)

Check for
updates

Comparative Study of Activation Functions
and Their Impact on the YOLOVS Object
Detection Model

John Dohertyl(g) , Bryan Gardiner! ®, Emmett Kerr! ®, Nazmul Siddique1 s
and Sunilkumar S. Manvi2

1 Intelligent Systems Research Centre, Ulster University, Northland Road, Derry BT48 7JL,
United Kingdom
{doherty-j92,b.gardiner, ep.kerr,nh.siddique}@ulster.ac.uk
2 School of Computer Science and Engineering, REVA University, Karnataka 560064, India
Ssmanvi@reva.edu.in

Abstract. Object detection is an important aspect of computer vision research,
involving determining the location and class of objects within a scene. For an
object detection system to run in real-time, it is vital to minimise the computa-
tional costs while maintaining an acceptably high accuracy. In a Convolutional
Neural Network (CNN) there is a direct correlation between the accuracy and
the computational cost incurred by increasing the number of layers. Activation
functions play a key role in a CNN to utilise nonlinearity to help balance the
computational cost and accuracy. In this paper, a series of improvements are pro-
posed to the state-of-the-art one-stage real-time object detection model, YOLOVS,
providing the capability to enhance the overall performance. The validity of replac-
ing the current activation function in YOLOVS5, Swish, with a variety of alterna-
tive activation functions was investigated to aid in improving the accuracy and
lowering the computational costs associated with visual object detection. This
research demonstrates the various improvements in accuracy and performance
that are achievable by appropriately selecting a suitable activation function to use
in YOLOVS, including ACON, FReLU and Hardswish. The improved YOLOVS
model was verified utilising transfer learning on the German Traffic Sign Detection
Benchmark (GTSDB) achieving state-of-the-art performance.

Keywords: Activation function - Deep learning - Object detection - YOLO

1 Introduction

Since the launch of the Microsoft Common Objects in Context (MSCOCO) dataset in
2015, many research teams have been striving to achieve state-of-the-art object detection
performance on this dataset. Many researchers have used Convolutional Neural Network
(CNN) based object detectors. These detectors can be separated into one-stage and two-
stage detectors. Two-stage visual object detection models have seen a vast improvement
in accuracy, however, much of this comes at the cost of increased inference time. For

© Springer Nature Switzerland AG 2022
M. El Yacoubi et al. (Eds.): ICPRAI 2022, LNCS 13364, pp. 40-52, 2022.
https://doi.org/10.1007/978-3-031-09282-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09282-4_4&domain=pdf
http://orcid.org/0000-0002-2167-6101
http://orcid.org/0000-0001-5642-6850
http://orcid.org/0000-0002-4551-1272
http://orcid.org/0000-0002-0642-2357
http://orcid.org/0000-0002-3623-6723
https://doi.org/10.1007/978-3-031-09282-4_4

Comparative Study of Activation Functions and Their Impact 41

a system to be capable of running in real-time, it is vital that computational costs are
minimised while ensuring that the accuracy is not severely impacted. To enable this, a
recent rise has been seen in the development and usage of CNN-based one-stage object
detection models [1]. These one-stage object detection models can achieve impressive
accuracy, rivalling that of some two-stage object detectors, while running with sub-
stantially lower computational costs. This allows for these one-stage object detectors
to run at incredible speeds on standard computer hardware or embedded systems [2].
While developing these one-stage object detection models, an extremely wide variety
of activation functions have been utilised [3-5].

Activation functions are utilised in deep learning networks to enable the transfor-
mation of a weighted input signal to an output signal, which in turn enables the transfer
of this output signal to the next layer in the network. The prediction accuracy of a deep
learning network relies heavily on a variety of factors, two of the most important are
the number of layers within the network, and the activation function used [6]. The ideal
number of layers that should be utilised as well as the specific activation function that
should be chosen varies based on the application of the network. Adding additional lay-
ers to a deep learning network may positively impact its performance, but it will do so
at great cost to computational time [7]. To offset the increase in computational time, it
is an option to alter the activation function to achieve improved performance.

An activation function creates a differentiator between a deep learning network and
a linear regression model. If a deep learning network has no activation function, the
predicted output will be proportional to the provided input [8]; similarly, if a linear
activation function is utilised, the output will be similar to the input, with the addition
of some small error. A non-linear activation function enables a deep network to take full
advantage of its ability to learn from noisy data, such as the errors present in real-world
input data [9]; in a CNN, this can be seen as a non-linear activation function being applied
after each convolutional layer, with the activation function converting the output from
the convolutional layer into a suitable input for the next layer in a non-linear manner.
This change is one of the key reasons deep learning networks have seen such widespread
adoption in object detection, as the use of non-linear activation functions can allow for
quicker interpretation of complex data without the need of adding additional hidden
layers, helping to keep computational costs as low as possible.

In 2016, Redmon et al. [10] proposed the YOLO algorithm. YOLO, or You Only
Look Once, has went through many iterations, through to YOLOVS in 2020 [11]. This
paper modifies the most modern, accurate and extremely efficient YOLOVS providing
an improved model which will enhance accuracy and reduce inference time and will
be made available for use in many real-time object detection tasks. This is achieved by
introducing a variety of state-of-the-art activation functions which are applied to a create
anovel version of YOLOVS. The improved YOLOVS models are then trained and tested
on MSCOCO proposing a selection of models which outperform the standard imple-
mentation. The top performing models are then trained and tested on the German Traffic
Sign Detection Benchmark (GTSDB) dataset achieving state-of-the-art performance for
a real-time object detection method.

The remainder of this paper is organised as follows. Section 2 includes a brief
overview of CNN architectures for general object detection followed by traffic sign

42 J. Doherty et al.

object detection, while Sect. 3 discusses the architecture of YOLOVS5 in detail, while
also outlining the various activation functions that have been used throughout the exper-
iments. Section 4 features details of the experimental work, alongside the analysis of
the experimental results, while Sect. 5 concludes the paper and discusses the direction
of future work.

2 Related Work

As previously discussed, CNN-based object detection models can be divided into a vari-
ety of categories, including one-stage, two-stage, anchor-based and anchor-free detec-
tors. For the purpose of this research, focus will be placed on one-stage detectors as they
achieve a good balance of inference time and computational overhead.

Feng et al. [12] proposed a task-aligned one-stage object detection model (TOOD)
which utilises a task-aligned head and learning mechanism, aiming to provide balance
between the classification and localisation tasks within object detection - TOOD achieves
a Mean Average Precision (mAP) at 0.5 of 60.0 on MSCOCO.

