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Abstract—Wearable sensors are an important tool in the
study of head acceleration events and head impact injuries in
sporting and military activities. Recent advances in sensor
technology have improved our understanding of head
kinematics during on-field activities; however, proper uti-
lization and interpretation of data from wearable devices
requires careful implementation of best practices. The
objective of this paper is to summarize minimum require-
ments and best practices for on-field deployment of wearable
devices for the measurement of head acceleration
events in vivo to ensure data evaluated are representative
of real events and limitations are accurately defined. Best
practices covered in this document include the definition of a
verified head acceleration event, data windowing, video
verification, advanced post-processing techniques, and on-
field logistics, as determined through review of the literature
and expert opinion. Careful use of best practices, with
accurate acknowledgement of limitations, will allow research
teams to ensure data evaluated is representative of real
events, will improve the robustness of head acceleration
event exposure studies, and generally improve the quality
and validity of research into head impact injuries.
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SUMMARY STATEMENTS

This work was part of the Consensus Head Accel-
eration Measurement Practices (CHAMP) project. The
objective of CHAMP was to develop consensus best
practices for the gathering, reporting, and analysis of
head acceleration measurement data in sport. Subject
matter experts were recruited to draft a series of papers
on various aspects of the issue. As described in detail in
a companion paper,3 each team drafted a paper and
several summary statements ahead of the CHAMP
Consensus Conference, held on March 24–25, 2022 at
the Children’s Hospital of Philadelphia. The summary
statements were discussed, revised as necessary, and
ultimately approved by more than 80% of the vote at
the conference

1 A head acceleration event (HAE) is defined as an
event/incident that gives rise to an acceleration
response of the head caused by an external short-
duration collision force applied directly to the
head or indirectly via the body in sport, recre-
ational, military, or other activities of interest.
Wearable devices are often both kinematically and
field validated for direct HAEs and not indirect
HAEs due to the limitation of reproducing indi-
rect HAEs in the lab and identifying indirect
HAEs on the field, respectively.Address correspondence to Jillian Urban, Wake Forest Univer-
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2 Kinematic data must be filtered to remove poten-
tial false positive recordings and verify valid
HAEs. Data windowing, video verification, and
pre- and post-processing techniques aid in data
validation. Individual verification of HAEs is
challenging, and time consuming but improper
data validation may lead to errors in estimation of
exposure.

3 Video verification serves as an independent veri-
fication of HAEs for a given application (e.g.,
device development, sport setting) and provides
contextual information for HAEs. However, video
should not be considered ground truth as the
confidence in video verification depends on video
quality and a robust labelling process. Guided and
blinded video verification of head acceleration
events are useful components to device perfor-
mance in an on-field environment.

4 Advanced processing techniques (e.g., algorithms
or hardware solutions) have the potential to offer
fast and reliable verification of valid HAEs.
However, they are often developed for specific
wearable devices in specific applications (e.g.,
collegiate football) and it is best practice to
independently validate processing methods for
use in the intended application.

5 Before deploying head acceleration measurement
devices in an on-field environment, users should
establish data collection and analysis protocols
according to the activity, resources, and research
questions. Additionally, users should ensure 1) the
devices are functional, 2) the batteries are charged,
3) the devices are attached securely to the individ-
ual, and 4) the wearable device is time-synchro-
nized with other concurrent data sources (e.g.,
video, GPS systems).

INTRODUCTION

Head acceleration events (HAEs) in sporting and
military activities have been studied among researchers
for over 60 years.1,45,47,57–59 In the early 2000’s, the first
commercially-available device, known as the Head
Impact Telemetry (HIT) System, was introduced as a
means to monitor head acceleration data simultane-
ously and continuously from American Football ath-
letes on the field in real-time.29 During the last two
decades, numerous studies have been published using
the HIT System to monitor HAEs in American foot-
ball.49 Recent advances in sensor technology and the
expansion of the commercial market have allowed
researchers to broaden this scope beyond the sport of
football by using sensors embedded in a mouthguard,

attached to the skin at the mastoid process, worn on
the head via headband/skullcap, or attached to a hel-
met.52

Wearable devices are now ubiquitous in studies of
HAEs. These devices have provided varying levels of
ability to measure the kinematics of HAEs and an
athlete’s exposure to HAEs across multiple games,
training sessions and, in some cases, seasons. Despite
their convenience and potential to advance our
understanding of head accelerations, brain injury, and
their sequelae, properly utilizing and interpreting data
from wearable devices requires diligence. Additionally,
as research on HAEs in sports develops, there is a great
need for consensus on procedures surrounding vali-
dation and verification of HAEs measured by devices.

For accurate measurement of HAEs, wearable de-
vices must be validated for (1) kinematics and (2)
detection of events. In-lab validation against a gold
standard (e.g., instrumented anthropomorphic test
device) must be performed to assess the accuracy of
kinematics measured from the underlying measure-
ment sensors (i.e. the accelerometer), but the ability of
devices to detect and record possible HAEs is best
conducted in an on-field, real-world environment. The
objective of this paper is to define minimum require-
ments and best practices for on-field deployment and
validation of wearable devices to ensure data evaluated
are representative of real events and limitations are
accurately defined. Best practices covered in this doc-
ument include the definition of a verified event, data
windowing, video verification, advanced post-process-
ing techniques, and on-field logistics, as determined
through review of the literature and expert consensus;
these best practices apply to device-recorded events
collected in vivo.

