
1 

 

ASSESSING THE BENEFITS OF DECENTRALISED RESIDENTIAL BATTERIES 1 

FOR LOAD PEAK SHAVING 2 

Corentin Jankowiak1*, Aggelos Zacharopoulos1, Caterina Brandoni1, Patrick Keatley1, Paul 3 

MacArtain2 and Neil Hewitt1 4 

1 Centre for Sustainable Technologies (CST), University of Ulster, Shore Rd, Newtownabbey BT37 5 

0ZQ, UK 6 

2 Dundalk Institute of Technology, Dublin Road, Dundalk, A91 KS84 7 

* Correspondence: Jankowiak-c@ulster.ac.uk; Tel.: +44 7510 132673 8 

Highlights 9 

• A performance metric was developed to assess the benefits of load peak shaving 10 

• A photovoltaic and battery system for a test house in Northern Ireland was assessed 11 

• Peak Shaving management strategies help to shave peaks by 98% 12 

• To maximise the benefits of peak shaving a bigger battery size is needed   13 

• Peak shaving incentive tariff is necessary to justify the cost in larger batteries 14 

Abstract 15 

The deployment of distributed, behind-the-meter batteries operating on a peak-shaving mode, 16 

could benefit the electricity network, by providing an optimal and location-specific services, 17 

increasing the penetration of intermittent renewable sources, and deferring costly network upgrades. 18 

However, the quantitative assessment of the benefits of load peak-shaving and its impact on the 19 

distribution network remains a challenge. The present paper introduces a metric of five indexes to 20 

evaluate the technical performances of load peak shaving. This metric is applied on a case study, 21 

based on a photovoltaic and battery system application for a test house in Northern Ireland, whose 22 

electricity demand is representative of the average UK demand profile. Two peak shaving strategies 23 

are compared with a more usual self-consumption mode, and the impact of the battery size is 24 
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evaluated. Peak-shaving management strategies show promising performance by reducing peaks by 25 

more than 98%, while still decreasing the yearly consumption by 15%, and avoiding 75% of the 26 

photovoltaic-generated energy to be exported back to the grid. The economic analysis compared the 27 

net present values achieved under two different tariff policies. Using peak-shaving incentivising tariff 28 

remunerating customers £0.24 per kWh of peak shaved allowed to maintain profitability with a 29 

capacity cost of up to £400/kWh, compared to only £150/kWh for a usual flat tariff scheme. Such an 30 

incentive is a step forward in promoting customers to purchase a larger battery and to operate it in a 31 

way that benefits the grid operator. 32 
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Peak Shaving; Integrated Battery; Energy Storage Control Strategies; Decentralized Control; 34 

Domestic Sector. 35 

Nomenclature 36 

Acronyms 37 

BTM   Behind the Meter 38 

LV   Low Voltage  39 

NPV   Net Present Value 40 

PBP   Payback Period 41 

PV   Photovoltaic   42 

PS   Peak-Shaving 43 

SC   Self-Consumption 44 

Constants 45 

λ   Proportionality factor used to define the battery charging rate (W) 46 

𝐶𝑎𝑝𝑎   Battery Capacity (Wh) 47 

𝑇   Electricity rate (£/kWh) 48 
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𝑇ℎ𝐷   Discharge threshold (W) 49 

𝑇ℎ𝐶   Charge threshold (W) 50 

Variables 51 

𝐹𝑃𝑉   Forecasted PV generation (W) 52 

𝐹𝑁𝐷  Forecast profile of the Net Demand (W) 53 

𝐼{𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛}  Profile (vector) containing 1s in indices corresponding to timesteps for which 54 

{𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛} is true and 0s everywhere else 55 

𝑀𝑖  , 𝑖 = 1 … 5  Performance metrics parameters  56 

𝑀̂   weighted average of the performance metrics parameter 57 

𝑃𝑐𝑜𝑚   Power command signal generated by an algorithm and used as an input by the battery 58 

model (W) 59 

𝑃𝑁𝐷   House Net Demand (Electricity consumption minus photovoltaic exports) (W) 60 

𝑃𝐿   House Load (Net Demand plus Battery contribution) (W) 61 

𝑃𝐵𝑎𝑡𝑡   Battery power output (W) 62 

𝑃𝐵𝑎𝑡𝑡
𝑀𝐴𝑋   battery rated (maximal) power (W) 63 

𝑃𝑃𝑉   PV generation (W) 64 

𝑅   Revenues (£/year) 65 

𝑆𝑂𝐶   State of Charge 66 

𝑆𝑂𝐶𝑟𝑒𝑓  Reference State of charge 67 

𝑋(𝑡)   Value (scalar) of any time-dependent variable 𝑋 taken at timestep t 68 

𝑋([𝑡1, 𝑡2])  Profile (column vector) consisting in all the values of 𝑋 between times 𝑡1 and 𝑡2 69 
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1 Introduction 70 

1.1 Context of this work 71 

Storage is often presented as the missing piece to the integration of renewables and other Low 72 

Carbon Technologies, thanks to the flexibility it can provide by reducing the need for synchronisation 73 

between production and generation of electricity [1]. Electricity storage can also help reduce losses 74 

in transmission and distribution networks through properly managed local use of stored energy. From 75 

the customers’ perspective, owning a storage asset can allow to take advantage of differential tariffs 76 

or other incentives, in particular when coupled with on-site PV generation (often referred to as 77 

‘prosumerism’) [2].  78 

The literature indicates that electricity storage has a greater potential when located closer to loads, 79 

and further away from generation, as its benefits affect more regions of the network [3], however, the 80 

complexity of a large-scale deployment and the lack of data lead to immature business cases and 81 

subsequent lack of investment. Robust numerical modelling describing the impacts of low-voltage 82 

(LV) connected Battery Energy Storage Systems, BESS, is necessary to disrupt the present situation 83 

[4]. The reason for this stems from the variety of possible ways to control energy storage systems. 84 

Moreover, the effect on the electricity network can potentially be either beneficial or damaging, 85 

depending on the timing and intensity of charging and discharging patterns. The operation strategies 86 

implemented by battery controllers shape the impact on the grid. In this paper, the focus is put on 87 

decentralised peak-shaving (PS) control: batteries respond to the local power consumption in the 88 

house – as opposed to responding to an aggregator or price signals. 89 

The term “peak-shaving” may refer to different concepts in the literature. We refer to “Peak 90 

Shaving” (PS) as the reduction in demand peaks, which are caused by electrical appliances within the 91 

household, as defined in [5]. Domestic demand peaks are created by the switching on and off of some 92 

appliances for seconds or minutes, causing the power consumption to spike at values significantly 93 

higher than the base load. Figure 1 gives an example of a demand profile over 24 hours, on which the 94 

spikes are identifiable (highlighted in red) compared to the base load values (in blue). Demand peaks 95 
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cause electrical current peaks within the cables, where the losses are proportional to the square of the 96 

electrical current (doubling the current increases the losses fourfold) [6]. Additionally, spikes are 97 

associated with voltage drops in the cables, and voltage unbalance in three-phase networks [7]. 98 

Finally, peaks are difficult to predict accurately, and therefore to manage. PS entails discharging a 99 

battery whenever such peaks are detected. As a result, if a battery is providing PS from behind the 100 

meter (BTM) of a customer, the grid does not “see” peaks anymore and therefore is not subjected to 101 

their negative impacts. 102 

1.2 Literature review 103 

Batteries represent a substantial capital investment, usually paid by the customer. Hence, 104 

maximising the financial benefits for the owner translates into minimising the payback period (PBP) 105 

value for the investment of the battery and PV system. This is done by using a Self-Consumption 106 

(SC) operation strategy to reduce the electricity imported from the grid, or by taking advantage of 107 

differential tariffs. Many of the articles related to the economic viability of BTM batteries are based 108 

on optimising the value of a cost function, for given tariffs and battery costs, constrained by the size 109 

of the battery using linear [8,9], convex [5] or dynamic [10] optimisation. The challenge is that such 110 

operation strategies can lead to negative impact on the grid: a pure SC strategy, means charging the 111 

Figure 1 - Example of a demand profile for a single 

house, for 24 hours. Peaks are highlighted in red, and the 

baseload in blue.  
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battery whenever the PV panels are producing excess energy, but when the battery becomes full while 112 

the sun is still shining, excess PV starts spilling back to the grid, cause potential voltage swings [11]. 113 

