Implications Derived from S-Protein Variants of SARS-CoV-2 from Six Continents

Sk. Sarif Hassan^{a,*}, Kenneth Lundstrom^b, Pabitra Pal Choudhury^c, Giorgio Palu^d, Bruce D. Uhal^e, Ramesh Kandimalla^f,

Murat Seyran^g, Amos Lal^h, Samendra P. Sherchanⁱ, Gajendra Kumar Azad^j, Alaa A. A. Aljabali^k, Adam M. Brufsky^l,

Ángel Serrano-Aroca^m, Parise Adadiⁿ, Tarek Mohamed Abd El-Aziz^o, Elrashdy M. Redwan^p, Kazuo Takayama^q,

Debmalya Barh^r, Nima Rezaei^s, Murtaza Tambuwala^t, Vladimir N. Uversky^{u,*}

^aDepartment of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, 721140, West Bengal, India

^bPanTherapeutics, Rte de Lavaux 49, CH1095 Lutry, Switzerland

^cApplied Statistics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700108, India

^dDepartment of Molecular Medicine, University of Padova, Via Gabelli 63, 35121, Padova, Italy

^eDepartment of Physiology, Michigan State University, East Lansing, MI 48824, USA

^f Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Department of Biocemistry, Kakatiya Medical College, Warangal, Telangana, India

^gDoctoral Studies in Natural and Technical Sciences (SPL 44), University of Vienna, Währinger Straße, A-1090 Vienna, Austria

^hDivision of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA

 iDepartment of Environmental Health Sciences, Tulane University, New Orleans, LA, 70112, USA

^jDepartment of Zoology, Patna University, Patna, Bihar, India

^kDepartment of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Faculty of Pharmacy, Irbid 566, Jordon ^lUniversity of Pittsburgh School of Medicine, Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center,

Pittsburgh, PA, USA

^m Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San

Vicente Mártir, c/Guillem de Castro, 94, 46001 Valencia, Valencia, Spain

ⁿDepartment of Food Science, University of Otago, Dunedin 9054, New Żealand

^oDepartment of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San

Antonio, TX 78229-3900, USA, & Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt

^pFaculty of Science, Department of Biological Science, King Abdulazizi University, Jeddah 21589, Saudi Arabia, & Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria 21934, Egypt

^qCenter for iPS Cell Research and Application, Kyoto University, Japan

^rCentre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, WB, India, & Departamento de Genética, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas

 $Gerais, \ Belo \ Horizonte, \ Minas \ Gerais, \ Brazil$

^sResearch Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran, & Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Rio de Janeiro, Sweden

^tSchool of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK, UK

^uDepartment of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA

Abstract

Spike (S) proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are critical determinants of the infectivity and antigenicity of the virus. Several mutations in the spike protein of SARS-CoV-2 have already been detected, and their effect in immune system evasion and enhanced transmission as a cause of increased morbidity and mortality are being investigated. From pathogenic and epidemiological perspectives, spike proteins are of prime interest to researchers. This study focused on the unique variants of S proteins from six continents: Asia, Africa, Europe, Oceania, South America, and North America. In comparison to the other five continents, Africa (29.065%) had the highest percentage of unique S proteins. Notably, only North America had 87% (14046) of the total (16143) specific S proteins available in the NCBI database(across all continents). Based on the amino acid frequency distributions in the S protein variants from all the continents, the phylogenetic relationship implies that unique S proteins from North America are most likely to spread to the other geographic locations through international travel or naturally by emerging mutations. Hence it is suggested that restriction of international travel should be considered, and massive vaccination as an utmost measure to combat the spread of COVID-19 pandemic. It is also further suggested that the efficacy of existing vaccines and future vaccine development must be reviewed with careful scrutiny, and if needed, further re-engineered based on requirements dictated by new emerging S protein variants.

Keywords: SARS-CoV-2, Invariant residues, Mutations, Spike protein, Continents, Vaccines.

^{*}Corresponding author

Email addresses: sarimif@gmail.com (Sk. Sarif Hassan), lundstromkenneth@gmail.com (Kenneth Lundstrom),

pabitrapalchoudhury@gmail.com (Pabitra Pal Choudhury), giorgio.palu@unipd.it (Giorgio Palu), bduhal@gmail.com (Bruce D. Uhal), ramesh.kandimalla@gmail.com (Ramesh Kandimalla), muratseyran@gmail.com (Murat Seyran), manavamos@gmail.com (Amos Lal),

sshercha@tulane.edu (Samendra P. Sherchan), gkazad@patnauniversity.ac.in (Gajendra Kumar Azad), alaaj@yu.edu.jo (Alaa A. A. Aljabali), brufskyam@upmc.edu (Adam M. Brufsky), angel.serrano@ucv.es (Ángel Serrano-Aroca), pariseadadi@gmail.com (Parise Adadi), mohamedt1@uthscsa.edu (Tarek Mohamed Abd El-Aziz), lradwan@kau.edu.sa (Elrashdy M. Redwan), kazuo.takayama@cira.kyoto-u.ac.jp

⁽Kazuo Takayama), dr.barh@gmail.com (Debmalya Barh), rezaei_nima@tums.ac.ir (Nima Rezaei), m.tambuwala@ulster.ac.uk (Murtaza Tambuwala), vuversky@usf.edu (Vladimir N. Uversky)

1. Introduction

The world is experiencing a health emergency due to Coronavirus disease (COVID-19), caused by a deadly enveloped positive-sense single-stranded RNA virus, severe acute respiratory syndrome coronavirus (SARS-CoV-2) [1, 2, 3, 4, 5, 6]. The spike (S) protein is a homotrimer present on the surface of the SARS-CoV-2 and recognizes the human host cell surface receptor angiotensin-converting enzyme-2 (ACE2) [7, 8, 9, 10]. From the beginning of the second wave of COVID-19 infection, various SARS-CoV-2 variants variants emerged raising concern of enhanced transmission and mortality of the virus and reduced efficacy of vaccine protection [11, 12]. Some of the studies opposed the perception of SARS-CoV-2 mutations as distinctive pathogenic variants and increased rate of transmissibility were questioned [13, 14]. However, the frequency of the mutant strains within the SARS-CoV-2 population carrying the D614G mutation in the spike protein clearly plays a role in enabling the virus to spread more effectively and rapidly [15]. Epidemiologists have been constantly monitoring the evolution of SARS-CoV-2 with a particular focus on the spike protein and other interacting proteins of the virus [15, 16]. The D614G mutation in the S protein discovered in early 2020 makes the virus able to spread more effectively and rapidly [17]. The D614G mutation has been found to be related with high viral loads in infected patients, and high rate of infections, but not with increased disease severity [18]. Various mutations in the S protein make the SARS-CoV-2 more complex and hence it is more difficult to characterize its severity, infectivity and efficacy of vaccines designed to target S protein. Not all mutations are advantageous to the virus but several mutations or a set of mutations may increase the transmission potential through an increase in receptor binding or the ability to evade the host immune response by altering the surface structures recognized by antibodies [19, 20, 21].

To contain the spread of the COVID-19, it is definitely of high interest to detect and identify various unique emerging variants of S proteins. Additionally, it is also worth investigating the impact of new S protein variants on viral infectivity and potential to spread rapidly as well as to acertain the origin of the spread of the new variants concerning spike protein variabilities. Accordingly, it might be possible to segregate the set of new variants with respect to individual characteristics of SARS-CoV-2, which would undoubtedly help policy makers to form various strategies to contain the spread of the virus. There are a large number of different SARS-CoV-2 S protein mutant sequences currently available in the NCBI virus database. In this study, all available S protein sequences from six continents Asia, Africa, Europe, North America, South America, and Oceania were analyzed for their uniqueness and variability. An inter-linkage was made among the unique S proteins available on the six continents was performed.

2. Data acquisition and methods

S protein sequences from all six continents (Asia, Africa, Europe, Oceania, South America, and North America) were downloaded in Fasta format (on May 7, 2021) from the National Center for Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov/). Further, fasta files were processed in *Matlab-2021a* for extracting unique S protein sequences for each continent.

