

Code-Free Cloud Computing Service to Facilitate Rapid Biomedical Digital Signal Processing and Algorithm Development

Journal Pre-proof

Code-Free Cloud Computing Service to Facilitate Rapid Biomedical
Digital Signal Processing and Algorithm Development

Michael R. Jennings, Colin Turner, Raymond R. Bond,
Alan Kennedy, Ranul Thantilage, Mohand Tahar Kechadi,
Nhien-An Le-Khac, James McLaughlin, Dewar D. Finlay

PII: S0169-2607(21)00472-7
DOI: https://doi.org/10.1016/j.cmpb.2021.106398
Reference: COMM 106398

To appear in: Computer Methods and Programs in Biomedicine

Received date: 6 May 2021
Accepted date: 30 August 2021

Please cite this article as: Michael R. Jennings, Colin Turner, Raymond R. Bond, Alan Kennedy,
Ranul Thantilage, Mohand Tahar Kechadi, Nhien-An Le-Khac, James McLaughlin, Dewar D. Finlay,
Code-Free Cloud Computing Service to Facilitate Rapid Biomedical Digital Signal Process-
ing and Algorithm Development, Computer Methods and Programs in Biomedicine (2021), doi:
https://doi.org/10.1016/j.cmpb.2021.106398

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier B.V.

https://doi.org/10.1016/j.cmpb.2021.106398
https://doi.org/10.1016/j.cmpb.2021.106398

Highlights

May 5, 2021

• Development of biosignal digital signal processing algorithms by indepen-
dent researches has led to fragmentation and lack of reuse

• Server-side processing system to facilitate code-free development

• Reduces the barrier-to-entry into biomedical digital signal processing for
clinicians or inexperienced programmers

• Reusable code repository and open-source framework encourages reprod-
ucability

• Multiple programming languages and file types supported via API use

1

Code-Free Cloud Computing Service to Facilitate
Rapid Biomedical Digital Signal Processing and

Algorithm DevelopmentI

Michael R. Jenningsa,∗, Colin Turnera, Raymond R. Bonda, Alan Kennedyc,
Ranul Thantilageb, Mohand Tahar Kechadib, Nhien-An Le-Khacb, James

McLaughlina, Dewar D. Finlaya

aUlster University, Belfast, UK
bUniversity College Dublin, Dublin, Ireland

cPulse AI Ltd., Belfast, UK

Abstract

Background and Objective: Cloud computing has the ability to offload process-

ing tasks to a remote computing resources. Presently, the majority of biomedical

digital signal processing involves a ground-up approach by writing code in a va-

riety of languages. This may reduce the time a researcher or health professional

has to process data, while increasing the barrier to entry to those with little or

no software development experience. In this study, we aim to provide a service

capable of handling and processing biomedical data via a code-free interface.

Furthermore, our solution should support multiple file formats and processing

languages while saving user inputs for repeated use.

Methods: A web interface via the Python-based Django framework was

developed with the potential to shorten the time taken to create an algorithm,

encourage code reuse, and democratise digital signal processing tasks for non-

technical users using a code-free user interface. A user can upload data, create an

algorithm and download the result. Using discrete functions and multi-lingual

scripts (e.g. MATLAB or Python), the user can manipulate data rapidly in a

repeatable manner. Multiple data file formats are supported by a decision-based

file handler and user authentication-based storage allocation method.

∗Corresponding author
Email address: jennings-m5@ulster.ac.uk (Michael R. Jennings)

Preprint submitted to Computer Methods and Programs in Biomedicine September 4, 2021

Results: The proposed system has been demonstrated as effective in handling

multiple input data types in various programming languages, including Python

and MATLAB. This, in turn, has the potential to reduce currently experienced

bottlenecks in cross-platform development of bio-signal processing algorithms.

The source code for this system has been made available to encourage reuse.

A cloud service for digital signal processing has the ability to reduce the ap-

parent complexity and abstract the need to understand the intricacies of signal

processing.

Conclusion: We have introduced a web-based system capable of reducing

the barrier to entry for inexperienced programmers. Furthermore, our system

is reproducable and scalable for use in a variety of clinical or research fields.

Keywords: cloud computing, code-free, django framework

2021 MSC: 68U01

1. Introduction

Server-side processing of biomedical signals is widely prevalent [1, 2] to the

extent where specific standards have been formulated to support aspects of this

approach [3]. However, the sharing of code and processing techniques is limited

by the both the skill of the user and the willingness of the developer to format5

their code comprehensibly. This could be indifference of a developer to format

code legibly, or it could be aversion due to time constraints. For example, there

are an abundance of digital signal processing (DSP) algorithms proliferating,

but limited initiatives are making these accessible to others. Artificial Intelli-

gence (AI) techniques garner significant interest in multidisciplinary research,10

however, the abstraction from the developer to the user causes a lack of uptake

in many cases. Additionally, few developers are willing to share their models di-

rectly, forcing the user to recreate already existing software. Furthermore, whilst

new software tools and techniques have made specialist domains like DSP more

accessible the technical barrier to comprehending algorithms based on advanced15

techniques remains high. Many junior developers find it more difficult to reuse

3

or recreate another published algorithm due to a lack of information surround-

ing its use or a lack of clarity in the method. This may reduce the eagerness of

others to begin research into a novel area or technique and further publication

bias [4]. Additionally, it may discourage junior developers from furthering their20

understanding of the area since an extensive time investment is required.

