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Abstract

Cyber attacks have become more prevalent in the last few years, and several

attacks have made headlines worldwide. It has become a lucrative busi-

ness for cybercriminals who are motivated by financial gains. Other motives

include political, social and espionage. Organisations are spending a vast

amount of money from their IT budget to secure their critical assets from

such attacks, but attackers still find ways to compromise these assets. Ac-

cording to a recent data breach report from IBM, the cost of a data breach

is estimated to be around $4.24 million, and on average, it takes 287 days to

detect and contain such breaches. Cyber attacks are continuing to increase,

and no organisation is immune to such attacks, as demonstrated recently by

the cyber attack on FireEye, a leading global cybersecurity firm.

This thesis aims to develop a data-driven framework for the security mon-

itoring of networked systems. In this framework, models for detecting cyber

attack stages, predicting cyber attacks using time series forecasting and the

IoC model were developed to detect attacks that the security monitoring tools

may have missed. In the cyberattack stage detection, the Cyber Kill Chain

was leveraged and then mapped the detection modules to the various stages

of the APT lifecycle. In the cyber prediction model, time series based fea-
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ture forecasting was utilised to predict attacks to help system administrators

take preventative measures. The Indicator of Compromise (IoC) model used

host-based features to help detect IoCs more accurately. The main frame-

work utilises network, host and IoC features. In these three models, the

prediction accuracy of 91.1% and 98.8% was achieved for the APT and IoC

models, while the time series forecasting model produced a reasonable low

mean absolute error (MAE) and root mean square error (RMSE) score. The

author also contributed to another paper on effective feature selection meth-

ods using deep feature abstraction in the form of unsupervised auto-encoders

to extract more features. Wrapper-based feature selection techniques were

then utilised using Support Vector Machine (SVM), Naive Bayes and Deci-

sion tree to select the highest-ranking features. Artificial Neural Networks

(ANN) classifier was then used to distinguish impersonation from normal

traffic. The contribution of the author to this paper was on the feature se-

lection methods. This model achieved an overall accuracy of 99.5%. It is

anticipated that these models will allow decision-makers and systems admin-

istrators to take proactive approaches to secure their systems and reduce

data breaches.
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Chapter 1

Introduction

Cyber attacks are on the rise, and there is a substantial increase in the num-

ber of reported security breaches. The proliferation of internet-connected

devices has substantially increased the attack surface resulting in cybercrim-

inals exploiting vulnerabilities on these devices. Organisations are spending

a substantial amount of their IT budgets on security tools to protect the

confidentiality, integrity and availability of their systems and the data that

reside on them. Despite these investments, cybercriminals are still finding

ways to compromise these systems, demonstrating that traditional security

measures such as firewalls are not enough on their own. The recent Covid-

19 pandemic has also exacerbated the situation and resulted in numerous

security breaches as highlighted in [1].

The presence of vulnerabilities on networked systems poses a risk that

cyber attackers could exploit. Although all these vulnerabilities are diffi-

cult to eliminate due to the ever-changing threat landscape, it is important

for organisations to have vulnerability scanning tools that can give them a
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snapshot of their security status and the vulnerabilities that exist on these

systems. Several tools are available, both commercial and open-source; these

include Nessus, OpenVAS and NMAP. Other security tools that provide some

assurance are antivirus and security monitoring tools such as Intrusion De-

tection Systems (IDS) and Intrusion Prevention Systems (IPS) [2]. However,

these security measures do not provide an overall risk or security status of the

systems. Determining how secure these systems are, is still an open question

and challenge.

The challenge faced by many organisations is determining the security

of their networked systems and whether the current security investments is

enough. Such questions are always difficult to address, and one approach

suggested is the use of security metrics, although currently, there is no con-

sensus on which metrics to use. Metrics support decision-making and can

provide some degree of assurance. The questions that are often asked by

senior management are: (i) How secure are we? (ii) What is our return on

security investments?

Although these questions have always been difficult to answer quantita-

tively, security metrics could answer some of these questions. Most of the

existing frameworks are subjective and answer these questions qualitatively

using low, medium, and high scores. Although these are good starting points,

the qualitative scores do not provide adequate measures compared to quan-

titative approaches.

In this thesis, a data-driven framework was developed to answer some

of these questions. The model was evaluated using performance metrics

to measure its effectiveness in terms of prediction accuracy. The resulting

17



framework will help decision-makers to make informed decisions by taking

proactive approaches to prevent attacks. This framework’s core components

include Cyberattack stage detection, Indicators of Compromise, Cyber events

forecasting, and prediction.

1.1 Motivations

Cybersecurity is at the forefront of many organisations due to the increasing

complexity and volume of attacks. Organisations are spending a substantial

amount of their IT budget on security tools to protect their critical sys-

tems. However, Cyber attacks are increasing, resulting in numerous security

breaches being reported over the last few years. According to a recent cy-

bersecurity breaches survey conducted in the UK [3], the number of cyber

breaches is increasing, and the threat is evolving. The same report found

that 46% of UK businesses experienced cyber attacks in the last 12 months.