2.1. Frequency probability of amino acids

Any protein sequence is composed of twenty different amino acids with various frequencies starting from zero. The probability of occurrence of each amino acid A_i is determined by the formula $\frac{f(A_i)}{l}$ where $f(A_i)$ denotes the frequency of occurrence of the amino acid A_i in a primary sequence, and l stands as the length of an S protein [22]. Hence for each S protein, a twenty-dimensional vector considering the frequency probability of twenty amino acids can be obtained. Based on this frequency probability, the dominance of amino acid density in a given protein is illuminated.

2.2. Evaluation of normalized amino acid compositions

The variability of the amino acid compositions of the unique S-proteins from each continent was evaluated using the webbased tool Composition Profiler (*http://www.cprofiler.org/*) that automates detection of enrichment or depletion patterns of individual amino acids or groups of amino acids in query proteins [23]. In this analysis, we used sets of unique S-proteins from each continent as query samples and the amino acid of the original S-protein (UniProt ID: P0DTC2) as a reference sample that provides the background amino acid distribution. Composition profiler generates a bar chart composed of twenty data points (one for each amino acid), where bar heights indicate normalized enrichment or depletion of a given residue. The normalized enrichment/depletion is calculated as

$$\frac{C_{continent} - C_{original}}{C_{original}}$$

where $C_{continent}$ is the content of given residue in the query set of S-proteins in a given continent and $C_{original}$ is the content of the same residue in the original S-protein. For comparison, we generated composition profile of disordered proteins, where normalized composition was evaluated as $\frac{C_{Disprot}-C_{PDB}}{C_{PDB}}$ ($C_{DisProt}$ = content of a given amino acid in the set of intrinsically disordered proteins in the DisProt database [24]; C_{PDB} = content of the given residue in the dataset of fully ordered proteins, PDB Select 25 [23]). In these analyses, the positive and negative values produced in the compositional profiler indicated enrichment or depletion of the indicated residue, respectively.

2.3. Amino acid conservation Shannon entropy

How conserved/disordered the amino acids are organized over S protein is addressed by the information-theoretic measure known as 'Shannon entropy (SE)'. For each S protein, Shannon entropy of amino acid conservation over the amino acid sequence of S protein is computed using the following formula [25, 26]:

For a given amino acid sequence of length l, the conservation of amino acids is calculated as follows:

$$SE = -\sum_{i=1}^{20} p_{s_i} log_{20}(p_{s_i})$$

where $p_{s_i} = \frac{k_i}{l}$; k_i represents the number of occurrences of an amino acid s_i in the given sequence [27].

2.4. Isoelectric point of a protein sequence

The isoelectric point (IP), is the pH at which a molecule carries no net electrical charge or is electrically neutral in the statistical mean. We calculate the theoretical pI by using the pKa's of amino acids and summing the net charge across the protein at a given pH (default is typical intracellular pH 7.2), searching with our algorithm for the pH at which the net charge is zero [28].

Note that the isoelectric point of a protein sequence was computed here using the standard routine of *Matlab-2021a*. This parameter was deployed to characterize the unique S protein sequences, quantitatively.

3. Results

We first determined the set of unique S protein sequences from each continent. Further, every unique S protein from a continent was compared with other unique S proteins from five continents, and the lists of the same are presented in Tables 12-17. Also, the variability of the S proteins from each continent was shown using Shannon entropy and isoelectric point.

3.1. Unique spike proteins in the continents

In Table 1, the number of total sequences, unique sequences and percentages are presented. Note that, a complete list of unique S protein accessions and their names (continent-wise) were made available in *supplementary file-1*. Note that, sequence accession is renamed as Ck where C stands for continent code (Asia:AS, Africa:AF, Oceania:O, Europe:U, South America:SA and North America:NA), and k denotes the serial number.

	Table 1:	Percentages of continent-wise	e unique spike (S) proteins	
Continent	Total S proteins (T)	Unique S proteins (U)	Percentage, continent-wise $\left(\frac{U}{T} \times 100\right)$	Percentage, worldwide $\left(\frac{U}{16143} \times 100\right)$
Africa	984	286	29.065	1.772
Asia	2314	432	18.669	2.676
Europe	1006	187	18.588	1.158
O ceania	9920	1121	11.300	6.944
South America	464	71	15.302	0.440
North America	113072	14046	12.422	87.010
Worldwide	127760	16143	12.635	—

The highest amount (29.065%) of unique S proteins were found in Africa though the total number of available sequences is significantly low as compared with that from other continents. Almost similar amounts (in percentage) of unique S sequence variations were found in Asia and Europe. Among the total 127760 S proteins embedded in SARS-CoV-2 genomes, only 16143 (12%) unique S proteins were detected so far, and notably most of the unique variants (87%) were found in North America only.

For each continent, the unique spike (S) proteins were matched with other unique proteins from the rest of the five continents, and a total number of such identical pairs are presented accordingly in the matrix (Table 2).

Tab	le 2: Co	ontinent-ba	sed frequen	cies of identical S pr	oteins	
Continent-wise	Asia	Africa	Europe	North America	Oceania	South America
Asia	_	25	27	169	17	17
Africa	25	_	15	71	13	5
Europe	27	15	_	76	9	8
North America	169	71	76	-	49	31
Oceania	17	13	9	49	_	5
South America	17	5	8	31	5	_
Total continent-wise	255	129	135	396	93	66
Unique residue S proteins	177	157	52	13650	1028	5

From Table 2, it was observed that, in each continent there is still a significant percentage of unique spike variations available, which are not shared with any rest of the continents. Such percentages of unique variations of S proteins in Asia, Africa, Europe, Oceania, South America, and North America were 41%, 55%, 28%, 92%, 7%, and 97% respectively. The lists of pairs of identical S proteins of SARS-CoV-2 originating from six continents are presented in Tables 9-11 (*Appendix*).

The lists of unique S proteins (from a particular continent), which were found to be identical with some unique spike proteins from other five continents, are presented in Tables (12-17) (Appendix).

The frequency and percentage of invariant residue positions, where no amino acid change was detected so far in the unique S proteins available in each continent, are presented in Table 3.

Table 3: Freque	ency and pe	rcentage (of invariant r	esidue position	ns among 1273 positions	s in unique S proteins
Frequen	cy of inva	riant res	sidue positi	ons in uniqu	ue S proteins from ea	ach continent
Total Freq.	Africa 902	Asia 695	Europe 948	Oceania 731	South America 1070	North America 89
Percentage	70.86	54.60	74.47	57.42	84.05	6.99

The highest number of mutations (lowest number of invariant residue position, 6.99%) (Table 3) were detected in the unique S proteins from North America where 12.42% unique S protein sequences were present as mentioned in Table 1. Likewise, the lowest number (15.95%) of mutations in unique S proteins were observed in South America where 15.3% unique S sequences were found. Only 29.14% residues of 1273 in the unique S proteins were mutated, although a significantly higher number (29.065%) of unique sequences were found in Africa among the other five continents. The unique S proteins from Europe possessed only 25.5% mutations, whereas 45.5% mutations were detected in the unique S proteins from Asia although the same percentage (18.5%) of unique spike proteins were found (Table 1 and 3). Further it was observed that 11.3% of the unique S proteins from Oceania possessed 42.58% mutations.

3.2. Variability through normalized amino acid composition

Additional information on the variability of the amino compositions of the unique S-proteins from each continent relative to the composition of original S-protein from Wuhan was retrieved using the web-based tool Composition Profiler (*http://www.cprofiler.org/*). Results of this analysis are shown in Figure 4A, which clearly shows the presence of some noticeable amino acid composition variability among unique S-proteins from different continents. Since individual S proteins are different from each other and from the original S-protein mostly in very limited number of residues, the range of changes in the normalized enrichment/depletion of a given residue is rather limited (compare scales of Y axis in Figures 1A and 1B, where a composition profile of the intrinsically disordered proteins is shown for comparison).

Figure 1: Composition profiles of unique S-proteins from different continents (A) in comparison with the composition profile of typical intrinsically disordered protein (B).

