdsourced services in an IoT network.
Marche el al. [13] discussed possible trust attacks that can
affect IoT networks, and introduced a trust management model
that is able to overcome trust-related attacks. Specifically,
they proposed a decentralized trust management model based
on Machine Learning algorithms. The model utilized several
parameters to compute three trust scores, namely the good-
ness, usefulness, and perseverance score. Their model uses
these scores to detect malicious nodes performing trust-related
attacks. Movahedi et al. [14] proposed T-D2D, a lightweight
trust model that evaluates a network device’s trust level using
both short-term and long-term evaluation intervals to mitigate
different types of trust-related attacks. T-D2D records marginal
misbehaving over several successive time slots to reveal the
nature of suspicious malicious nodes with a light misbehaving
attitude. To mitigate bad-mouthing attackers, T-D2D does not
rely on other nodes’ recommendations in the case when the
direct trust is not decisive. T-D2D evaluates the honesty of a
recommender based on the correctness of its recommendations
over time. Ben Abderrahim et al. [15] introduced DTMS-
IoT, a Dirichlet-based trust management system for the IoT,
which alleviated dishonest trust recommendations and related
attacks by clustering devices using the k-means algorithm.
DTMS-IoT detects IoT devices’ malicious activities, which
allows it to alleviate the effect of on-off attacks and dishonest
recommendations. Liu et al. [16] introduced a semi-centralized
TMS that leverage blockchain for single and multiple domains.
The devices are connected in a centralized fashion and coordi-
nated by a cloud server that manage the rating data ledger, to
support cross-domain data exchange the server uses rotation
consensus protocol. The proposed TMS aggregates both direct
and indirect trust information to compute the trust values of
IoT devices. Din et al. [17] introduced a trust framework for
lightweight devices, which uses a centralized trust authority.
The framework manages trust certificates that enable devices
to exchange services without prior knowledge or performing
trust computations. Trust between two devices is computed by
direct observations in terms of delivery ratio, compatibility,
and cooperativeness, while trust recommendations are utilized
to determine trust in the case of indirect observations. Okuda
et al. [18] proposed a random-walk community detection
algorithm that clusters similar nodes. Nodes that frequently
appear when traversing the network using finite-length random
walk are judged to belong to the same community. Aung
et al [19], [20] studied trust relationship among driverless
cars in the context of vehicular ad-hoc networks (VANET)
for route recommendations and path planning, and also trust-
based content caching [21], [22]. Wu et al. [23], [24] pro-
posed a deep-learning (DL)-based physical layer authenti-
cation scheme which exploits channel state information to
enhance the security of mobile edge computing systems.
Dhelim et al [25] studied the trust among social network users
for personality-aware recommendation system, they concluded
that recommendation accuracy can be significantly improved
by adding social factors such as trust and personality traits.
Wang et al [26] studied trust relationships in human-machine
hybrid artificial intelligence. Similarly, Cai et al [27] suggested
that trust can be established in human-robot interactions.

All the above-mentioned trust frameworks were designed
to mitigate small-scale trust attacks, without consideration
for large-scale trust attacks. That is due to the challenge of
analysing a large number of IoT devices with limited com-
putational power required to analyse the trust relationships.
In our proposed system, we have considered both small-scale,
as well as large-scale trust attacks. We have overcome the
computational cost limit problem by analysing latent network
embeddings of trust relationships among IoT devices.

III. SYSTEM MODEL

To detect and mitigate a trust-related attack, Trust2Vec will
analyse the network structure of trust relationships among
devices. The main phases of the attack detection process, as
depicted in Figure 3 are: 1) determine device communities; 2)
generate random walks within each local community, which
yield the devices’ trust network embeddings; 3) leverage trust
relationship network embeddings to detect malicious device
clusters.

Fig. 3: Trust2Vec mitigation scheme phases

A. Community Detection

The network of devices can be structured as a graph
G = (D,T ) that represents a signed trust network between
devices, where the graph vertices represent the IoT devices;
D = {d1, d2, . . . , dn}, and the edges represent the previous
trust reports between graph nodes; T = {T+, T−}. An edge
ti,j ∈ T+ denotes that device dj is declared as trustworthy
by device di, and ti,j ∈ T− denotes that device dj has been
declared as untrustworthy by device di. Given the enormous
size of IoT networks, which can have millions of devices, it is
not viable to operate on the overall IoT network. However, the
IoT network is generally easy to partition, as it is composed
of smaller IoT subnetworks that are known as IoT units [1].
The edge density (trust relationships in our case) within these
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IoT units is much higher than the edge between these Units.
This is based on the observations that interactions between
edge devices to perform edge computing tasks generate a high
number of trust relationships as these devices work together
within the same local network [28]. This allows us to detect
the communities’ boundaries without decreasing the resolution
limit, an advantage that is not possible to get with other types
of networks, such as social network graphs or user-products
graphs [29], where the communities tend to overlap with each
other [30].