According to a recent report by IBM, these security breaches can be

very costly, and the cost of a data breach was estimated to be $4.24 million

[4]. Criminals are finding ways around security defences and compromising

previously secure systems. There are various sophisticated tools and attack

vectors available to hackers. The changing threat landscape and complexity

of the attacks make it difficult for IT professionals and the tools they rely on

to detect all attacks. Some of these tools, such as intrusion detection systems,

are known to generate false positives and negatives that can be tedious to

triage and could result in serious security breaches if actual attacks are missed

or ignored due to these false alerts. Hopefully, this thesis will support security
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professionals and decision-makers to take proactive approaches to secure their

systems by anticipating cyber attacks before cybercriminals exploit these

vulnerabilities.

1.2 Research Questions

This thesis aims to advance current research on enhancing security moni-

toring of networked systems and address emerging threats and challenges

affecting these systems, which led us to formulate our research questions. It

is anticipated that our work will contribute to the accurate detection of cyber

attacks. Detecting cyber attacks accurately and determining these systems’

security status is still a significant challenge. There is a need to improve

the detection accuracy of attacks and with minimal false alerts. This moti-

vates the first question, which is answered by the proposed framework. The

framework consists of models for detecting attacks, feature forecasting and

IoC artefacts.

Research question 1: How could data-driven techniques be utilized to

quantify the security of networked systems?

Sophisticated cyber attacks such as APTs are well planned and, on aver-

age, takes few months to discover. Modern cyber attacks are very complex,

and detecting these attacks accurately, requires systems capable of detecting

such attacks with minimal false positives and false negatives. This motivates

our second research question.

Research question 2: How could data processing techniques be applied

to improve the detection of cyber-attacks based on APT lifecycle?
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Preventing cyber attacks is a crucial priority for every organisation, but

most of the current solutions are reactive, such as sending alerts when a

breach has occurred. Cyber attack prediction can prevent costly attacks by

anticipating attacks in advance. This motivates our third research question.

Research question 3: To what extent can cyber-events be predicted

based on feature engineering?

Cyber attacks are sometimes missed by the monitoring systems and can

remain undetected for a long time. Detecting these IoCs accurately could

result in minimising the impact of such attacks. This motivates our fourth

research question.

Research question 4: How could security logs and IoC be leveraged

to design an efficient cyber-attack detection in terms of accuracy and false

alarm rate?

1.3 Aims and Objectives

This thesis’s main objectives are to answer the research questions, but the

activities also encompassed the following tasks.

1. Research on the security monitoring of networked systems

• Identification of security enforcement and security dependent points/objects

• Sourcing techniques and their optimisation to collect useful infor-

mation for the metrics

• Unit testing of the various individual features.

2. Research on cyber incident models
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• Efficient detection metrics for cyber incidents with competitive

accuracy and minimum false positives/negatives

• Investigation of semi-automatic threat classification procedures.

• Unit testing using a number of possible security attack or threat

scenario (individual feature assessments).

3. Design and Analysis of the data-driven framework for cybersecurity

monitoring.

• Analyse the effectiveness of the data-driven framework using pri-

mary and secondary research

• Optimisation of the performance parameters.

• Testing and validation of the proposed framework (Model assess-

ment).

1.4 Contributions

A machine learning framework for detecting cyber attacks was proposed to

answer the first research question. The framework takes quantified data from

the dataset features such as port numbers and goes through the various steps

until the final block, which is the decision-making charts, as shown in Fig.

4.1. The machine learning model informs this framework. Next, the various

blocks of the framework are covered.

The framework consists of various blocks consisting of data preparation,

parameter and artefact selection, machine learning classification, and visu-

alisation charts. The first block consists of intrusion detection datasets col-
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lected from network and hosts systems. There are parameters relating to the

network in the second block, such as flow data and host parameters, includ-

ing event logs, while IoC variables contain artefacts collected from Windows

hosts. Abstraction/aggregation is performed before feeding the data into the

machine learning model. The machine learning model is used to perform the

learning and classification to classify the various attacks. The parameters

are then optimised until the optimum result is achieved. The result is then

visualised in charts to help with decision-making.

The cyber kill chain approach was applied to detect APT attack stages

using a data-driven machine learning technique to answer the second research

question. Some existing detection modules proposed in work by [5] were

applied and improved by performing feature extraction, feature selection,

classification and adding our own proposed detection modules, which will be

expanded as part of our future work.

Feature engineering was applied to predict cyber attacks using time se-

ries cyber event forecasting to answer the third research question. Machine

learning forecasting techniques were applied to achieve the objectives.

Security logs and IoCs were leveraged to detect cyber attacks based on

forensic artefacts left behind following the attacks to answer the fourth re-

search question. Several features, such as widows events, were used to classify

the attacks in the machine learning model.
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1.5 Thesis Layout

Chapter 2 follows the introduction and presents background literature re-

lating to this research. These topics include security metrics, vulnerabilities

assessments, cyber-attack detection and classification using machine learning

approaches.

Chapter 3 explores the existing cybersecurity frameworks that organ-

isations widely adopt to protect their critical systems. These frameworks

include the NIST cybersecurity framework, the ISO 27001 and the CIS 18

set of controls.

