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Chaos on the hypercube and other places

Mark McCartney

Faculty of Computing, Engineering and Built Environment, Ulster University, Belfast, UK

ABSTRACT
Using the sawtoothmapas thebasis of a coupledmap lattice enables
simple analytic results to be obtained for the global Lyapunov spec-
tra of a number of standard lattice networks. The results presented
canbeused to enrich a course on chaos or dynamical systemsbypro-
viding tractable examples of higher dimensional maps and links to a
number of standard results in matrices. A number of suggestions for
classroom use are given.
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1. Introduction

Chaos is most frequently introduced to students via the logistic map

xn+1 = αxn(1 − xn). (1)

As the control parameter α is increased the logistic map illustrates post transient
behaviour which decays to fixed point x∗ = 0 (0 < α ≤ 1); fixed point x∗ = 1 − 1

α
(1 ≤

α < 3); period two orbit x∗
1,2 = α+1±√

(α−3)(α+1)
2α (3 ≤ α < 1 + √

6); and for α ≥ 1 + √
6

the post transient behaviour repeatedly period doubles to period 4, 8, 16, 32 orbits, reach-
ing aperiodic behaviour at the so-called accumulation point α∞ � 3.5699456718. At this
point the behaviour of the map is chaotic and beyond the accumulation point the map
exhibits rich behaviour with chaos abruptly ceasing to give periodic windows which then
period double back into chaos. All of this can be visually summarised in a Feigenbaum
diagram where post-transient behaviour is plotted as a function of control parameter α

(Figure 1). The logistic map is a particularly powerful pedagogic example, illustrating as it
does how a seemingly innocuous quadratic iterator leads to enormously rich behaviour.

A system is defined as chaotic if it fulfils three criteria:

(1) The orbit is bounded in a finite region of space.
(2) The orbit is aperiodic.
(3) The orbit is sensitive to initial conditions.

Further, chaos can be quantified via the global Lyapunov exponent, which gives a mea-
sure of the rate of separation of neighbouring points as they are iterated – and thus gives a
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Figure 1. Feigenbaum diagram for the logistic map showing period doubling into chaos.

numerical measure of criterion 3 above. For a general one-dimensional map of the form

xn+1 = f (xn) (2)

the global Lyapunov exponent is defined as

λg = lim
M→∞

1
M

M∑
i=1

ln |f ′(xi)| (3)

with evaluation being carried out numerically over a large number (say 107) of post-
transient iterations. If λg > 0, and the first two criteria hold, the system is chaotic.

An even simpler map than the logistic map, but one not so frequently introduced to
students, is the sawtooth, or ‘chopper’ map,

xn+1 = αxn mod 1. (4)

This map has the advantage that, apart from at a finite set of discontinuities (which we will
ignore), its first derivative is a constant, α, and so the global Lyapunov exponent can by
immediately evaluated as

λg = lnα.

Clearly if α > 1 we expect (4) to be chaotic, though formally a certain amount of care is
required (see question 2 ofClassroomExercises). The Feigenbaumdiagramof the sawtooth
map is shown in Figure 2.
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Figure 2. Feigenbaum diagram for the sawtooth map. Note the absence of period doubling behaviour
and immediate coverage of the entire unit interval in comparison to the logistic map.

2. Coupledmaps

A simple and powerful way to generalise a one-dimensional map is to use the idea of
a coupled map lattice (CML). Visually this can be thought of as a network with a one-
dimensional map of functional form f (x) at each node whose value is updated via a linear
combination of the outputs of the other maps to which it is connected.

Thus, if we have a set ofN maps, with the value of the jth map at the nth timestep being
defined as xjn then a CML can be defined by

xn+1 = AF(xn) (5)

where

xn =

⎛
⎜⎜⎜⎜⎜⎝

x1n
x2n
:
:
xNn

⎞
⎟⎟⎟⎟⎟⎠ F(xn) =

⎛
⎜⎜⎜⎜⎜⎝

f (x1n)

f (x2n)
:
:

f (xNn )

⎞
⎟⎟⎟⎟⎟⎠ (6)

and A is a constant coupling matrix, with the constraints that none of the elements of A
are negative and that the sum of each row adds to unity. For N coupled maps, instead
of one Lyapunov exponent we have a spectrum of N of them and the evaluation of this
spectrum is a generalisation of the one dimensional procedure defined by (3). Instead of
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the log of a single derivative averaged over a large number of iterations we have the log of
the eigenvalues of the product of the Jacobians of the system averaged over a large number
of iterations.