On an average, unique S-proteins form Oceania were found to have the most variability in terms of normalized amino acid composition. This was followed by the unique S-proteins from North America. Curiously, Figure 1A shows that although the normalized content of individual residues in the unique S-proteins from Oceania is always below that of the original S-protein, S-proteins from other continents might have relative excess of some residues. For example, some unique S-proteins from almost all continents can be enriched in glycine or histidine residues, whereas some European S-proteins can also be relatively enriched in cysteine, isoleucine, tyrosine, phenylalanine, and lysine residues (see positive green bars in Figure 1A). Another interesting observation is that the different sets of S-proteins are typically characterized by rather noticeable variability of the normalized content of most residues. The noticeable exception is given by aspartate, depletion in which is almost uniform between all the unique S-proteins from all the continents.

3.3. Variability of unique spike proteins

We quantitatively determined the variations in the unique S proteins on six continents. The variations were captured through the frequency distribution of amino acids present, Shannon entropy (amount of conservation of amino acids in a given sequence), and molecular weights and isoelectric points of a given protein sequence.

3.3.1. Variations in the frequency distribution of amino acids

The frequency of each amino acid was computed for each unique S protein available in six continents (*Supplementary file-2*). Maximum and minimum frequencies of amino acids present in the unique S proteins from different continents are presented in Table 4.

Table 4: Maximum and minimum frequencies of amino acids present in the unique spike proteins from different continents

Max and Min of	Frequencies	Α	\mathbf{R}	Ν	D	\mathbf{C}	Q	\mathbf{E}	G	н	Ι	\mathbf{L}	к	\mathbf{M}	F	Р	\mathbf{S}	Т	W	Y	v
Africa	$Max\ Min$	80 73	$\begin{array}{c} 44 \\ 40 \end{array}$	89 85		$\begin{array}{c} 41 \\ 38 \end{array}$	$63 \\ 59$	$49 \\ 45$	84 78	$\begin{array}{c} 19\\14 \end{array}$	79 73	$\begin{array}{c} 109 \\ 102 \end{array}$		$\begin{array}{c} 15\\ 13 \end{array}$	78 72		$\begin{array}{c} 101 \\ 94 \end{array}$	98 90	$\begin{array}{c} 13\\11 \end{array}$	$\frac{56}{49}$	98 93
Asia	Max Min	80 73	$\frac{44}{39}$	89 80	$\frac{63}{55}$	$\frac{41}{36}$	$\begin{array}{c} 63 \\ 56 \end{array}$	$49 \\ 45$	$\frac{84}{76}$	$19 \\ 15$	$78 \\ 72$	$\begin{array}{c} 110 \\ 100 \end{array}$	$\frac{62}{55}$	$\begin{array}{c} 15 \\ 13 \end{array}$	79 68	$59 \\ 52$	$\begin{array}{c} 101 \\ 90 \end{array}$	$\begin{array}{c} 101 \\ 90 \end{array}$	$\begin{array}{c} 13 \\ 11 \end{array}$	$57 \\ 49$	98 90
Europe	$Max\ Min$	$\frac{80}{75}$	$\frac{43}{38}$	89 84	$63 \\ 59$	$\frac{41}{39}$	$63 \\ 59$	$\begin{array}{c} 49\\ 46 \end{array}$	$\frac{84}{79}$	$\begin{array}{c} 19 \\ 16 \end{array}$	$79 \\ 74$	$\begin{array}{c} 110 \\ 102 \end{array}$	$\frac{62}{58}$	$\begin{array}{c} 15\\ 13 \end{array}$	$79 \\ 74$	$59 \\ 54$	$\begin{array}{c} 101 \\ 96 \end{array}$	98 90	$\begin{array}{c} 13 \\ 11 \end{array}$	$57 \\ 50$	99 93
Oceania	$Max\ Min$	81 72	$\begin{array}{c} 43\\37\end{array}$	$90 \\ 81$	$\frac{62}{58}$	$\begin{array}{c} 41 \\ 36 \end{array}$	$\frac{63}{57}$	$\begin{array}{c} 49\\ 44 \end{array}$	84 74	$\begin{array}{c} 18 \\ 15 \end{array}$	$78 \\ 71$	$\begin{array}{c} 109 \\ 97 \end{array}$	$\frac{62}{56}$	$\begin{array}{c} 15 \\ 13 \end{array}$	$79 \\ 71$	$59 \\ 52$	$\begin{array}{c} 100\\92 \end{array}$	98 88	$\begin{array}{c} 12 \\ 10 \end{array}$	$\begin{array}{c} 56 \\ 43 \end{array}$	99 89
North America	$Max\ Min$	$\begin{array}{c} 82 \\ 60 \end{array}$	$\frac{44}{32}$	$91 \\ 63$	$\begin{array}{c} 63 \\ 46 \end{array}$	$\begin{array}{c} 42 \\ 32 \end{array}$	$\begin{array}{c} 64 \\ 39 \end{array}$	$\begin{array}{c} 49\\ 34 \end{array}$	$\frac{85}{63}$	$20 \\ 11$	$\frac{79}{55}$	$\frac{111}{82}$	$\begin{array}{c} 64 \\ 43 \end{array}$	$^{15}_{9}$		$\begin{array}{c} 60 \\ 43 \end{array}$	$\begin{array}{c} 102 \\ 76 \end{array}$	99 77	$\frac{13}{8}$	$\frac{58}{36}$	$ \begin{array}{c} 100 \\ 82 \end{array} $
South America	Max Min	80 75	$\begin{array}{c} 43\\ 38 \end{array}$	89 82	$\frac{62}{57}$	$\begin{array}{c} 41 \\ 37 \end{array}$	$63 \\ 59$	$\begin{array}{c} 48 \\ 45 \end{array}$	83 79	$\begin{array}{c} 18\\ 16\end{array}$	78 73	$\begin{array}{c} 109 \\ 105 \end{array}$	$\frac{62}{57}$	$\begin{array}{c} 14 \\ 13 \end{array}$	79 73	$58 \\ 57$	$\begin{array}{c} 101 \\ 92 \end{array}$	98 93	$\begin{array}{c} 12 \\ 11 \end{array}$	$57 \\ 50$	$98 \\ 92$

All S protein sequences are leucine (L) and serine (S) rich. Tryptophan (W) and methionine (M) were presented with the least frequencies (Table 4). The widest variation in frequency distributions of the twenty amino acids over the unique S proteins was found in North America.

To obtain quantitative variations in the unique S proteins available in each continent, differences between maximum and minimum vectors (20 dimensions) were obtained (Table 5), and then Euclidean distances between the difference vectors was calculated (Table 6).

Table 5: Matrix presenting the difference between maximum and minimum frequencies of amino acids present in the unique S proteins on each continent

Difference matrix	Α	R	Ν	D	С	Q	\mathbf{E}	G	н	Ι	\mathbf{L}	К	\mathbf{M}	\mathbf{F}	Р	\mathbf{S}	т	\mathbf{W}	Y	V
Africa	7	4	4	4	3	4	4	6	5	6	7	5	2	6	5	7	8	2	7	5
Asia	7	5	9	8	5	7	4	8	4	6	10	7	2	11	7	11	11	2	8	8
Europe	5	5	5	4	2	4	3	5	3	5	8	4	2	5	5	5	8	2	7	6
Oceania	9	6	9	4	5	6	5	10	3	7	12	6	2	8	7	8	10	2	13	10
South America	5	5	7	5	4	4	3	4	2	5	4	5	1	6	1	9	5	1	7	6
North America	22	12	28	17	10	25	15	22	9	24	29	21	6	25	17	26	22	5	22	18

Table 6: Pairwise Euclidean distances among the difference vectors of each continent

Distance matrix	Africa	Asia	Europe	Oceania	South America	North America
Africa	0.00	11.70	4.69	12.77	8.49	66.80
Asia	11.70	0.00	13.00	9.06	14.04	57.02
Europe	4.69	13.00	0.00	13.30	8.49	68.38
Oceania	12.77	9.06	13.30	0.00	16.03	56.84
South America	8.49	14.04	8.49	16.03	0.00	69.02
North America	66.80	57.02	68.38	56.84	69.02	0.00

Based on the distance matrix, a phylogenetic relationship was derived among the continents (Figure 2).