Notwithstanding, non-developers could benefit most from the increased avail-

ability of well-documented code since they are often experts in the application

of software, rather than it’s development. One example is that from the medical

domain. Specifically, a physician likely has little-to-no experience in software25

development, but they process large quantities of data on a daily bases. Much

of this data is processed using experience and judgement learned through years

of training, however, this training is not available to everyone. Additionally,

many assignments undertaken by the clinician are, in fact, quite routine and

could be automated, allowing them to focus time on other areas. A system30

that allows the clinician to offload the processing of data has the capability

to reduce the decision-time overhead, potentially enabling more patient-centric

care. Additionally, medical data science is often undertaken by non medical

professionals. Removing the coding barrier may facilitate the discovery of new

findings in medical science by increasing its availability.35

Clinicians often have access to biomedical data such as the electrocardiogram

(ECG) which require extensive filtering between capture and interpretation.

Presently, cardiology professionals are required to manually review information

and return a diagnosis or opinion. ECG traces may be seconds to hours in

length for some ambulatory monitors, requiring considerable time for interpre-40

tation. Cloud-based approaches to interpretation of biomedical signals may be

a solution to this. Previous research have tackled code-free server-side signal

processing and data-visualisation [5, 6, 7, 8, 9], however, such approaches do

not allow the user to develop their own algorithm or experiment with different

functions. One solution may be an architecture that allows users to create al-45

gorithms by connecting multiple combinations of code or functions then expose

it to data. Such a system allows the code to be reused; essential to overcome

4

the ’replication crisis’ in health informatics [10].

There are many different file formats that can be used containing patient

data, although, they are generally not interchangeable [11]. Previous research50

have proposed middleware format conversion methods capable of adapting data

to a universal format [12, 13].

In the work reported in this article, we have developed a system capable of

abstracting the user from the need to write code or possess a strong understand-

ing of digital signal processing. This has been developed based on the notion of55

streamlining the algorithm development process and aiding code reuse by allow-

ing the rapid configuration of new algorithms while supporting the repeatability

of experiments. In this work, we have paid particular attention to the notion

of abstracting the user from the various integration issues such as different pro-

gramming languages, compatible functions, and data formats to allow them to60

focus on processing biomedical data. In addition to facilitating biomedical data

processing functionality, the work proposed in this article also includes provi-

sion to facilitate storage of associated data. This data storage functionality has

been incorporated to reduce the probability of data silos forming due to the dis-

tributed nature of sensitive information [14] by offering a central data store and65

development area for each user [15]. It is hoped that this may increase the will-

ingness of healthcare providers to share information by removing incurred costs

[16], potentially negating many of the data-sharing complications that result in

inconsistent care [17].

Furthermore, our work will provide a more beginner-friendly system to those70

unfamiliar with DSP with the capability to further the democratisation of com-

putational health informatics [18]. This platform aims to be language-agnostic

by supporting multiple different programming languages e.g. MATLAB or

Python. The suggested framework will offer a platform for peer review where

code written by one author can be shared with another. This may reduce the75

impact by which applications created by non-experts with potentially unethi-

cal consequences have on the community [19] since the code can be compared

against other ’gold standard’ approaches.

5

Table 1: Sub-review of Code Sharing Prevalence in Literature

Metric Prevalence

Total Articles 25

Included Articles 13

Excluded Articles 12

Matching ’T’ Criteria 3 (23%)

Matching ’F’ Criteria 10 (77%)

2. Background

To investigate the context of source code sharing and reuse culture in academia,80

a sub-review was devised. The purpose of the sub-review was to quantify the

proportion of authors who share their source code, program or provide an ex-

ample application e.g. working website. Using Google Scholar, a search was

devised using the terms ”novel web framework”. The top 25 results were used

as the basis for the following rules. The inclusion criteria comprised of journal85

or conference papers with a clear indication a computerised method published

in the past ten years (since 2011). Articles that did not fulfill the inclusion

criteria were excluded (n = 12). Those matching the inclusion criteria (n = 13)

were sorted into two categories: ’T’, representing those linking their source code,

website, or program in the article; ’F’, representing those who did not meet the90

’T’ criteria. Those matching the ’T’ (n = 3) and ’F’ (n = 10) criteria comprised

23% and 77% of the included set respectively. These results are shown in Table

1.