Chapter 4 presents the proposed data-driven framework and discusses

its various components. In this chapter, the three models that form part of

the framework were introduced. These models are cyber attack detection,

prediction and indicators of compromise.

Chapter 5 discusses machine learning for detecting Advanced Persistent

Threats (APT) and cover experiments performed as part of this research.

The Cyber Kill Chain approach was leveraged to map the detection modules

to the APT stages.

Chapter 6 presents cyber-attack events prediction using machine learning-

enabled feature forecasting. This chapter will also cover experiments per-

formed as part of this research.

Chapter 7 presents threat detection using Indicators of Compromise and

discusses IoC’s role in intrusion detection. The IoC experiments performed

as part of this research will also be covered in this chapter.

Chapter 8 concludes the dissertation and give future directions.
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Chapter 2

Background

Cybersecurity is at the forefront of most organisations. They invest a sub-

stantial amount of their IT budget on security to protect their data’s confi-

dentiality, integrity, and availability. In this chapter, a review of the existing

work on networked systems’ security will be carried out.

2.1 Current Cybersecurity threats and chal-

lenges

Cybersecurity threats are evolving rapidly, and the security community are

playing a catch-up game to protect their valuable assets from cyber intrud-

ers. Cybercriminals are using advanced techniques and sophisticated tools

to perform their attacks and to hide their digital footprints. Cyber attacks

have gained prominence following the media coverage of attacks involving

large corporations such as Sony [6]. However, these attacks are not limited

to these large companies, and all sectors are a target for these criminals,
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including government institutions and healthcare facilities.

A recent report on the threat landscape by the European Union Agency

for Cybersecurity (ENISA) [7], identified the top 15 attacks with malware,

web-based attacks and phishing taking the top 3 slots. Phishing has been

used for decades, but it has recently become a popular attack vector for

deploying ransomware by tricking unsuspecting users into clicking links that

trigger the attack. Although there have been concerted efforts to deal with

phishing attacks both from the industry and academic researchers, these

attacks continue and successfully compromise unsuspecting users. Several

authors have discussed phishing and proposed techniques for mitigating such

attacks [8, 9, 10, 11, 12].

Cyber attackers are also targeting networks to take advantage of the

vulnerabilities that exist on these networks. Securing networks is not easy

given the number of devices present in a typical network. Such devices include

the Internet of Things (IoT) and other Internet-connected devices, which

increase the attack surface. Due to the current Covid-19 pandemic, employees

have been allowed to access corporate networks from mobile devices such as

smartphone and tablets. The homeworking arrangements have complicated

the matter for security professionals, given the lack of controls over these

devices and these users’ actions. The lack of control is one of the reasons

why there was an increase in Covid-19 related cyber breaches. According

to a recent report by a UK based Privileged Access Management (PAM)

provider) [13], three-quarters of the surveyed decision-makers believed the

shift towards remote working during the Covid-19 increased the likelihood of

a cyber breach.
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The main challenge for system administrators and decision-makers is de-

termining their networks’ security status and ensuring proactive measures

are in place before the cybercriminals exploit vulnerabilities present in the

network. In this work, several approaches were taken, including machine

learning-enabled IoC detection, cyber-events feature forecasting, and im-

proving the detection of sophisticated attacks such as Advanced Persistent

Threats (APT) during the various stages of the attack lifecycle.

2.2 Cyber Attacks

Cyber attacks are often planned, and they follow a sequence of stages such

as reconnaissance and exploitation before they compromise these systems. A

vulnerability must exist on these systems, which a threat could then exploit.

The severity of the attack will depend on the capability of the attacker and

the strength of the security controls designed to protect these systems. In

other cases, the motivation of the attacker plays an important role. Such

motivation could be financial, political or espionage [14].

Cybercriminal will scan for vulnerabilities on the target systems and then

deploy malicious payloads to exploit them. The goal of these types of attacks

varies, but the most common ones are:

• Data theft including intellectual property

• Unauthorised access and modification of data

• Damage or destroy computer systems
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All these actions affect the confidentiality, integrity and availability of the

data. Confidentiality is ensuring only those who are authorised can access

the system [15]. Integrity protection is to avoid unauthorised modification

of data on transit, and at rest [16]. Availability ensures data is accessible to

those who are authorised when needed [17]. Cyber attackers do not need to

have physical access to the target, and most attacks are executed remotely.

Detecting such attacks during their early stages can prevent serious security

breaches, particularly attacks involving Advanced Persistent Threats(APT)

where data exfiltration is of major concern. Several control measures are

implemented to protect against cyber attacks. The most common ones are

firewalls, anti-virus, Intrusion Detection Systems and Data Loss Prevention

(DLP) Systems.

IDS helps with the detection of security breaches by sending alerts to

systems administrators [18] although there are other challenges associated

with IDS such as false negative and false positives. IDS are categorised into

Host Intrusion Detection Systems (HIDS) and Network Intrusion Detection

Systems (NIDS).

2.3 Intrusion Detection Systems (IDS)

Intrusion detection systems play a vital role in detecting security breaches.

Firewalls and IDS have been key security solutions deployed by many organ-

isations to protect their critical assets and preserve their systems’ confiden-

tiality, integrity, and availability.