Figure 2: Phylogenetic relationship among the six continents based on the variability of unique spike proteins available in each continent.

Variations based on the frequency distribution of amino acids present in the S proteins make North America (which belongs to the rightmost branch of the tree) distant from the other five continents (Figure 2). Variations among the unique spike proteins from Asia and Oceania turned out to be similar, and they belong to the same level of leaves of the far left branch of the tree. Africa and Europe were found to be the closest in terms of variations based on the frequency distribution of amino acids over the unique spike proteins from each continent. Variability of spike proteins from South America has distant resemblance to that of Africa/Europe as estimated in the phylogeny. The frequencies of amino acid distribution in each unique S protein from each continent were presented in (Figures 3 and 4 at the end, as an *Appendix*). The widest variations of the frequency distribution of amino acids present in S proteins were observed in North America as wide band was observed in Figure 4. Individual frequency distributions of amino acids in Asia and Oceania seem very close as it was observed from the phylogeny (Figure 2).

3.3.2. Variability through Shannon entropy

In principle, for a random amino acid sequence, the Shannon entropy (SE) is one. Here Shannon entropy for each S protein sequence was computed using the formula stated in section 2.2 (*Supplementary file-2*). It was found that the highest and lowest SEs of S proteins from all continents were 0.9643 and 0.9594 respectively. That is, the length of the largest interval is 0.005 which is sufficiently small. Also note that the length of the smallest interval was 0.001 which occurred in the SEs of S proteins from South America. Within this realm, the widest variation of SEs was noticed among the unique S proteins of North America. All other four intervals (considering lowest and highest) of SEs of all the unique S proteins from four continents Africa, Asia, Oceania and Europe were contained in the interval of North America and contain that of South America.

Table 7: Interval of Shannon entropy of unique S proteins from six different contin	nents
---	-------

SE: Continent	Interval of SEs
SE of S protein: Africa	(0.960825, 0.963239)
SE of S protein: Asia	(0.961471, 0.963326)
SE of S protein: Europe	(0.961539, 0.963254)
SE of S protein: North America	(0.95934, 0.964314)
SE of S protein: Oceania	(0.961525, 0.963042)
SE of S protein: South America	(0.961589, 0.962895)

Among all (20^{1273}) possible amino acids (20 in number) sequences of length 1273, Nature(?) had selected only a fraction to make S proteins of SARS-CoV-2, and interestingly SEs of them were kept within a very small interval. From the SEs which were close to 1, the S protein sequences are expected to be pseudo-random. Variation of SEs for all unique S proteins from each continent is shown in Figures 5 and 6 (See *Appendix*). Conservation of amino acids present over each S protein from each continent is different from one another which is depicted by the zig-zag nature of SEs plots (Figure 5 and 6).

3.3.3. Variability through isoelectric point

For each S protein sequence from each continent isoelectric point (IP) was computed (Supplementary file-3). Intervals (considering minimum and maximum) IPs of unique spike proteins from each continent were tabulated in Table 8.

IP: Continent	Interval of IPs
IP of S protein: Africa	(6.44, 7.09)
IP of S protein: Asia	(6.21, 7.08)
IP of S protein: Europe	(6.21, 6.99)
IP of S protein: North America	(5.61, 7.79)
IP of S protein: Oceania	(6.31, 7.09)
IP of S protein: South America	(6.36, 6.99)

Table 8: Interval of isoelectric point of unique S proteins from six different continents

It was noticed that IPs for all the unique S proteins from the six continents were distributed in between 5.61 and 7.79. The largest interval of IPs was found for the unique S proteins from North America. Therefore, the widest varieties of unique S proteins were found in North America.

The degree of non-linearity of the plots of IPs for each protein from each continent shows wide variations of unique S proteins (Figures 7 and 8 in the *Appendix*).

4. Discussion and concluding remarks

Various mutations in S proteins lead to the evolution of new variants of SARS-CoV-2 [29]. Naturally, our attention was captured to characterize unique S protein variants which were embedded in SARS-CoV-2 genomes infecting millions people worldwide [30]. As of May 7, 2021, there are 127760 patients infected with SARS-CoV-2 with 16143 S protein variants, which undoubtedly well-organized by means of amino acids composition and conservation as it was depicted by Shannon entropy and isoelectric point. Among the unique spike proteins present in a continent, many of them are common in other continents as well (Table 2). On the other hand, there is still a handful of unique spike protein variants residing in each continent. Considering the nature and biological implications of the new variants of SARS-CoV-2 caused by different mutations in S proteins, the appearance of several unique S variants in SARS-CoV-2 is certainly an worrying event. [31]. There are still many unique S protein variants in all continents that may spread from person to person through close communities or by spontaneous mutations caused a condition that may become alarming.

We observed that unique S proteins from North America have mutations in almost every amino acid residue position (1184 out of 1273), while unique spike variants from the other continents only have mutations in 16 to 20% of residues. So, even if international travel is limited, S proteins from these five continents will likely acquire mutations at other residue positions where mutations have already been found in the specific variants from North America due to natural evolution. Based on the amino acid frequency distributions in the S protein variants from all the continents, a phylogenetic relationship among the continents was drawn. The phylogenetic relationship implies that unique S proteins from North America were found to be significantly different from that of other five continents. Therefore, the possibility of spreading the unique variants originated from North America to the other geographic locations by means of international travel is high, and numerous mutations have been detected already in the unique variants from North America. Of note, South America infection/herd immunity status may have summarized by Manaus city example (the capital of Amazonas state in northern Brazil) where by June 2020 to October 2020 SARS-CoV-2 prevalence among Manaus' population increased from 260% to 270%, a condition which may mirror acquisition of herd immunity [32]. By January 2021 Manaus had a huge resurgence in cases due to emergence of a new variant known as P.1 which was responsible for nearly 100% of the new case [33]. Although the population may have then reached a high herd immunity threshold, there is still a risk of resurgence of new immunity-escape variants, which raises important questions. For example, Is post-infection herd immunity not enough for protection and should it be combined with vaccination? 2. Will the crucial viral variants (mutations) be listed by WHO and recommended to be included in "next generation vaccines"? [34, 35]. In addition, we cannot yet exclude the possibility of serious mutations in the viral RBD emerging in India and the USA [34].

Hence in the near future, we can expect to experience more new SARS-CoV-2 variants which might cause third, fourth, and fifth etc. waves of COVID-19. Therefore, massive vaccination is necessary to combat COVID-19, and of course, existing vaccines must be reviewed, and if needed further re-engineered may be required based on newly emerging S protein variants.

Acknowledgement

SSH devised the study. SSH and VNU contributed to the implementation of the research, to the analysis of the results and to the writing of the initial draft of the manuscript. KL, PPC, BDU, RK, AB, MS, AL, SPS, GKA, AAAA, ASA, PA, TMAEA, EMR, and KT reviewed and edited the manuscript. NR and MT proof-read the manuscript. All authors read the final version of the manuscript and approve.

Conflict of interests statement

Authors have no conflict of interest to declare.