Of the articles in our sub-review, only 23% shared their code, website or

application. To facilitate the democratisation of DSP and code reuse, a higher95

number of authors must release their source code. This allows other researchers

to not only evaluate the performance, but verify their results and collaborate

on changes as part of the scientific method.

6

3. Methods

3.1. Framework100

A framework abstracts common software functions and provides a template

which can save development time [20]. Multiple frameworks were evaluated,

with the Python-based Django framework being chosen. The Django frame-

work was chosen as the basis of this study due to the apparent ease of use in

creating web applications, primarily in the provision of an automatic graphi-105

cal administrator (admin) interface to assist with database management. This

allows an administrator to add and remove data without writing code. Addition-

ally, it has a comprehensive documentation library and active user community

to aid debugging. Furthermore, using a popular language such as Python may

facilitate the reuse of this system by making it more accessible to those willing110

to recreate it. In the spirit of reusability, the source code of this project has

been made available.

Django abstracts database creation to a number of potential SQL back-

ends. The database schema is derived directly from classes within the source

code, with items within the class informing columns and attributes within the115

database. This ensures consistency between the software and database schema

and automated database migrations.

The Django framework is inherently open-source. This allows developers to

view and edit aspects of the framework to suit their application [21]. In this

study, we did not manipulate the Django request-handling middleware, how-120

ever, it is an important feature when considering scaling a project or addressing

architectural issues in future [22].

3.2. Database Construction

The database structure is central to a cloud computing architecture. The

purpose of the database, in this study, was to hold data files, code/executable125

files (scripts), user details and user inputs. Primarily, the database stored what

data the user would like to process (File), what scripts to run (Script) and

7

their order (Algorithm), and the result of each script (Execution). This allows

the user to see upload data and process it repeatedly using either a novel or

existing Algorithm they have created. In Django, database tables are referred130

to as models. Five database tables (models) were identified as core to this study:

Algorithm is the highest-level model in that it contains multiple other

models within it. It is a user-created entry with a number of potential scripts

to be executed in order. This model is linked to one user allowing them to

document the order in which their uploaded data is processed. One field, scripts,135

is linked to a Script via a many to many relationship. This link is made through

an intermediary table, Execution, which provides further details. One example

of an Algorithm could be a disease classifier. An input file of patient data

(XML) would be uploaded by the user. The data could be passed through two

hypothetical scripts: first a MATLAB file ’data sanitisation.m’ and secondly140

a Python file ’knn classifier.py’ to return a spreadsheet or comma-separated

variable (CSV) file with the result. In principle, however, an arbitrary number of

such processes could employed within an Algorithm. This architecture allowed

multiple combinations of the same Script to be called across various Algorithms

without destroying or editing the original Script.145

Execution is an object used to describe an instance of one file being pro-

cessed by one script to produce an output file. Any data file being processed by

a MATLAB or Python script will become part of an Execution. This model is

hidden from the user. It contains one input file data input, a script to execute

the data script, and an output file data output. The order in which each script150

was executed is stored in order. The purpose of this model was to separate

each processing step of an Algorithm by handling the inputs and outputs of

each Script individually. This allowed error handling, logging of output files

and subsequently the removal of unused intermediary files.

Script is an executable file model. Its programming language (language),155

supported input file format (data input) and output file format (data output) are

core fields. Only an admin can upload a Script to reduce the risk of malicious

code injection. A description field is included to provide instructions for use

8

and information as to how the Script works. The executable file is held in

uploaded script and is stored in a media file folder (/algorithms/). This allowed160

each executable file to be read-only by a user and so improved the application’s

security. Additionally, only an admin could edit An example of a Script might

be a MATLAB low pass filter function that supports a single row CSV file and

outputs the same type of file.

File is any file that can be attached to a user. For example, data files165

uploaded by the user or the result of an Execution. The user can provide a

descriptive name (name) for the data and specify the data format (format). A

example File may be a MATLAB data file (’.mat’) of electrocardiograph (ECG)

data with the name ’ecg data.mat’

FileFormat contains metadata for a File instance. Primarily, this model is170

used to filter what Scripts are supported via a one to many relationship with

the Script entries data input and data output. Also, FileFormat is used to store

the MIME type for if the user downloads the file (mime type). It is important

to note the MIME type does not decide if a File is supported by a Script, that

is handled by the administrator-controlled list of supported FileFormats for a175

given Script. The field io shows if the file is in input file, output file or both.

This schema allows users to create a library of data files in various formats,

and build algorithms comprised of individual scripts to act upon them in a re-

producible manner. This also makes the evolution and comparison of algorithms

a more streamlined process.180

Figure 1 shows an entity relationship diagram (ERD) of each table (model).

3.3. Data Upload

Data are handled in two discrete scenarios: upload and execution.

Only authenticated users can upload data. When accessing the file upload185

page, an empty instance of File is created. In the class-based approach of

Django, this creates an empty row in the File table. The user is prompted

to upload their file, give it a descriptive name and specify the input format.