IDS are categorised into host intrusion systems (HIDS) and network in-
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trusion detection systems (NIDS). IDS uses techniques such as anomaly and

signature-based detection. Anomaly-based detection analysis the traffic pat-

terns and learns from them, while signature-based detection relies on known

patterns and uses the signature to detect and prevent malicious activities

[19].

Signature-based detection uses a list of known indicators of compromise

(IoCs), but they have their limitation, including the inability to detect un-

known attacks [20]. Another limitation is the ability of cyber attackers to

modify malware by changing its signature to avoid detection.

Anomaly-based based detection provides better capability than signature-

based detection by analysing the pattern of behaviours and building a picture

of the unfolding attacks based on deviation from the known behaviour [21].

It is beneficial for organisations that generate large volumes of data, but the

downside is higher false positives due to the threats’ misclassification.

HIDS are typically deployed on systems containing critical information,

although its adaptation varies depending on the organisation’s need or asset

owner. The purpose of HIDS is to monitor the incoming and outgoing traffic

on the systems to detect malicious activities. The most commonly used HIDS

include Snort, OSSEC and Splunk. HIDS uses audit trails and systems logs to

detect malicious activities [22]. Fig 2.1 shows a simple network architecture

with HIDS on the client machines in the internal network.
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Figure 2.1: Host Intrusion Detection Systems

Network Intrusion Detection (NIDS) are widely used and deployed by

many organisations. NIDS monitors the network traffic for malicious activi-
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ties. NIDS can be software or hardware-based and usually has two interfaces,

one for listening and the other for management and reporting. NIDS is dif-

ferent from the Network Intrusion Prevention Systems (NIPS) because it

does not modify or alter the traffic flow. NIDS requires promiscuous network

access to be enabled in order to analyse all the network traffic. They are

intelligent devices that passively inspect traffic going through the network.

Fig. 2.2 shows a simple network architecture with the NIDS sniffing the

traffic on the perimeter firewall interface.

2.4 Intrusion Prevention Systems (IPS)

Intrusion Prevention Systems (IPS) are security systems that inspect net-

work flow, detect and prevent exploitation of vulnerabilities, and have more

advanced capabilities than IDS [23]. IPS sits directly behind the firewall,

inspects files traffic between the source and destination, and takes automatic

action based on the ruleset. IPS uses both signature-based anomalies to de-

tect exploits. Researchers have shown interest in IPS due to the capability

to prevent attacks rather than just report. Several authors have carried out

on improving the detecting accuracy of intrusion prevention systems using

deep learning approaches [24, 25, 26].

2.5 Data Loss Prevention Systems (DLP)

Most organisations carry out their daily activities in cyberspace and generate

huge amounts of data that necessitate having the correct security controls
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to protect this data. Data loss is a concern for many organisation due to

the impact of losing confidential and sensitive data. Data loss can cause

significant damages to the affected organisation’s reputation and result in

substantial fines from regulatory bodies. The cost of data breaches can also

be higher. Data loss prevention systems detect and prevent data breaches if

configured correctly. DLP can prevent the disclosure of information by block-

ing unauthorised data transfers by monitoring the data flow [27]. Security

professionals and system administrators can develop a data loss prevention

strategy. This strategy begins with prioritising and classifying the data,

training employees, and implementing the DLP program. Implementing a

single centralised DLP solution is the best way and avoids inconsistencies,

leading to lack of visibility and potential data loss.

DLP can be used to protect data at rest, data in motion and data in use.

Data at rest is data stored on computer systems, while data in motion is

data that is transmitted over the network and going through the internet.

Finally, data in use refers to active data executed by end-users or processes.

Insider threats are a concern for organisations, especially on data breaches

relating to sensitive data, including intellectual property theft. Data can be

leaked accidentally or by rogue employees and external cyber attackers. DLP

can reduce the risk of these data breaches by taking proactive measure to

detect and prevent data exfiltration.

2.5.1 DLP Challenges

Encryption - encryption and DLP often co-exist within the same network.

Encryption is designed to protect the confidentiality and prevent eavesdrop-
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ping by ensuring that only authorised users can access data. This means

DLP solutions cannot read the content of encrypted data and will be un-

able to detect data leakage involving encrypted files or messages. This is

why sometimes DLP solutions are deployed in places where the data is not

encrypted.

Steganography - steganography is the process of concealing a secret mes-

sage inside an object or message that is not secret [28]. Steganography is a

popular technique used by cybercriminals to disguise malware. For example,

DLP solutions cannot detect content hidden in images and can be used to

bypass the DLP system as demonstrated in [29, 30]

DLP raises privacy concerns - DLP solutions collect a vast amount of data

during the monitoring phases, which means personal data can be collected

during the data collection phases, raising privacy and regulatory issues [31].
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Figure 2.2: Network Intrusion Detection System

Most of the current research on intrusion detection are utilising machine

learning. The following section covers machine learning approaches for in-
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trusion detection.

2.6 Machine Learning Approaches for Intru-

sion Detection

This section provides background reviews of the machine learning approaches

for intrusion detection, and some of the content derived from the author’s

work published in a peer-reviewed journal [32].