Given the Jacobian of the CML,

J(xn) =

⎡
⎢⎢⎢⎢⎢⎣

a11f ′(x1n) a12f ′(x2n) .. .. a1Nf ′(xNn )

a21f ′(x1n) a22f ′(x2n) .. .. a2Nf ′(xNn )

: : :
: : :

aN1f ′(x1n) aN2f ′(x2n) .. .. aNNf ′(xNn )

⎤
⎥⎥⎥⎥⎥⎦ (7)

we evaluate the matrix product,

J̃M =
M∏
n=1

J(xn). (8)

If the N eigenvalues of J̃M are {�1
M ,�2

M , . . . ,�N
M} then the corresponding global

Lyapunov exponents of the system are given by {λ1g , λ2g , . . . , λNg } where

λ
j
g = lim

M→∞
1
M

ln |�j
M| (9)

If any of the global Lyapunov exponents is greater than zero then the CML is chaotic,
and if more than one of the global Lyapunov exponents is greater than zero then the CML
is said to be hyper-chaotic.

As in the one-dimensional case, the use of the sawtooth map simplifies matters dramat-
ically with the Jacobian matrix immediately reducing to the constant matrix

J = αA (10)

meaning that the global Lyapunov spectrum {λ1g , λ2g , . . . , λNg } is given by

λ
j
g = ln |αej| (11)

where ej is the jth eigenvalue ofA. Thus, we have reduced the significant numerical problem
of evaluating the Lyapunov spectrum to the problem of evaluating the eigenvalues of a
single constant matrix.

2.1. The eigenvalues of somematrices

Before going further, we will state without proof the eigenvalues of the following N × N
matrices.

(a)

B =

⎡
⎢⎢⎢⎢⎣
b 1 1 .. 1
1 b 1 .. 1
1 1 b .. 1
: : : : :
1 1 1 b

⎤
⎥⎥⎥⎥⎦ (12)

has eigenvalues b + N − 1 and b − 1, with the second of these being of multiplicity
N − 1.
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(b) The circulant matrix

C =

⎡
⎢⎢⎢⎢⎣
a b 0 .. b
b a b .. 0
0 b a .. 0
: : : : :
b 0 0 .. a

⎤
⎥⎥⎥⎥⎦ (13)

has eigenvalues,

ej = a + 2b cos
(
2π j
N

)
j = 1 . . .N. (14)

(c) Finally, the 2N+1 distinct eigenvalues for the adjacency matrixHN for the 2Nvertices
of an N dimensional hypercube are

ei = 2i − N i = 0 . . .N (15)

with the ith eigenvalue having multiplicity
(
N
i

)
.

Clearly the size of the adjacency matrix grows exponentially with the hypercube
dimension, withHN being 2N × 2N , but an illustrative example is the adjacencymatrix
H2 for the square:

H2 =

⎡
⎢⎢⎣
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤
⎥⎥⎦ . (16)

See question 2 of classroom exercises for the evaluation of H3 and H4.

2.2. Evaluating the Lyapunov Spectra for some standard CMLs

These three results allow us to evaluate global Lyapunov spectra for corresponding stan-
dard CMLs.

(a) A fully connected CML

The first is a fully connected lattice ofN nodes where each node is connected to each of
the N-1 other nodes with a coupling constant ε

N−1 and connected to itself with coupling
constant 1 − ε, giving rise to N × N coupling matrix,

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ε
ε

N − 1
ε

N − 1
..

ε

N − 1
ε

N − 1
1 − ε

ε

N − 1
..

ε

N − 1
ε

N − 1
ε

N − 1
1 − ε ..

ε

N − 1
: : : : :
ε

N − 1
ε

N − 1
ε

N − 1
.. 1 − ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17)
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Comparing with (12) we note that for the sawtooth map the Jacobian can be written as

J1 = αA1 = αε

N − 1
B (18)

where

b = (N − 1)
1 − ε

ε
. (19)

This leads immediately to the eigenvalues of J1 being given by α and α
(
1 − εN

N−1

)
with

the second of these being of multiplicity N − 1 and hence the distinct global Lyapunov
exponents are

λ1g = ln |α|, λ2g = ln
∣∣∣∣α

(
1 − εN

N − 1

)∣∣∣∣ . (20)

(b) Nearest Neighbour Coupling

The most common form of CML is where each node is symmetrically coupled to it
nearest neighbours via a coupling matrix of the form:

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ε ε
2 0 .. ε

2
ε
2 1 − ε ε

2 .. 0

0 ε
2 1 − ε .. 0

: : : : :
ε
2 0 0 .. 1 − ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

where we note that the lattice forms a closed loop with the first node being connected to
the last.