Fully Convolutional One-Stage (FCOS) is a one-stage object detector which solves
object detection in a per-pixel prediction fashion [13]. This network eliminates the need
of anchor boxes, vastly reducing computational costs. FCOS achieved a peak mAP at
0.5 of 64.1 on MSCOCO.

Chen et al. [14] proposed a Location-Aware Multi-Dilation (LAMD) module, which
embeds spatial information from the head into the classifier, which improves robustness
to the shifting of bounding boxes. They successfully implemented LAMD into state-of-
the-art one-stage object detectors and improved the performance of ResNet-50 mAP at
0.5 on MSCOCO from 55.0 to 59.7.

You Only Look Once (YOLO) is a family of object detectors which have pushed the
envelope for performance of one-stage object detectors. YOLO revolutionized the one-
stage object detection method, by only giving an image one full forward pass through a
single neural network prior to classification [10]. YOLO splits the input image into a s x
s grid pattern, with each grid cell being responsible for predicting bounding boxes and
confidence scores for objects. YOLO features a variety of advantages when compared
to other one-stage object detectors, including the utilisation of global context, as the
network evaluates the entire image at test time, along with speed that is an order of
magnitude faster than other comparable one-stage object detectors [15].

CNN-based object detection models have been used for a wide variety of tasks, but
an increasingly popular task is real-time traffic sign detection due to the increase into
research surrounding autonomous driving.

Zhu et al. [16] proposed a novel labelled traffic sign detection dataset consisting of
over 100,000 images with 30,000 traffic-sign instances gathered from Tencent Street
Views, called the Tsinghua-Tencent 100k (TT100K). They also designed an end-to-
end CNN-based object detector which achieved 88% accuracy in traffic sign detection
in TT100K, compared to Fast R-CNN which achieved 50% accuracy. The TT100K
dataset features a few problems, including extreme class imbalance, along with 100,000
images, with only 10,000 of those containing a traffic sign, meaning 90% of the dataset
are background images.

Comparative Study of Activation Functions and Their Impact 43

Zhang et al. [17] utilised a YOLOvV3 based approach to achieve real-time detection
on small traffic signs. Their model utilised data augmentation, mainly through image
mixup. Alongside this, they also used a multi-scale spatial pyramid pooling block in
Darknet53 to learn object features more comprehensively. While training the model on
the TT100K dataset. They achieved a mAP of 86% in detection while running at 23.81
FPS.

Liang et al. [18] developed a two-stage network which utilises a deep feature pyramid
architecture with lateral connections, along with a densely connected CNN to strengthen
the feature transmission, leading to more accurate classification with less parameters.
They achieved 95% Area Under Precision-Recall Curve (AUC) on traffic sign detec-
tion from the GTSDB, and 82%-100% Accuracy across multiple TT100K classes,
approximately a 10%—15% improvement from Faster R-CNN in the same task.

Wang et al. [19] proposed a traffic sign detection method which utilises histogram of
oriented gradient and a “coarse-to-fine” sliding window scheme to achieve high recall
and precision ratios, while also being robust to adverse situations including back lighting,
occlusion and low quality.

3 Methodology

3.1 YOLOV5 Network Architecture

As YOLOVS is yet to have a published peer-reviewed scientific paper from the creator,
the YOLOVS5 GitHub page has served as the main source of information to date regarding
the model [11]. The network structure of YOLOVS, presented in Fig. 1, can be described
as follows:

e The backbone is a modified version of the original DarkNet [10] architecture used
across the family of YOLO models. The version in YOLOvVS has been written in
Python and modified to utilise Cross-Stage-Partial-Connections (CSP). This is based
on the utilisation of CSPs in YOLOv4 [20]. The backbone receives input images with
a 640 x 640 x 3 resolution. This input is transformed into a 320 x 320 x 12 feature
map, followed by a convolutional operation of 32 kernels, becoming a 320 x 320 x
32 feature map.

e The neck is a modified Path Aggregation Network (PANet). The PANet is utilised to
generate feature pyramids at multiple scales to enhance the model’s ability to detect
and recognise objects of varying sizes [21].

e The head is a standardised YOLO head. It takes inputs at 3 scales (8, 16, 32), which
enables it to detect small, medium, and large objects respectively. Previous sin-
gle scale heads have been tested on YOLOVS and perform worse than the current
implementation.

There are a few features specific to YOLOvS which help improve its performance
over previous iterations, including the use of the BottleneckCSP module which performs
feature extractions on the feature map, as well as the use of mosaic data augmentation and
auto learning bounding box anchors. When compared with other large-scale CNNs, this
module can help reduce gradient information duplication in the optimisation process

44 J. Doherty et al.

[22]. YOLOVS has been noted to achieve similar or even higher accuracy at a lower
computational cost when compared to YOLOvV4 [23], while YOLOV4 achieved a ~10%
higher mAP than YOLOV3 [24].

CSPDarknet Backbone PANet Neck YOLO Head

BottleNeckCSP Concatenate BottleNeckCSP
Upsample Conv.3x3
m concatenate

Concatenate BottleNeckCSP

BottleNeckCSP

' i m
Conv' 1 X 1

BottleNeckCSP BottleNeckCSP

BottleNeckCSP

Fig. 1. YOLOVS network structure

3.2 Activation Functions

There are a wide range of potential activation functions to choose from when attempting
to create the most optimal object detector. As YOLOVS is a one-stage detector with
a large focus placed on computational efficiency, it is believed that the best activation
functions to evaluate are those which will have a minimal impact on computational cost
while simultaneously increasing accuracy.

In its default configuration, YOLOVS5 uses the Swish activation function [25]. Swish
can be best described as an activation function which nonlinearly interpolates between
a standard linear function and the ReL.U activation function [26]. Swish is generally
viewed as a best-of-both-worlds scenario between a linear and a more complex non-linear
activation function. It has been noted that Swish improves performance on ImageNet
when compared to the ReLU and Sigmoid functions [27].

A Sigmoid activation function, sometimes referred to as a squashing function is
much more complex than a linear activation function due to its use of an exponential
term which causes increased computational cost, while also being much better at learning
nonlinearity in patterns in wide datasets. A Sigmoid function has some major drawbacks,
including sharp damp gradients during backpropagation from deeper hidden layers, along
with gradient saturation and slow convergence [28].

The LeakyReLU activation function is an improved version of the ReLU [29] acti-
vation function. Whereas ReLU is a piecewise linear function that outputs the input
directly if positive, otherwise, outputting zero, LeakyReLU provides a small positive
slope for negative values [30]. This alleviates the dying ReLU problem, where nodes

Comparative Study of Activation Functions and Their Impact 45

within a deep network are inactive and only output O for any input. LeakyReLU often
performs on par or slightly better than ReL.U [31].