9

FileFormat

name char(100)

io char(1)

extension char(100)

mime_type char(100)

description text

File

user user

identifier UUID4 (PK)

name char(100)

uploaded_file file

format FileFormat

Script

identifier char(100)

description text

language char(1)

data_input FileFormat

data_output FileFormat

uploaded_script file

Algorithm

identifier UUID4 (PK)

user user

name char(100)

description text

scripts M2M (Script)

Execution

identifier UUID4 (PK)

data_input File

data_output File

script Script

algorithm Algorithm

order int

Figure 1: Entity relationship diagram (ERD) of the algorithm development database. Each

table represents a model in the Django framework. ’Algorithm’ is the user-created entry

consisting of a list of ’Scripts’ which process ’Files’ in the order set by ’Execution’ providing

they are a compatible ’FileFormat’

These were stored in a media directory (/user data/) and assigned a filename

corresponding to the username and a universally unique identifier (UUID) e.g.190

’user a535562csv’. In this way data can be traced to a user by searching

file structure or querying the database.

Data are passed to the controller using a POST request. If the form data

and file upload were valid, the file would be saved within the system and the

model instance of File updated with the user-provided information. The path195

to the uploaded file and meta information such as FileFormat could be accessed

by a database query. Figure 2 shows the process to upload user data.

3.4. Data Processing

3.4.1. Algorithm Creation

Creating an algorithm is handled in a similar way to uploading data. A blank200

HTML form was created with the following fields: Algorithm name, description,

input data and scripts. The name and description are customisable to assist the

user in keeping track of previous entries and to ensure a research team have a

shared knowledge of the algorithm construction. The input data is derived from

10

File form submitted

Yes

No
Form valid?

Save 'File' to
database

Error message

Figure 2: Overview of the POST request checking following the user uploading a data file.

Note: ’File’ is a table (model) representing the data file and user metadata

a selectable list of user data files. Only files from the current user are shown.205

The script form fields allow the user to select one or more Scripts in the desired

execution order. Once submitted, a POST request is sent to the controller

with the user-selected input data, executable scripts and a description from the

algorithm creation form. In the model layer, an intermediary table was created

to handle the ordering and metadata for each script. The Execution model210

was used for this. An instance of Execution was created for each chosen Script

and the order assigned. This allows for additional Scripts to be added into the

Algorithm construction at a later date. The input file chosen by the user is

assigned to the first Execution. The input and output files for other Executions

are set to null temporarily.215

3.4.2. Execution

A complete instance of Execution contains an input data file, executable

script and output data file. To complete the first instance of Execution for this

Algorithm, the input data file was passed to the Script via a handler file. The

handler file is different depending on the language of the Script. For example,220

a MATLAB file will have a ’handler.m’ file and Python may have another file.

The role of the handler file is to take the file path of the input data file, run a

script at a given file path and return the file identification number. The output

file was then assigned to the first Execution to complete it. The next Execution

11

uses the output data file of the previous Execution as its input data file. It225

executes the script and returns an output file. If the last execution is reached,

the output data file is returned to the user as a downloadable file and all previous

intermediary files are cleared from the system to reduce storage overhead.

3.4.3. MATLAB Engine for Python

The Django framework uses Python, so the native environment can be used230

to process scripts, however, the same is not true for licensed software such as

MATLAB. The MATLAB Engine for Python is an application programming

interface (API) for Python capable of accessing the MATLAB work space and

executing scripts. This allows a licensed copy of MATLAB to be stored on the

server with the current session shared with the Python virtual environment.235

Errors from MATLAB can be passed to Python via the API and raised to the

user as a MatlabExecutionError. Figure 3 shows a flowchart of how data is

executed.

3.5. User Interaction

A front-end was developed to facilitate testing. Separate webpages were240

created to demonstrate the following features: uploading and viewing data files,

creating and viewing algorithms, and user registration.

When uploading a file, the user was presented with three input fields as an

HTML form: ”Name”, ”Uploaded file”, and ”Format”. The user could view

and manage their stored files via an HTML table including deleting unwanted245

data files. Each table row was an instance of File attributed to that user

To create an Algorithm, the user entered details into another HTML form.

They could select a file from the file management area to process or enter it from

the form directly. The following input fields were available: ”Algorithm name”,

”Description”, ”Data input” and ”Scripts”. For the purposes of demonstration,250

up to four scripts were allowed, however an arbitrary number can be used within

the model and administrator interface. Each successive script field denotes an

instance of Script and allocated the order of each Execution instance. The data

12

Yes

No
Form valid? Error message

Create 'Execution' for each 'Script' selected

Yes

No

First 'Execution'?

Output file from previous 'Execution' assigned
to the current 'Execution'

Input data file assigned
to first 'Execution'

No

Yes
Last 'Execution'?

Start API related to 'Script' language e.g.
MATLAB, Python

Pass Script and data input ('File') path to the
Execution handler

Process the 'Execution'

Yes

No

Error raised?