Additionally, differential tariffs can cause a rebound effect, as illustrated in [12], where in order to 114 

remove peaks occurring during high electricity price, other peaks are generated during the times of 115 

cheap electricity by charging the battery. In contrast, it was shown that grid relief can be achieved 116 

without negatively affecting the quantity of renewable energy self-consumed (and therefore, 117 

customers’ benefits) by applying a PS battery managing strategy [13]. 118 

A PS strategy consists of discharging the battery when the demand exceeds a certain threshold 119 

to “shave” the peaks and charging it otherwise. This approach is used in [14], and in [15] however a 120 

perfect forecast is used to define the threshold value in both cases, which is limiting the significance 121 

of the results. The perfect forecast assumption is often made, either explicitly [16] or implicitly [5], 122 

but it is obviously impractical, especially with high time resolution. A few publications address this 123 

challenge, such as [17] where a “live” response is implemented in addition to the response to the 124 

perfect forecast. 125 

The PS threshold used in [18] adapts to the live consumption by increasing its value if the battery 126 

cannot meet the peak demand, however no mechanisms are presented to correct the threshold 127 

downwards when the demand decreases. Moreover, the study is limited to on one single day, 128 

containing one single peak, which is highly restricts any generalisation to more complex situations. 129 

In [19], the threshold  is defined as the average of the power demand until the present time step. Using 130 

the average value is reasonable proxy for the threshold, however a “correction factor” should be added 131 

to account for the efficiency of the battery being lower than 100%, and for the fact that the average 132 

consumption in the future can be different to that of the past. 133 

An interesting approach to bypass these challenges is introduced in [20], were the threshold is 134 

defined as 2kW and kept constant, but the charging strategy is based on the State Of Charge (SOC) 135 

value. More specifically, the battery is charged or discharged proportionally to the difference between 136 

a reference “target” SOC value (set to 50%) and the actual SOC of the battery. Therefore, the battery 137 
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state is always “stabilised” towards this SOC target, to have enough room for absorbing PV-produced 138 

electricity, and enough capacity to shave potential coming peaks. The limitation of this approach lies 139 

in the choice of the target SOC that depends on the PV size, season, consumption habits, and other 140 

factors and its optimal value may change throughout battery operation. The present paper suggests a 141 

novel way to adjust the target SOC during the year. 142 

Looking at the literature about PS for BTM batteries, a second challenge is the lack of a 143 

methodology to quantify the PS performance and therefore correctly assess the impact of using BTM 144 

batteries into the grid. In [21], the term “peak reduction” is widely used but never defined. It may 145 

refer to the difference between highest value of the profile before and after peak-shaving, however 146 

such definition works only if there is clearly a unique peak during the period considered. The 147 

approach in [22] is to look at a number of houses and the change in their After Diversity Maximum 148 

Demand (ADMD) after peak shaving as a performance indicator. Although the method helps to assess 149 

the impact on the grid, it fails to provide ‘per-household’ information on how the battery is 150 

performing. A similar issue is found in [23], where a method is given to assess the peak-shaving 151 

reduction potential of a substation, based on the shape of its load-duration curve (LDC). However, 152 

the indices introduced are defined for the characteristics of a substation and are not applicable directly 153 

to the LDC of a residential profile. In [24], only one peak was considered, leading to a straightforward 154 

way to judge the performance of the algorithm, but such method becomes unusable for a domestic 155 

load profile, containing up to tens of peaks during a single day. The method provided by [25] goes 156 

further in this direction, by defining peak reduction as the lowest threshold exceeded less than 1%, 157 

1.5%, and 2% of the time in a residential profile, and then the performance is based on the number of 158 

times this limit has been violated, despite the use of a battery. This method indicates that the 159 

cumulated duration of peaks matters, but the chosen values of 1, 1.5 or 2 percent are arbitrary, and 160 

condition the performance results. 161 

From this literature, it can be observed that a correct assessment of PS performance should 162 

evaluate the following aspects: 163 
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i) The peak magnitude [22–24]. 164 

ii) Their cumulated duration [23,25]. 165 

In addition, it is important that the algorithm maintain high performance regarding: 166 

iii) The PV energy that a battery stores for later use on site (and which would have been spilled 167 

back to the grid, if no battery was present). Publications traditionally focus on self-168 

consumption rate, defined in [26], or self-sufficiency ratio [27]. 169 

iv) The total energy consumed is required, in order to ensure that PS is not provided at the expense 170 

of very high total energy demand.  171 

1.3 Scope of the study 172 

The review presented above identifies a double gap in the literature for domestic peak shaving: 173 

• A peak-shaving management strategy that does not require to use a threshold based on a perfect 174 

forecast to operate. It means a control method that fits the requirements of a domestic load 175 

profile that is characterised by high peak-to-mean ratio and high randomness in the peak 176 

occurrence timing. 177 

• A methodology to quantify the performance of PS battery management strategies and their 178 

impact on the distribution network. 179 

This paper addresses the double gap identified by describing and developing PS management 180 

strategies which can be easily integrated into battery controllers and by defining metrics and 181 

parameters to accurately quantify the technical performance achieved by the PS management 182 

strategies and the impact on the grid. 183 

The study adopts a ‘bottom-up’ approach, focussing on a single house, equipped with 184 

Photovoltaic (PV) panels and a battery. This choice is motivated by three factors: first, a distributed, 185 

autonomous configuration is the simplest and cheapest strategy in terms of deployment of 186 

communication infrastructure. Secondly, BTM peak-shaving should lead to positive effects at all 187 

voltage levels, through reduction power flows, therefore substantial reduction of losses; of voltage 188 
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fluctuation, and of phase imbalance, bringing about congestion relief and creating the opportunity for 189 

investment deferral [22]. Finally, financial and incentive mechanisms would be necessary in order to 190 

ensure that decentralised batteries benefit the network. Focusing the study at single house level will 191 

help understand which form these incentives should have, and this paper suggest a potential tariff 192 

scheme, made for PS incentivising. 193 

1.4 Structure of the paper 194 

The paper is organised as follows: Section 2 describes the methodology, which is then applied in 195 

a case study defined in Section 3. The results obtained are exposed and discussed in Section 4, and 196 

Section 5 concludes this paper. 197 

2 Methodology 198 

This section describes the PS strategies implemented, the new metrics proposed to assess the use 199 

of PS management strategies for BTM batteries and the economic parameters used to assess the 200 

benefits of PS.  201 

2.1 Peak-shaving management strategies 202 

Peak shaving entails drawing energy from the battery rather than from the grid when demand 203 

peaks above a certain threshold 𝑇ℎ𝐷 (Discharge threshold). If the power discharged by the battery is 204 

equal to the difference between the Net Demand Power 𝑃𝑁𝐷 and 𝑇ℎ𝐷 , the grid will not ‘see’ the peak. 205 

The value chosen for the discharge threshold is 𝑇ℎ𝐷  =  1𝑘𝑊. It corresponds to the transition between 206 

peak and non-peak values of the profile and can be identified as the inflection point in the LDC, 207 

shown in Figure 2. 208 
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 209 

The “Peak-shaving” part itself is straightforward, provided enough energy is stored in the battery 210 

when needed. However, since the spikes are impossible to accurately predict, the challenge is 211 

ensuring that enough charge is present in the battery when needed. Therefore, a ‘smart’ PS 212 

management strategy is in fact a smart charge recovery strategy. In the following, two control 213 

strategies are studied, and the term “peak-shaving” is maintained, rather than “charge recovery” for 214 

consistency. 215 

2.1.1 Reference SOC Algorithm 216 

This algorithm was introduced in [20], for voltage fluctuation limitation. The general functioning 217 

of this algorithm was not changed and is presented below. The only changes were made to the values 218 

of the parameters used. The control method consists of operating the battery so that its SOC tends 219 

towards a reference (or target) value, set to 𝑆𝑂𝐶𝑟𝑒𝑓 = 50% (value used in the original publication). 220 

A charge, 𝑇ℎ𝐶 , and discharge threshold,  𝑇ℎ𝐷 , are also defined, and the values chosen for this study 221 

are respectively 𝑇ℎ𝐶 = 0 𝑘𝑊 and 𝑇ℎ𝐷 = 1 𝑘𝑊 (as opposed to respectively +2kW and -2kW in the 222 

Figure 2 – Load Duration Curve (LDC) of the considered profile. The PS 

threshold ThD is found at the slope decrease, representing the difference between 

peak and non-peak demand. 
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original paper). The choice of 𝑇ℎ𝐷 is explained previously in section 2.1, and it is defined as the limit 223 

found in the yearly LDC between base load and peak (inflection point). 𝑇ℎ𝐶  is chosen equal to 0 in 224 

order to have a straightforward comparison with the self-consumption algorithm.  225 