B. Random Walks Generation

To compute the latent network structure, Trust2Vec gener-
ates random walks by navigating the network through random
steps. The logic behind this approach is that the more we
repeat these random walks from the same starting device
with a fixed length, the more likely the walks will include
nodes that are similar in terms of network proximity, either
first-order proximity or second-order proximity nodes. Let
Wdi(l) denotes the random walk starting from device di
with a walk length l. A random walk Wdi(l) is a stochastic
process composed of a chain of random variables Wdi

(l) ={
w1

di
, w2

di
, . . . , wl

di

}
, where wn

di
is the neighbor device that is

randomly chosen among wn−1
di

neighbors. Relying on random
walks to compute the latent network structure is desirable for
two reasons. Firstly, the computations of the random walks
can be distributed among edge devices, hence the process is
distributed and can be performed offline without relying on
any remote cloud or server. Secondly, as the random walks are
limited with walk length l, the newly added trust relationships
among devices can be easily accommodated by regenerating
random walks only for the updated trust relationships, without
the need to recompute the random walks for the whole graph.
To navigate the trust relationships among devices, Trust2Vec
estimates the likelihood of observing a series of short random
walks by adapting the same approach in natural language
modeling, where the goal is to estimate the likelihood of a
sentence being present in a corpus. The analogy here is to
calculate the trust walk TW that starts from source device do,
and estimate the probability of arriving at destination device
dd given the previously navigated devices through a random
walk of length l:

TW (ds, dd, l) = Pr
(
dd |

(
w1

ds
, w2

ds
, . . . , wl−1

ds

))
(1)

C. Node Embeddings Learning

The objective is to learn the device’s latent trust structure
in the trust graph, not only the neighboring nodes that are a
few hops away. Trust2Vec computes a device’s trust network
structure and represents it as a vector in low dimensional
space. Formally, let ϕ : d ∈ D 7−→ R|D|×z be the mapping
function that represents a device’s latent trust structure for each
device in D. Here z is the length of the vector in the lower
dimension, such that z ≪ |D|, hence it is easier to manipulate
small vectors rather than the large adjacency matrix. The
likelihood estimation is then represented as:

Pr
(
dd |

(
ϕ(w1

ds
), ϕ(w2

ds
), . . . , ϕ(wl−1

ds
)
))

(2)

As the random walk length increases, it becomes compu-
tationally expensive to calculate the objective function. To
overcome this problem, Trust2Vec leverages the skip-gram
model [31], which inverses the problem by predicting the
context given the missing word instead of predicting the
word given the context. The skip-gram model maximizes the
likelihood of any word to be observed in the current context
without prior knowledge about current words. In the context
of trust management, Trust2Vec target the following objective
function:

Min
ϕ

[−logPr ({di−w, . . . , di−1, di+1, . . . , di+w} |ϕ(d1))]
(3)

where w is the random walk window size.
Trust2Vec optimizes the function (3) to build the trust

network representation for each device, hence capturing the
latent similarity between network devices. Devices that have a
similar trust network structure will have similar trust vectors in
lower-dimensional space. Measuring the similarity of devices’
representation in lower-dimensional space allows us to reveal
the community membership, thus detecting malicious devices
that perform trust-based attacks.

To computing devices’ trust relationships and extract trust
network embeddings, we developed Algorithm 1. The algo-
rithm takes as an input the graph of devices in the studied
edge environment, and generate the matrix ϕ ∈ R|D|×z that
represents the trust relationship network structure in lower
dimensional space. Firstly, the algorithm generates the random
walks of length l for λ times starting from each device dx
(line 3-5), and for each device within the ω hop away in
the random walk W dx

apply the SkipGram model to map
every device dy to its representation vector ϕ(dy) ∈ Rz .
Given the low dimension representation, we are aiming to
maximize the probability of the device neighbors in random
walks (line 7). The posterior probability can be computed
using basic classifiers such as logistic regression. However,
this approach is not feasible as the number of devices increase,
and become computational expensive to perform. To address
this, we leverage hierarchical softmax [32], which maps all
the network nodes (devices in our case) to a binary tree. In
this way, the prediction problem is pivoted to maximizing
the probability of path navigation from the root to the leaf
of the tree that identify that device. In case a device dk is
defined by the sequence