References

- S. M. Lokman, M. Rasheduzzaman, A. Salauddin, R. Barua, A. Y. Tanzina, M. H. Rumi, M. I. Hossain, A. Z. Siddiki, A. Mannan, M. M. Hasan, Exploring the genomic and proteomic variations of sars-cov-2 spike glycoprotein: a computational biology approach, Infection, Genetics and Evolution 84 (2020) 104389.
- [2] A. Serrano-Aroca, K. Takayama, A. Tuñón-Molina, M. Seyran, S. S. Hassan, P. P. Choudhury, V. N. Uversky, K. Lundstrom, P. Adadi, G. Palù, et al., Carbon-based nanomaterials: Promising antiviral agents to combat covid-19 in the microbial resistant era, ACS NanoPMID: 33826850. doi:10.1021/acsnano.1c00629.
- [3] S. Hassan, S. Ghosh, D. Attrish, P. P. Choudhury, A. A. Aljabali, B. D. Uhal, K. Lundstrom, N. Rezaei, V. N. Uversky, M. Seyran, et al., Possible transmission flow of sars-cov-2 based on ace2 features, Molecules 25 (24) (2020) 5906.
- [4] M. Martí, A. Tuñón-Molina, F. L. Aachmann, Y. Muramoto, T. Noda, K. Takayama, A. Serrano-Aroca, Protective face mask filter capable of inactivating sars-cov-2, and methicillin-resistant staphylococcus aureus and staphylococcus epidermidis, Polymers 13 (2) (2021) 207.
- [5] S. S. Hassan, D. Attrish, S. Ghosh, P. P. Choudhury, V. N. Uversky, A. A. Aljabali, K. Lundstrom, B. D. Uhal, N. Rezaei, M. Seyran, et al., Notable sequence homology of the orf10 protein introspects the architecture of sars-cov-2, International Journal of Biological Macromolecules 181 (2021) 801–809.
- [6] S. S. Hassan, A. A. Aljabali, P. K. Panda, S. Ghosh, D. Attrish, P. P. Choudhury, M. Seyran, D. Pizzol, P. Adadi, T. M. Abd El-Aziz, et al., A unique view of sars-cov-2 through the lens of orf8 protein, Computers in biology and medicine (2021) 104380.
- [7] L. Zhang, C. B. Jackson, H. Mou, A. Ojha, H. Peng, B. D. Quinlan, E. S. Rangarajan, A. Pan, A. Vanderheiden, M. S. Suthar, et al., Sars-cov-2 spike-protein d614g mutation increases virion spike density and infectivity, Nature communications 11 (1) (2020) 1–9.
- [8] L. Guruprasad, Human sars cov-2 spike protein mutations, Proteins: Structure, Function, and Bioinformatics 89 (5) (2021) 569–576.
- [9] R. Henderson, R. J. Edwards, K. Mansouri, K. Janowska, V. Stalls, S. M. Gobeil, M. Kopp, D. Li, R. Parks, A. L. Hsu, et al., Controlling the sars-cov-2 spike glycoprotein conformation, Nature structural & molecular biology 27 (10) (2020) 925–933.
- [10] M. Seyran, K. Takayama, V. N. Uversky, K. Lundstrom, G. Palù, S. P. Sherchan, D. Attrish, N. Rezaei, A. A. Aljabali, S. Ghosh, et al., The structural basis of accelerated host cell entry by sars-cov-2, The FEBS journal (2020).
- [11] E. B. Hodcroft, D. B. Domman, D. J. Snyder, K. Oguntuyo, M. Van Diest, K. H. Densmore, K. C. Schwalm, J. Femling, J. L. Carroll, R. S. Scott, et al., Emergence in late 2020 of multiple lineages of sars-cov-2 spike protein variants affecting amino acid position 677, MedRxiv (2021).
- [12] Z. Ke, J. Oton, K. Qu, M. Cortese, V. Zila, L. McKeane, T. Nakane, J. Zivanov, C. J. Neufeldt, B. Cerikan, et al., Structures and distributions of sars-cov-2 spike proteins on intact virions, Nature 588 (7838) (2020) 498–502.
- [13] O. A. MacLean, R. J. Orton, J. B. Singer, D. L. Robertson, No evidence for distinct types in the evolution of sars-cov-2, Virus Evolution 6 (1) (2020) veaa034.
- [14] L. van Dorp, M. Acman, D. Richard, L. P. Shaw, C. E. Ford, L. Ormond, C. J. Owen, J. Pang, C. C. Tan, F. A. Boshier, et al., Emergence of genomic diversity and recurrent mutations in sars-cov-2, Infection, Genetics and Evolution 83 (2020) 104351.
- [15] J. Zhang, Y. Cai, T. Xiao, J. Lu, H. Peng, S. M. Sterling, R. M. Walsh, S. Rits-Volloch, H. Zhu, A. N. Woosley, et al., Structural impact on sars-cov-2 spike protein by d614g substitution, Science 372 (6541) (2021) 525–530.
- [16] S. E. Park, Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (sars-cov-2; coronavirus disease-19), Clinical and experimental pediatrics 63 (4) (2020) 119.
- [17] E. Callaway, The coronavirus is mutating-does it matter?, Nature 585 (7824) (2020) 174–177.
- [18] B. Korber, W. M. Fischer, S. Gnanakaran, H. Yoon, J. Theiler, W. Abfalterer, N. Hengartner, E. E. Giorgi, T. Bhattacharya, B. Foley, et al., Tracking changes in sars-cov-2 spike: evidence that d614g increases infectivity of the covid-19 virus, Cell 182 (4) (2020) 812–827.

- [19] E. Volz, V. Hill, J. T. McCrone, A. Price, D. Jorgensen, Á. O'Toole, J. Southgate, R. Johnson, B. Jackson, F. F. Nascimento, et al., Evaluating the effects of sars-cov-2 spike mutation d614g on transmissibility and pathogenicity, Cell 184 (1) (2021) 64–75.
- [20] T. C. Williams, W. A. Burgers, Sars-cov-2 evolution and vaccines: cause for concern?, The Lancet Respiratory Medicine 9 (4) (2021) 333–335.
- [21] H. Tegally, E. Wilkinson, M. Giovanetti, A. Iranzadeh, V. Fonseca, J. Giandhari, D. Doolabh, S. Pillay, E. J. San, N. Msomi, et al., Emergence of a sars-cov-2 variant of concern with mutations in spike glycoprotein., Nature (2021).
- [22] D. J. Brooks, J. R. Fresco, A. M. Lesk, M. Singh, Evolution of amino acid frequencies in proteins over deep time: inferred order of introduction of amino acids into the genetic code, Molecular Biology and Evolution 19 (10) (2002) 1645–1655.
- [23] V. Vacic, V. N. Uversky, A. K. Dunker, S. Lonardi, Composition profiler: a tool for discovery and visualization of amino acid composition differences, BMC bioinformatics 8 (1) (2007) 1–7.
- [24] M. Sickmeier, J. A. Hamilton, T. LeGall, V. Vacic, M. S. Cortese, A. Tantos, B. Szabo, P. Tompa, J. Chen, V. N. Uversky, et al., Disprot: the database of disordered proteins, Nucleic acids research 35 (suppl_1) (2007) D786–D793.
- [25] S. S. Hassan, D. Attrish, S. Ghosh, P. P. Choudhury, B. Roy, Pathogenetic perspective of missense mutations of orf3a protein of sars-cov-2, Virus Research (2021) 198441.
- [26] S. S. Hassan, P. P. Choudhury, B. Roy, S. S. Jana, Missense mutations in sars-cov2 genomes from indian patients, Genomics 112 (6) (2020) 4622–4627.
- [27] B. J. Strait, T. G. Dewey, The shannon information entropy of protein sequences, Biophysical journal 71 (1) (1996) 148–155.
- [28] P. G. Righetti, Determination of the isoelectric point of proteins by capillary isoelectric focusing, Journal of chromatography A 1037 (1-2) (2004) 491–499.
- [29] A. Baum, B. O. Fulton, E. Wloga, R. Copin, K. E. Pascal, V. Russo, S. Giordano, K. Lanza, N. Negron, M. Ni, et al., Antibody cocktail to sars-cov-2 spike protein prevents rapid mutational escape seen with individual antibodies, Science 369 (6506) (2020) 1014–1018.
- [30] Z. Liu, L. A. VanBlargan, L.-M. Bloyet, P. W. Rothlauf, R. E. Chen, S. Stumpf, H. Zhao, J. M. Errico, E. S. Theel, M. J. Liebeskind, et al., Identification of sars-cov-2 spike mutations that attenuate monoclonal and serum antibody neutralization, Cell host & microbe 29 (3) (2021) 477–488.
- [31] B. Dearlove, E. Lewitus, H. Bai, Y. Li, D. B. Reeves, M. G. Joyce, P. T. Scott, M. F. Amare, S. Vasan, N. L. Michael, et al., A sars-cov-2 vaccine candidate would likely match all currently circulating variants, Proceedings of the National Academy of Sciences 117 (38) (2020) 23652–23662.
- [32] L. F. Buss, C. A. Prete, C. M. Abrahim, A. Mendrone, T. Salomon, C. de Almeida-Neto, R. F. França, M. C. Belotti, M. P. Carvalho, A. G. Costa, et al., Three-quarters attack rate of sars-cov-2 in the brazilian amazon during a largely unmitigated epidemic, Science 371 (6526) (2021) 288–292.
- [33] C. Aschwanden, Five reasons why covid herd immunity is probably impossible., Nature 591 (7851) (2021) 520–522.
- [34] R. K. Gupta, Will sars-cov-2 variants of concern affect the promise of vaccines?, Nature Reviews Immunology (2021) 1–2.
- [35] E. M. Redwan, Covid-19 pandemic and vaccination build herd immunity, Eur Rev Med Pharmacol Sci 25(2) (2021) 577–579.