Machine learning is a subset of artificial intelligence and is a technique

used to teach machines to learn from data and make predictions. There are

four main types of machine learning methods which are: (i) Supervised, (ii)

Unsupervised, (iii) Reinforcement, (iv) Semi-supervised [33].

Supervised learning trains itself based on data that was pre-prepared and

labelled. Supervised learning tasks take less time to compute than other

methods, and the performance results can be compared with the actual re-

sults to determine the accuracy. Labelling data can be tedious and time-

consuming, resulting in overfitting depending on how the data was labelled.

Unsupervised learning ingests data and extracts meaningful feature with-

out any human intervention. Reinforced learning is similar to supervised

learning, but rather than being trained on labelled data. It learns as it goes

along with trial and error. Semi-supervised is a combination of supervised

and unsupervised learning. It involves a small labelled data from a large

unlabeled dataset.

In this section, machine learning approaches will be discussed. There

are various machine learning approaches for classifying data, but our main
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focus will be on the ones used in this research. In this thesis, several intrusion

detection datasets were used during the experiments. These datasets includes

the CSE-CIC-IDS2018 [34], APT [5] and IoC datasets. The outcome of this

work will be discussed in chapters 5-7.

Although intrusion detection systems have been effective at detecting ma-

licious activities with known signatures, the same cannot be said on anomaly-

based detection, where the systems have to learn the traffic patterns to detect

unknown malicious activities. Several machine learning techniques have been

proposed to improve the detection capabilities of intrusion detection systems.

Several authors proposed deep learning approaches to improve intru-

sion detection system based on autoencoders and recurrent neural networks

(RNN) [18], [35], [36], [37]. Their work relied on the NSL-KDD dataset which

is widely used for intrusion detection research. Others carried out surveys on

intrusion detection based on machine learning [38], [39] to captures research

in this area.

Machine learning has been widely used to improve the classification and

detection of the attacks [40], [41]. Although some progress was made to im-

prove intrusion detection using machine learning, the challenge of accurately

detecting all attacks on a network remains. Several authors have explored

feature engineering in order to reduce training times and intrusion detection

accuracy [42], [43], [44].

A brief overview of the machine learning classifiers used in this research

will be given in the next part.
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2.6.1 Bayes Net

Bayes network is a probabilistic model representing a set of variables and

their conditional dependencies and is also known as Bayesian Belief Network

(BNN). Bayes Net represent a casual chain, and you can supply data from

past events to predict the future outcome of that event [45]. It can deal with

missing values when performing the predictions and has been widely used in

weather forecasting and stock exchanges.

2.6.2 Naive Bayes

Naive Bayes is a classification algorithm that uses posterior probability for

classification. Suppose we have P (B|D) and P (D|B) as the probability of B

given D and vice-versa, P (B) and P (D) denote the likelihoods of B and D,

respectively. These parameters can be linked through a Bayesian equation

as used in [46].

P (B|D) =
P (D|B)P (B)

P (D)
(2.1)

ŷ = arg max
k∈{1,...,K}

P (Ck)
n∏

i=1

P (xi|Ck) (2.2)

where Ck are label instances in the dataset, xi are data points (instances)

and ŷ is the estimated label. For example in the case of APT, the classes Ck

refer to attack stages while xi refer to data instances of the features.

Naive Bayes is highly scalable and performs well when applied to big

data, but its main limitation is the assumption of conditional independence

of the features, which might result in some loss of accuracy. Naive Bayes can
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also suffer from a zero probability problem which essentially means if the

conditional probability is zero for a particular feature, it will not be able to

predict [47].

2.6.3 Support Vector Machine (SVM)

SVM is a supervised learning algorithm for classification and uses hyper-

planes to define the decision boundaries between the two data classes. Many

hyperplanes can be used to classify the data, but the best choice is often

considered the hyperplane representing the largest separation between the

two classes. The support vectors are the nearest instances that represent the

separation between the two classes [48].

The performance can be improved by using the kernel functions that are

suited to your data. These kernel functions include RBFKernel, PolyKernel

and StringKernel, which can be utilised to reduce some of the complexities

introduced by the data, especially when data points are not linearly sepa-

rable. The limitation of SVM is computation time, which takes longer to

execute depending on the data’s size.

The justification for using SVM is its ability to deal with classification and

regression on linear and non-linear data. It is widely also used in intrusion

detection. SVM is a good choice when working with smaller datasets which is

the case in our experiment, and produces better results than other algorithms

when dealing with small and complex data.
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2.6.4 K-Nearest Neighbour

KNN is a classification and regression algorithm that calculates the distance

between supplied data and the input to make predictions. It assumes similar

features are located closer to each other. The challenge with KNN is finding

the actual value of k, which can significantly impact classification accuracy.

The limitation of KNN is that it does not perform well with large datasets

due to the time taken to compute the distance between new points and

existing point, which can degrade the algorithm’s performance [49].

2.6.5 Random Forest

Random forest is a supervised machine learning algorithm that combines

multiple decision trees to make a forest. It is widely adopted to solve classi-

fication and regression problems, and appropriate for high dimensional data

due to its ability to handle missing values and continuous, categorical and

binary data [50]. Overfitting could still be a problem in Random Forest,

especially with data that has noise or outliers and should be monitored. It

might take a longer time to compute due to the number of trees that are

generated.