Traditionally implementation of wearable devices in
an on-field environment occurs following laboratory
kinematic validation of the underlying sensors (i.e. the
accelerometer). Though this is not strictly required,
best practice recommendations presented herein as-
sume the underlying sensors have been validated in the
laboratory for head acceleration kinematics measure-
ment and may be applied across a wide range of
activities. This is because often wearable devices rely
on the kinematic signals to identify the HAEs, imply-
ing some level of accuracy of the underlying sensors in
their ability to measure or estimate head kinematics.
Understanding these assumptions, on-field deployment
and methods to validate wearable device data should
be selected and utilized according to the intent of the
research study. Justification of methods and associated
limitations should be clearly defined and acknowl-
edged when disseminating research results.
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Head Acceleration Event (HAE)

Direct HAE
Examples:

Head/helmet to ground/surface
Punch/kick to head/helmet

Head/helmet to equipment (e.g., ball, stick)
Head/helmet to head/helmet

Indirect HAE
Examples:

Body to ground/surface
Punch/kick to chest

Body to object collision (e.g., vehicle, goalpost)
Body to body collision

FIGURE 1. Head acceleration events (HAEs) may be subdivided into direct (i.e., head impacts, involve primary collision with the
head or helmet) and indirect (i.e., without head contact, involve primary collision to the individual’s body resulting in inertial
motion of the head) HAEs.

FIGURE 2. Common methods to establish a final dataset of valid HAE events.
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DEFINING A HEAD ACCELERATION EVENT

A HAE is defined as an event/incident that gives rise
to an acceleration response of the head caused by an
external short-duration collision force applied directly
to the head or indirectly via the body in sport, recre-
ational, military, or other activities of inter-
est.11,14,15,27,30–32,39,72 For military applications, HAEs
considered herein are those that occur in the non-blast
environment, though HAEs could be secondary to the
blast, such as a direct head impact with a wall fol-
lowing a blast. Direct HAEs, i.e., head impacts, in-
volve primary collision with the head or helmet.
Indirect HAEs, i.e., without head contact, involve
primary collision to the individual’s body resulting in
inertial motion of the head. For example, this may
include a fall to the ground or a body-to-body colli-
sion. These indirect HAEs are often associated with
greater rotational head motions. HAEs can result in a
wide array of linear and rotational head acceleration
combinations depending on the location and direction
of the collision force (Fig. 1).

The definition of HAEs is important for sensor
systems as they form the basis for assessing their per-
formance, commonly defined in terms of sensitivity,
specificity, or accuracy, and validity. On-field valida-
tion of wearable devices is predicated on an assessment
of this performance as a measure of their ability to
identify HAEs in the field. This fundamentally relies on
the verification, though independent means (e.g., via
in-person notes and/or video), of individual HAEs to
quantify this performance. Wearable devices are often
both kinematically and field validated for direct HAEs
and not indirect HAEs due to the limitation of
reproducing indirect HAEs in the lab and identifying
indirect HAEs on the field, respectively. However,
devices deemed valid from in-lab validation for direct
HAEs may reliably measure kinematics of indirect
HAEs due to the strict sensor requirements for impact
scenarios. Similarly, methods to identify direct HAEs
in the field can be applied to indirect HAEs.

WEARABLE DEVICES

All wearable devices are different; therefore, the
device recording, and processing of data for identifying
HAEs on the field will vary. Figure 2 depicts the flow
of field data for a typical device, which comprises
inertial measurement units: linear accelerometers and/
or angular rate sensors (ARS). The motion of the de-
vice is continuously monitored, and a device-recorded
event is recorded to fixed memory and/or transmitted
when the device is triggered based on a predetermined
threshold. Depending on the device, the recording may

be triggered when a single accelerometer channel ex-
ceeds a pre-determined linear acceleration thresh-
old10,19 or when the transformed data from the array
exceeds a pre-determined threshold of resultant linear
acceleration.9,42 One custom mouthpiece device
requires a single accelerometer channel to exceed a
linear acceleration threshold for a duration of 3 ms to
trigger storing measurements to fixed memory.61 The
pre-determined recording trigger threshold may be
adjustable or set by the manufacturer. A common
threshold in the literature is 10g as accelerations under
10g are often associated with indirect HAEs;27,64

however, an increasing number of studies have used a
5g threshold as many HAEs are potentially missed, or
not recorded, with higher thresholds.26,44 Once trig-
gered, the device records some duration of pre- and
post-trigger data, which is stored on-board and/or
wirelessly transmitted to a sideline receiver or syn-
chronized data collection device.

Few wearable devices allow the raw data recorded
at the device location to be accessed directly, but rather
perform post-processing of the data either on-board
the device6 and/or when the data is uploaded to the
manufacturer’s server via a sideline receiver25 or syn-
chronized data collection device.5,61 Initially, post-
processing typically involves filtering of the time-series
data from the individual accelerometer or ARS chan-
nels. Devices comprising a linear accelerometer array
solve for angular acceleration algebraically while
numerical integration is used to calculate angular
velocity,63 whereas devices comprising ARS directly
measure angular velocity and these signals are differ-
entiated to calculate angular acceleration.10 Linear
acceleration is then transformed from the location of
the linear accelerometers to the center of gravity of the
head and may again be filtered.51

While peak kinematics exceeding recording trigger
thresholds are associated with HAEs, these kinematics
can also be produced by the removal or application of
wearable devices onto the body, or dynamic motion of
the body (e.g., running, jumping).81 As a result, devices
can record a large number of events, with only a
fraction associated with HAEs.11,18,39,54,61 This neces-
sitates methods to robustly determine which events are
associated with HAEs. Here, we introduce the most
common methods (Fig. 2), from simple data window-
ing to video verification to advanced post-processing
techniques (machine learning).

DATA WINDOWING

Data windowing is a relatively simple method for
determining which device-recorded events are associ-
ated with HAEs. We have defined five steps of data
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windowing that incrementally reduce the device-r-
ecorded events to possible HAEs. Time-stamped de-
vice-recorded events are typically downloaded by date
either from an online portal, the manufacturer, a
sideline collection system, or the device itself. These
data often contain device-recorded events for the
duration the device was active (e.g., during a practice
or game session) on a particular date. This allows the
data to be ‘‘windowed’’ to remove events that occurred
outside of time windows of interest. To window the
data, at minimum study staff should be present during
data collection to note time windows of interest. Cur-
rent best practice is to have video footage of the data

collection to facilitate review of, or confirmation of,
data windows after the event. It is also best practice to
have video synchronized with the clock of the device
(i.e., time-synchronized video) to improve alignment
between video and device time stamps.