At any time-step, the decision to charge or discharge the battery and at which power rate is made, 226 

depends on the following cases: 227 

1. If the net power demand, 𝑃𝑁𝐷 , exceed the demand threshold: 𝑃𝑁𝐷(𝑡) > 𝑇ℎ𝐷, the battery 228 

discharges to make up for the difference (it should be noted that 𝑃𝑁𝐷 is defined positive when 229 

power flows into the house). The power command signal, 𝑃𝑐𝑜𝑚  sent to the battery, is defined 230 

by equation (1).  231 

 𝑃𝑐𝑜𝑚(𝑡) = 𝑇ℎ𝐷 − 𝑃𝑁𝐷(𝑡) (1) 

The resulting load (power drawn from the grid) should become equal to the threshold value, 232 

𝑇ℎ𝐷, unless the peak exceeds what the inverter can provide, or the battery is empty. 233 

2. If the charging threshold, 𝑇ℎ𝐶 is exceeded,: 𝑃𝑁𝐷(𝑡) < 𝑇ℎ𝐶 . The battery will charge in order 234 

to absorb the difference, and equation (2) gives the power command in this case. 235 

 𝑃𝑐𝑜𝑚(𝑡) = 𝑇ℎ𝐶 − 𝑃𝑁𝐷(𝑡) (2) 

The resulting load becomes equal to the charging threshold, 𝑇ℎ𝐶 . 236 

3. If the net demand is between the thresholds: 𝑇ℎ𝐶 < 𝑃𝑁𝐷(𝑡) < 𝑇ℎ𝐷, the battery charges or 237 

discharges in order to make the SOC tend towards the target value. The power command is 238 

obtained by multiplying the SOC difference by proportion coefficient λ as in equation (3). 239 

 𝑃𝑐𝑜𝑚(𝑡) =  λ[𝑆𝑂𝐶𝑟𝑒𝑓 − 𝑆𝑂𝐶(𝑡 − 1)] (3) 

As introduced in [20], the coefficient λ is defined such that the maximum possible SOC 240 

difference would lead to the battery maximum power output 𝑃𝐵𝑎𝑡𝑡
𝑀𝐴𝑋, described in equation 241 

(4). 242 
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λ =

𝑃𝐵𝑎𝑡𝑡
𝑀𝐴𝑋

max(𝑆𝑂𝐶𝑟𝑒𝑓 − 0% , 100% −  𝑆𝑂𝐶𝑟𝑒𝑓)
 

(4) 

2.1.2 Reference SOC estimation using Forecast 243 

The second algorithm has been proposed by the authors to improve the “Reference SOC” 244 

algorithm described in the previous subsection. Having a fixed 𝑆𝑂𝐶𝑟𝑒𝑓 value may lead to sub-optimal 245 

performance. For example, in a day with little PV production, but a large number of peaks, a value 246 

of 50% (as defined in [20]) may lead to the battery running flat too early to shave enough peaks, 247 

meaning that a proportion of the battery capacity is not used. The solution implemented here consists 248 

of using forecasts for the coming 24h period to adapt the SOC value. If a small number of peaks is 249 

expected, the 𝑆𝑂𝐶𝑟𝑒𝑓 value is reduced, in order to provide more capacity for PV charging, and if a 250 

large number is expected, then the value is raised to ensure sufficient charging can be achieved during 251 

non-peak times. Equation (5) gives the formula used for calculating the value for 𝑆𝑂𝐶𝑟𝑒𝑓. 252 

 
𝑆𝑂𝐶𝑟𝑒𝑓 = 0.2 + 0.6 ∗

𝐸𝑃𝑆

𝐶𝑎𝑝𝑎
 (5) 

Where 𝐸𝑃𝑆 is the total amount of energy required to shave the peaks forecasted in the following 253 

24-hour period, defined in equation (6), and 𝐶𝑎𝑝𝑎 is the battery capacity.  254 

 𝐸𝑃𝑆 = 𝐼𝐹𝑁𝐷>𝑇ℎ𝐷

𝑇 ([𝑡, 𝑡 + 24ℎ]) ∗ (𝐹𝑁𝐷([𝑡, 𝑡 + 24ℎ])  − 𝑇ℎ𝐷) (6) 

Where 𝐼𝐹𝑁𝐷>𝑇ℎ𝐷
 is a vector composed of ‘1’ in index corresponding to timesteps the condition 255 

𝐹𝑁𝐷 > 𝑇ℎ𝐷 is true and ‘0’ elsewhere, over the period [𝑡, 𝑡 + 24ℎ] and 𝐹𝑁𝐷 is the forecasted net 256 

demand. 257 

The constant 0.2 and factor 0.6 in equation (5) are linear corrections, that maintains 𝑆𝑂𝐶𝑟𝑒𝑓 258 

within the range 20%-80%, thereby reducing the impact of forecast inaccuracy by always leaving 259 

some capacity for unexpected PV charging and Peak shaving. 260 

A ‘light’ forecast model was sought for computational efficiency, since the model is run for a 261 

full one-year period, with a one-minute resolution. Different forecast models have been investigated 262 
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among three main categories: i) persistent types use past consumption profiles with minimum 263 

treatment, ii) ARIMA models apply statistical tools to past profiles, taking advantage of possible 264 

correlations, and iii) artificial intelligence-based models use neural networks to “learn” to from past 265 

time series and extrapolate predictions [28]. These methods were benchmarked in [29], specifically 266 

for their application in household electricity consumption forecasting, with very high granularity 267 

(down to one second). The study concludes that more advanced forecasting methods (ARIMA models 268 

or neural network models) do not generally produce better performance than simpler persistence 269 

forecasts [29]. In practice, publications claim to have developed methods that systematically beat the 270 

persistence model, based on neural networks [30] or probabilistic methods [31], but the simple fact 271 

that the persistence model is used as a benchmark in these publications gives an indication of its 272 

performance.  273 

Based on this conclusion, a persistence forecast model was chosen for the present study. The 274 

forecast demand is defined as the previous same weekday as a forecast profile, in order to account 275 

for weekly variations. (e.g. if the current day is a Wednesday, the demand profile of the previous 276 

Wednesday is used as a forecast profile). This forecast model is very quick to run and therefore allows 277 

the forecast to be updated at every timestep, hence reducing the effect of inaccuracies. Moreover, it 278 

can be implemented in a controller which only requires keeping in memory the previous 7 days of 279 

demand and PV generation. 280 

2.2 Performance metrics definition 281 

The graph of a peak-shaved profile usually gives an idea of how well the PS algorithm performed, 282 

(e.g. Figure 8 in the results section) but a quantification is necessary in order to accurately compare 283 

and evaluate results. The following introduces a metric composed of 5 parameters which aims to 284 

provide a comprehensive comparison of the performance of different aspects of peak shaving.  285 

As detailed in the literature review, the change in peak magnitude is obviously an important 286 

aspect to measure [22–24]. The first metrics parameter gives an estimation of the peak reduction 287 

achieved by the PS algorithms. Since many peaks are typically present on a domestic consumption 288 
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profile, it is not practically possible to look at a single peak’s reduction. 𝑀1 is defined as the ratio 289 

between the sum of the average squared peak after and before PS: 290 

 
𝑀1 =

𝐼𝑃𝐿>𝑇ℎ𝐷

𝑇 ∗ [(𝑃𝐿 − 𝑇ℎ𝐷)2]  

𝐼𝑃𝑁𝐷>𝑇ℎ𝐷

𝑇 ∗ [(𝑃𝑁𝐷 − 𝑇ℎ𝐷)2] 
 (7) 

Where 𝐼{𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛} is a vector composed of ‘1’ in index corresponding to timesteps where the 291 

{𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛} is true, and are zeros elsewhere. 𝑃𝐿 is the vector of the load profile, and 𝑃𝑁𝐷 the net 292 

demand profile. 𝑀1 can be seen as a standard deviation change, calculated with respect the 𝑇ℎ𝐷 293 

instead of the mean value, and considering only values higher than 𝑇ℎ𝐷. 294 

In addition to the decrease in peak height, it is relevant to consider the cumulated duration for 295 

which the threshold is exceeded [23,25]. Parameter 𝑀1 provides an indication of the ‘vertical’ 296 

reduction in peaks, similarly, parameter 𝑀2  provides their ‘horizontal’ reduction, by quantifying the 297 

duration spent exceeding the threshold. More precisely, 𝑀2 is defined as the ratio between the 298 

duration exceeding the threshold after PS and before PS: 299 

 
𝑀2 =

𝐼𝑇 ∗ 𝐼𝑃𝐿>𝑇ℎ𝐷

𝐼𝑇 ∗ 𝐼𝑃𝑁𝐷>𝑇ℎ𝐷

 (8) 