The Flexible Rectified Linear Units (FReLU) activation function is a modified ver-
sion of the ReLU activation function, where the rectified point of ReLU is redesigned as
a learnable parameter [32]. FReLU tends to converge on a negative value, improving the
expressiveness and performance while being no more computationally expensive than
the original ReL U or LeakyReLU.

Hardswish is a modified version of the Swish activation function. Hardswish replaces
the more computationally expensive sigmoid section of the Swish activation function
with a piecewise linear analogue section [33], making Hardswish less computationally
expensive than Swish while maintaining a similar accuracy.

Activate or Not (ACON) modifies the Maxout [34] activation function in a similar
manner as to how Swish modifies ReLU. ACON has a dynamic non-linear degree with
a switching factor that decays to zero as the non-linear function becomes linear. ACON
has been noted to improve performance in ImageNet when compared to Swish and ReLU
[35].

Mish is inspired by Swish, and uses the Self-Gating property where the non-
modulated input it multiplied by the output of the non-linear function of the input [36].
Mish has shown improvements in both final accuracy and stability when compared with
ReLU and Swish [37].

The mathematical functions and ranges of each activation function are represented
in Table 1.

Table 1. Further activation function information

Activation function Mathematical definition Range (x)
Swish fo) =x% (14e)7" —0.28, +00
. . 1
Sigmoid fx) = Tre— 0, +1
0.01x i 0
LeakyReLU fx) = *ifx<0) —00, 400
X if (x> 0)
br i 0
FreLU Foy= | TLie=0 — 00, 400
by if(x=0)

0 if(x < =3)
Hardswish S =1x if (x > +3) —1, 400

X - ’%3 otherwise

ACON F(x) = (P} — Py)x - 0 (B(P) — Pa)x) + Pox —00, +00
Mish fx) = %—Zw —0.31, 400

46 J. Doherty et al.

4 Experiments

4.1 Datasets

The experiments are conducted using two separate datasets. Firstly, the models are
trained from scratch on the MSCOCO dataset. MSCOCO features over 328,000 images
across 80 classes with an extremely wide range of images, alongside annotations for
object detection including bounding boxes and per-instance segmentation masks.

The second dataset is the German Traffic Sign object detection dataset (GTSDB)
containing 900 images across four classes; mandatory, danger, prohibitory and other.
Each image in the dataset is fully annotated with bounding boxes and per-instance
segmentation masks and is originally split into 600 training images and 300 evaluation
images. As GTSDB is not natively supported by YOLOvS due to the annotation type
used, a pre-processing step of converting its annotations to a format which YOLOvS
requires was completed. During this, the dataset split was also changes to 80% training,
10% testing and 10% validation.

4.2 YOLOVS Model Selection

YOLOVS5 features four models: YOLOvSs, YOLOvSm, YOLOvSI, YOLOv5x. These
models all include the core features of YOLOVS but feature an increasing number of
BottleneckCSP modules and hyperparameters, increasing both accuracy and inference
time. The advertised inference time and mAP on the COCO test-dev dataset can be seen
in Table 2.

Table 2. Comparison of YOLO models [11]

Model Input size mAP mAP Speed (ms)
0.5:0.95 0.5

YOLOVSs 640 x 640 36.7 55.4 2.0

YOLOvVSm 640 x 640 44.5 63.1 2.7

YOLOvSI 640 x 640 48.2 66.9 3.8

YOLOVSs 640 x 640 50.4 68.8 6.1

Based on this, it was decided to utilise the YOLOvS5I model as the basis for the object
detection model as it is believed it has the best balance of accuracy to inference time.

4.3 Experimental Setup

The experiments feature a two-pronged approach. Initially, MSCOCO is utilised as
the training dataset and the various YOLOvVS models are trained from scratch with
modified activation functions. An activation function comparative analysis is conducted,
comparing vital factors in performance including inference and training time, along with

Comparative Study of Activation Functions and Their Impact 47

Precision, Recall, also known as True Positive Rate (TPR) and equivalent to the inverse
of the False Positive Rate (FPR), and mAP. Following this, the top performing models are
used to complete a series of transfer learning experiments to determine which achieves
the best performance on the GTSDB dataset.

4.4 Activation Function Comparative Analysis

A number of experiments were conducted using the YOLOvS models with modified
activation functions. Firstly, the models were trained on the MSCOCO dataset for a set
number of 1000 epochs; this training occurred with default YOLOvS5 dataset augmen-
tation, with the resolution of each training image augmented from the original 640 x
480 pixels to 640 x 640 pixels. This is required as the default configuration of YOLOvV5
expects a 640 x 640 input to map correctly to the three scaled outputs. Each experiment
was run on the Kelvin2 Cluster, which is a part of the Northern Ireland High Performance
Computing (NI-HPC) cluster [38]. The experiments were carried out on an Nvidia Tesla
V100 graphics card with 32 GB of VRAM, along with 4 cores of an AMD EPYC 7702
64-Core Processor, acting as 8 data loaders, and a batch size of 32 (with the exception
of ACON, requiring a batch size of 16 to fit into the 32 GB VRAM limit). It was found
that the peak performance of each activation function occurred at different points in the
training cycle, so the results for the peak performance have been shown, and the epoch
this performance was achieved at has been noted; along with the time taken per epoch
(in minutes). The results from these various experiments can be seen in Table 3.

Table 3. Experimental results from training from scratch on MSCOCO with modified activation
functions on YOLOVS5I

Activation Epoch |Precision |Recall | mAP | mAP Inference | Time | Total
function 0.5 0.5:0.95 | speed per training
(ms) epoch |time
(min) | (hours)
Swish 274 0.706 0.602 | 0.648 |0.452 6.8 35 159.8
ACON 272 0.694 0.611 |0.650 |0.456 10.5 110 498.7
FReLU 437 0.729 0.604 |0.658 |0.459 9.0 45 327.8
Hardswish | 465 0.712 0.603 | 0.649 |0.456 6.5 22 170.5
LeakyReLU |472 0.726 0.591]0.646 |0.450 6.7 25 197.7
Mish 341 0.658 0.544 |0.578 |0.393 6.9 10 56.8
Sigmoid 799 0.724 0.583 |0.633 |0.439 6.7 24 319.6

Upon analysis of the obtained results, both Hardswish and LeakyReL U either match
or exceed the default Swish activation function (in terms of mAP) while maintaining a
similar inference time and reduced training time while some others, namely FReLU and
ACON, achieve an extremely higher mAP at the cost of some computational overhead
during both inference and training.