Delete the intermediary data input ('File')

Return error to user

Algorithm form submitted

Return data output ('File') to user as a
download

Save 'Algorithm' with all 'Executions'

Save 'Execution' instance

Save the order of each 'Execution'

Save 'Algorithm' to database with empty
'Executions'

Figure 3: Data flow following the submission of an ’Algorithm’ form to process a user input

file through multiple different scripts (’Execution’) and return an output file

13

file selection is a filtered list of files for only that user. Once the user submits the

Algorithm creation form, the data file will be processed in the manner previously255

described. The user will be requested to download the data output file. The

user could also view and edit their created algorithms using the same method

as data files. Figure 4 shows the suggested user interaction with the system.

Upload
data

Select
'Script(s)'

Download
result file

Submit
'Algorithm'

Figure 4: User interaction steps required to process data

To show the user interaction in more detail, Figure 5 provides a sequence

diagram of user inputs followed by the backend response. Five objects have been260

described here. First, the web interface, is the frontend developed for testing

purposes. This provides renders of forms such as file upload and algorithm cre-

ation forms. Second, the web application, is the backend model-view-controller

architecture written using the Django framework. It handles user requests, ren-

ders and queries to the database. Third, the processing engine or API, describes265

the system which executes a given file by passing it to the selected script as an

argument. The API will then return a result file and status message to indi-

cate a successful execution. Finally, the database, is used to store the tables

described in Section 3.2 and allows the user input to be preserved in case of an

exception e.g. the processing API raises an error.270

4. Discussion

A web-based approach to algorithm development allows a user to trial many

different parameters without writing code. For example, a user can combine

different filters and compare which has the most favourable performance for their

signal. Additionally, a user could compare classifiers written by different team275

members. This system is not limited to comparing scripts though, it could be

utilised by medical professionals for statistical analysis or used by administrators

14

Web Interface Web Application
(Django)

Processing
Engine/API

User

Submit file for upload

Database

POST file form

Form valid?

Alternative

[If FileForm is valid]

[Else]

Store File

Create File instance

Complete

Successful uploadShow table of
uploaded files

Form invalid

Error message

Create algorithm
page

GET algorithm form Fetch available
files & scripts

Return files & scriptsRender algorithm
formDisplay algorithm

form

Select file to process
POST file format Fetch compatible

scripts for the file format

Return files & scripts

Alternative

[If Execution complete]

[Else]

Render algorithm
formDisplay algorithm

form

Select script

Loop

[for each
new script
selected]

Display selected
script

Update
form

Submit algorithm
form

POST algorithm form

Create Algorithm
instance

Store Algorithm

Complete

Create Execution
instance

Loop

[for each selected script]

Process file MATLAB/
Python API

Store result

Return result

Complete

Return result file

Return error message

Display error

Delete temp files

Complete

Download results

Figure 5: Sequence diagram showing interactions between the user and the system when

uploading a file, creating an algorithm and running the algorithm. User interface refers to the

frontend browser-based platform. The web application is the backend model-view-controller

logic. The processing engine is the API which uses a selected script to process a file e.g.

MATLAB or Python. The database is the server used for storage and queries.

15

to sort patient records without prior knowledge of programming.

Code reuse, particularly in open source software, has the capability to re-

duce development time and increase collaboration [23, 24]. This system allows280

code to be stored in the form of discrete functions. Users can reuse a function

multiple times and in different orders. In particular, a developer can see all

previously created Algorithms or Scripts with metadata on the inputs, outputs

and function of the program. If a Script has been previously created, there is

no need for a developer to recreate it, thus, saving time during the develop-285

ment process. A function-based approach to Scripts abstracts the user from the

coding aspect of algorithm design to promote a trial and error method where

non-experts can experiment with their data. Additionally, a Script is linked to

the user who uploaded it. In teams of developers or clinicians, this allows a

potential user of the Script to contact the original author or team they are asso-290

ciated with. When compared with existing systems such as Apache Kafka, this

system is complementary. Kafka implements an event-driven approach for data

monitoring, however, this system employs a data-driven approach instigated by

the user to allow experimentation. This may be beneficial in the design-phase of

automation algorithms as a test-bench before using an event-driven architecture295

such as Kafka.

DSP software is often licensed. For a user to operate the software, they must

purchase a licensed copy and activate it. Each user of requires a license which

some institutions or companies may not be able to afford. Our system requires

a single server license by running one copy of licensed software in the backend.300

Functions are called via the handler by using an API, negating the requirement

for the user to have licensed software.

Many users may not have an in-depth understanding of file formats or DSP

principles. There may be many errors when processing data. Licensed software

APIs such as the MATLAB Engine for Python raise errors in the Django frame-305

work. This enables the development of an error handler to return exceptions

to the user. This is a reactive error handling which happens after the error

has occurred. A pro-active approach is to query the backend before submitting

16

the Algorithm. Javascript in the form of an AJAX query was used to filter the

supported Scripts available to the FileFormat of the input data file. This would310

reduce the likelihood of import errors, however, it would not address run-time

errors.