(
b0, b1, . . . ., b⌈log[D]⌉

)
where b0 is

the root and b⌈log|D|⌉ = dk then eq(3) can be computed using
binary classifier, which reduces the complexity of computing
Pr(dk|ϕ(dy)) from O(|D|) to O(log |D|) as showed bellow
in eq(4)

Pr
(
dk

∣∣∣ ϕ(dy)) =

⌈log|D|⌉∏
l=1

Pr(dk|ϕ(dy)) (4)

To optimize eq(4), Trust2Vec utilizes Stochastic gradient
descent (SGD). The derivatives are computed using the back-
propagation algorithm, SGD learning rate is initialized as 2.5%
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at the start of the training and then decreased linearly with the
count of devices encountered so far.

Algorithm 1 Device Trust Embeddings

Input
graph G = (D,T )
Walk window size ω
Low dimension vector size z
Random walks count per device λ
Random walks length l
Output
ϕ ∈ R|D|×z Matrix of device trust embeddings

1: Sample matrix(ϕ,D)
2: Generate Binary Tree(T,D)
3: for i : 0→ λ do
4: for all dx ∈ D do
5: W dx

= RandomWalk(G, dx, l)
6: for all dy in W dx

do
7: J (ϕ) = −logPr (dk|ϕ(dy))
8: end for
9: end for

10: end for

D. Trust attack detection
After computing the low dimensional trust network structure

using Trust2Vec, the resulting embeddings are used to detect
trust attacks. We propose an algorithm which can detect large-
scale bad-mouthing and self-promoting attacks, as shown in
Algorithm 2. Given the network embeddings of trust graph
ϕ(G), the source device ds that reports the trust relationship
(trustor), and the destination device dd that received trust level
(trustee). In case of a positive trust report, it is checked for
possible large-scale self-promoting. Lines 1-8 checks if the
similarity of embeddings vectors of the trustor and trustee is
greater than the embedding similarity threshold α, the set of
suspected devices is denoted as ΩP , which is the union of the
previous positive trustees and trustors of the trustor device ds.
The set of malicious self-promoting cluster Ms is determined
by comparing the positive trust report to devices within ΩP ,
and to devices outside ΩP , which are denoted as ΩP , and
classified as malicious nodes if the cardinality difference is
greater than the self-promoting similarity threshold β. In the
case of a negative trust report, it is checked against bad-
mouthing attack as shown in lines 9-20. The set of suspected
device is denoted as ΩN , which contain the devices Nin(dd)
that previously given negative trust report against device dd.
If two or more devices within ΩN have low dimension
similarity greater than the bad-mouthing similarity threshold
γ, then these nodes are classified as malicious bad-mouthing
community Mb.

IV. EVALUATION

A. Evaluation baselines
To test the effectiveness of the proposed system, we have

compared its performance with the following trust manage-
ment systems from the literature.

Algorithm 2 Trust Attack Detection

Input
Network embeddings of trust graph ϕ(G)
ds trustor device
dd trustee device
Output
Ms malicious self-promoting community
Mb malicious bad-mouthing community

1: if (R (ds, dd) > 0) then
2: if (Sim(ϕ (ds) , ϕ(dd))> α) then
3: ΩP←Pin(ds) ∪ Pout(ds)
4: for all di ∈ ΩP do
5: if (|Pout (di,ΩP )| −

∣∣Pout(di,ΩP )
∣∣) > β then

6: Ms←Ms∪{di}
7: end if
8: end for
9: else

10: ΩN←Nin(dd)
11: for all di ∈ ΩN do
12: if (|Nout(di, dd)|) then
13: for all dj ∈ ΩN − {di} do
14: if (Sim (ϕ (ds) , ϕ (dd)) > γ) then
15: Mb←Mb∪{di, dj}
16: end if
17: end for
18: end if
19: end for
20: end if
21: end if

DDTMS [10]: In this system, the devices in the cluster start
to detect the nearby devices within sensing range, and compute
their trust value, and report that to a pre-elected cluster head.
The latter calculates the aggregated trust score of each device
in the cluster. The cluster head is periodically reelected by
the network devices located within the cluster. In this system,
the trust value is computed as: Tij=α×DTij+β×RTj.
Whereas, α is the weight of weight and β is the weight of
indirect observation, such that α+β=1.