2.6.6 Deep Learning

Deep learning is a subset of machine learning, and its adaptation has in-

creased over the years due to technological advancements and availability of

the large data. Deep learning uses different types of neural networks and

learns from feature representations without the need of performing future
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engineering, which is time-consuming [51]. Neural networks use artificial

neurons that mimic the human brain and consist of input, hidden, and out-

put layers.

There are various types of deep learning algorithms, and these include

recurrent neural networks, Long Short Term Memory Networks (LSTMs),

Convolutional Neural Network (CNN), Multilayer Perceptrons (MLPs), Deep

Belief Networks (DBNs) and Autoencoders. Some of these algorithms will

be covered next.

Convolutional Neural Network (CNN) use multiple layers and is widely

used for image processing, and these layers include Convolution Layer, Rec-

tified Linear Unit (ReLU) and Pooling Layer. The convolution layer is where

the operation is performed. CNN has been applied to help classify images

in fields such as satellite imagery and medical imaging. For example, several

authors have proposed CNN based techniques for medical image recognition

and proposed models [52, 53, 54, 55] while others have applied CNN tech-

niques in satellite image recognition [56, 57, 58].

Long Short Term Memory Network (LSTM) is a recurrent neural network

that memorises past inputs and uses them to derive future predictions. It

is a popular method for time-series prediction and process sequence of data.

LSTM will be one of the techniques used in our time series prediction model

in chapter 6. Several authors have proposed techniques based on LSTM to

model future events. For example, it has been widely used in financial pre-

dictions. In [59] the authors proposed a financial time series prediction model

that chooses the features that contribute most based in their weight. Time

series based predictions has been applied to various other domains such in
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medical[60, 61, 62], weather [63], energy efficiency [64] and commodity pric-

ing [65]. LSTM techniques have been applied to intrusion detection, and

several researchers have carried out work in this area. In [66, 67] the authors

applied LSTM on CIDDS data to create an intrusion detection model . In

[68] the authors used the CICIDS217 dataset to develop a hybrid intrusion

detection system that uses LSTM and CNN. In [69] the authors created a

bidirectional Long-Short-Term-Memory (BiDLSTM) based on intrusion de-

tection system to deal with challenges of false alarms using the NSL-KDD

dataset. According to the authors, their proposed system produced a high

accuracy when detecting the targetted attacks. In [70] the authors proposed

a DoS detection method that uses LSTM and Bayes. According to the au-

thors, their model achieved a high accuracy rate. Several other authors have

used deep learning for intrusion detection based on the CICIDS2018 dataset

using CNN, and LSTM [71, 72, 73]

Autoencoders are a feedforward neural network where the input is the

same as the output and consists of an encoder, a code and a decoder. Au-

toencoders learn automatically from the supplied data through unsupervised

means. Researchers have applied autoencoders in deep learning. In [36] the

authors proposed a framework based on stacked autoencoder for feature en-

gineering using support vector machine resulting in improved accuracy. In

[74]the author proposed an IDS system based on a deep auto-encoder and

used the KDD-CUP’99 dataset to evaluate the performance of their model.

Several other authors have used autoencoders for intrusion detection, and

these include[75, 76, 77, 78].
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2.7 Advanced Persistent Threat Lifecycle

This section explores Advanced Persistent Threats (APTs) and related work,

including current research findings. APTs are a group of sophisticated at-

tacks targeted at organisations and governments institutions. The APT

groups are well funded and often supported by organised cybercriminals or

are state-sponsored. Most of these complex APT attacks were found to have

been carried out by state-sponsored actors and other APT groups sponsored

by organised cybercrime and primarily driven by financial gains. Attackers

typically enter networks by taking advantage of human weaknesses and their

susceptibility to social engineering and phishing attacks. They also enter the

networks by exploiting vulnerabilities that exist on the network devices and

endpoint client devices.

2.7.1 APT Background

APTs are among the most sophisticated attacks utilised by organised cy-

bercriminals and those affiliated with nation-state actors. APTs are tar-

geted and persistent forms of attack and may go unnoticed for an extended

timescale [79]. According to FireEye, APT attacks’ global median dwell time

is 56 days [80]. According to a Kaspersky report on APT trends in 2021 [81],

new attack vectors such as those targeting network appliances and 5G vul-

nerabilities are likely to occur alongside the multistage attacks, and the trend

is likely to continue.

APT attackers often use multiple attack vectors to obtain or modify the

information, which is even made easier by the ever-expanding attack surface
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in the digitised world. For example, cybercriminals could exploit devices

ranging from the Internet of Things (IoT), smart cameras, and Bring Your

Own Devices (BYOD), present in most organisations.

According to a Verizon Data Breach Investigation Report, [82], there

was an increase in cyber espionage involving APTs using a combination of

phishing and malware. According to another report by Malwarebytes [83],

organised criminals and nation-state actors linked APT groups have been

using coronavirus-based phishing attacks to compromise and gain a foothold

on the victim machines [84].