Using APIs and file handlers allows the use of multiple programming lan-

guages and data types. For example, the output of a MATLAB Execution may

be a CSV file. This could be passed to a Python Execution and processed315

interchangeably. Providing the Script supports a particular data file, it can

be executed without knowledge of the previous programming language which

processed it. This may introduce an environment where DSP software devel-

opment teams can write functions in multiple languages without the need for

single-language specialists. When recruiting developers, this would increase the320

number of potential candidates for a role and encourage a deeper understanding

of the DSP principles rather than a deep understanding of one programming

language.

This application is user agnostic. A wider variety of individuals can interact

without specialist knowledge of the software. For example, a medic could process325

patient records to show risk factors for a specific ailment. Likewise, an embedded

systems engineer could design filter coefficients for a medical device to meet a

regulatory requirement. Abstraction of these tasks from the user reduces the

time invested in the task, allowing them to focus elsewhere. The principle of

democratisation in software development is to allow any user to interact and330

access the core functionality. A user agnostic system by default achieves these

principles.

Data files are uploaded by users to our system. Keeping data files in one

system can reduce the probability of data silos forming, especially when the

data storage is centralised. The user can provide descriptive information to335

describe their data file, potentially increasing the prospect of data reuse and

collaboration.

In our system, only MATLAB and Python scripts have been tested. The

architecture has the potential for many different programming languages and

17

programs to execute arbitrary scripts in various languages such as R, C++ and340

Java, but with administrative safety measures. Additionally, this system could

be used to output typographic information by employing TeX-based compil-

ers. One utilisation instance of typographic processing could be the cleaning of

patient record files to output a formatted table or document.

Executable scripts can only be uploaded by admins or super-users. This345

reduces the risk of malicious code injection by only allowing users to upload data

files. Additionally, it ensures that only approved executable files are included

in the Script database. In a software development environment, this would be

post code-review and could reduce the number of errors experienced by clients.

This architecture is inherently scalable. An object-based approach to pro-350

cessing scripts allows multiple instances of ’Executions’, each with their own

engine. For example, multiple MATLAB engines or Python environments can

be created, each with separate memory. Since the memory space is not shared

by these ’Executions’, they can be containerised using platforms such as Docker

and Kubernetes. These systems allow scaling to occur automatically while pro-355

cessing data in parallel to the main web application thread.

The file management system links all files with a user. This enables efficient

clearing of old or disused files by the user or by an administrator. Addition-

ally, data associated with the user can easily be collated or removed to comply

with right-to-erasure requests such as GDPR or similar ’right to be forgotten’360

requests.

Assessing the security and vulnerabilities of a code is an important factor due

to the increase in global cyber security threats. The code has been subjected

to vulnerability scanning using Bandit, a popular tool used to detect known

common issues in Python code. According to the scan the security risk of the365

code is considered ’medium’ due to the MATLAB engine requiring the use of

command-line tools.

18

5. Limitations

Remote code execution (RCE) presents a considerable security concern in

web-based applications. Malicious code can be injected to such a system and370

potentially lead to compromise of the system [25]. The Django framework pro-

vides features to improve security such as cross site scripting (XSS) and SQL

injection protection [26], however specific protection measures would be required

for the deployment environment.

Regular expressions (regex) and user input sanitisation was limited during375

this study in the interest of time. For this application to be deployed and

secured, care would be taken to reduce the likelihood of string-based injection

attacks by parsing user files for executable scripts [27].

At present, handler functions are used to execute scripts. The handler func-

tion is passed an absolute file path to the data and script files. This requires380

a file to be present for each execution instance. For less complex scripts, much

of the processing time would be allocated to reading and writing data files.

It would be more efficient to use the Django framework to handle the files as

imported variables, however this was beyond the scope of this study.

6. Future Work385

Many DSP functions collate multiple data files during execution. For ex-

ample, combining ECG waveforms and contextual patient metadata to produce

a patient-specific diagnosis. This would require multiple data files for each in-

stance of Execution, necessitating a database architecture change. Following

this, a user could select multiple data files of different file formats for one script.390

This may allow more context to be given to classifiers.

To reduce the risk of damage due to malicious code injection, a sandboxing

method could be employed. Sandboxing can isolate server instances to that user

or group of users to assist with malware detection [28]. A compromised sandbox

instance will damage the virtual machine (VM) it is incased within, however, it395

is less likely to affect other sandboxes due to their distributed nature.