Appendix

	Table 9: List of pairs of identic	al spike proteins of SARS-CoV-2	2 originated from six continents	
Spike: Asia-Europe	Spike: Asia-Africa	Spike: Asia-Oceania	Spike: Asia-South America	Spike: Asia-North America
(A14, U2)	(A14, AF2)	(A15, O5)	(A31, SA1)	(A1, NA7)
(A15, U3)	(A15, AF3)	(A77, 043)	(A67, SA4)	(A8, NA231)
(A3U, U8) (A31 IIQ)	(AZO, AF19) (A71 AF18)	(A93, U33)	(A148, 5A13) (A180 SA19)	(A12, NA902) (A14 NA928)
(A33, U11)	(A93. AF58)	(A128, O201)	(A191, SA22)	(A15, NA992)
(A36, U17)	(A128, AF72)	(A138, O370)	(A200, SA25)	(A19, NA1131)
(A43, U18)	(A138, AF76)	(A142, O373)	(A207, SA27)	(A23, NA1445)
(A69, U23)	(A142, AF79)	(A148, O377)	(A211, SA30)	(A28, NA2065)
(A77, U26)	(A148, AF82)	(A166, 0387)	(A213, SA32)	(A30, NA3228)
(A93, U28) (A95, 1130)	(A101, AF 88) $(A164 A F 02)$	(A200, U388) (A913 0300)	(AZ19, SA33) (A934 SA35)	(A31, INA3313) (A32 NA3438)
(A105, U30) (A105, U34)	(A166. AF101)	(A213, O390)	(A204, AA30) (A280, SA41)	(A32, NA3477)
(A128, U52)	(A191, AF115)	(A277, O400)	(A284, SA42)	(A34, NA3658)
(A134, U54)	(A206, AF118)	(A284, O402)	(A335, SA61)	(A43, NA3752)
(A135, U57)	(A213, AF120)	(A305, O504)	(A340, SA63)	(A44, NA3768)
(A148, U63)	(A275, AF130)	(A359, O1076)	(A373, SA68)	(A58, NA3911)
(A213, U80)	(A276, AF131)	(A404, O1104)	(A404, SA71)	(A69, NA4028)
(A234, U84) (A 230, 1188)	(AZ77, AF134) (A 270 AF137)			(A71, NA4051) (A76 NA4160)
(A265, 1194)	(A282, AF138)			(A77, NA4243)
(A284, U99)	(A292, AF147)			(A78, NA4270)
(A286, U100)	(A379, AF229)			(A85, NA4296)
(A333, U121)	(A394, AF247)			(A89, NA4375)
(A340, U124)	(A404, AF263)			(A90, NA4394)
(A379, U151) (A404, U181)	(A430, AF278)			(A91, NA4436) (A93, NA4448)
(A430, U187)				(A95, NA4508)
Spike: Asia-North America	Spike: Asia-North America	Spike: Asia-North America	Spike: Asia-North America	Spike: Asia-North America
(A96, NA4537)	(A166, NA5819)	(A214, NA6445)	(A267, NA6903)	(A345, NA9597)
(A97, NA4541)	(A170, NA5927)	(A215, NA6465)	(A273, NA6916)	(A348, NA9612)
(A100, NA4559)	(A171, NA5977) (A173 NA5993)	(A216, NA6492) (A217 NA6499)	(A274, NA6936) (A275 NA6914)	(A351, NA9663) (A354 NA9674)
(A102, NA4637)	(A174, NA6060)	(A216, NA6510)	(A276, NA6949)	(A356, NA9724)
(A103, NA4658)	(A175, NA6067)	(A219, NA6515)	(A277, NA6962)	(A357, NA9763)
(A105, NA4715)	(A177, NA6071)	(A221, NA6527)	(A278, NA6969)	(A358, NA9776)
(A109, NA4861)	(A178, NA6080)	(A222, NA6540)	(A279, NA7000)	(A359, NA9792)
(A111, NA4897)	(A180, NA6101)	(A223, NA6550)	(A280, NA7015)	(A360, NA9834)
(A114, NA5001)	(A181, NA6142)	(A224, NA6553)	(A282, NA7025)	(A367, NA10276)
(A113, NA3022) (A121, NA5105)	(A162, NA0146) (A183, NA6155)	(A233, NA6616) (A233, NA6616)	(A263, NA7090) (A284, NA7090)	(A375, NA10342) (A375, NA10442)
(A122, NA5137)	(A191, NA6185)	(A234, NA6622)	(A286, NA7129)	(A378, NA11135)
(A126, NA5151)	(A193, NA6193)	(A235, NA6630)	(A291, NA7198)	(A379, NA11225)
(A127, NA5182)	(A195, NA6244)	(A238, NA6659)	(A292, NA7227)	(A380, NA11305)
(A128, NA5194)	(A196, NA6258)	(A239, NA6661)	(A293, NA7249)	(A381, NA11560)
(A133, NA3411) (A134 NA5485)	(A198, INA6210) (A190 NA6993)	(A244, INA0053) (A245 NA6687)	(A304, NA7370) (A322 NA8500)	(A383, NA11814) (A386 NA13980)
(A135, NA5516)	(A200, NA6299)	(A247, NA6707)	(A323, NA8519)	(A387, NA13307)
(A138, NA5538)	(A201, NA6305)	(A249, NA6713)	(A324, NA8565)	(A388, NA13362)
(A140, NA5574)	(A205, NA6324)	(A253, NA6751)	(A325, NA8570)	(A391, NA13404)
(A148, NA5595)	(A206, NA6334)	(A254, NA6756)	(A333, NA9283)	(A394, NA13438)
(A158, NA5644)	(A207, NA6373)	(A255, NA6780)	(A335, NA9324)	(A395, NA13444)
(A161 NA5666)	(AZIU, NA0300) (A211 NA6406)	(A231, NA0134) (A258 NA6810)	(A341, NA3423) (A342 NA9455)	(A390, NA13403) (A399 NA13554)
(A163, NA5722)	(A212, NA6424)	(A264, NA6857)	(A343, NA9568)	(A401, NA13614)
(A164, NA5744)	(A213, NA6429)	(A265, NA6862)	(A344, NA9592)	(A404, NA13635)
				(A405, NA13668)
				(A408, NA13704) (A412 NA13841)
				(A418, NA13913)
				(A419, NA13948)
				(A430, NA14000)