Recent interests have shown an increased focus to deal with APT at-

tacks. A variety of cybersecurity measures and methodologies have been

investigated to detect, monitor, and mitigate the APTs, and their impacts.

Conventional cybersecurity approaches have demonstrated some limited suc-

cess at detecting APTs due to their sophistication, and when they are de-

tected, they tend to adapt very quickly and change course. Most of the APT

groups are well resourced and will try every effort to achieve their goal. These

motivate the recent development of machine learning and computational in-

telligence techniques to improve the detection of the APTs, which can then

translate into timely intervention measures.

2.7.2 APT Phases

APT attacks are well planned and follow a pattern of stages. The most com-

mon attacks follow the following stages: (1) Reconnaissance, (2) Weaponisa-

tion, (3) initial compromise, (4) command & control, (5) lateral movement

(6) data exfiltration.
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Several industry leaders proposed attack Life Cycle frameworks for deal-

ing with cyber threats and, in particular, APTs. These frameworks include

the Lockheed Martin Cyber Kill Chain, the Diamond model, Mandiant At-

tack Life Cycle, and MITRE ATT&CK model.

The Lockheed Martin Cyber Kill Chain has seven stages covering the

whole attack life cycle. These stages are Reconnaissance, Weaponisation,

delivery, exploitation, installation, Command & control (C2) and action on

objectives.

The Diamond model is another approach for detecting intrusion and has

four interconnected features present in every attack. These features are ad-

versary, capability, infrastructure, and victim [85].

The Mandiant attack life cycle consists of multiple components mapped

to the various phases of the attack life cycle [86]. The industry research has

its limitations, given they are not peer-reviewed and are mostly used as a

platform to market their products.

The MITRE ATT&CK (Advance Tactics Techniques and Common Knowl-

edge) is a framework used to explain the adversarial actions against the target

system to gain more insight into the attackers tactics [87]. It is widely used

for threat hunting and intrusion detection.

Chapter 5 of this thesis proposes a cyber kill chain approach for detecting

APT leveraging machine learning methods. In the next part, the seven stages

of the cyber kill chain will be discussed as shown in Fig. 2.3.
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Figure 2.3: Cyber Kill Chain Stages

1. Reconnaissance

Reconnaissance, which is also referred to as information gathering, is

the first stage of carefully planned cyber-attacks. The goal of this phase

is to find as much information as possible about the target organisation.

The two main types of reconnaissance techniques are active and passive

reconnaissance. In passive reconnaissance, the attacker has no direct

interactions with the target. In contrast, in active reconnaissance, the

intruder interacts with the target to obtain information that could be

used during the later stages. In the reconnaissance phase, cyber at-

tackers use various tools and techniques to obtain information on their

target. These include NMAP, which can perform port scanning and

OS fingerprinting.

During the passive reconnaissance, the attacker looks for publicly avail-

able information relating to the target organisation. Such information

could be found on the target public-facing websites, whois domain,
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social engineering, google search and shodan [88]. In the active recon-

naissance, attackers have many tools such as NMAP at their disposal.

Defensive measures - security professionals can implement many proac-

tive measures to increase their defensive capabilities and minimise the

impact of such attacks. The key to success is detecting cyber attacks

during the early stages. Some of the proactive security controls that

could be implemented to mitigate the risk of cyber attacks include min-

imising the volume of information available in the public domain, reg-

ular penetration testing to close loopholes, and user awareness training

to protect against social engineering. Other security defensive measure

includes URL filtering and inspection of network traffic.

2. Weaponization

Attackers use the information gathered during the reconnaissance stage

to create a carefully crafted malicious payload tailored to meet their

requirements. The attackers usually use automated tools for packaging

their malware. Remote Access Trojan (RAT) and exploits are used

during the weaponisation. The RAT is designed to allow the attacker to

have backdoor access to the compromised system without the victim’s

knowledge.

Defensive measures - looking at the defensive capabilities, security pro-

fessionals could implement proactive measures to improve their detec-

tion capabilities and prevent an attacker from moving to the next stage

of the attack. The key approach to such measures success includes

understanding the threat actors targeting your organisation and the
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nature of the payloads they use. The features from such attacks could

then be used to trigger early warning alerts. Threat intelligence feeds

could also be utilised in order to learn more about the attackers’ tactics,

techniques and procedures (TTPs).

3. Delivery

In the delivery stage, the attacker deploys the weaponised payload to

the target. There are multiple means for payload delivery that are

available to the attackers. These could be malicious emails, click-by

downloads, watering holes or infected USB devices.

Defensive measures - security professionals could improve their enter-

prise security and detect weaponised payload delivery before the at-

tacker moves to the next stage of the attack. Such measures include;

limiting administrative privileges, email filtering systems and security

monitoring tools to detect anomalies such as disguised executable files

and brute force attacks. Instilling a security awareness culture in the

organisation can also result in employees acting more responsibly when

opening malicious links or attachments. Such employees are likely to

notice suspicious activities on their systems and share the information

with the security professionals, resulting in prompt escalations and mit-

igation plans.

Using security metrics to measure these security mechanisms’ effective-

ness can help improve the detection capabilities. Such metrics could

include the number of security incidents involving employees who have

taken the security awareness training. This will measure the effective-
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ness of the security training programme in reducing security incidents

rather than taking a compliance-based approach that only records the

number of employees who have taken the security training.