Temporal Data Windowing

Temporal windowing (i.e., time-windowing) is a
method of retaining device-recorded events that oc-
curred during specific time windows and removing
events that occur outside of the time windows. The first
step of temporal data windowing is to establish the

TABLE 1. Steps of data windowing.

Type of win-

dowing Step Window Requirements Examples

Temporal 1 Session time Start and end timepoints of session Australian football: remove device events that

were recorded before the starting whistle and

after the final siren

Military Training: remove device events recorded

before or after the drill/training/exercise of

interest (including instruction time)

2 Stoppage

time

Start and end timepoints of scheduled and

unscheduled stoppages

Field hockey: remove device events recorded

during halftime

Basketball: removing device events recorded

during timeouts

Cricket: remove device events recorded during a

rain break

Military Training: remove device events recorded

during breaks, instruction time, and down time

while waiting on remainder of unit to complete

drill/exercise of interest.

Temporospatial 3 Group par-

ticipation

time

Timepoints of when a group of interest enter and

leave the area of activity or when the individual

leaves an area where certain groups must

remain

American football: remove device events for the

defensive players when the offensive players

are on the field

Netball: remove device events recorded by a

goal-keeper when the goal-shooter on the

same team is taking a shot

Military Training: remove device events from

support units and groups supporting training

activity before switching roles.

4 Individual

participa-

tion time

Timepoints of when individuals enter or leave the

area of activity during the session

Lacrosse and Rugby: remove device events

recorded when a player was on the bench or

seeking medical attention

Ice Hockey: remove device events recorded

when a player is in the penalty box

Soccer: remove device events recorded after a

player is stretchered from the field with a

broken leg

Military Training: remove device events recorded

while Service Member is in line or waiting on

next opportunity to perform drill

5 Individual

active

participa-

tion time

Start and end timepoints of individuals ‘actively’

participating in the session

Boxing: remove device events recorded when a

boxer is in a neutral corner after knocking

down the opponent

Military Training: remove device events occur-

ring when Service Member is not actively

performing or engaging in the drill/exercise of

interest.
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start and end timepoints of a session (Table 1, Step 1).
The second step of temporal data windowing involves
removing device-recorded events that occurred during
scheduled and unscheduled stoppages (Table 1, Step
2). A scheduled stoppage is one that is built into the
session (e.g., halftime, water break), whereas an
unscheduled stoppage is one that can occur due to
circumstances in the session (e.g., timeout, injury) or
the environment (e.g., weather). For the sporting
context, relying on scheduled session time is not
appropriate as actual sessions seldom run to schedule.
For example, a study of head impact device data in
soccer recorded 9503 device events during scheduled
game times compared to the 6796 recorded during
verified game times.54 To identify unscheduled stop-
pages, most sports have a sound (i.e., whistle, buzzer,
or siren) to indicate when a stoppage has commenced
and play has resumed during a game session, which
can be used to establish timepoints by study staff or
from time-synchronized video. In addition, some
sports have game clocks that are paused during stop-
pages (e.g., basketball).

Temporospatial Data Windowing

The quality of windowing possible HAE data im-
proves when using temporospatial information to
further reduce the number of false events. The third
step of data windowing involves establishing time
windows in which certain groups (e.g., player posi-
tions) are active (Table 1, Step 3). The most common
example of this occurs in American football. When
following a single team, only one of the three posi-
tional groups (i.e., offensive, defensive, and special
teams) is on the field per play. Players at younger levels
of play may compete across multiple position groups in
a single session and/or across the season, so it may be
challenging to identify/track groups which may over-
lap and vary over the data collection period. Con-
versely, some sports have rules limiting the playing
area in which a position may occupy (e.g., lacrosse,
netball); therefore, if the play moves to a different area,
certain playing positions are no longer active. It is
important to note that this may be challenging during
practice or training sessions for sports applications as
position groups may practice together or at different
locations on the field; however, if resources and staff-
ing allow, study staff field notes and time-synchronized
video may be used to track activities on-field, including
when groups or subsets of individuals take breaks
during the data collection period (see Step 2).

The fourth step of data windowing requires
obtaining individual participation time, which is when
an individual is known to be participating in the
activity of interest (Table 1, Step 4). In sporting

applications, a log of starting players and subsequent
changes (e.g., substitutions, injuries, penalties, and
ejections) during games may be collected live by study
staff or determined from time-synchronized video. For
some sports (e.g., soccer), substitutions are made
during breaks in play and can therefore easily be
captured by a camera filming the game play. Some
sports, however, allow substitutions during live play
(e.g., men’s lacrosse, ice hockey), which may present
challenges determining accurate timepoints if the ac-
tive play, or field of view of the video, is remote from
the substitution location. In such circumstances, it is
recommended practice that additional time-synchro-
nized video of the substitution location is captured.
Statistical records are kept for some sports that may
note timepoints of interest; however, such records are
typically only available for higher levels of play and
time-synchronization with device-recorded data maybe
challenging. Other technologies can also be used to
provide temporospatial information. For example, a
previous study using wearable devices in skiers used
global positioning system (GPS) data to remove device
events that were not recorded on ski slopes.22 Con-
ceptually, this method could be applied to field activ-
ities as some use GPS trackers,20 the data from which
could be used to remove device-recorded events that
were not spatially associated with the activity of
interest. This tool may be challenging for applications
requiring indoor data collection.