	T IOT MONT	the of party of the motion of the provide			
Spike: Africa-Europe	Spike: Africa-North America	Spike: Africa-North America	Spike: Africa-Oceania	Spike: Africa-South America	Spike: Europe-North America
(AF2, U2)	(AF2, NA928)	(AF121, NA6566)	(AF1, O3)	(AF82, SA13)	(U2, NA928)
(AF3, U3)	(AF3, NA992)	(AF123, NA6628)	(AF3, O5)	(AF115, SA22)	(U3, NA992)
(AF31, U10)	(AF8, NA1298)	(AF125, NA6816)	(AF71, O148)	(AF117, SA26)	(U4, NA1221)
(AF58, U28)	(AF9, NA1348)	(AF128, NA6848)	(AF72, O201)	(AF120, SA32)	(U7, NA2680)
(AF69, U45)	(AF31, NA3387)	(AF130, NA6944)	(AF76, O370)	(AF263, SA71)	(U8, NA3228)
(AF72, U52)	(AF34, NA3583)	(AF131, NA6949)	(AF79, O373)		(U9, NA3313)
(AF82, U63)	(AF38, NA3797)	(AF133, NA6953)	(AF82, O377)		(U10, NA3387)
(AF120, U80)	(AF46, NA3986)	(AF134, NA6962)	(AF101, O387)		(U11, NA3477)
(AF123, U85)	(AF47, NA3988)	(AF137, NA7000)	(AF118, O388)		(U18, NA3752)
(AF145, U103)	(AF48, NA4051)	(AF138, NA7025)	(AF120, O390)		(U22, NA3895)
(AF195, U119)	(AF50, NA4061)	(AF145, NA7199)	(AF134, O400)		(U23, NA4028)
(AF229, U151)	(AF51, NA4117)	(AF146, NA7224)	(AF179, O751)		(U26, NA4243)
(AF230, U154)	(AF58, NA4448)	(AF147, NA7227)	(AF263, O1104)		(U28, NA4448)
(AF263, U181)	(AF64, NA4832)	(AF149, NA7286)		Spike: Oceania-South America	(U30, NA4508)
(AF278, U187)	(AF69, NA5149)	(AF151, NA7299)		(O377, SA13)	(U34, NA4715)
	(AF71, NA5188)	(AF152, NA7300)		(0389, SA28)	(U36, NA4780)
	(AF72, NA5194)	(AF154, NA7375)		(0390, SA32)	(U38, NA4837)
	(AF73, NA5202)	(AF156, NA7453)		(0402, SA42)	(U41, NA4989)
	(AF76, NA5538)	(AF165, NA7553)		(O1104, SA71)	(U42, NA5083)
	(AF82, NA5595)	(AF168, NA7644)			(U45, NA5149)
	(AF83, NA5606)	(AF179, NA8514)			(U47, NA5167)
	(AF88, NA5666)	(AF195, NA9264)			(U52, NA5194)
	(AF90, NA5693)	(AF196, NA9265)			(U53, NA5282)
	(AF92, NA5744)	(AF223, NA10257)			(U54, NA5485)
	(AF99, NA5818)	(AF227, NA10943)			(U55, NA5490)
	(AF101, NA5819)	(AF229, NA11225)			(U57, NA5516)
	(AF103, NA5829)	(AF230, NA11456)			(U63, NA5595)
	(AF104, NA5830)	(AF231, NA11576)			(U66, NA5627)
	(AF105, NA5837)	(AF247, NA13438)			(U72, NA6096)
	(AF108, NA5874)	(AF248, NA13478)			(U76, NA6240)
	(AF114, NA6178)	(AF254, NA13578)			(U78, NA6399)
	(AF115, NA6185)	(AF263, NA13635)			(U79, NA6421)
	(AF118, NA6334)	(AF268, NA13798)			(U80, NA6429)
	(AF119, NA6390)	(AF271, NA13870)			(U82, NA6450)
	(AF120, NA6429)	(AF278, NA14000)			(U84, NA6622)
		(AF283, NA14015)			(U85, NA6628)
					(U88, NA6661)
					(U90, NA6704)

	TO STORE TT ACT TO ACT	z- A OO-COTECT TO ETTEMO ID ANTICE TRAINING		
Spike: Europe-North America	Spike: Europe-Oceania	Spike: North America-Oceania	Spike: North America-Oceania	Spike: South America-North America
(U92, NA6723)	(U3, O5)	(NA992, O5)	(NA6751, O398)	(NA3313, SA1)
(U93, NA6775)	(0.26, 0.43)	(NA3873, O28)	(NA6962, O400)	(NA4550, SA5)
(U94, NA6862)	(U30, O58)	(NA4024, O36)	(NA7060, O401)	(NA4720, SA7)
(U98, NA7057)	(052, 0201)	(NA4243, O43)	(NA7090, O402)	(NA4989, SA11)
(U99, NA7090)	(U63, O377)	(NA4508, O58)	(NA7230, O404)	(NA5595, SA13)
(U100, NA7129)	(U80, O390)	(NA4756, O65)	(NA7355, O415)	(NA5687, SA18)
(U103, NA7199)	(U99, O402)	(NA4861, O83)	(NA7402, O419)	(NA6101, SA19)
(U104, NA7312)	(U118, O1032)	(NA5011, O105)	(NA7510, O422)	(NA6146, SA20)
(U106, NA7431)	(U181, O1104)	(NA5041, O114)	(NA7811, O625)	(NA6161, SA21)
(U107, NA7557)		(NA5188, O148)	(NA7832, O631)	(NA6185, SA22)
(U111, NA7679)	Spike: Europe-South America	(NA5194, O201)	(NA7845, O633)	(NA6299, SA25)
(U112, NA7884)	(U9, SA1)	(NA5200, O225)	(NA7901, O645)	(NA6373, SA27)
(U113, NA7914)	(041, SA11)	(NA5205, O238)	(NA8514, O751)	(NA6395, SA28)
(U114, NA9075)	(U63, SA13)	(NA5372, O368)	(NA8646, O770)	(NA6396, SA29)
(U116, NA9180)	(U80, SA32)	(NA5538, O370)	(NA8703, O798)	(NA6406, SA30)
(U117, NA9189)	(U84, SA35)	(NA5579, O374)	(NA8787, O850)	(NA6418, SA31)
(U119, NA9264)	(U99, SA42)	(NA5595, O377)	(NA8817, O886)	(NA6429, SA32)
(U121, NA9283)	(U124, SA63)	(NA5819, O387)	(NA8824, O889)	(NA6515, SA33)
(U122, NA9284)	(U181, SA71)	(NA6334, O388)	(NA9091, O1017)	(NA6622, SA35)
(U123, NA9330)		(NA6395, O389)	(NA9333, O1035)	(NA6696, SA38)
(U126, NA9458)		(NA6429, O390)	(NA9350, O1037)	(NA7015, SA41)
(U131, NA10312)		(NA6577, O391)	(NA9639, O1059)	(NA7090, SA42)
(U137, NA10457)		(NA6578, O392)	(NA9792, O1076)	(NA7430, SA43)
(U141, NA10669)		(NA6620, O395)	(NA9891, O1079)	(NA7477, SA44)
(U144, NA10811)			(NA13635, O1104)	(NA7521, SA45)
(U146, NA10987)				(NA7892, SA56)
(U148, NA11013)				(NA9324, SA61)
(U151, NA11225)				(NA9910, SA66)
(U153, NA11367)				(NA10342, SA68)
(U154, NA11456)				(NA13390, SA70)
(U155, NA11466)				(NA13635, SA71)
(U158, NA13110)				
(U160, NA13253)				
(U175, NA13414)				
(U177, NA13551)				
(U179, NA13626)				
(U181, NA13635)				
(U187, NA14000)				

Table 12: List of spike proteins from Asia, which were found to be identical with spike proteins from other five continents

Spil	ke protei	ins (Asia	a) which	were fo	und to	be identi	cal with	spike proteins from other five continents
A1	A71	A115	A171	A207	A239	A280	A344	A388
A8	A76	A121	A173	A210	A244	A282	A345	A391
A12	A77	A122	A174	A211	A245	A283	A348	A394
A14	A78	A126	A175	A212	A247	A284	A351	A395
A15	A85	A127	A177	A213	A249	A286	A354	A396
A19	A89	A128	A178	A214	A253	A291	A356	A399
A23	A90	A133	A180	A215	A254	A292	A357	A401
A26	A91	A134	A181	A216	A255	A293	A358	A404
A28	A93	A135	A182	A217	A257	A304	A359	A405
A30	A95	A138	A183	A218	A258	A305	A360	A408
A31	A96	A140	A191	A219	A264	A322	A367	A413
A32	A97	A142	A193	A221	A265	A323	A373	A418
A33	A100	A148	A195	A222	A267	A324	A375	A419
A34	A101	A158	A196	A223	A273	A325	A378	A430
A36	A102	A159	A198	A224	A274	A333	A379	A431
A43	A103	A161	A199	A230	A275	A335	A380	
A44	A105	A163	A200	A233	A276	A340	A381	
A58	A109	A164	A201	A234	A277	A341	A383	
A67	A111	A166	A205	A235	A278	A342	A386	
A69	A114	A170	A206	A238	A279	A343	A387	