In terms of PV energy management, publications typically focus on the customers side, using SC 300 

ratio [26], or self-sufficiency ratio [27]. In our case, the focus is on the grid side, therefore parameter 301 

𝑀3 calculates the increase in energy used on site, that would have been exported to the grid if there 302 

were no battery. Mathematically: 303 

 
𝑀3 = 1 −

𝐼𝑃𝐿<0
𝑇 ∗ 𝑃𝐿

𝐼𝑃𝑁𝐷<0
𝑇 ∗ 𝑃𝑁𝐷

 (9) 

Due to energy conversion efficiencies lower than 100%, some energy is lost during the process 304 

of charging and discharging a battery. This extra energy will appear in the electricity bill, and 305 

moreover, will have to be somehow produced. A PS algorithm could not be qualified as performant 306 

if it was causing large increases in energy. Parameter 𝑀4 quantifies the change in relative energy 307 

consumption variation: 308 
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𝑀4 =

𝐼𝑃𝐿>0
𝑇 ∗ 𝑃𝐿 − 𝐼𝑃𝑁𝐷>0

𝑇 ∗ 𝑃𝑁𝐷

𝐼𝑃𝑁𝐷>0
𝑇 ∗ 𝑃𝑁𝐷

 (10) 

Finally, in order to determine the overall performance of an algorithm, parameter 𝑀̂ is defined 309 

as an average of the 𝑀𝑖  310 

 
𝑀̂ =

(1 − 𝑀1) + (1 − 𝑀2) + 𝑀3 + (1 − 𝜎(𝑀4))

4
 (11) 

Where: 𝜎 is a sigmoid function defined as 𝜎(𝑧) =
1

1+𝑒−𝑧
 311 

𝑀̂ is not strictly speaking an average or even a weighted average. Simple operations were added 312 

to parameters 𝑀1, 𝑀2 and 𝑀4 so that each term of 𝑀 ̂ tends towards 1 with high performance, and 0 313 

when the performance is poor. The sigmoid function is used to maintain values of 𝑀4 between 0 and 314 

+1, for comparison with the other parameters.  315 

Table 1 summarises the metrics parameter and how to read them. 316 
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Table 1 - Summary of the metrics' definition 317 

Name 

Feature 

measured 

Definition 

Best 

Performance 

Worst 

performance 

𝑴𝟏 Profile flatness 𝑀1 =
𝐼𝑃𝐿>𝑇ℎ𝐷

𝑇 ∗ [(𝑃𝐿 − 𝑇ℎ𝐷)2]  

𝐼𝑃𝑁𝐷>𝑇ℎ𝐷

𝑇 ∗ [(𝑃𝑁𝐷 − 𝑇ℎ𝐷)2] 
 𝑀1 → 0 𝑀1 → 1 

𝑴𝟐 Peak duration 𝑀2 =
𝐼𝑇 ∗ 𝐼𝑃𝐿>𝑇ℎ𝐷

𝐼𝑇 ∗ 𝐼𝑃𝑁𝐷>𝑇ℎ𝐷

 𝑀2 → 0 𝑀2 → 1 

𝑴𝟑 

Exported 

Energy 

𝑀3 = 1 −
𝐼𝑃𝐿<0

𝑇 ∗ 𝑃𝐿

𝐼𝑃𝑁𝐷<0
𝑇 ∗ 𝑃𝑁𝐷

 𝑀3 → 1 𝑀3 → 0 

𝑴𝟒 

Change Energy 

Demand 

𝑀4 =
𝐼𝑃𝐿>0

𝑇 ∗ 𝑃𝐿 − 𝐼𝑃𝑁𝐷>0
𝑇 ∗ 𝑃𝑁𝐷

𝐼𝑃𝑁𝐷>0
𝑇 ∗ 𝑃𝑁𝐷

 𝑀4 → −∞ 𝑀4 → +∞ 

𝑴̂ 
Average 

Performance 
𝑀̂ =

(1 − 𝑀1) + (1 − 𝑀2) + 𝑀3 + (1 − 𝜎(10 ∗ 𝑀4))

4
 𝑀̂ → 1 𝑀̂ → 0 
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2.3 Economic study parameters 318 

The economic analysis is based on Net Present Value (NPV) calculations using equation (12).  319 

 

𝑁𝑃𝑉(𝐶0, 𝑁) =  −𝐶0 + ∑
𝑅

(1 + 𝑖)𝑘

𝑁

𝑘=1

 (12) 

𝐶0 is the battery initial investment, 𝐶0 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑐𝑜𝑠𝑡 [£ 𝑘𝑊ℎ⁄ ] ∗ 𝐶𝑎𝑝𝑎 [𝑘𝑊ℎ]. 𝑁 is the 320 

number of years considered and 𝑖 the discount rate (a value of 5% is chosen). 𝑅 is the yearly revenue. 321 

The revenue normally varies from year to year, but in this case only one year of measurements was 322 

available. It was therefore assumed that 𝑅 is the same from one year to another. The economic 323 

calculations here only for the battery system: it is assumed that the PV panels are already present, and 324 

their economics is not assessed. Equations (13) and (14) detail the calculations of 𝑅 for flat tariff and 325 

PS incentive tariff respectively. They are calculated by working out the difference between the cost 326 

of electricity (with the flat tariff or with PS incentive tariff respectively) compared to what electricity 327 

would have costed if no battery was installed (i.e. by looking at the net demand). 328 

 𝑅𝐹𝑙𝑎𝑡 = 𝑅𝐹𝑙𝑎𝑡,𝐿𝑜𝑎𝑑 − 𝑅𝐹𝑙𝑎𝑡,𝑁𝐷 (13) 

 𝑅𝑃𝑆𝐼𝑇 = 𝑅𝑃𝑆𝐼𝑇,𝐿𝑜𝑎𝑑 − 𝑅𝐹𝑙𝑎𝑡,𝑁𝐷 (14) 

𝑅𝐹𝑙𝑎𝑡 and 𝑅𝑃𝑆𝐼𝑇 are the annual net revenues with a flat tariff and a PS incentive tariff respectively. 329 

𝑅𝐹𝑙𝑎𝑡,𝐿𝑜𝑎𝑑 and 𝑅𝑃𝑆𝐼𝑇,𝐿𝑜𝑎𝑑  are the gross revenues obtained with a flat tariff, when considering the 330 

battery operation with a flat tariff and the PS incentive tariff respectively. 𝑅𝐹𝑙𝑎𝑡,𝑁𝐷 is the gross revenue 331 

that would have been obtained with a flat tariff if no battery was operated.  332 

To determine the influence of the capital cost of the battery on its economic viability, the PBP 333 

was calculated for a range of 𝐶0 values. The PBP measures the time it takes for the NPV to become 334 

positive after an investment. It is given in years, and can be found using equation (15), in which the 335 

NPV is calculated from equation (12). 336 

 𝑁𝑝𝑎𝑦 𝑏𝑎𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 = min(𝑁 | 𝑁𝑃𝑉(𝐶0, 𝑁) > 0)  (15) 

 337 
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Two tariff schemes were considered for the NPV calculation. The first one is the usual flat tariff, 338 

for which a constant price is given for each unit of electricity consumed. The value was fixed to 339 

£0.17/kWh as it represents the regulated tariff in Northern Ireland, where the house is located [32]. 340 

The second tariff was created for the purpose of the study, as a peak-shaving incentive policy.  It was 341 

inspired by the GB Renewable Heat Incentive Tariffs (RHI) which aimed to incentivise the 342 

production of renewable heat by paying the customer for each unit of renewable heat produced 343 

(typically by a heat pump) [33]. With the PS incentive tariff, the customer is remunerated for each 344 

kWh coming out of the battery that is used to reduce peaks and is charged at a higher rate for the 345 

peaks generated (when the load cannot be maintained below the peak threshold 𝑇ℎ𝐷). The rest of the 346 

billing is the same as for regular flat tariffs of 0.14 £/kWh to incentivise customers to remain under 347 

the threshold limit. During peak times the amount of energy above the threshold is charged at 348 

£0.24/kWh, and the incentives for shaving peaks is £0.24/kWh of peak reduced. 349 