The fifth step of data windowing is to establish ac-
tive participation time for an individual (Table 1, Step
5). Although an individual may be present for the
activity of interest, they may be remote from the
activities susceptible to HAEs and/or not actively
participating in the activity. This is similar to tem-
porospatial windowing by group (Step 3), but for
individuals. For some applications, the individual
participation time and active participation time align
(e.g., ice hockey); therefore, this step will have already
been achieved if the device-recorded data has been
windowed for individual play time.

The best practice for identifying relevant timepoints
for data windowing is via time-synchronized video
collected during the data collection. In-person moni-
toring of relevant timepoints (e.g., start and end of
session, stoppage times) may be completed, and is the
minimum requirement to complete data window-
ing;4,7,17,40 however, in-person notes often lack the
preciseness needed for verification and full reliance on
this method, in the absence of time-synchronized video
collected during a session, may introduce error in
recorded timepoints and eliminates opportunities for
further verification. It also limits the metadata (e.g.,
contact characteristics; presence of head contact) that
may be collected about the session. Additionally, in-
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person monitoring of events becomes increasingly
more challenging with a greater number of individuals
instrumented on-field and the size of the field of
play/training arena. The usefulness of in-person mon-
itoring may also depend on the activity, level of play,
and resources available (including trained personnel).
For example, in-person monitoring of header events in
soccer may be conducted more easily than in-person
monitoring of head impacts in ice hockey or football
due to the level of contact and the speed and com-
plexity of action that occurs during a session.

VIDEO VERIFICATION

Video verification of HAEs serves several purposes
in the deployment of wearable devices and their on-
field validation. As an independent assessment of HAE
incidence, video verification is most commonly used to
confirm device-recorded events.16,18,34,43,54,55,61,73 This
form of guided video verification is primarily used to
remove false positive events (i.e., an event was
recorded by the device but was not an HAE), and
carefully examine high severity sensor recordings that
are most associated with mild traumatic brain
injuries.56,60 This can often be used in conjunction with
time windowing (which reduces the periods in which
video verification is required), but itself requires sub-
stantial resources and coordination to deploy addi-
tional video recording resources for reliable
verification. Outlined best practices in this section are
intended to provide the framework for successful video
verification.

During video verification of HAEs, contextual
information on the HAE can also be described, such as
the impact site (e.g., crown of head)11,18 and/or the
type of HAE (indirect HAE vs. direct HAE, impacting
surface).39,44,54 Such contextual information can aug-
ment device measurements to categorise head acceler-
ation severity in different types of events44,71,73 or can
be used to develop machine learning classifiers for
wearable devices to automatically differentiate
events.28,78 In some cases, contextual information can
also help determine issues with kinematic measure-
ments (e.g., measurements with unusually high fre-
quency content, kinematics indicating a different
impact direction) that are usually caused by external
factors (e.g., direct impact to a device or decoupling of
the device from the head). Despite its many benefits,
video verification remains an important but uncom-
mon procedure in the HAE analysis pipeline, because
video verification requires significant investment in
personnel to video record events and identify events in
the videos and some researchers have accepted the
validity of devices at face value without thorough

evaluation. In their 2020 review, Patton et al. estimated
that nearly two-thirds of head impact studies did not
perform or report observer or video verification of
individual device-recorded events.52 Still, video verifi-
cation remains a best practice method for verifying
HAEs in order to validate the on-field capabilities of
wearable devices and providing contextual data for
further HAE analysis.

Camera Set Up and Time Synchronization

Effective video verification of HAEs depends on a
robust pipeline to record and process video footage
from sessions. Recording videos involves deploying
video camera(s) to the field, but the number, place-
ment, resolution, and frame rate of video recording
plays a role in the quality of video footage for future
assessment. In terms of number, a minimum of one
camera is required to simply collect video of an event,
though single camera systems suffer from player
occlusions and ambiguities that introduce uncertainty
in video verification. Thus, it is best practice to have at
least two cameras capturing different views (such as
sideline vs. endzone views for American football) such
that one camera can account for occlusions or ambi-
guities in the other.16,28,39 Recommended practice is to
utilize additional broadcast quality video cameras (4 k
resolution, 60 fps) tracking the passage of play where
most HAEs occur (e.g., tracking the ball). This
increases confidence during video verification, but also
drastically increases cost and time for the video veri-
fication process. This may also be challenging at lower
levels of sports (i.e., youth) and in military environ-
ments, where there is limited infrastructure to facilitate
multi-angle video collection. Placement of cameras
depends on the activity being recorded, but best
practice is to tune placements to maximize areas where
potential HAEs may occur. It is also recommended
practice to place cameras at heights >2 meters to re-
duce occlusions. As video cameras often record video
at a distance, the resolution of video capture plays a
critical role in the quality of video for verification.
Most prior work utilizes 720 pixel–1080 pixel resolu-
tions for sports such as American football and soc-
cer.28,39,48,54 Greater video frame rates also provide
more refined identification of the moment of impact,
though as most wearable devices record at least 50ms
around an impact, minimum frame rates of 30 frames
per second (33 ms between frames) are acceptable.

During deployment of video systems, it is critical
that video cameras, on-site observer notes, and other
devices (primarily wearable devices) are time-synchro-
nized. Current best practice is to reference all video
footage and wearable device clocks (HH:MM:SS) from
a single machine at some point in time for each data
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collection (most often before the data collection).
However, researchers should be aware that there is
often variance between individual device clocks (video,
wearables, computers, etc.). Thus, it is recommended
practice that all video, on-site reference clocks, and
wearable device clocks are referenced twice, once be-
fore and once after an activity, to account for differ-
ential video and wearable device clock drifts. Such time
synchronization is important to accurately capture the
likely discrete event that triggers wearable devices, as
often there can be multiple HAEs in quick succession
(multiple direct HAE, or an indirect HAE followed by
a direct HAE). Clock referencing can be achieved by
having a machine set the internal clock for video
cameras and wearable devices, by video recording the
machine clock,34 or by video recording intentional
impacts applied to wearable devices.16,18,39,48 It is a
best practice to regularly synchronize the machine
clock for the wearable device with a global source (e.g.,
atomic clock).