48 J. Doherty et al.

From these results it has been noted that FReL U is the best performer, achieving the
highest Precision at 0.729, mAP 0.5 at 0.658 and mAP 0.5:0.95 at 0.459, while losing
to ACON in Recall which scored 0.610. A close runner up to FReLU and ACON is
Hardswish, achieving a Precision of 0.712, Recall of 0.602, mAP 0.5 of 0.649 and mAP
0.5:0.95 of 0.459. This is a drop of only 0.017, 0.001, 0.009 and 0.003 respectively,
achieving the same training and inference time as the default Swish activation function.

While these results demonstrate improvement on the current state-of-the-art, it is
important to note that FReLU took 45 min per epoch, almost double that of Swish, while
also running 2.2 ms slower per image, equating to a real-world performance drop of
36 FPS. It is also important to note that each activation function performed similarly
from a computational standpoint with the exception of FReLU and ACON. This is to
be expected as these are much more complex activation functions which require greater
computational overhead to utilise. Surprisingly, Mish completed each epoch in only
10 min, while still taking 6.9 ms per image.

It is vital to consider the combination of both the number of epochs required for
an activation function to achieve its best performance, along with the time taken for
each epoch to be completed. ACON achieves peak performance at only 272 epochs,
but with each epoch taking over 110 min this equates to a real-world training time of
almost 500 h, while FReLU requires 437 epochs at 45 min each, which is over 327 h
of training. Hardswish achieves peak performance at 465 epochs, with each epoch only
taking 25 min, meaning this is only 194 h of training, under half of the training time
required for ACON and around 2/3 of the time required for FReLU.

For this reason, it is recommended that when aiming for the best balance of training
time and performance, the Hardswish activation function should be selected to replace
the standard Swish activation function in the YOLOV51 model, as Hardswish achieves
better precision, recall, mAP 0.5 and mAP 0.5:0.95 for a marginal training time increase
and slightly lower computational cost at run-time.

If a peak in accuracy is required while still being able to run in real-time, the rec-
ommendation is to select FReLU as the desired activation function. FReLU achieves
the highest precision, mAP 0.5 and mAP 0.5:0.95 out of all tested activation functions,
while still running at over 110 FPS.

4.5 Model Verification Using Transfer Learning

Following from the previous experiments and to verify the proposed models, further
experiments were completed to investigate which YOLOv5 model will achieve the best
performance on the GTSDB dataset. Transfer learning was utilised as GTSDB is a small
dataset which is not well suited to full training from scratch. These experiments were
completed on the same hardware and settings as previously used.

The fully trained Swish, FReLU and Hardswish models from the previous experi-
ments were used as the basis for transfer learning. Using the weights generated from
the previous experiment, two independent training sessions for each set of weights were
created. Firstly, each model was trained with the first 24 layers frozen, leaving only the
final fully connected layer unfrozen. This should provide the quickest training time, at
the cost of some accuracy. Following this, the same initial weights were reused, and the
experiment was repeated, but only the first 10 layers representing the backbone were

Comparative Study of Activation Functions and Their Impact 49

frozen; this should slightly increase the training time but provide substantially higher
accuracy. The results from the transfer learning experiment are presented in Table 4.

Table 4. Experimental results from transfer learning on GTSDB with modified activation
functions on YOLOVS5I

Activation function | Precision | Recall | mAP0.5 | mAP0.5:0.95 | Speed (ms)

10 layers frozen

Swish 0.956 0.894 0.937 0.773 9.6
FReLU 0.950 0.915 0.944 0.774 13.0
Hardswish 0.972 0.937 0.960 0.801 9.4
24 layers frozen

Swish 0.641 0.391 0.478 0.308 9.6
FReLU 0.600 0.555 0.579 0.406 12.8
Hardswish 0.650 0.346 0.455 0.266 9.9

The results from the transfer learning experiments show that impressive results can
be achieved with minimal training. Each model took around 50-200 epochs to achieve
their top performance, with each epoch taking between 3 and 5 s. The exact time per
epoch or number of epochs for each result was not noted as they are within the margin
of error, and peak performance can be achieved in a matter of minutes.

Some key observations can be made from the analysis of these results; firstly, the
performance from freezing only the initial 10 layers is vastly superior to the performance
of freezing all layers other than the final layer. This is to be expected, as the GTSDB
dataset is quite small at only 900 images, and extremely different than the original
MSCOCO dataset the network is pretrained on.

Secondly, similar comparisons to the original experiment on MSCOCO can be
drawn. Both FReLU and Hardswish outperform Swish in mAP 0.5 and 0.5:0.95, while
Hardswish has a marginally lower inference time, and FReLU has a significantly higher
inference time. In contrast to the original experiment, Hardswish performs higher than
FReLU across the board while running over 3 ms quicker per image.

The results from Hardswish with the first 10 layers frozen are state-of-the-art for
the GTSDB dataset, outperforming previous examples such as Rajendran et al. [39]
achieving a 0.922 mAP 0.5 at 100 ms per image on a modified YOLOvV3 network.

The results presented are key in showing the improvements in accuracy that can
be gained by improving the existing YOLOVS model through changing the activation
function with a choice of suggested activation functions. The improved YOLOVS5 model
achieves a higher accuracy than current state-of-the-art GTSDB models outlined in
Sect. 2.

50 J. Doherty et al.

5 Conclusion

In this paper an in-depth analysis of the effects of changing the existing Activation
Function in the YOLOV5 object detection model was completed. The experimental
results show that a significant improvement in mAP can be found by replacing the stan-
dard Swish activation function with a variety of others, including FReLU, ACON and
Hardswish. This work was expanded, showing the potential application of the improved
YOLOvVS5] models on the task of real-time traffic sign object detection. This paper demon-
strates the improvements in performance than be achieved by using a synergistic strategy
focusing on activation function and transfer learning balance. Future work will focus
on further improvements to YOLOVS, including modifying model structure, potentially
replacing the PANet neck, as well as improving the top performing YOLOvSI models
through further hyperparameter tuning utilising a genetic algorithm.