T-D2D [14]: In this system, the overall trust level is com-
puted by aggregating the direct trust level that account for
the direct interaction between the two devices, and indirect
trust that rely on other devices’ recommendations. The total
trust level between device i and device j is calculated as:
TTLi,j = (1−ω)DTLi,j+ωITLi,j , where DTLi,j denotes
direct trust level between device i and device j, d denotes
inderct trust level between device i and device j, and ω is the
attention factor.

Liu-Trust: is a semi-centralized TMS that leverage
blockchain for trust score management. The total
trust value of device i in device j is denoted by
T j
i (t) =α×DT j

i (t)+β×IT j
i (t) , which is computed

by aggregating direct trust value DT j
i (t), as well as

indirect trust value IT j
i (t). The direct trust is computed

as DT j
i (t)=ResT j

i (t)×RaT j
i (t), where ResT j

i (t) is the
response trust of device i to device j, and is defined as
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TABLE I: Simulation parameters

Parameter Value
OMNet++ V5.7.0
INET V3.7.1
Mobility Type Linear Mobility
Mobility speed 10mps
Update Interval 100ms
Transmitter power 3.5mW

the probability of device i in whether device j can provide
information on time, and RaT j

i (t) is the rating trust and
it represents the trustworthiness of device i about another
device j on the aspect that device j can provide reliable data
on the request of i.

LightTrust: is a light-weight TMS, in which the trust be-
tween two nodes p and q is estimated by aggregating: device
compatibility comp→q , cooperativeness coopp→q , and delivery
ratio dlp→q as shown in eq (x), in addition to experience and
previous knowledge.

T (p, q) =
∑

(comp→q, coopp→q, dlp→q)

DTMS-IoT [15]: is a TMS that alleviate dishonest trust
recommendations and related attacks by clustering the devices
using k-means algorithm.

B. Experiments

We have compared the proposed system with the above-
mentioned baselines in various scenario and experiment set-
tings. The simulation is performed using INET, an open-source
model library framework of OMNet++ simulator [33], that
can simulate wired and wireless networks, and also support
mobility module that can be used to simulated IoT and
Fog/Edge computing networks. Table I shows the simulation
environment details. We simulate the network with different
number of devices and malicious devices percentages to
observe the effect on the overall performance. We simulate
10000 devices, The mobile devices are randomly placed at
the beginning of simulation, and moves according to INET’s
linear mobility model. The trust scores of the devices within
each cluster are stored in a local fog server that is usually the
gateway to the external network. The trust value of each device
is initialized as 0, and can vary between -1 and 1. Devices can
express their trust level regarding their neighbouring device
following device to device interaction such as data exchange
interactions, or common computational or data offloading
tasks. For small-scale attacks, we randomly choose a device
that tries to self-promote or bad-mouth one of its neighbors
that is randomly selected, we repeat the attack until the number
of fake trust report submitted by the attackers represent a
certain percentage (attack density) of the total submitted trust
reports. We evaluate the system’s performance with difference
attack densities (5% to 50%). We also evaluate the system
with different malicious devices percentages, in which we
randomly select a certain percentage of devices to perform
self-promoting or bad-mouthing attacks, we have simulated
the system in different malicious devices percentage settings
(5% to 50%). For large-scale attacks, we randomly select
x (depending on the malicious devices percentage) devices

as a group malicious devices that self-promote each others,
in which each device iterate and self-promote all the other
devices within the malicious group, as shown in the example
in Figure 2 (a). for bad-mouthing, we randomly select a victim
device, all the devices in the malicious group will bad-mouth
the victim device, as shown in the example in Figure 2 (b).

We evaluate the proposed system and other baselines based
on the following metrics: (1) Self-promoting attack resilience:
The ability to accurately detect small-scale and large-scale
self-promoting attacks without mistakenly blocking legiti-
mate devices. (2) Bad-mouthing attack resilience: The ability
to identify small-scale and large-scale bad-mouthing attacks
without mistakenly blocking legitimate devices. The attack
success rate is defined as the ratio of succeed attacks (e.g.
self-promoting trust report) from all attempted attacks by all
nodes in the network, as defined in eq (5), where s is the
number of simulated devices, ASi is the total succeed attacks
by device i, and AAi is the total attack attempts by device i.