Video Verification Process

Once collected, video verification is a laborious
process that requires robust training protocols and
consistent instructions on how individuals (raters)
should verify or confirm HAEs. As video verification is
a subjective process, it is best practice that instructions
for rating HAEs be made explicit, for example clear
instructions for identifying a direct HAE and how to
label HAEs when the head is occluded by another
object. At minimum, these rating instructions should
be reported in literature so that they can be used in
other on-field deployments for consistent ratings
across studies. For on-field verification, at minimum
one rater should video verify each timestamp of each
device-recorded event captured by a wearable device
that will be utilized in further analysis. These may not
necessarily include all device-recorded events, such as
in analysis of severe impacts where only high acceler-
ation events are characterized.12 It is best practice to
have two raters review each HAE to ensure robust
coding and agreement. It is further recommended
practice to have raters who have some personal or
professional experience with the activity to conduct

video coding; however, proper training in reviewing
and coding video is of utmost importance.70,74 Most
importantly, having multiple raters can identify those
HAEs that are potentially ambiguous, which may lead
to inconsistencies in HAE coding. Inconsistencies can
often be resolved through a majority decision (if coded
by ‡ 3 raters) discussion amongst the raters that re-
viewed the coding, or independently coded by an ex-
pert rater with more personal or professional
experience with the activity. Proper training will likely
minimize the number of inconsistencies requiring fur-
ther review.

To ensure consistent and robust verification of
HAEs, it is best practice to conduct intra-rater and/or
inter-rater reliability analysis prior to video verifica-
tion, depending on whether single or multiple raters
are used respectively. Intra-rater reliability can be
assessed for single raters by having a single rater review
a video, wait for a period of time, and review the video
once more. To assess inter-rater reliabilities, all video
raters involved with video verification should review a
common video to identify HAEs. The inter-rater
agreement can then be used to ensure robustness of
video verification procedures, as well as eliminate
raters who do not have sufficient agreement with
others.68 Low agreement within a single rater indicates
high uncertainty or ambiguity in either the video or
instructions.

Independent Blinded Video Verification

Thus far, video verification has been discussed in the
context of verifying whether device-measured events
are associated with HAEs, a process termed guided
video verification. Guided video verification is impor-
tant for identifying false positive HAE events, a com-
ponent in validating on-field performance of wearable
devices (Table 2). However, guided video verification
does not quantify false negative events (i.e., HAE oc-
curred but was not recorded by the device) for wear-
able devices. Blinded video verification wherein entire
videos are analyzed independently of the wearable
device measurements can be used to identify false
negative events.11,13,28,39,53 False negative events can
occur due to linear acceleration magnitudes lower than

TABLE 2. Truth table categories resulting from guided and blinded video verification methods.

Video

Video verification methodHAE observed HAE not observed

Sensor

Recorded True positive events False positive events Guided video verification

Not recorded False negative events True negative events Blinded video verification
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pre-defined recording trigger thresholds13,36,77 or if
events are misidentified by device algorithms and
subsequently erased or not provided to the user.

While blinded video verification provides additional
an assessment of false negatives for a more complete
on-field validation of wearable devices, it also requires
more resources. For blinded video verification, at
minimum each full video should be reviewed by a
single rater to determine independently when HAEs
occur. However, this approach is susceptible to indi-
vidual rater biases (as blinded verification will likely
use multiple raters due to the sheer volume of video),
and thus recommended practice involves the utilization
of a 2-stage video verification process.28,39 In the first
stage, videos are reviewed by single raters with
instructions to identify any possible instance of a HAE
(high sensitivity) but are blinded to the head acceler-
ation data. This effectively provides a collection of
possible HAEs mirroring what wearable devices pro-
vide and thus a guided video verification can be sub-
sequently performed in the second stage to confirm
first-stage video-identified possible HAEs (high speci-
ficity). In both guided and blinded video verification,
when multiple video angles are available, it is best
practice to review videos together to determine whe-
ther an HAE occurred. Recommended practice is to
first review videos independently, potentially by dif-
ferent raters, before they are assessed together. This
primarily increases the confidence for HAEs that are
independently identified in different video views.

One challenge that may arise when classifying HAEs
during blinded video verification, is the ability to dis-
cern the amount of contact necessary to induce a
wearable device recording of a HAE.72 When an event
is observed on video but not detected or recorded by
the device, it is often referred to as a ‘possible false
negative’. However, false negatives may be associated
with observable and reported concussions. It is not
common practice for studies to report the number of
possible false negatives, but it is an important aspect of
on-field validation to accurately estimate the HAEs
experienced by an individual. Prior studies that have
reported the number of possible false negatives have
simply reported the number of events but have
assumed these instances are ‘non-events’ and did not
analyze them further.23,61 Alternatively, some studies
have included these events in the calculation of impact
rates or impact frequency, but acknowledge their
exclusion from the analysis of head acceleration data.72

Potential Challenges with Video Verification

Collection of video footage for verification of events
may be limited by resources and/or the environment
being studied. Even when high quality, multi-angle

camera views are collected, there are several challenges
that must be considered. When reviewing HAEs, it
may be challenging to distinguish direct HAEs (i.e.,
head impacts) and indirect HAEs. Even with high
quality video, there will always be uncertainty sur-
rounding the distinction between direct and indirect
HAEs. Many prior studies have excluded device
recordings from analysis due to uncertainty of the
event, or if the event was not clearly visible in film and
only evaluated impacts that could be clearly verified
with video; studies have reported a range of 6-75% of
events recorded by devices that were ultimately in-
cluded in analyses.15,18,21,30,41,50,55,67,76 Reasons for
exclusion include insufficient film quality,2,74 the event
occurred outside of the field of view,2,31,54or the char-
acteristic of interest (e.g., head contact) was not clearly
visible.23 In the event that a device recording was ex-
cluded because it occurred outside the field of view,
there is a potential for underestimation of exposure,
therefore, the methods, assumptions, and limitations
need to be clearly described and acknowledged to aid
in interpretation of the data by others.