References

1. Sultana, F.,, Sufian, A., Dutta, P.: A review of object detection models based on convolutional
neural network. In: Advances in Intelligent Systems and Computing, pp. 1-16 (2020)

2. Soviany, P., Ionescu, R.T.: Optimizing the trade-off between single-stage and two-stage
deep object detectors using image difficulty prediction. In: 20th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC (2018)

3. Hou, Q., Xing, J.: KSSD: single-stage multi-object detection algorithm with higher accuracy.
IET Image Process. 14(15), 3651-3661 (2020). https://doi.org/10.1049/iet-ipr.2020.0077

4. Kim, S., Kim, H.: Zero-centered fixed-point quantization with iterative retraining for deep
convolutional neural network-based object detectors. IEEE Access 9, 20828-20839 (2021).
https://doi.org/10.1109/ACCESS.2021.3054879

5. Shakarami, A., Menhaj, M.B., Mahdavi-Hormat, A., Tarrah, H.: A fast and yet efficient
YOLOV3 for blood cell detection. Biomed. Sig. Process. Control 66, 102495 (2021). https://
doi.org/10.1016/j.bspc.2021.102495

6. Goyal, M., Goyal, R., Reddy, P.V., Lall, B.: Activation functions. In: Pedrycz, W., Chen, S.-M.
(eds.) Deep Learning: Algorithms and Applications. SCI, vol. 865, pp. 1-30. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-31760-7_1

7. Patel, S., Patel, A.: Object detection with convolutional neural networks. In: Joshi, A., Khos-
ravy, M., Gupta, N. (eds.) Machine Learning for Predictive Analysis. LNNS, vol. 141,
pp- 529-539. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-7106-0_52

8. Goodfellow, 1., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

9. Li, S., Chen, S., Liu, B.: Accelerating a recurrent neural network to finite-time convergence
for solving time-varying Sylvester equation by using a sign-bi-power activation function.
Neural Process. Lett. 37, 189-205 (2013). https://doi.org/10.1007/s11063-012-9241-1

10. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time
object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp- 779-788. IEEE (2016)

11. Jocher, G.: YOLOVS5 Github. https://github.com/ultralytics/yolov5

12. Feng, C., Zhong, Y., Gao, Y., Scott, M., Huang, W.: TOOD: task-aligned one-stage object
detection. In: IEEE/CVF International Conference on Computer Vision, pp. 3510-3519
(2021)

13. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection.
In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9626-9635. IEEE
(2019)

https://doi.org/10.1049/iet-ipr.2020.0077
https://doi.org/10.1109/ACCESS.2021.3054879
https://doi.org/10.1016/j.bspc.2021.102495
https://doi.org/10.1007/978-3-030-31760-7_1
https://doi.org/10.1007/978-981-15-7106-0_52
https://doi.org/10.1007/s11063-012-9241-1
https://github.com/ultralytics/yolov5

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Comparative Study of Activation Functions and Their Impact 51

. Chen, Q., Wang, P, Cheng, A., Wang, W., Zhang, Y., Cheng, J.: Robust one-stage object

detection with location-aware classifiers. Pattern Recogn. 105, 107334 (2020). https://doi.
org/10.1016/j.patcog.2020.107334

Hui, J.: Real-time Object Detection with YOLO, YOLOv2 and now YOLOV3. https://jon
athan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
Zhu,Z.,Liang,D.,Zhang, S., Huang, X., Li, B., Hu, S.: Traffic-sign detection and classification
in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp- 2110-2118 (2016)

Zhang, H., et al.: Real-time detection method for small traffic signs based on Yolov3. IEEE
Access 8, 64145-64156 (2020). https://doi.org/10.1109/ACCESS.2020.2984554

Liang, Z., Shao, J., Zhang, D., Gao, L.: Traffic sign detection and recognition based on
pyramidal convolutional networks. Neural Comput. Appl. 32(11), 6533-6543 (2019). https://
doi.org/10.1007/s00521-019-04086-z

Wang, G., Ren, G., Wu, Z., Zhao, Y., Jiang, L.: A robust, coarse-to-fine traffic sign detection
method. In: International Joint Conference on Neural Networks (IJICNN), pp. 1-5. IEEE
(2013)

Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: YOLOv4: optimal speed and accuracy of object
detection. arXiv (2020)

Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8759-8768. IEEE
(2018)

Tan, S., Lu, G., Jiang, Z., Huang, L.: Improved YOLOV5 network model and application in
safety helmet detection. In: IEEE International Conference on Intelligence and Safety for
Robotics (ISR), pp. 330-333. (2021)

Nelson, J.: YOLOVS is here: state-of-the-art object detection at 140 FPS. https://blog.rob
oflow.com/yolov5-is-here/. Accessed 11 Dec 2021

Ampadu, H.: Yolov3 and Yolov4 in object detection. https://ai-pool.com/a/s/yolov3-and-yol
ov4-in-object-detection

Solawetz, J., Nelson, J.: YOLOVS improvement strategy. https://blog.roboflow.com/how-to-
train-yolov5-on-a-custom-dataset/. Accessed 10 Dec 2021

Ramachandran, P., Zoph, N., Le, Q. V.: Searching for activation functions. In: 6th International
Conference on Learning Representations, ICLR 2018 - Workshop Track Proceedings (2018)
Ye, A.: Swish: booting ReLU from the activation function throne. https://towardsdatascience.
com/swish-booting-relu-from-the-activation-function-throne-78f87e5ab6eb. Accessed 13
Dec 2021

Nwankpa, C., [jomah, W., Gachagan, A., Marshall, S.: Activation Functions: Comparison of
trends in Practice and Research for Deep Learning (2018)

Shen, F., Gan, R., Zeng, G.: Weighted residuals for very deep networks. In: 3rd International
Conference on Systems and Informatics (ICSAI), pp. 936-941 (2016)

Xu, J., Li, Z., Du, B., Zhang, M., Liu, J.: Reluplex made more practical: leaky ReLU. In:
IEEE Symposium on Computers and Communications (ISCC), pp. 1-7 (2020)

Khalid, M., Baber, J., Kasi, M.K., Bakhtyar, M., Devi, V., Sheikh, N.: Empirical evaluation of
activation functions in deep convolution neural network for facial expression recognition. In:
43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 204—
207 (2020)

Qiu, S., Xu, X., Cai, B.: FReLU: flexible rectified linear units for improving convolutional
neural networks. In: 24th International Conference on Pattern Recognition (ICPR), pp. 1223—
1228 (2018)

Howard, A., et al.: Searching for MobileNetV3. In: IEEE/CVF International Conference on
Computer Vision ICCV), pp. 1314-1324. IEEE (2019)

https://doi.org/10.1016/j.patcog.2020.107334
https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://doi.org/10.1109/ACCESS.2020.2984554
https://doi.org/10.1007/s00521-019-04086-z
https://blog.roboflow.com/yolov5-is-here/
https://ai-pool.com/a/s/yolov3-and-yolov4-in-object-detection
https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/
https://towardsdatascience.com/swish-booting-relu-from-the-activation-function-throne-78f87e5ab6eb

52

34.

35.
36.
37.

38.
39.