Table 13: List of spike proteins from Africa, which were found to be identical with spike proteins from other five continents

Spike	proteins	(Afria)	which	were fo	und to be	identical	with spike	proteins	from other	five continents
AF1	AF34	AF58	AF79	AF101	AF117	AF128	AF145	AF156	AF227	AF263
AF2	AF38	AF64	AF82	AF103	AF118	AF130	AF146	AF165	AF229	AF268
AF3	AF46	AF69	AF83	AF104	AF119	AF131	AF147	AF168	AF230	AF271
AF8	AF47	AF71	AF88	AF105	AF120	AF133	AF149	AF179	AF231	AF278
AF9	AF48	AF72	AF90	AF108	AF121	AF134	AF151	AF195	AF247	AF283
AF19	AF50	AF73	AF92	AF114	AF123	AF137	AF152	AF196	AF248	
AF31	AF51	AF76	AF99	AF115	AF125	AF138	AF154	AF223	AF254	

Table 14: List of spike proteins from Europe, which were found to be identical with spike proteins from other five continents

Sp	ike prot	eins ((Europe)	which	were for	und to b	$e \ identical$	with spike proteins from other five continents
U2	U18	U41	U63	U85	U103	U117	U137	U158
U3	U22	U42	U66	U88	U104	U118	U141	U160
U4	U23	U45	U72	U90	U106	U119	U144	U175
U7	U26	U47	U76	U92	U107	U121	U146	U177
U8	U28	U52	U78	U93	U111	U122	U148	U179
U9	U30	U53	U79	U94	U112	U123	U151	U181
U10	U34	U54	U80	U98	U113	U124	U153	U187
U11	U36	U55	U82	U99	U114	U126	U154	
U17	U38	U57	U84	U100	U116	U131	U155	

Table 15: List of spike proteins from North America, which were found to be identical with spike proteins from other five continents

Spike	proteins (N	orth Amer	rica) which	were four	nd to be id	entical with	ı spike pro	oteins from	other five	continents
NA7	NA3911	NA4837	NA5595	NA6161	NA6510	NA6810	NA7300	NA8703	NA9792	NA13390
NA231	NA3986	NA4861	NA5606	NA6178	NA6515	NA6816	NA7312	NA8787	NA9834	NA13404
NA377	NA3988	NA4897	NA5627	NA6185	NA6527	NA6848	NA7355	NA8817	NA9891	NA13414
NA389	NA4024	NA4989	NA5644	NA6193	NA6540	NA6857	NA7375	NA8824	NA9910	NA13438
NA390	NA4028	NA5001	NA5645	NA6240	NA6550	NA6862	NA7402	NA9075	NA10257	NA13444
NA402	NA4051	NA5011	NA5666	NA6244	NA6553	NA6903	NA7430	NA9091	NA10276	NA13465
NA902	NA4061	NA5022	NA5687	NA6258	NA6566	NA6916	NA7431	NA9180	NA10312	NA13478
NA928	NA4117	NA5041	NA5693	NA6276	NA6577	NA6936	NA7453	NA9189	NA10342	NA13551
NA992	NA4169	NA5083	NA5722	NA6293	NA6578	NA6944	NA7477	NA9264	NA10442	NA13554
NA1104	NA4243	NA5105	NA5744	NA6299	NA6602	NA6949	NA7510	NA9265	NA10457	NA13578
NA1131	NA4270	NA5137	NA5818	NA6305	NA6616	NA6953	NA7521	NA9283	NA10669	NA13614
NA1221	NA4296	NA5149	NA5819	NA6324	NA6620	NA6962	NA7553	NA9284	NA10811	NA13626
NA1298	NA4375	NA5151	NA5829	NA6334	NA6622	NA6969	NA7557	NA9324	NA10943	NA13635
NA1348	NA4394	NA5167	NA5830	NA6373	NA6628	NA7000	NA7576	NA9330	NA10987	NA13668
NA1445	NA4436	NA5182	NA5837	NA6388	NA6630	NA7015	NA7644	NA9333	NA11013	NA13704
NA2065	NA4448	NA5188	NA5874	NA6390	NA6659	NA7025	NA7679	NA9350	NA11135	NA13798
NA2680	NA4508	NA5194	NA5927	NA6395	NA6661	NA7056	NA7811	NA9425	NA11225	NA13841
NA3228	NA4537	NA5200	NA5977	NA6396	NA6683	NA7057	NA7832	NA9455	NA11305	NA13870
NA3313	NA4541	NA5202	NA5992	NA6399	NA6687	NA7060	NA7845	NA9458	NA11367	NA13913
NA3387	NA4550	NA5205	NA6060	NA6406	NA6696	NA7090	NA7884	NA9568	NA11456	NA13948
NA3438	NA4559	NA5282	NA6067	NA6418	NA6704	NA7129	NA7892	NA9592	NA11466	NA14000
NA3477	NA4620	NA5372	NA6071	NA6421	NA6707	NA7198	NA7901	NA9597	NA11560	NA14015
NA3583	NA4637	NA5471	NA6080	NA6424	NA6713	NA7199	NA7914	NA9612	NA11576	NA14026
NA3658	NA4658	NA5485	NA6096	NA6429	NA6723	NA7224	NA8509	NA9639	NA11874	
NA3752	NA4715	NA5490	NA6101	NA6445	NA6751	NA7227	NA8514	NA9663	NA13110	
NA3768	NA4720	NA5516	NA6142	NA6450	NA6756	NA7230	NA8519	NA9674	NA13253	
NA3797	NA4756	NA5538	NA6146	NA6465	NA6775	NA7249	NA8565	NA9724	NA13280	
NA3873	NA4780	NA5574	NA6148	NA6492	NA6780	NA7286	NA8570	NA9763	NA13307	
NA3895	NA4832	NA5579	NA6155	NA6499	NA6794	NA7299	NA8646	NA9776	NA13362	

Table 16: List of spike proteins from Oceania, which were found to be identical with spike proteins from other five continents

Spi	ke prote	ins (Oce	eania)	which we	re found to	b be identical with spike proteins from other five continents
O3	O105	O373	O392	O419	O770	O1037
O5	O114	O374	O395	O422	O798	O1059
O28	O148	O377	O398	O504	O850	O1076
O36	O201	O387	O400	O625	O886	O1079
O43	O225	O388	O401	O631	O889	O1104
O58	O238	O389	O402	O633	O1017	
O65	O368	O390	O404	O645	O1032	
083	O370	O391	O415	O751	O1035	

Table 17: List of spike proteins from South America, which were found to be identical with spike proteins from other five continents

Spike	e proteir	ns (Ocea	inia) wł	ich were	e found t	o be identical with spike proteins from other five continents
SA1	SA13	SA22	SA29	SA35	SA44	SA66
SA4	SA18	SA25	SA30	SA38	SA45	SA68
SA5	SA19	SA26	SA31	SA41	SA56	SA70
SA7	SA20	SA27	SA32	SA42	SA61	SA71
SA11	SA21	SA28	SA33	SA43	SA63	

Figure 3: Frequencies of amino acids present in the unique S sequences

Figure 4: Frequencies of amino acids present in the unique S sequences

Figure 5: SE of unique S proteins from different continents

Figure 6: SE of unique S proteins from different continents

Figure 7: Isoelectric point of unique S proteins from different continents

Figure 8: Isoelectric point of unique S proteins from different continents