Video verifying wearable device-measured HAE
events remains an important tool or both the valida-
tion and development of wearable head acceleration
measurement devices. However, it is important to keep
in mind that video verification itself is a subjective
process and should not be treated as an absolute
ground truth, but rather an independent measurement
of head impact and HAE exposure. Thus, great care
must be taken to ensure robustness of video verifica-
tion processes, much in the same way that HAE from
wearable devices are expected to be validated. While
we only present methods for identifying HAEs in video
here, similar approaches can be utilized to ensure
robustness of contextual analysis for HAEs, such as
the impact site or the type of head acceleration. Indeed,
in treating video verification as an independent mea-
sure for HAEs, similar techniques can be applied to
cross-validate future novel methods for detecting
HAEs, such as acoustic and proximity monitoring.

ADVANCED POST-PROCESSING TECHNIQUES

While both guided and blinded video verification
are often used to verify which wearable device-r-
ecorded events are HAEs, this method is not univer-
sally accessible due to both the high time and cost
requirements. Recent advances in post-processing
techniques, such as machine learning, have allowed for
automated classification of HAEs,21,24,28,46,62,78,81 but
care must be taken with implementation of these
techniques with acknowledgment of their limitations.
Importantly, many commercial advanced post-pro-
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cessing techniques are proprietary, but their perfor-
mance can and should be independently validated on
the field in the setting of a deployment prior to
extensive use. This will provide confidence in their
further use to quickly identify HAEs and reduce the
reliance on video verification.

The goal of advanced post-processing is to analyze
wearable device-recorded events and determine which
are associated with real events (i.e., HAEs) and which
are associated with false events, or non-HAEs. While a
seemingly simple task, it is complicated by the use of
different wearable device form factors and applications
in different contexts (i.e., different sports/activities
and/or different populations). Commonly, methods are
tuned to work for a specific wearable device in a
specific application. This is because different wearable
devices are known to have different performance
in vivo80 and different applications result in distinct
head acceleration characteristics (helmeted vs. unhel-
meted sports).79 Thus, it is best practice to validate
post processing techniques for each device in each
specific application.

There are commonly two approaches to advanced
post-processing. One approach relies on additional
hardware or study design considerations that can help
determine if a wearable device is being properly
applied. For example, instrumented mouthguards can
be equipped with a specialized proximity sensor to
detect when the mouthguard is being properly worn as
an additional confirmation of true head acceleration.81

Sometimes these techniques can be used as a pre-pro-
cess filter to determine whether to record data (e.g. if
the mouthguard detects that it is not being worn, then
data is simply not collected). More often, this infor-
mation is collected and integrated into a post-process
decision tree to eliminate a substantial number of false
positive events; however, even these hardware-based
methods are often not sufficient to eliminate all false
positive events.78 This has led to a second approach
relying on software post-processing methods to iden-
tify the unique features of HAEs from extraneous
measurements.

Software post-processing methods often use ma-
chine learning algorithms that can be grouped into two
distinct classes: feature-based classifiers and deep
learning classifiers. The former relies on engineered
features that are extracted from kinematic signals in
order to differentiate HAEs.28,62,78,81 Here, the support
vector machine is commonly used and is often paired
with frequency-based (i.e., peak frequency of acceler-
ation signals) or biomechanics-based (i.e. biomechan-
ical feasibility of events) features. Deep learning
classifiers are designed to learn features from the data,
which allow them to identify complex relationships in
the data for classification purposes.21,24,28,46 Here,

traditional fully-connected neural networks and more
complex convolutional neural networks are commonly
used but require expertise in selecting appropriate hy-
per-parameters (e.g., number of layers, number of
nodes, etc.).

While most wearable devices incorporate some form
of post-processing to identify HAEs, commercial de-
vices often use proprietary algorithms.11,34,43 Even for
research-based devices with peer-reviewed post-pro-
cessing algorithms, it is still important to understand
how these algorithms are developed and evaluated. To
evaluate post-processing algorithms, the sensitivity and
specificity are most often reported as they describe true
positive rate and true negative rate, respectively (with
video acting as an independent measure). As a best
practice, all post-processing algorithms should report
these two metrics as a measure of the algorithm per-
formance.

There remains some nuance to how these metrics are
calculated that is important to highlight. This pertains
specifically to the definition of the true positive HAE
and true negative extraneous event. For data that are
collected in vivo on the field, labels for true sen-
sor-recorded events are often conducted using a guided
video verification. Under this process, only events
recorded by wearable devices are provided a true
positive or false positive label for validating post-pro-
cessing algorithms. However, based on previous blin-
ded video verification work, it is known that many
wearable devices do not record a substantial number of
HAEs, likely because they do not produce accelera-
tions above recording trigger thresholds.11,36,39,53,55,61

Sensitivity and specificity metrics often do not account
for these missed events (additional possible false neg-
atives). Second, as the video verification process is
subjective in nature, rater biases can be captured by
software post-processing. Third, similar to this, wear-
able device measurements themselves during an
observed HAE can be corrupted by other sources of
error, producing kinematic signals that are not repre-
sentative of head acceleration which in turn may cor-
rupt post-processing pipelines. As an example, in
mouthguards, it is known that the lower jaw (mand-
ible) can bite down on mouthguards during a HAE
and produce a characteristic high frequency oscillation
measured by the underlying kinematic sensor inde-
pendent of the head acceleration.38,72 These can be
removed with device-specific techniques (matching
peak frequencies in the kinematic head acceleration
signal with known oscillation frequencies induced by
the lower jaw) but are predicated on understanding the
origins of these erroneous kinematic signals.82 Finally,
due to the nature of wearable devices and HAEs, da-
tasets are often heavily biased with a greater propor-
tion of false positives events. This must be considered
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TABLE 3. Logistical requirements and activity characteristics when collecting head acceleration data in sporting and military
environments.