Name Charge 

Flat Tariff  𝑇𝑓𝑙𝑎𝑡 =  −£0.17/𝑘𝑊ℎ 

Exported Feed-

in Tariffs 
 𝑇𝐹𝑖𝑇 =   £0.05/𝑘𝑊ℎ 

Peak-Shaving 

Incentive Tariff  

Off-Peak: 𝑇𝑂𝑓𝑓𝑃𝑒𝑎𝑘 = −£0.14/𝑘𝑊ℎ 

Peak: 𝑇𝑃𝑒𝑎𝑘 = − £0.24/𝑘𝑊ℎ 

Peak 

reduction: 
𝑇𝑃𝑆 =   £0.24/𝑘𝑊ℎ 

Exported Feed-

in Tariffs 
 𝑇𝐹𝑖𝑇 =   £0.05/𝑘𝑊ℎ 

Table 2 - Summary of the values used for electricity cost calculations 350 

Exported Feed-in Tariffs were also considered for both cases, and a value of £0.05 per kWh 351 

exported is used, reflecting previous support schemes [34]. Table 2 summarises the values used for 352 

the different tariffs. 353 
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3 Case study  354 

The PS battery management strategies have been applied to one of the test houses located in 355 

Northern Ireland (Fig.6). These houses are mid-terraced, energy inefficient design, built according to 356 

1900 standards, and represent 28% of the UK housing stock. The house considered is inhabited by a 357 

family of three, comprising two adults and a teenager [35]. Monitoring equipment is located in the 358 

guard chambers and measures the electricity consumption with one-minute resolution. The house is 359 

equipped with a retrofitted air-source heat pump, and a backup gas boiler for heating[36,37] However, 360 

the electricity consumption of the heat pump was measured separately, therefore the data used 361 

corresponds to the electricity consumption without any electrical heating. 362 

3.1 Data collection 363 

The data collected covers one full year: from January 1st, 2018 at 00:00, to December 31st, 2018 364 

at 23:59, at a resolution of 1 minute. The energy consumption throughout that year was 4,044kWh 365 

making it a typical medium consumer in the UK [38]. It was assumed that the house is equipped with 366 

a 2kWp PV panel on its rooftop, oriented with a 32° tilt angle and -40° azimuth angle. Its generation 367 

profile for the 1-year period was generated by TRNSYS [35]. The net demand profile was thus 368 

obtained by subtracting the PV profile to the house demand profile. 369 

Figure 3 - Test Houses at Ulster University, Jordanstown 

Campus [36]. The electricity consumption of house 64 was 

used for the present study. 
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Figure 4 displays the lay-out considered and summarises the sign convention used for the 370 

different power flows. The power values are positive when flowing towards the house, except for the 371 

battery 𝑃𝐵𝑎𝑡𝑡. 372 

3.2 Battery model description 373 

A “bucket” model has been used to model the battery. This choice comes from the simplicity of 374 

the model, which only captures essential aspects of the battery, leading to a computationally efficient 375 

result [39]. The model used is described in Figure 5. 376 

Figure 4 - Lay out of the simulation model analysed and sign 

convention for the power flows 

Storage 
Unit

Electrical 
Appliances in 
the house

Solar PV 
Panels

PD

PND

PPV

PBatt

PL

Rest of 
the grid

Figure 5 - Illustration of the function 

principle of the battery model 
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The model takes as an input the command power 𝑃𝑐𝑜𝑚, calculated using one of the algorithms 377 

defined in section 2.1., and the SOC of the battery at the previous time step. It calculates the actual 378 

battery output power, and the updated SOC, based on internal efficiency and power and energy 379 

limitations. The efficiency of the energy transfers is modelled by a linearized inverted curve, show in 380 

Figure 3. The points A, B, C and D were tuned during the validation process. 381 

3.3 Battery model validation 382 

The operating data of a 4kWh, 2kW battery operating in one of the test houses was collected and 383 

used for the validation of the battery model. By looking at the operation data, it could be seen that the 384 

battery is programmed to charge when the net demand becomes lower than minus 33W and discharge 385 

when the house consumption reaches values higher than 33W. This operation algorithm was modelled 386 

using MATLAB to generate the power command, 𝑃𝑐𝑜𝑚(𝑡) of each time step based on the house 387 

consumption. The model was fed with the net demand measurements for 178 days (from August 2019 388 

to February 2020). The validation was done by comparing the power output and SOC of the real 389 

battery, to those of the battery model. The points A, B, C and D of the efficiency curve (Figure 6) 390 

were adjusted to fit the model to the actual battery used. The values used are show in Table 3. 391 

Point A B C D 

% of 𝑷𝑩𝒂𝒕𝒕
𝑴𝑨𝑿 0% 20% 40% 100% 

Figure 6 – Typical and linearized efficiency curves. 
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Efficiency 0.73 0.89 0.89 0.71 

 Table 3 - Tuning of the efficiency curve 392 

 393 

 SOC Power output 

RMSE 0.36% 0.11W 

R2 0.994 0.972 

Table 4 - Statistical results obtained for 178 days of comparison 394 

The quality of the model was assessed by calculating the root mean squared error (RMSE) and 395 

the R2 values for power profiles and SOC profiles. The values obtained are summarised in Table 4. 396 

To illustrate the results, Figure 7 shows a scatter of the SOC values measured on the real battery, 397 

against the SOC values obtained with our model (blue dots). The intensity of the bleu denotes the 398 

density. The values are concentrated around a straight line of equation 𝑦 = 𝑥 (in black). Additionally, 399 

the average SOC values obtained with the model are plotted in red, for each measured SOC. This red 400 

curve almost superimposes the 𝑦 = 𝑥  line. To conclude, the SOC and power outputs are very close 401 

to each other in the modelled and measured results, which make this model suitable to be used for 402 

our application. 403 

Figure 7 - Comparison of the SOC measured for the real 

battery, and the SOC obtained from the battery model, for the 

178-day period. 
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4 Results and discussion 404 

The PS battery management strategies are compared to the commonly used SC strategy for 7 405 

different battery sizes, from small 2kWh / 1kW to large 15kWh / 11kW. First, the technical 406 

performance results are presented and discussed, followed by an evaluation of the technical analysis. 407 

4.1 Technical performance results 408 

Figure 8 shows a 3-day snapshot of the results for the three algorithms (SC at the top ; fixed 409 

𝑆𝑂𝐶𝑟𝑒𝑓 in the middle and forecasted 𝑆𝑂𝐶𝑟𝑒𝑓 at the bottom), where for clarity only 3 battery sizes are 410 

reported: 2kWh, 8kWh and 15kWh. The detailed results for each M parameter and all three algorithms 411 

are shown in Figure 9. 412 

4.1.1 SC control method 413 

To start with, the commonly used SC algorithm presents good energy managements with higher 414 

values of parameters 𝑀3 (avoided PV exports) low negative values for 𝑀4 (change in net energy 415 

demand). More than 90% of the PV exports are avoided, and the demand is reduced by 25% for an 416 

8kWh battery, or larger (Figure 9). This is visible on Figure 8, where all the PV energy generated is 417 

stored in the battery, as indicated by load profiles remaining equal to zero during sunny hours. 418 

However, the peak reduction performances of the SC algorithms are very poor across all battery 419 

capacities. This is expressed by parameter 𝑀1 and 𝑀2 (reduction in peak magnitude and duration 420 

respectively) in Figure 9. Their values remain higher than 70%, indicating that the peaks were not 421 

significantly reduced. These results are partly explained by the first day shown in Figure 8 which was 422 

chosen for being particularly cloudy. For all three sizes represented, the battery did not charge, hence 423 

was not able to provide any peak shaving in the evening time (indicated by all the curves 424 

superimposing the net demand). The remainder of the explanation comes from the discharge threshold 425 

being equal to 0kWh. Consequently, when the PV panels stop producing electricity, the profile 426 

remains flat and equal to zero only for few hours as the battery is discharging, until the battery runs 427 

flat after a few hours, and is unable to shave any more peak. 428 
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4.1.2 PS control methods 429 

The two PS management strategies show good peak shaving performance for batteries 8kWh 430 

batteries and larger: parameters 𝑀1 and 𝑀2 indicated that close to 0% of the peak magnitude and 431 

duration remains after PS. The less performant results obtained with smaller batteries are partly 432 

explained by the lower inverter rated which directly constraints the magnitude reduction of a peak. 433 

(e.g. for a peak of 6kW, the best that an inverter rated at, say 2kW can do is to reduce the peak to 434 

4kW, even if the battery is fully charged). Figure 8 (middle and lower graphs) shows numerous partly 435 

Figure 8 - Profiles for the 3 algorithms (SC: top, 𝑆𝑂𝐶𝑟𝑒𝑓: middle,  forecast-𝑆𝑂𝐶𝑟𝑒𝑓: bottom) over the 3-day period 

February 13-15th 2018. For each graph, the Net Demand is shown in grey (Household demand including PV, excluding 

any battery), the total load including a 2kWh battery (blue), an 8kWh battery (red) and a 15kWh battery (black) 
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shaved peaks for the 2kWh battery (blue curves), all reduced by exactly 1kW (inverter rating). The 436 

low capacity itself explains the rest of the poor PS performance of the PS algorithms for small sizes. 437 