19

Automation of file upload and execution could be handled by the develop-

ment of an API. More specifically, medical devices and embedded systems could

use this architecture to offload processing requirements to the cloud. This can

reduce the size and cost of hardware required while allowing algorithm and soft-400

ware changes to be handled remotely, reducing the need for product recall and

firmware updates. Medical devices such as Holter monitors could upload ECG

data and have near to real-time decisions using this approach. Additionally,

all patient data would be accumulated in one location, lessening the data silo

effect. Cloud storage systems could be linked such as Microsoft OneDrive or405

Google Drive to further improve the centralisation of data. However, this would

be limited by regulations on patient data sharing with third parties.

Error handling in this study is limited, however a separate error handling

user interface could allow users to debug data files and code simultaneously.

Furthermore, the handler could include a conditional-based flow during the Ex-410

ecution phase whereby a certain output may trigger a response. For example,

if a single row of a patient record is missing it could be estimated by another

script instead of raising an error.

7. Conclusions

In this study, we have presented an adaptive cloud computing architecture415

capable of processing arbitrary input files through ordered executable scripts

using multiple processing languages in a repeatable manner. Using the Django

framework, a database was introduced to handle and store files as they are pro-

cessed. This work has the capability to assist algorithm research teams during

development by reducing the time taken to incorporate previously developed420

code. Additionally, this study provided an insight into the potential for au-

tomation to process IoT device data, particularly long-term patient monitoring

systems.

20

8. Funding

This project is part of the Eastern Corridor Medical Engineering centre425

(ECME). It is supported by the European Union’s INTERREG VA Programme,

managed by the Special EU Programmes Body (SEUPB).

9. Conflict of Interest Statement

Dr Alan Kennedy is the founder of Pulse AI Ltd., a company specialising in

cloud processing of ECG. We can confirm that Dr Kennedy receives no benefit430

from this project and was involved as an advisory role only. No other authors

have conflicts of interest to disclose.

21

References

[1] H. Xia, I. Asif, X. Zhao, Cloud-ECG for real time ECG monitoring and

analysis, Computer Methods and Programs in Biomedicine 110 (3) (2013)435

253–259. doi:10.1016/j.cmpb.2012.11.008.

[2] S. Pandey, W. Voorsluys, S. Niu, A. Khandoker, R. Buyya, An autonomic

cloud environment for hosting ECG data analysis services, in: Future Gen-

eration Computer Systems, Vol. 28, North-Holland, 2012, pp. 147–154.

doi:10.1016/j.future.2011.04.022.440

[3] ISO, ISO/IEEE International Standard for Health informatics – Point-of-

care medical device communication – Part 20702: Medical devices commu-

nication profile for web services, ISO/IEEE 11073-20702:2018(E) (2018)

1–52doi:10.1109/IEEESTD.2018.8472336.

[4] A. Cockburn, P. Dragicevic, L. Besançon, C. Gutwin, Threats of a replica-445

tion crisis in empirical computer science (jul 2020). doi:10.1145/3360311.

[5] M. A. Kumar, A. Srinivasan, N. Bussa, HTML5 powered web application

for telecardiology: A case study using ECGs, in: IEEE EMBS Special

Topic Conference on Point-of-Care (POC) Healthcare Technologies: Syn-

ergy Towards Better Global Healthcare, PHT 2013, 2013, pp. 156–159.450

doi:10.1109/PHT.2013.6461308.

[6] X. Wang, Q. Gui, B. Liu, Z. Jin, Y. Chen, Enabling smart personalized

healthcare: A hybrid mobile-cloud approach for ECG telemonitoring, IEEE

Journal of Biomedical and Health Informatics 18 (3) (2014) 739–745. doi:

10.1109/JBHI.2013.2286157.455

[7] L. Jin, J. Dong, Intelligent Health Vessel ABC-DE: An Electrocardiogram

Cloud Computing Service, IEEE Transactions on Cloud Computingdoi:

10.1109/TCC.2018.2825390.

22

[8] A. Joshi, D. Scheinost, H. Okuda, D. Belhachemi, I. Murphy, L. H. Staib,

X. Papademetris, Unified framework for development, deployment and ro-460

bust testing of neuroimaging algorithms, Neuroinformatics 9 (1) (2011)

69–84. doi:10.1007/s12021-010-9092-8.

[9] E. S. Martin, D. D. Finlay, C. D. Nugent, R. R. Bond, C. J. Breen, An inter-

active tool for the evaluation of ECG visualisation formats, in: Computing

in Cardiology, IEEE, Zaragoza, Spain, 2013, pp. 779–782.465

[10] E. Coiera, E. Ammenwerth, A. Georgiou, F. Magrabi, Does health infor-

matics have a replication crisis?, Journal of the American Medical Infor-

matics Association 25 (8) (2018) 963–968. doi:10.1093/jamia/ocy028.

[11] R. R. Bond, D. D. Finlay, C. D. Nugent, G. Moore, A review of ECG storage

formats, International Journal of Medical Informatics 80 (10) (2011) 681–470

697. doi:10.1016/j.ijmedinf.2011.06.008.