Logistical

requirement Activity characteristic Comment

Battery life Competition, practice, or training event period Many sports have competition durations between 40 and

90 min. In some sports, e.g., cricket, an athlete may be

active for many hours. Practice sessions vary in length

as well. Military training applications may span many

hours, often resulting in distribution of multiple sensors

per day if battery life is insufficient

Size of field If the device has continuous transmission from device to

base station, field size may require higher powered

transmitters.

Number of sessions per charge Often data collection plans involve a single session in a

24-h period allowing time for battery recharge. How-

ever, some data collection structures involve multiple

sessions in a 24-h period. Multiple devices per day may

be needed if battery life is insufficient

Memory Number of HAEs Per person these may range from one every few hours in

projectile sports (e.g., baseball) to potentially several

per minute, depending on the trigger threshold for

sampling an impact and false event recordings. The

device should be configured to capture HAEs for the

duration of the activity of interest.

Form factor

and attach-

ment

Activity considerations (e.g., protective equipment commonly

used, communication requirements, duration of wear, etc.)

Helmet, mouthguard, or external cranium are common

points of attachment. If able, consider the best

attachment point for a given activity. Adding a small

mass to a helmet or mouthguard may be more

acceptable to the athlete than attaching a device to the

head. Communication among athletes in the sport (e.g.

soccer) may influence compliance of the participant if

the device interferes with speech. Device comfort may

influence the compliance if the sensor system is intru-

sive or uncomfortable. This may be exacerbated for

long duration of wear

Data trans-

mission

Number of participants/athletes If the objective of measuring HAEs in real-time (e.g.

monitoring of high-risk events), then ideally data will be

transmitted to the sideline and monitored. If the

objective is to passively monitor HAEs for evaluation

after the session or season or if real-time monitoring is

not feasible, then extracting data after a session is

reasonable. A large number of study participants typi-

cally leads to longer time frames needed to extract data

locally. Ideally, data will automatically be wirelessly

transmitted to a centrally located storage unit

Access to participants/athletes Often strict schedules of participants limit the availability

of individuals to be outfitted with sensors. Working

around these schedules is often required in studies that

require more time with the participant

Concussion rules Theoretically, participants could be removed from the

session based on biomechanical head acceleration

parameters in the absence of concussion signs and

symptoms. Concussion rules may develop in tandem

with sensor technology. However, at this time, this

practice is not recommended given the lack of a

specific biomechanical threshold for concussion

BIOMEDICAL
ENGINEERING 
SOCIETY

On-Field Deployment and Validation for Wearable Devices



when both reporting and interpreting validation
statistics on post-processing algorithms. For example,
an advanced post-processing method could report
95% sensitivity and 95% specificity, but if the valida-
tion data are unbalanced with 100 true positive HAEs
and 1000 false positives (this type of imbalance is
common for many wearable devices), then it is ex-
pected that the advanced post-processing method
could identify 95 true positive events (sensitivity) as
well as 50 false positive events (specificity), meaning
that one third of the wearable-sensor identified events
are in fact false events (i.e., incorrectly labeled by the
algorithm).

Advanced post-processing methods are a convenient
way to automatically classify device-recorded events
into true HAEs and false events and further facilitate
data processing steps toward a dataset that is repre-
sentative of real HAEs. This is particularly true for
large multi-institution datasets where processes such as
video verification are logistically impractical. Tiered
approaches can be utilized for these larger datasets,
wherein a subset of the data is set aside to develop and
validate novel advanced post-processing techniques
with video verification, and subsequently applied to the
remainder of the dataset. Currently, advanced post-
processing methodologies are specific to the wearable
device and the application, but we provide best prac-
tices to assess their performance and highlight several
nuances and limitations in their design.

ON-FIELD DEPLOYMENT LOGISTICS

AND BEST PRACTICES

Finally, the last component to ensure quality on
field data is in having proper deployment logistics.
Wearable head acceleration measurement devices
intersect with many disciplines, including ‘Digital
health’ and ergonomics/human factors, and are not
limited to biomechanics, sports science, or
medicine.33,37,69,75 Wearable devices are being de-
ployed to measure characteristics of gait and physical
activities across a broad range of health condi-
tions,35,65,66 but the assessment of usability is very
limited.33 Searches using combinations of ‘‘usability’’,
‘‘head impact’’, ‘‘on-field’’, and ‘‘concussion’’ identi-
fied few papers that reported on the system usability of
head acceleration devices. Tierney et al.. (2021)
reported their intention to conduct a study of player
comfort and wearability with an instrumented
mouthguard.71 Australian Football players responded
positively to a wearability survey of the X-Patch sen-
sor, but the authors noted on-field in-game issues, such
as devices failing, detaching and being lost.43

There is considerable interest in the use of wearable
devices across many sports, from American football to
cricket, as well as military applications. Each envi-
ronment has a set of unique characteristics that must
be considered when selecting a wearable device and its
suitability for on-field deployment (Table 3). There has
been no formal research regarding on-field deployment
logistics and best practices. Much of what can be
written on these topics are discussion points in research
papers, reflected in the research methods, or come
from experience.