J. Doherty et al.

Castaneda, G., Morris, P., Khoshgoftaar, T.M.: Evaluation of maxout activations in deep
learning across several big data domains. J. Big Data 6(1), 1-35 (2019). https://doi.org/10.
1186/540537-019-0233-0

Ma, N., Zhang, X., Liu, M., Sun, J.: Activate or not: learning customized activation (2020)
Misra, D.: Mish: a self regularized non-monotonic activation function (2019)

Wright, L.: Meet Mish—new state of the art Al activation function. The successor
to ReLU? https://lessw.medium.com/meet-mish-new-state-of-the-art-ai-activation-function-
the-successor-to-relu-846a6d93471f. Accessed 09 December 2021

Northern Ireland High Performance Computing. https://www.ni-hpc.ac.uk/about/
Rajendran, S.P, Shine, L., Pradeep, R., Vijayaraghavan, S.: Real-time traffic sign recognition
using YOLOV3 based detector. In: International Conference on Computing, Communication
and Networking Technologies, ICCCNT (2019)

https://doi.org/10.1186/s40537-019-0233-0
https://lessw.medium.com/meet-mish-new-state-of-the-art-ai-activation-function-the-successor-to-relu-846a6d93471f
https://www.ni-hpc.ac.uk/about/

	 Preface
	 Organization
	 Contents – Part II
	 Contents – Part I
	Pattern Recognition
	PE-former: Pose Estimation Transformer
	1 Introduction
	2 Related Work
	2.1 Vision Transformers
	2.2 Transformers for Pose Estimation

	3 Method
	3.1 Transformer Encoder
	3.2 Transformer Decoder
	3.3 Training

	4 Experiments
	4.1 Evaluation Methodology
	4.2 Comparison with SOTA
	4.3 Transformer vs CNN vs VAB Encoders
	4.4 Unsupervised Pre-training

	5 Conclusions
	References

	ConDense: Multiple Additional Dense Layers with Fine-Grained Fully-Connected Layer Optimisation for Fingerprint Recognition
	1 Problem Background
	2 Related Work
	3 Methods
	4 Experiment Data
	5 Experiment Setup
	6 Experiment Results
	6.1 Ablation Study
	6.2 Architecture Performance
	6.3 Comparison to Related Work

	7 Conclusion
	References

	A Sensor-Independent Multimodal Fusion Scheme for Human Activity Recognition
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Sensor Independent Fusion Model
	3.2 Data Augmentation Method

	4 Evaluation
	5 Conclusions and Future Work
	References

	Comparative Study of Activation Functions and Their Impact on the YOLOv5 Object Detection Model
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 YOLOv5 Network Architecture
	3.2 Activation Functions

	4 Experiments
	4.1 Datasets
	4.2 YOLOv5 Model Selection
	4.3 Experimental Setup
	4.4 Activation Function Comparative Analysis
	4.5 Model Verification Using Transfer Learning

	5 Conclusion
	References

	Application of A* to the Generalized Constrained Longest Common Subsequence Problem with Many Pattern Strings
	1 Introduction
	2 The State Graph for GCLCS Problem
	3 A* Search for the GCLCS Problem
	4 Experimental Evaluation
	5 Conclusions and Future Work
	References

	Robot Path Planning Method Based on Improved Grey Wolf Optimizer
	1 Introduction
	2 Grey Wolf Optimizer
	3 An Improved GWO Based on Random Walk and Dynamic Programming (RWDPGWO) to Solve the Robot Path Planning Problem
	3.1 The Two Algorithms are Mixed to Quickly Find the Initial Path
	3.2 Random Walk Nonlinear Adjustment Step Size Factor to Improve Search Efficiency
	3.3 Improve Search Strategy Based on DP Algorithm Idea
	3.4 Use Spline Curve B-spline Curve to Optimize the Path
	3.5 Algorithm Flow

	4 Simulation
	4.1 Comparison of RWDPGWO and GWO Simulation
	4.2 Comparison of RWDPGWO with GA and PSO
	4.3 Comparison of RWDPGWO and Various Improved ACO

	5 Conclusion
	References

	Space-Time Memory Networks for Multi-person Skeleton Body Part Detection
	1 Introduction
	2 STM Multi-person Skeleton Body Part Detection
	2.1 STM Architecture
	2.2 STM-skeletons Architecture
	2.3 Training

	3 Results
	3.1 Video Skeleton Segmentation
	3.2 Video Skeleton Edge Prediction
	3.3 Video Pose Estimation

	4 Conclusion
	References

	Lip-Based Identification Using YOLOR
	1 Introduction
	2 Literature Study
	2.1 Problem Background
	2.2 Similar Work

	3 Experiment Setup
	3.1 Dataset Selection
	3.2 Proposed Architecture

	4 Results
	5 Discussion
	6 Conclusion
	References

	Parallel O(log(n)) Computation of the Adjacency of Connected Components
	1 Introduction
	1.1 Motivations and Notations

	2 The RtC Algorithm for Pyramid Construction
	2.1 Edge Classification
	2.2 Selecting the Contraction Kernel
	2.3 Redundant Edges
	2.4 Parallel Pyramidal Connected Component (//ACC)

	3 Parallel Complexity
	4 Comparisons and Results
	5 Conclusions
	References

	Encoding Sensors' Data into Images to Improve the Activity Recognition in Post Stroke Rehabilitation Assessment
	1 Introduction
	2 Dataset Description and Preparation
	3 Encoding Pipeline
	3.1 Encoding Techniques
	3.2 Image Fusion and Interpolation
	3.3 Experimental Results

	4 Conclusion
	References

	Momentum Residual Embedding with Angular Marginal Loss for Plant Pathogen Biometrics
	1 Introduction
	2 Related Work
	3 Research Methodology
	3.1 Backbone Network
	3.2 Momentum
	3.3 Loss Function
	3.4 Training and Implementation

	4 Experimental Results
	4.1 Datasets Description
	4.2 Results and Comparison
	4.3 Qualitative Analysis
	4.4 Ablation Study
	4.5 Discussion

	5 Conclusion and Future Works
	References

	Classification
	Hierarchical Approach for the Classification of Multi-class Skin Lesions Based on Deep Convolutional Neural Networks
	1 Introduction
	2 Methodology
	2.1 Convolutional Neural Networks

	3 Experimental Results and Discussion
	3.1 Dataset
	3.2 Evaluation Metrics
	3.3 Results and Discussion

	4 Conclusion
	References

	The FreshPRINCE: A Simple Transformation Based Pipeline Time Series Classifier
	1 Introduction
	2 Background
	2.1 State of the Art for TSC
	2.2 Unsupervised Time Series Transformations

	3 Experimental Structure
	4 Results
	4.1 Implementation and Reproduction of Results

	5 Conclusion
	References

	Robust Detection of Conversational Groups Using a Voting Scheme and a Memory Process
	1 Introduction
	2 Related Work
	3 Proposed Approach: Multiple Votes and Exploiting Temporal Information
	3.1 Voting in Each Frame
	3.2 Increasing Robustness by Taking into Account Temporal Memory