Comparing with (13) we note that for the sawtooth map the Jacobian of this system can
be written as

J2 = αC (22)

where

a = α(1 − ε)

b = αε

2
. (23)

Using (14) this immediately leads to the global Lyapunov spectrum being given by

λig = ln
∣∣∣∣α

(
1 − 2εsin2

(
iπ
N

))∣∣∣∣ i = 1 . . .N. (24)

(c) A CML on the hypercube
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For a hypercube in N dimensional space each of the 2N vertices will be attached to N
others. We assume the coupling strength between the connected vertices is ε

N and the cou-
pling of a vertex to itself is 1 − ε. We next note that the diagonal elements of the adjacency
matrix (16) are all zero, with all other elements either zero or one. Thus, the couplingmatrix
for the N dimensional hypercube can be written as:

AN = ε

N
HN + (1 − ε)I2N (25)

where In is the n× n unit matrix. Finally, we note that for the sawtooth map the Jacobian
of this system can be written as,

JN = αAN (26)

and using (15) give the eigenvalues to be

ei = α

(
1 − 2εi

N

)
i = 0 . . .N (27)

with the ith eigenvalue being of multiplicity
(
N
i

)
and thus the spectrum of N+1 distinct

global Lyapunov exponents is

λig = ln
∣∣∣∣α

(
1 − 2εi

N

)∣∣∣∣ i = 0 . . .N. (28)

It should be noted that in each of the three cases above, (20), (24), (28), the largest
Lyapunov exponent is ln |α|and thus, irrespective of the lattice structure the system can
only be chaotic if α > 1. Further, as ε → 0 (ie the lattice becomes unconnected) each sys-
tem becomes maximally hyperchaotic as all the Lyapunov exponents approach ln |α|, each
corresponding to an independent map at each lattice node.

3. Conclusions

Undergraduate teaching of discrete chaos frequently does not move beyond one dimen-
sion, covering systems such as the logistic, tent and Ricker maps. While two dimensional
coupled maps, such as the Hénon map, kicked rotor, or ball bouncing on a vibrating plate,
can be found in textbooks, (see for example Elaydi, 2008, pp. 228–237; Hilborn, 2000, p.
197; Tél &Márton, 2006, p. 174, 234) the evaluation of Lyapunov exponents for two dimen-
sional systems is rarely discussed (with a significant, and very helpful exception being
Sprott, 2003, p. 110). Further, the investigation of coupled maps of dimension greater than
two is usually ignored altogether in undergraduate texts due to the difficulties in finding
analytic results (e.g. fixed points and their stability) in larger systems and the need formore
advanced numerical methods to evaluate global Lyapunov spectra.

However, as this paper has sought to show the use of the sawtooth map allows for
the analytic evaluation of Lyapunov spectra for a range of coupled maps via the use of
some standard results in matrix algebra, thus bringing the topic within reach of the under-
graduate curriculum. The introduction of these ideas could of course be made at a more
elementary level than described here, with the coupling matrixA being restricted to a two-
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or three-dimensional system with numerical elements. But the generalisation of the sys-
tem to higher dimensions is both elegant and relatively straightforward and provides the
student with an introduction to some standard eigenvalue results and to the research area
of coupled map lattices.

3.1. Classroom exercises

(1) Plot the sawtooth map (4) for a range of values of α.
(2) It is noted in the paper that ‘a certain amount of care’ is required in using the sawtooth

map. As an example, consider α = 10. In such a case, starting with x0 as any n digit
decimal the map would reach a fixed point of zero after n iterations, and formally the
map is only chaotic if the initial condition is irrational. What would the behaviour of
themap be if x0 = 1

7 ? Howwould you expect themap to behave if α = 2? (Hint: think
in terms of binary).

(3) In the paper the adjacency matrix ofH2 is given. What is the adjacency matrix forH3
and H4? For the cube H3 can be constructed visually, but H4 is less obvious. Use the
fact that in general if the vertices of an N dimensional hypercube are labelled in binary
from 0 to 2N−1, then a pair of vertices are connected if their binary representation has
a Hamming distance of one, i.e. differs by only one digit. For both H3 and H4 use a
computer algebra package to verify the form of the eigenvalues.

(4) By using repeated column subtractions, show that the eigenvalues of (12) are as stated
in the paper.

(5) The Kolmogorov-Sinai entropy density, K, of a CML is defined as the sum of the
positive global Lyapunov exponents divided by the number of lattice nodes:

K = 1
N

∑
λig>0

λig . (29)

Show that for the fully connected lattice (17) with the sawtooth map (4),

K = ln |α| + N − 1
N

ln
∣∣∣∣
(
1 − εN

N − 1

)∣∣∣∣ (30)

provided α > 1 and ε <
(α−1)(N−1)

αN or ε >
(α+1)(N−1)

αN .

(6) Construct a coupling matrix for a CML based on the sawtooth map corresponding to
an octahedron where each vertex is connected to its four neighbours by a coupling
strength ε

4 and to itself with strength 1 − ε. Given that the adjacency matrix for the
octahedron has eigenvalues 0, −2, 4 (with multiplicities 3, 2, 1 respectively), what is
the global Lyapunov spectrum for the system?

(7) Write a computer program to calculate the time series for a four node CML with
nearest neighbour coupling as defined by the coupling matrix (21) and the sawtooth
map on each node. Investigate the behaviour of the system by plotting Feigenbaum
diagrams as a function of α for a range of coupling constants ε.
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