ASR =

∑s
i=1

ASi

AAi

s
(5)

C. Results and discussion

Figure 4 shows self-promoting success rate with different
malicious devices percentage from 5% to 50%. In Figure 4 (a)
the attack is performed as small-scale self-promotion, where
the malicious devices are randomly chosen, and each two
malicious devices try to inflate each other’s trust value by
broadcasting fake trust reports to other nodes in network. Fig-
ure 4 (b) displays a large-scale attack, where randomly selected
malicious devices inflate their trust scores by distributing
trust reports among their group rather than through multiple
mutual trust reports, hence avoid being detected. From Figure
4(a), we can observe that the percentage of a successful self-
promoting attack increases proportional with malicious devices
percentage for all studied systems. All baselines have relatively
low attack success rate, with 0.005% when there is 5% of
the devices are malicious. The attack success rate increase
when more devices malicious participate in the attack, as it
become more difficult to distinguish legitimate trust ratings
from self-promoting ratings; however, the attack is mitigated as
the attackers are stopped once detected, and the attack success
rate stabilizes with less than 0.03 for all baselines, except
DDTMS and Liu-Trust, they fail to detect malicious nodes
as they rely on neighboring devices’ observations, which can
be misleading if the neighbors are among the malicious nodes.
Unlike Figure 4(a) where Trust2Vec has similar performance
with the studied baselines, the upper hand of Trust2Vec is
obvious in Figure 4(b) which shows the success rate of large-
scale self-promoting attack with different malicious devices
percentage from 5% to 50%. We can observe that Trust2Vec
is the only system that can mitigate attacks as the percentage
of malicious devices increases. That is because Trust2Vec
analyses not only the direct trust link but also the latent trust
graph structure, whereas other baselines focus on direct trust
links between devices.
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Fig. 4: Self-promoting in various malicious devices count

Fig. 5: Self-promoting in various attack densities

Figure 5 shows self-promoting success rate with different at-
tack density. The higher the attack density, the more malicious
devices attempt to inflate their trust score. Figure 5 (a) and (b)
show small-scale and large-scale attack scenario. From Figure
5 (a), we can observe that all the attack success rate plummets
when the attack density increases, that is because in high attack
density, malicious device become more aggressive by sending
successive fake trust reports, hence they are easily detected and
eventually blocked. In Figure 5 (b), we can easily observe that
Trust2Vec copes well with increase of attack density in large-
scale scenarios, unlike other baselines that could not mitigate
large-scale attacks.

Figure 6 shows bad-mouthing success rate with different
malicious devices percentage from 5% to 50%. Figure 6 (a)
and (b) display small-scale and large-scale attacks respectively.
As seen in self-promoting attacks, the studied baselines have
similar performance in small-scale settings. Nonetheless, the
superiority of Trust2vec is obvious in large-scale settings,
that is because the bad-mouthing is traced back by analysing
the malicious devices’ latent trust network structure through
network embedding comparison, unlike the studied baselines
that rely solely on the direct observation of neighboring

devices.
Figure 7 shows bad-mouthing success rate with different

attack density. With small-scale attack in Figure 7 (a), we
can observe that all the studied baselines perform better when
with higher attack density, with 0.04% attack success rate at
worst (DDTMS) when the attack is at 5% density. As the
attack density increases, it become much easier to detect and
block malicious nodes. However, in large-scale attack scenario
shown in Figure 7 (b), all baselines (DDMTS, T-D2D, Liu-
Trust, LightTrust and DMTS-IOT) fail to detect malicious
nodes, with at least 55% attack success rate in all attack
densities. Nevertheless, Trust2Vec was able to mitigate large-
scale by 82% in less dense attacks and up to 90% percent in
highly dense attacks.

V. CONCLUSION

In this paper we have proposed a trust management system
for large-scale IoT systems named Trust2Vec. Unlike state-
of-the-art trust frameworks that focus only on small-scale
IoT networks, Trust2Vec can be leveraged to manage trust
relationships among devices in large-scale IoT application.
Trust2Vec had been validated through large-scale IoT network
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Fig. 6: Bad-Mouthing in various malicious devices count

Fig. 7: Bad-Mouthing in various attack densities

simulation. The results show that Trust2Vec can achieve up
to 94% mitigation rate in various network scenarios. The
proposed trust management system can be further improved
from various aspects:

• The proposed system focus on general IoT applications,
where the devices can include fixed devices such as sen-
sors and mobile devices such as mobile phones. However,
things may differ in high dynamic environments such as
vehicular network. Extending the proposed system to be
customized for scenario-specific IoT applications is one
of our future directions

• Trust2Vec can be extended to manage trust in of virtual
network entities by a software defined network.

• The proposed system manages trust scores of network
devices. In our next work, we will extend that to include
trust management of data entities as well.
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