	4 Experiments and Results
	4.1 MatchNMingle Data Set
	4.2 Evaluation Criteria
	4.3 Parameter Setting
	4.4 Results

	5 Conclusion
	References

	Fusing AutoML Models: A Case Study in Medical Image Classification
	1 Introduction
	2 Background
	2.1 Pattern Recognition with AutoML
	2.2 Fusion

	3 Datasets
	3.1 MSU Stem Cell Dataset
	3.2 Brain Tumor Classification
	3.3 Prostate Cancer Classification

	4 Proposed Approach
	4.1 Data Extraction
	4.2 Data Descriptors Through Feature-Sets
	4.3 Model Generation
	4.4 Model Scores
	4.5 Model Selection for Fusion

	5 Results and Analysis
	6 Summary
	References

	Ordinal Classification and Regression Techniques for Distinguishing Neutrophilic Cell Maturity Stages in Human Bone Marrow
	1 Introduction
	2 Materials and Methods
	2.1 Image Data
	2.2 Classification Techniques
	2.3 Regression Techniques
	2.4 Experimental Setup

	3 Results
	4 Discussion
	5 Conclusion
	References

	Towards Automated Monitoring of Parkinson’s Disease Following Drug Treatment
	1 Introduction
	1.1 Learning Algorithms
	1.2 rs-fMRI Data

	2 Methods
	2.1 Overview
	2.2 Participants
	2.3 Procedure
	2.4 rs-fMRI Acquisition
	2.5 Imaging Data Analysis
	2.6 Cartesian Genetic Programming
	2.7 Adaptive Synthetic Sampling
	2.8 k-Fold Cross-Validation

	3 Results
	3.1 Classification of Timeseries
	3.2 Classification of Dynamic Causal Modeling (DCM)
	3.3 k-Fold Cross-Validation

	4 Conclusion
	References

	A Hierarchical Prototypical Network for Few-Shot Remote Sensing Scene Classification
	1 Introduction
	2 Few-Shot Classification with Prototype Learning
	2.1 Problem Formulation of the FSL
	2.2 Prototypical Networks

	3 A Hierarchical Prototypical Network for Few-Shot Image Classification
	3.1 Overall Framework
	3.2 Hierarchical Prototypical Network

	4 Few-Shot Learning for Remote Sensing Scene Classification
	4.1 Dataset Description
	4.2 Implementation Details
	4.3 Evaluation Metrics
	4.4 Experimental Results

	5 Conclusion and Future Works
	References

	TS-QUAD: A Smaller Elastic Ensemble for Time Series Classification with No Reduction in Accuracy
	1 Introduction
	2 Background and Related Work
	2.1 Classification in the Time Domain
	2.2 The Elastic Ensemble (EE) and Extensions

	3 EE with Fewer Constituents: TS-QUAD
	4 Experimental Procedure
	5 Results
	6 Conclusions, Future Work and Extensions
	References

	Machine Learning
	Shop Signboards Detection Using the ShoS Dataset
	1 Introduction
	2 Related Work
	2.1 Street View Imagery Object Detection
	2.2 Storefront Dataset

	3 The ShoS Dataset
	3.1 Data Collection
	3.2 Data Annotation
	3.3 Challenges and Limitation

	4 Experiments
	5 Results and Discussion
	6 Conclusion
	References

	One-Shot Decoupled Face Reenactment with Vision Transformer
	1 Introduction
	2 Methods
	2.1 Facial Feature Extractor and Optical Flow Estimation
	2.2 Landmark Reenactment Module
	2.3 Face Reenactment Module
	2.4 Loss Function

	3 Experiments
	3.1 Model Variants
	3.2 Metrics
	3.3 Analysis

	4 Conclusions
	References

	ADG-Pose: Automated Dataset Generation for Real-World Human Pose Estimation
	1 Introduction
	2 Related Work
	3 Real-World Pose Estimation Challenges
	4 ADG-Pose
	5 Results and Evaluation
	6 Conclusion
	References

	Deep Reinforcement Learning for Autonomous Navigation in Robotic Wheelchairs
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 MDP Formulation
	3.2 Solving the MDP

	4 Experiments and Results
	4.1 Training
	4.2 Evaluation

	5 Conclusions
	References

	Understanding Individual Neurons of ResNet Through Improved Compositional Formulas
	1 Introduction
	2 Related Work
	3 Algorithmic Compositional Explanations
	3.1 Setup
	3.2 Connecting Annotated Concepts

	4 Locality and the ImRoU Metric
	5 Results
	5.1 Scene-Level Annotations
	5.2 Scores

	6 User Study
	6.1 Study Design
	6.2 Results
	6.3 Discussion

	References

	Visual Transformer-Based Models: A Survey
	1 Introduction
	2 Transformer
	2.1 Transformer Architecture
	2.2 Attention
	2.3 Other Components

	3 ViT (Vision Transformer)
	4 Transformer-Based Models
	4.1 ViT Variants for Image Classification
	4.2 Transformer-Based General Backbone

	5 Discussions and Conclusions
	References

	Stochastic Pairing for Contrastive Anomaly Detection on Time Series
	1 Introduction
	2 Related Works
	2.1 Reconstruction Based Time Series Anomaly Detection
	2.2 Self Supervised Contrastive Learning
	2.3 Time Series Augmentation

	3 Our Approach
	3.1 Preprocessing and Stochastic Pairing
	3.2 Shape-Dynamic Time Warping
	3.3 Augmentation Methods
	3.4 Learning Architecture
	3.5 Anomaly Score
	3.6 Detection Method

	4 Experiments on Public Datasets
	5 Effects of Parameter Settings
	5.1 Augmentation Techniques
	5.2 Batch Parameters

	6 Conclusion
	References

	Visual Radial Basis Q-Network
	1 Introduction
	2 Related Works
	3 Background
	3.1 Reinforcement Learning
	3.2 Radial Basis Function Network (RBFN)

	4 Method
	4.1 Selection of RBF Parameters
	4.2 Vizdoom Scenarios

	5 Analysis of Pattern Activations
	6 Reinforcement Learning Application
	7 Conclusion
	References

	GANs Based Conditional Aerial Images Generation for Imbalanced Learning
	1 Introduction
	2 Methods
	2.1 Datasets
	2.2 Generative Adversarial Networks

	3 Evaluation
	4 Results and Discussion
	4.1 Data Preprocessing
	4.2 Generation and Evaluation

	5 Conclusion
	References

	Augment Small Training Sets Using Matching-Graphs
	1 Introduction and Related Work
	2 Basic Definitions
	3 Augment Training Sets by Means of Matching-Graphs
	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Data Sets
	4.3 Validation of Metaparameters
	4.4 Test Results and Discussion