The battery runs flat before all evening peaks can be shaved. For similar reasons, the energy 438 

performance of the PS algorithms is not satisfactory at low battery sizes but catches up with the SC 439 

algorithm for larger batteries. Figure 9 shows more than 70% of PV exports are avoided (parameter 440 

𝑀3) and the energy consumption is reduced by more than 16% (Parameter 𝑀4). 441 

Figure 9 - Performance comparison for each M-parameter (each graph representing one parameter) and for each 

Algorithm: SC in blue, 𝑆𝑂𝐶𝑟𝑒𝑓  in red, and forecast- 𝑆𝑂𝐶𝑟𝑒𝑓 in orange. 
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4.1.3 Global performance 442 

The performance of all management strategies for each M-parameter tend to individually 443 

improve with larger battery capacities. This trend is visible in parameter 𝑀̂ (Figure 9) showing the 444 

global performance of all three algorithms. Due to the very modest results of the SC method for 445 

parameters 𝑀1 and 𝑀2, its resulting global performance are about half as high as those of the other 446 

algorithms. This poor performance by the SC algorithm is observed in the LDC shown in Figure 10 447 

where the curve remains very close to the Net Demand LDC for values above the discharge threshold. 448 

Good PV management performance are also visible on the left-hand side zoom, showing the SC 449 

algorithm (in red) letting very little amounts PV exported back to the grid (negative values). 450 

The two PS algorithms show similar results for all the M-parameters, including 𝑀̂. Using the 451 

fixed 𝑆𝑂𝐶𝑟𝑒𝑓 yields slightly better for lower battery sizes and remaining while using forecast 452 

improves the results obtained for 8kWh capacities and higher. These differences are partly explained 453 

by coincidence: the difficulty to accurately forecast peaks leads to alternatively good and poor 454 

anticipation of the coming peaks yielding overall neglectable improvement obtained by adding 455 

forecast. The slightly higher performance of the forecast-based algorithm with larger batteries is 456 

explained by the lower susceptibility of the energy performance (𝑀3 and 𝑀4) to forecasting 457 

inaccuracies. If the battery capacity is large enough, there is still room for PV charging as long as the 458 

Figure 10 - Duration curves of the 3 algorithms for an 8kWh battery, and the net demand (before battery contribution). 
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forecasting error remains small enough. This can be observed on the LDCs Figure 10, where the zoom 459 

on the PS part (right hand side) shows a very small advantage of the 𝑆𝑂𝐶𝑟𝑒𝑓 algorithm on reducing 460 

peaks, whereas the forecast 𝑆𝑂𝐶𝑟𝑒𝑓 method provides more PV exports reduction, as seen on the 461 

corresponding zoom (left hand side). 462 

Due to this similarity between the two PS algorithms, the economic analysis that follows only 463 

considers the 𝑆𝑂𝐶𝑟𝑒𝑓 algorithm, compared to the SC method. 464 

4.2 Economic analysis  465 

4.2.1 Results for a flat tariff 466 

Figure 11 shows the NPV in case of flat tariff for the SC and PS management strategies. The 467 

different colours correspond to different battery sizes, and the line type to the algorithm. The 468 

investment period is limited to 10 years, as most batteries have a lifespan of around this duration, 469 

therefore if the PBP is reached after 10 years, the replacement and/or maintenance costs will make it 470 

Figure 11 – Net Present Values (£) obtained with a flat tariff, for the first 

10 years of investment, for all the battery sizes considered in the study 

(from 2kWh until 15kWh). SC algorithm in solid lines and PS algorithm 

in dashed lines 
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impossible to ever reach profitability. The NPV curves are shifted downwards as the capacity size 471 

increases, although it can be noticed that higher battery capacities perform slightly better, as indicated 472 

by a steeper slope, but not enough to cover the increasing investment cost. 473 

For the case under analysis Figure 11 indicates that the only viable case is for a 2kWh battery 474 

following a SC strategy, purchased at a capacity cost of 150£/kWh. This capital cost is unrealistically 475 

low, which means that it is currently not profitable to use battery combined with PV units for the 476 

residential sector at the current battery cost. This result is important, since it implies that the customer 477 

will not have any direct interest in purchasing a larger battery and use a battery management strategy 478 

that would benefit the grid.  479 

4.2.2 Peak-shaving incentive tariff 480 

First, the assumption that only a 5kWh and an 8kWh batteries should be kept for the economic 481 

analysis is assessed. This assumption comes from looking at parameter 𝑀̂, Figure 9, indicating that 482 

the increase in performance for larger batteries than 8kWh is neglectable, therefore making the 483 

additional investment unworthy. In Figure 12, the NPV curves for a 3.5, 5, 8 and 10kWh batteries for 484 

𝐶0 = £150/𝑘𝑊ℎ are plotted in solid lines for the PS incentive tariff, and in dashed line with the flat 485 

tariff. 486 

Increasing the battery size from 3.5 to 5kWh leads to an increase of 0.7 years in the PBP at this 487 

capacity cost, for an increase from about 0.68 to 0.78 in parameter 𝑀̂ (Figure 9). On the other hand, 488 

increasing from 8 to 10kWh size leads to reaching breakeven about 1.5 year later, for an increase in 489 

performance from 0.87 to 0.9: a significantly lower increase in performance for a larger increase in 490 

PBP. For this reason, the economic study is restrained to 5kWh and 8kWh battery sizes.  491 
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The results displayed in Figure 12 prove the capability for the PS incentive tariff to promote the 492 

purchase of a larger battery and operate it in PS mode. For all battery sizes considered, the NPV 493 

curves are significantly steeper than with the flat tariff, which substantially shortens the PBP. The 494 

PBP is graphically found as the intercept between an NPV curve and the line 𝑦 = 0. The NPV curve 495 

of a 2kWh battery operating in SC mode, with flat tariff is also represented in dotted black line for 496 

comparison. 497 

Nevertheless, the results are obtained for an initial capacity cost of £150/kWh, which is 498 

unrealistically low. In the following, the impact of the investment capacity on the PBP is evaluated.  499 

4.2.3 Impact of capacity cost on payback period 500 

The graph of Figure 13 was obtained by varying the 𝐶0 value from £0/kWh until £500/kWh in 501 

steps of 10, and measuring the intercept between the corresponding NPV curve and the 𝑦 = 0 axis 502 

Figure 12 -Net Present Values (£) obtained with a Peak-Shaving algorithm, for the 

first 10 years after purchase, for battery sizes ranging from 3.5kWh to 10kWh. Solid 

lines correspond to the application of the PS incentive tariff, and dashed lines to the 

flat tariff 
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(as in Figure 11 and Figure 12), which defines the PBP. The value of this PBP is represented in the 503 

vertical axis of Figure 13 and the 𝐶0  value that lead to this result in the horizontal axis. 504 

The results are presented for PSIT and flat tariff (in solid and dashed lines respectively), for the 505 

two selected battery sizes, 5kWh and 8kWh (in red and blue, respectively). The curve obtained for a 506 

2kWh battery operating on self-consumption mode, with a flat tariff is also shown in Figure 13, as 507 

comparison. 508 

The first observation is that using a flat tariff with the PS algorithm reduces significantly the 509 

system’s economic viability. The very steep curves obtained for both battery when using a flat tariff 510 

sizes (dashed lines, overlapping each-other on the graph) show that even with an unrealistic low 511 

capital investment under £50/kWh it would still take more than 10 years to reach breakeven point. 512 

This very low economic viability can seem to be in contradiction with the results obtained for 513 

parameters 𝑀3 and even more, 𝑀4 (Figure 9). These parameters indicated that the PS algorithm still 514 

provides a good level of self-consumption: between 55% and 75%, and of energy savings: more than 515 

10% to 20% for 5kWh and 8kWh batteries respectively. This saved energy should lower electricity 516 

costs, and hence, higher NPV. The poor performance is explained by two aspects: i) the decrease in 517 

the total energy consumption does not make up for the increase in capacity costs (compared to a 518 

Figure 13 – Payback period (in year) against Capacity cost (in 

£/kWh) for the 5 and 8kWh, both with PS incentive tariff, and 

Flat tariff. Results obtained for a 2kWh battery in Self-

Consumption (SC) mode with a flat tariff are also displayed 
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2kWh battery for example) and ii) the PS algorithm charges the battery when the SOC is low, and not 519 

only when the PV is generating energy. Therefore, part of the energy used to provide performant 520 

peak-shaving is charged from the grid, leading to a net increase in demand. 521 

Overall, these effects make it almost impossible for a battery to be profitable with a flat tariff, 522 

when operating on PS mode. Using the PS incentive tariff, on the other hand, substantially increase 523 

the profitability of the system, as indicated by much lower slopes for both battery sizes, when using 524 

this tariff. A capacity cost of £150/kWh was hardly enough to make a small 2kWh battery profitable 525 

after 10 years, when operating on SC mode, whereas the PBP is reduced to 5 and 3.25 years for the 526 