[12] X. Li, V. Vojisavljevic, Q. Fang, An XML based middleware for ECG for-

mat conversion, in: Proceedings of the 31st Annual International Confer-

ence of the IEEE Engineering in Medicine and Biology Society: Engineering

the Future of Biomedicine, EMBC 2009, IEEE Computer Society, 2009, pp.475

1691–1694. doi:10.1109/IEMBS.2009.5333907.

[13] R. R. Bond, D. D. Finlay, C. D. Nugent, G. Moore, XML-BSPM: An

XML format for storing Body Surface Potential Map recordings, BMC

Medical Informatics and Decision Making 10 (1) (2010) 28. doi:10.1186/

1472-6947-10-28.480

[14] R. Ranchal, P. Bastide, X. Wang, A. Gkoulalas-Divanis, M. Mehra, S. Bak-

thavachalam, H. Lei, A. Mohindra, Disrupting healthcare silos: Addressing

data volume, velocity and variety with a cloud-native healthcare data in-

gestion service, IEEE Journal of Biomedical and Health Informatics 24 (11)

(2020) 3182–3188. doi:10.1109/JBHI.2020.3001518.485

23

[15] R. Reda, F. Piccinini, A. Carbonaro, Towards consistent data representa-

tion in the IoT healthcare landscape, in: ACM International Conference

Proceeding Series, Vol. 2018-April, Association for Computing Machinery,

New York, NY, USA, 2018, pp. 5–10. doi:10.1145/3194658.3194668.

[16] A. R. Miller, C. Tucker, Health information exchange, system size and490

information silos, Journal of Health Economics 33 (1) (2014) 28–42. doi:

10.1016/j.jhealeco.2013.10.004.

[17] R. Reda, F. Piccinini, A. Carbonaro, Semantic modelling of smart health-

care data, in: Advances in Intelligent Systems and Computing, Vol. 869,

Springer Verlag, 2018, pp. 399–411. doi:10.1007/978-3-030-01057-7_495

32.

[18] Computational health informatics in the big data age: A survey (jun 2016).

doi:10.1145/2932707.

[19] R. Bond, A. Koene, A. Dix, J. Boger, M. D. Mulvenna, M. Galushka,

B. W. Bradley, F. Browne, H. Wang, A. Wong, Democratisation of usable500

machine learning in computer vision (feb 2019). arXiv:1902.06804.

[20] O. David, J. C. Ascough, W. Lloyd, T. R. Green, K. W. Rojas, G. H.

Leavesley, L. R. Ahuja, A software engineering perspective on environ-

mental modeling framework design: The Object Modeling System, Envi-

ronmental Modelling and Software 39 (2013) 201–213. doi:10.1016/j.505

envsoft.2012.03.006.

[21] S. WEBER, The Success of Open Source, Harvard University Press, 2009.

[22] D. M. Le, D. Link, A. Shahbazian, N. Medvidovic, An Empirical Study

of Architectural Decay in Open-Source Software, in: Proceedings - 2018

IEEE 15th International Conference on Software Architecture, ICSA 2018,510

Institute of Electrical and Electronics Engineers Inc., 2018, pp. 176–185.

doi:10.1109/ICSA.2018.00027.

24

[23] S. Haefliger, G. Von Krogh, S. Spaeth, Code reuse in open source software,

Management Science 54 (1) (2008) 180–193. doi:10.1287/mnsc.1070.

0748.515

[24] A. Mockus, Large-scale code reuse in open source software, in: First In-

ternational Workshop on Emerging Trends in FLOSS Research and De-

velopment, FLOSS’07, IEEE Computer Society, 2007, pp. 7–11. doi:

10.1109/FLOSS.2007.10.

[25] M. M. Hassan, U. Mustain, S. Khatun, M. S. A. Karim, N. Nishat, M. Rah-520

man, Quantitative Assessment of Remote Code Execution Vulnerability in

Web Apps, in: Proceedings of the 5th International Conference on Elec-

trical, Control & Computer Engineering, Vol. 632, Springer, Kuantan, Pa-

hang, Malaysia, 2020, pp. 633–642. doi:10.1007/978-981-15-2317-5_

53.525

[26] Django Software Foundation, Security in Django (2017).

URL https://docs.djangoproject.com/en/3.1/topics/security

[27] Y. Zheng, X. Zhang, Path sensitive static analysis of web applications

for remote code execution vulnerability detection, in: Proceedings - In-

ternational Conference on Software Engineering, 2013, pp. 652–661. doi:530

10.1109/ICSE.2013.6606611.

[28] M. Vasilescu, L. Gheorghe, N. Tapus, Practical malware analysis based on

sandboxing, in: Proceedings - RoEduNet IEEE International Conference,

IEEE Computer Society, 2014, pp. 1–6. doi:10.1109/RoEduNet-RENAM.

2014.6955304.535

25

Conflict of Interest Statement

Michael R. Jennings

May 5, 2021

No other authors have conflicts of interest to disclose.

1