	5 Conclusion and Future Work
	References

	Progressive Clustering: An Unsupervised Approach Towards Continual Knowledge Acquisition of Incremental Data
	1 Introduction
	2 Related Works
	3 Progressive Clustering
	3.1 Incremental Data Generation for Progressive Clustering
	3.2 Latent Space Representation
	3.3 Initial Clustering
	3.4 Proximity Clustering
	3.5 Detection of Concept Drift
	3.6 Collateral Clustering
	3.7 Deep Dynamic Incremental Classification

	4 Experimental Setup
	4.1 About the Datasets
	4.2 Evaluation Metrics

	5 Results and Discussions
	5.1 Evaluation Methodology
	5.2 Qualtitative Study

	6 Conclusion
	References

	Malware Detection Using Pseudo Semi-Supervised Learning
	1 Introduction
	2 Related Work
	2.1 Semi-Supervised Learning
	2.2 Pseudo-Labeling

	3 Proposed Framework
	3.1 Model
	3.2 Regularization

	4 Experiments
	4.1 Dataset
	4.2 Comparison Methods
	4.3 Training and Evaluation

	5 Results and Discussion
	6 Conclusion
	References

	Information Extraction
	Temporal Disaggregation of the Cumulative Grass Growth
	1 Introduction
	2 Data
	3 Methodology
	3.1 Formalization and General Approach
	3.2 Pre and Post Processings
	3.3 Order of Models and Initialization

	4 Experiments and Results
	4.1 Comparison of the Prediction Models
	4.2 Effect of Approximating the First Values
	4.3 Improvements by Post-processings
	4.4 Qualitative Evaluation of Reconstructions

	5 Related Work
	6 Conclusion
	References

	Extraction of Entities in Health Domain Documents Using Recurrent Neural Networks
	1 Introduction
	2 Related Work
	3 Proposed Solution
	3.1 Information Pre-processing
	3.2 Identification of Entities

	4 Results
	4.1 Description of the Corpus
	4.2 Pre-processing Results
	4.3 Results: Word Embedding
	4.4 System Results for Entity Identification
	4.5 Evaluation of the Proposed Systems
	4.6 Results of the Systems Proposed in eHealth-KD Challenge 2021

	5 Conclusion
	References

	An Overview of Methods and Tools for Extraction of Knowledge for COVID-19 from Knowledge Graphs
	1 Introduction
	2 COVID-19 Knowledge Graphs and Search Engines
	2.1 Search Engines in Internet for COVID-19 Information
	2.2 Introduction of Leading Knowledge Graphs for COVID-19 and Data Sets

	3 Definition of Constraints When Building COVID-19 Knowledge Graph
	3.1 COVID-19 Data Constraints
	3.2 Respect the Quality of the Data When Constructing Knowledge Graph
	3.3 Scale Constraints in Knowledge Graph Construction
	3.4 Constraints Defined from Interface Presentation Tools and Visualizations
	3.5 Social Constraints

	4 Introduction to COVID-19 Reasoning from KGs
	4.1 Definition of Knowledge Reasoning Applied for Extraction of COVID-19 from KGs ch90refspsarticle14
	4.2 General Model for COVID-19 Knowledge Reasoning from KGs
	4.3 Classification of Knowledge Reasoning Oriented for COVID-19 Entity Extraction ch90refspsarticle14

	5 Conclusions
	References

	Explaining Image Classifications with Near Misses, Near Hits and Prototypes
	1 Introduction
	2 Methodology
	2.1 Data Sets
	2.2 Models and Embeddings
	2.3 Architecture Overview

	3 Prototype Selection
	3.1 Prototype Selection Using Maximum Mean Discrepancy
	3.2 Parameter Selection
	3.3 Evaluation

	4 Near Miss and Hit Selection
	4.1 Evaluation

	5 Demonstrator
	6 Conclusion and Future Work
	References

	Adaptive Threshold for Anomaly Detection in ATM Radar Data Streams
	1 Introduction
	2 Related Work
	3 Method
	3.1 VPOT Approach
	3.2 Methodology

	4 Experimental Assessment
	4.1 Experimental Protocol
	4.2 Data Set
	4.3 Benchmarking
	4.4 Observation
	4.5 Discussion

	5 Conclusion and Future Work
	References

	Covid-19 Vaccine Sentiment Analysis During Second Wave in India by Transfer Learning Using XLNet
	1 Introduction
	2 Methodology
	3 Experimentation and Results
	3.1 Dataset Preparation
	3.2 Results

	4 Conclusion
	References

	Improving Drift Detection by Monitoring Shapley Loss Values
	1 Introduction
	2 Related Work
	2.1 Drift Detection
	2.2 Shapley Values
	2.3 Shapley Values for Machine Learning
	2.4 Shapley Loss Values

	3 Shap-ADWIN: Drift Detection on Shapley Values
	3.1 Intuition
	3.2 Mathematical Foundations

	4 Experimental Results
	4.1 Background Dataset
	4.2 Influence of Noise on Drift Detection
	4.3 Influence of Sensitivity of the Detector

	5 Conclusion
	References

	Interpolation Kernel Machine and Indefinite Kernel Methods for Graph Classification
	1 Introduction
	2 Graph Kernels
	3 Interpolation Kernel Machines
	4 Indefinite Kernel Methods
	4.1 Need of Indefinite Kernel Methods
	4.2 Indefinite Interpolation Kernel Machines
	4.3 Indefinite Support Vector Machines

	5 Experimental Results
	6 Extended Experimental Protocol
	7 Conclusion
	References

	DRN: Detection and Removal of Noisy Instances with Self Organizing Map
	1 Introduction
	2 Related Work
	3 DRN: Our Proposed Framework
	3.1 Noise and Outliers in Learning
	3.2 Self-organizing Map and Outlier
	3.3 DRN

	4 Experiments
	4.1 Experimental Methodology
	4.2 Results

	5 Conclusions
	References

	Informativeness in Twitter Textual Contents for Farmer-centric Plant Health Monitoring
	1 Introduction
	2 Use Cases and Data Collection
	3 Histogram by Mention of Keywords
	4 Processing Tweets for Natural Hazard Detection
	4.1 Topic Detection Based on Bag of Word Models
	4.2 Text Classification Based on Pre-trained Language Models

	5 Conclusion
	References

	A Deep Learning Approach to Detect Ventilatory Over-Assistance
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Acquisition and Filtering
	3.2 Automatic Breath Segmentation
	3.3 Automatic Breath Labeling
	3.4 Breath Classification

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Breath Segmentation Evaluation
	4.3 Classification Assessment

	5 Discussion and Future Work
	References

	Author Index