PS mode with PSIT tariff, with 8 and 5kWh batteries respectively. It means that the battery owner 527 

would return from his investment in 10 year even with a capacity cost increased to £270/kWh for an 528 

8kWh battery, and to £400/kWh for a 5kWh unit. Such capacity costs correspond to total investments 529 

of £2160 and £2000, which are more realistic battery prices [40]. 530 

5 Conclusion 531 

Residential behind-the-meter storage presents strong potential for providing many ways to 532 

support to the electricity network [4]. This paper presents two peak-shaving (PS) strategies that can 533 

be integrated into battery controllers in order to provide peak shaving and compared them with a self-534 

consumption (SC) strategy. A novel metric of parameters that can be used in order to assess the impact 535 

of PS strategies is also proposed. The algorithms are tested against empirical data from a domestic 536 

setting, with a one-minute resolution, over a one-year period. 537 

The PS algorithms introduced reduced peaks down to less than 5% of their initial magnitude and 538 

duration. Moreover, the PS algorithms still maintained good levels of energy management: from 70% 539 

to 90% of exports avoided, and a decrease in overall consumption by up to 16%. Although the SC 540 

strategy leads to the best performance in terms of energy management, avoiding more than 90% of 541 

exports and decrease in total consumption by more than 26%, there capability of peak-shaving proved 542 

to be very poor. 543 
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The economics of integrating a battery to an existing photovoltaic system was studied. After 544 

establishing that using a flat tariff with a simple self-consumption mode makes it nearly impossible 545 

to be viable, a PS incentive tariff is studied. We show that such tariff substantially reduces the payback 546 

period for a given capacity cost. It would allow for a customer to purchase a 5kWh battery at 547 

£400/kWh, and still reach profitability in less than 10 years. The payback period would be reached 548 

within the same duration for a 2kWh battery with flat tariff, at a cost of £150/kWh or lower. Therefore, 549 

the PS incentive tariff introduced has the potential to incentivise customers to provide PS to the grid, 550 

while maintaining satisfactory energy management performance. 551 

The Northern Irish context in particular could benefit from such a policy. It presents very high 552 

levels of renewables integrated (small-scale wind farms), while remaining largely electrically isolated 553 

from the rest of the European network. The resulting low inertia, combined with a long and stringy 554 

network, and low industrial base demand leads to a “peaky”, domestic-driven load profile [44], in 555 

which promoting PS can have important benefits. 556 

Load peaks cause voltage fluctuations, ohmic losses, phase imbalances, and uncertainty on the 557 

electricity network, particularly in long radial low voltage sections, typical for low density 558 

populations such as Northern Ireland. Providing peak shaving will help address these challenges by 559 

reducing the burden imposed by the integration of renewables and low carbon technologies. 560 

Moreover, since Northern Ireland consumed 3TWh of electricity in 2017 [41], assuming that 28% of 561 

the houses were equipped with PV and Battery systems, the 15% reduction in consumption achieved 562 

in this paper would lead to 126GWh of energy saved annually. With a carbon intensity of 563 

480gCO2/kWh [42], this represents 60,480 tons of avoided CO2 avoided. 564 

This study focused on providing and measuring PS at the level of one single house. Further work 565 

should be undertaken to assess the exact benefit that a network operator can hope to obtain from a 566 

fleet of PS domestic batteries. The relationship between features of individual versus aggregated load 567 

profiles are not straightforward, and only thorough analyses could conclude on the large-scale 568 

benefits of PS. Such studies could also identify the business opportunities for grid operators, of 569 
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providing tariff policies such as the PS incentive tariff. Furthermore, the decentralised control 570 

methods presented in this paper should be compared with centralised and distributed methods. The 571 

coordination of storage units may improve technical performance, but would lead to increased costs 572 

and complexity, for which the net benefit is yet to be quantified.  573 

Funding 574 

This research and the APC were funded by the European Union’s INTERREG VA Programme, 575 

grant number IVA5038. 576 

Acknowledgments 577 

 This project is supported by the European Union’s INTERREG VA Programme, 578 

managed by the Special EU Programmes Body (SEUPB). The views and opinions 579 

expressed in this document do not necessarily reflect those of the European Commission 580 

or the Special EU Programmes Body (SEUPB) 581 

Author Contributions 582 

Corentin Jankowiak: Writing original draft, editing. Aggelos Zacharopoulos: Supervision and review. 583 

Caterina Brandoni: Supervision, review and editing. Patrick Keatley: Supervision, review and editing. 584 

Paul MacArtain: Review and editing. Neil Hewitt: Funding acquisition, review. 585 

Conflicts of Interest 586 

The authors declare no conflict of interest. 587 

References 588 

[1] O. Teller, J.-P. Nicolai, M. Lafoz, D. Laing, R. Tamme, A.S. Pedersen, M. Andersson, C. 589 

Folke, C. Bourdil, G. Conte, G. Gigliucci, I. Fastelli, M. Vona, M.R. Porto, T. Hackensellner, 590 

R. Kapp, C. Ziebert, H.J. Seifert, M. Noe, M. Sander, J. Lugaro, M. Lippert, P. Hall, S. Saliger, 591 

A. Harby, M. Pihlatie, N. Omar, Joint EASE/EERA Recommendations for a European Energy 592 

Storage Technology Development Roadmap Towards 2030, (2013). 593 

[2] R. Hull, A. Jones, Development of decentralised energy and storage systems in the UK. A 594 

report for the Renewable Energy Association, 2016. http://www.r-e-595 

a.net/upload/rea_storage_report-web_accessible.pdf. 596 

[3] G. Fitzgerald, J. Mandel, J. Morris, H. Touati, The Economics of Battery Energy Storage: how 597 



34 

 

multi-use, customer-sited batteries deliver the most services and value to customers and the 598 

grid, 2015. 599 

[4] C. Jankowiak, A. Zacharopoulos, C. Brandoni, P. Keatley, P. MacArtain, N. Hewitt, The Role 600 

of Domestic Integrated Battery Energy Storage Systems for Electricity Network Performance 601 

Enhancement, Energies. 12 (2019) 3954. doi:10.3390/en12203954. 602 

[5] O. Babacan, E.L. Ratnam, V.R. Disfani, J. Kleissl, Distributed energy storage system 603 

scheduling considering tariff structure, energy arbitrage and solar PV penetration, Appl. 604 

Energy. (2017) 1384–1393. doi:10.1016/j.apenergy.2017.12.079. 605 

[6] M. Uddin, M.F. Romlie, M.F. Abdullah, S. Abd Halim, A.H. Abu Bakar, T. Chia Kwang, A 606 

review on peak load shaving strategies, Renew. Sustain. Energy Rev. 82 (2018) 3323–3332. 607 

doi:10.1016/j.rser.2017.10.056. 608 

[7] K.H. Chua, Y.S. Lim, P. Taylor, S. Morris, J. Wong, Energy storage system for mitigating 609 

voltage unbalance on low-voltage networks with photovoltaic systems, IEEE Trans. Power 610 

Deliv. 27 (2012) 1783–1790. doi:10.1109/TPWRD.2012.2195035. 611 

[8] R. Khalilpour, A. Vassallo, Planning and operation scheduling of PV-battery systems: A novel 612 

methodology, Renew. Sustain. Energy Rev. 53 (2015) 194–208. 613 

doi:10.1016/j.rser.2015.08.015. 614 

[9] A.J. Pimm, J. Palczewski, R. Morris, T.T. Cockerill, P.G. Taylor, Community energy storage: 615 

A case study in the UK using a linear programming method, Energy Convers. Manag. (2020). 616 

doi:10.1016/j.enconman.2019.112388. 617 

[10] K. Abdulla, J. De Hoog, V. Muenzel, F. Suits, K. Steer, A. Wirth, S. Halgamuge, Optimal 618 

Operation of Energy Storage Systems Considering Forecasts and Battery Degradation, IEEE 619 