Four critical on-field deployment best practices are
to ensure that (1) the device is functional, (2) the bat-
tery (or device power supply) is charged, (3) the device
(e.g., mouthguard, skin patch) or device-mounted
equipment (e.g., helmet) is attached securely and
properly to the individual wearing the device, prior to
data collection, and (4) the cameras are time-syn-
chronized to the device clock or common source (e.g.,
atomic clock; see Windowing and Video Verification).
For device functionality, the user can, at a minimum,
verify each device turns on as it should. In many cases,
the user can see if the device is connected to the base
station in real-time. If this feature is available, the user
can verify device connection. If the device transmits
data to the base station in real-time, the user may
impact the device such that the base station displays
the impact to the user to ensure active communication.
If the device does not have real-time data transmission,
the user can follow manufacturer instructions to ensure
the device is active prior to the data collection session.
To assess battery life, users can verify battery change
via the base station before use. If the base station does
not display a battery life indicator, the user can ensure
the devices were charging for an appropriate amount
of time prior to the event of interest. It is important to
note that battery life tends to decrease over time and it
is recommended practice to periodically run battery
life checks of random devices that are in use for mul-
tiple seasons. It is best practice for users to keep a daily
log of device function on-field to record if/when a de-
vice is determined non-functional for the respective
session due to battery death or sensor connection
failure.

Finally, proper device attachment is critical.8 Many
devices are available, and each has its own attachment
method (e.g., via skin, teeth, helmet). Manufacturers
often provide instructions to ensure proper attach-
ment, and it is important to follow these instructions
prior to each data collections session. For example, to
improve coupling of helmet-mounted devices, the user
can conduct helmet fittings according to the helmet
manufacturer’s guidelines to ensure proper fit. For
mouthguard mounted devices, the user can ensure that
the device fits the athlete comfortably and does not
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easily fall off the upper dentition when inserted. It is
recommended practice to monitor proper fit periodi-
cally during the data collection period, when possible,
and throughout the season to assess and address
changes in fit or attachment. If this happens, it is rec-
ommended practice to have a protocol in place
whereby users can remedy the deficiency during a
stoppage in play that does not impact normal game-
play or practice.

In addition to the on-field deployment best practices
and general considerations for wearable device selec-
tion, the following list highlights important issues with
on-field deployment logistics and best practices:

� Number of staff and training The number of staff
required will reflect the size of the team cohort, the
ease of attachment, device-to-system connection
and initiation protocols, and available pre-game or
pre-practice preparation time. Staff will require
training and a high degree of technical knowledge
may be required, depending on the system. Con-
sistent device deployment is one important aspect
of obtaining reliable data, including fit/application
of devices prior to deployment. Thus, it is impor-
tant that training is standardized across all staff
and staff follow standard operating procedures.
Standard operating procedures should be available
to staff at each data collection event for reference.

� Wearable device matches the sport and intentions of
the study In some cases, research teams may be
limited to a single device. But, if the research team
has a choice between various devices, one of several
factors to be considered is the sporting environ-
ment and the purpose of the study. Some devices
are limited to helmeted sports and even certain
types of helmets while other devices attach directly
to the participant’s head. There are pros and cons
to each device and each needs to be carefully
considered, along with laboratory assessed device
performance.

� Follow the manufacturers’ instructions for system
operation and device attachment With an increasing
variability in available wearable devices, users must
be familiar with operation and attachment manu-
facturer instructions for their specific device. Users
should be aware that device fit, and adherence
could change over the course of a session or season
and should consult the manufacturers recommen-
dations to ensure consistency. Proper fit should be
regularly monitored during the season to assess
and address changes in fit or attachment. Where
possible, proper fit should be monitored during the
activity itself as well.

� Device reference checks Ideally, each device would
be checked for functionality automatically during
the device-to-system connection process. In addi-
tion, a quality assurance process should be consid-
ered to check that the device is calibrated and
providing accurate and reliable measurements. A
quality assurance process might include random
sampling of devices for laboratory calibration
checks and randomly assigned video verification
of device-recorded events during the data collection
period. This may help identify devices that may
need attention or participant behavior that needs
to be corrected (e.g., chewing on mouthguard,
throwing helmet, fiddling with device during ses-
sion). The sampling protocol would reflect the
known error rates in the devices.

� Keep daily log of data collection activities At a
minimum, event start and end times, device func-
tionality, and individual attendance can be
recorded in a daily log to track data collection
activities and facilitate data review (see ‘‘Data
Windowing’’ section). Many research teams report
that they window the data sets based on event times
because the devices record ‘impacts’ during warm-
ups and breaks. The actual HAEs are often
reduced substantially once only event times are
considered. Beyond event times, users should
consider noting other potential instances where
device recorded events might be recorded uninten-
tionally. This will vary widely by the device that is
used. Some examples might be team water breaks
during practices where players remove mouth-
guards and helmets, long breaks in play such as
injury timeouts or intermissions, or periods in a
game where the research team visually verifies the
device is not attached properly (see ‘‘Data Win-
dowing’’ section).

� Personal health information (PHI) data protection,
data storage and record keeping, confidentiality,
privacy, and informed consent are all important
considerations The research team should ensure the
study participants, or their legal guardians have
provided informed consent and that data are
protected and confidential. Study teams should
avoid using participant names that could be
displayed on a base station where a bystander
could observe real-time impacts. Data sharing
protocols need to be considered relative to local
procedures and approved by the respective institu-
tional review boards. The study team should
consider whether data will be shared with individ-
ual participants or at a team or league level. If they
are shared, it is best practice to ensure the
participant understands the limitations of on-field
head impact data and present the data in a way
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that is understandable to the lay person. The
research team should also have awareness of device
data storage policies (e.g., use of a cloud architec-
ture) and ensure that local institutional review
board regulations and policies are followed for
storing human subject data.

� Hygiene All wearable devices will be exposed to
body fluids. Therefore, it is best practice that
infection control procedures are implemented for
handling and use. This will generally involve
gloves, cleaning, and disposal protocols. It is also
best practice to clean devices according to manu-
facturer recommendations on a regular basis.54

� Data review It is recommended practice for study
team members to conduct preliminary data reviews
on a regular basis throughout the data collection
window. Data review will assist in team and
individual participant management but will also
identify any systematic issues that require investi-
gation.
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