Trans. Smart Grid. 9 (2018) 2086–2096. doi:10.1109/TSG.2016.2606490. 620 

[11] F. Marra, G. Yang, C. Træholt, J. Østergaard, E. Larsen, A decentralized storage strategy for 621 

residential feeders with photovoltaics, IEEE Trans. Smart Grid. 5 (2014) 974–981. 622 

doi:10.1109/TSG.2013.2281175. 623 

[12] R. Dufo-López, J.L. Bernal-Agustín, Techno-economic analysis of grid-connected battery 624 

storage, Energy Convers. Manag. (2015). doi:10.1016/j.enconman.2014.12.038. 625 

[13] J. Moshövel, K.P. Kairies, D. Magnor, M. Leuthold, M. Bost, S. Gährs, E. Szczechowicz, M. 626 

Cramer, D.U. Sauer, Analysis of the maximal possible grid relief from PV-peak-power impacts 627 

by using storage systems for increased self-consumption, Appl. Energy. 137 (2015) 567–575. 628 

doi:10.1016/j.apenergy.2014.07.021. 629 

[14] O. Babacan, W. Torre, J. Kleissl, Siting and sizing of distributed energy storage to mitigate 630 

voltage impact by solar PV in distribution systems, Sol. Energy. 146 (2017) 199–208. 631 

doi:10.1016/j.solener.2017.02.047. 632 

[15] A. Purvins, I.T. Papaioannou, L. Debarberis, Application of battery-based storage systems in 633 

household-demand smoothening in electricity-distribution grids, Energy Convers. Manag. 65 634 

(2013) 272–284. doi:10.1016/j.enconman.2012.07.018. 635 

[16] D. Parra, S.A. Norman, G.S. Walker, M. Gillott, Optimum community energy storage for 636 

renewable energy and demand load management, Appl. Energy. 200 (2017) 358–369. 637 

doi:10.1016/j.apenergy.2017.05.048. 638 

[17] Y. Yoon, Y.H. Kim, Effective scheduling of residential energy storage systems under dynamic 639 

pricing, Renew. Energy. 87 (2016) 936–945. doi:10.1016/j.renene.2015.09.072. 640 

[18] K.H. Chua, Y.S. Lim, S. Morris, Energy storage system for peak shaving, Int. J. Energy Sect. 641 

Manag. 10 (2016) 3–18. doi:10.1108/IJESM-01-2015-0003. 642 

[19] A. Barzkar, S.M.H. Hosseini, A novel peak load shaving algorithm via real-time battery 643 

scheduling for residential distributed energy storage systems, Int. J. Energy Res. 42 (2018) 644 

2400–2416. doi:10.1002/er.4010. 645 

[20] M. García-Plaza, J. Eloy-García Carrasco, J. Alonso-Martínez, A. Peña Asensio, Peak shaving 646 



35 

 

algorithm with dynamic minimum voltage tracking for battery storage systems in microgrid 647 

applications, J. Energy Storage. 20 (2018) 41–48. doi:10.1016/j.est.2018.08.021. 648 

[21] K. Mahmud, M.J. Hossain, G.E. Town, Peak-Load Reduction by Coordinated Response of 649 

Photovoltaics, Battery Storage, and Electric Vehicles, IEEE Access. 6 (2018) 29353–29365. 650 

doi:10.1109/ACCESS.2018.2837144. 651 

[22] A.J. Pimm, T.T. Cockerill, P.G. Taylor, The potential for peak shaving on low voltage 652 

distribution networks using electricity storage, J. Energy Storage. 16 (2018) 231–242. 653 

doi:10.1016/j.est.2018.02.002. 654 

[23] M. Hosseina, S.M.T. Bathaee, Optimal scheduling for distribution network with redox flow 655 

battery storage, Energy Convers. Manag. 121 (2016) 145–151. 656 

doi:10.1016/j.enconman.2016.05.001. 657 

[24] K.H. Chua, Y.S. Lim, S. Morris, Energy storage system for peak shaving, Int. J. Energy Sect. 658 

Manag. 10 (2016) 3–18. doi:10.1108/IJESM-01-2015-0003. 659 

[25] J. Leadbetter, L. Swan, Battery storage system for residential electricity peak demand shaving, 660 

Energy Build. 55 (2012) 685–692. doi:10.1016/j.enbuild.2012.09.035. 661 

[26] J. Widén, Improved photovoltaic self-consumption with appliance scheduling in 200 single-662 

family buildings, Appl. Energy. 126 (2014) 199–212. doi:10.1016/j.apenergy.2014.04.008. 663 

[27] M. Schreiber, P. Hochloff, Capacity-dependent tariffs and residential energy management for 664 

photovoltaic storage systems, IEEE Power Energy Soc. Gen. Meet. (2013). 665 

doi:10.1109/PESMG.2013.6672200. 666 

[28] H.K. Alfares, M. Nazeeruddin, Electric load forecasting: Literature survey and classification 667 

of methods, Int. J. Syst. Sci. 33 (2002) 23–34. doi:10.1080/00207720110067421. 668 

[29] A. Veit, C. Goebel, R. Tidke, C. Doblander, H.A. Jacobsen, Household electricity demand 669 

forecasting - Benchmarking state-of-the-art methods, E-Energy 2014 - Proc. 5th ACM Int. 670 

Conf. Futur. Energy Syst. (2014) 233–234. doi:10.1145/2602044.2602082. 671 

[30] A. Ahmad, T.N. Anderson, S.U. Rehman, Prediction of Electricity Consumption for 672 

Residential Houses in New Zealand, in: Smart Grid Innov. Front. Telecommun., Springer 673 

International Publishing, 2018: pp. 165–172. doi:10.1007/978-3-319-94965-9_17. 674 

[31] A. Gerossier, R. Girard, G. Kariniotakis, A. Michiorri, Probabilistic day-ahead forecasting of 675 

household electricity demand, CIRED - Open Access Proc. J. 2017 (2017) 2500–2504. 676 

doi:10.1049/oap-cired.2017.0625. 677 

[32] P. NI, Electricity unit and tariff rates and prices, (2020). https://powerni.co.uk/plan-678 

prices/compare-our-plans/tariff-rates/ (accessed June 12, 2020). 679 

[33] Ofgem, Current and future tariffs, (2020). https://www.ofgem.gov.uk/environmental-680 

programmes/domestic-rhi/contacts-guidance-and-resources/tariffs-and-payments-domestic-681 

rhi/current-future-tariffs (accessed June 12, 2020). 682 

[34] P. NI, Microgeneration Tariff, (2020). https://powerni.co.uk/products--683 

services/renewableenergy/sell-electricity/ (accessed June 12, 2020). 684 

[35] C. Brandoni, N.N. Shah, I. Vorushylo, N.J. Hewitt, Poly-generation as a solution to address 685 

the energy challenge of an aging population, Energy Convers. Manag. (2018). 686 

doi:10.1016/j.enconman.2018.06.019. 687 

[36] N.N. Shah, C. Wilson, M.J. Huang, N.J. Hewitt, Analysis on field trial of high temperature 688 

heat pump integrated with thermal energy storage in domestic retrofit installation, Appl. 689 

Therm. Eng. 143 (2018) 650–659. doi:10.1016/j.applthermaleng.2018.07.135. 690 

[37] K.X. Le, M.J. Huang, C. Wilson, N.N. Shah, N.J. Hewitt, Tariff-based load shifting for 691 

domestic cascade heat pump with enhanced system energy efficiency and reduced wind power 692 

curtailment, Appl. Energy. (2020). doi:10.1016/j.apenergy.2019.113976. 693 

[38] Ofgem, Typical Domestic Consumption Values, (2020). https://www.ofgem.gov.uk/gas/retail-694 

market/monitoring-data-and-statistics/typical-domestic-consumption-values (accessed June 695 



36 

 

12, 2020). 696 

[39] J.M. Reniers, G. Mulder, S. Ober-Blöbaum, D.A. Howey, Improving optimal control of grid-697 

connected lithium-ion batteries through more accurate battery and degradation modelling, J. 698 

Power Sources. 379 (2018) 91–102. doi:10.1016/j.jpowsour.2018.01.004. 699 

[40] J. Svarc, Tesla Powerwall 2 Vs LG chem RESU Vs Sonnen ECO Vs BYD — Clean Energy 700 

Reviews, (2019). https://www.cleanenergyreviews.info/blog/powerwall-vs-lg-chem-vs-701 

sonnen-vs-byd (accessed March 15, 2020). 702 

[41] U. Government, Sub-national electricity consumption statistics in Northern Ireland, (2019). 703 

https://www.gov.uk/government/statistics/sub-national-electricity-consumption-statistics-in-704 

northern-ireland (accessed June 12, 2020). 705 

[42] E. and R.A. Department of Agriculture, Northern Ireland carbon intensity indicators 2017, 706 

(2017). https://www.daera-ni.gov.uk/publications/northern-ireland-carbon-intensity-707 

indicators-2017 (accessed March 25, 2020). 708 

 709 