4. Exploitation

In this phase, the attackers exploit vulnerabilities on the target sys-

tem, although a vulnerability must exist on this system for successful

exploitation to occur. This vulnerability could be a known vulnerabil-

ity or zero-day. Once the target is compromised, the attacker will get

notifications and prepares for the next stage of the attacks.

Defensive measures - it is crucial to implement a patch management

mechanism to minimise the attack surface and reduce the number of

vulnerabilities available to the attackers. Known and high-risk vul-

nerabilities are likely to be exploited by attackers. It is important

for security professionals to use metrics such as Mean Time to Patch

(MTTP) to measure their response times and reduce the window of

exposure. Other measures include using security monitoring tools such

as intrusion detection/prevention systems, limiting the use of adminis-

trative privileges and detecting brute force attacks which could be an

attempt to escalate privileges.

5. Installation

Once the target is exploited, the next stage for the attackers is to

execute the malware. In most cases, the malware will self install and

replicate depending on the goal of the attacker. In other cases, the

attackers might also need to perform privilege escalation and install
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a backdoor to maintain persistence. To avoid detection, the attackers

often use a dropper and downloaders, which can be used to disable the

security monitoring tools such as antivirus in order to avoid detection

during the malware installation [89].

Defensive measures - security professionals could implement several

measures to defend against attacks relating to this stage. Such security

measures include; up to date antivirus systems to detect malware, fire-

walls, intrusion detection/prevention systems and to limit user rights.

Administrators should configure these monitoring tools to send alerts

when anomalies such as disguised executable files and other forms of

attacks such as brute force are detected.

6. Command and Control

Attackers get management control of the target and establish a back-

door to maintain persistent access. The attackers can then perform

lateral movement and exfiltrate data. A two-way communication chan-

nel is established between the attacker and the compromised target. It

is also possible for them to perform other actions such as authorised

modification and destruction of the data depending on their motives.

Defensive measures - security professionals could implement measures

for detecting and blocking malicious IP addresses, malicious SSL cer-

tificate, malicious domain flux and established malicious connections

such as ToR communications. Once the command and control stage is

detected, there should be defensive mechanisms to block access to the

external command and control servers and quarantine or isolate the
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infected hosts. The proactive measure includes network layering and

enhanced monitoring.

7. Action on Objectives

In this stage, the attackers will execute several other tasks to achieve

their goals. Depending on the attackers’ motives, several actions could

be performed. These include data ex-filtration, modification or destruc-

tion, privilege escalations, credential harvesting, SSH attacks, internal

reconnaissance, internal spearphishing and anti-forensic actions. To

disguise their activities, the attacker could use ToR onions or encrypted

channels such as Virtual Private Network(VPN).

Defensive measures - some of the defensive security measures which se-

curity professionals could implement include; encrypting data at rest,

using Data Loss Prevention (DLP) mechanisms, blocking communica-

tions with suspicious URLs and blocking communications with com-

mands and control servers.

Internal reconnaissance is one of the important steps for cyber-attackers.

They tend to scan for valuable assets to help them achieve their goal by

looking for the easiest path to obtain privileged and persistent access to

the network. Detecting these internal scans and correlating them with

the other steps in the cyber kill chain can help detect the APTs and

implement corrective measures to mitigate the risks. Internal scans can

be collected from the network monitoring tools, which can be config-

ured to send alerts to the network administrators and security teams.

Another solution proposed by some researchers is the deployments of
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deceptive honeypots or honeynets.

2.7.3 APT Research and Findings

APT received attention from both the industry and academic researchers,

although most of APT’s information is from the industry. The extensive

research by industry leaders such as FireEye [90], and Kaspersky [91] led to

the discovery of many APTs, including those used by nation-state actors that

are difficult to detect. For example, FireEye published research on APT41,

which is linked to nation-state actors and used for espionage and financial

gains [92].

Several other APT groups have been detected, and some of them are still

active and keep developing new malware variants. For example, Kimsuky,

linked to nation-state actors, has been active since 2013 but recently deployed

new malware. The primary goal of the group is cyber espionage.

Another APT group whose goal is cyberespionage was reported in 2018

[93]. This APT group was found to be active since 2012 and distributing

malware targeted at Window and Android platforms. Their infrastructure

includes watering hole servers, phishing domains and command & control

servers. APT27 is another active group linked to nation-states and primarily

used for espionage, although they adapted their tactics recently and started

deploying ransomware. They targeted five online gambling companies and

encrypted their servers. According to a security firm, the hackers reached

their target through a third-party provider [94]. In 2019 hackers from the

APT27 compromised SharePoint servers belonging to two governments in

the middle east.
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APT28 focused on intelligence gathering and espionage. Security teams

have attributed this group to nation-state actors due to the information they

are after and their targets [95]. The Lazarus group are perceived to be state-

sponsored and have been very active. Some of the hacking activities they were

involved in include the AppleJeus campaign, which targeted cryptocurrency

trading platform users and their systems [96] and the attack on Sony Pictures

[97, 98, 99]. Other high profile attacks by APT groups include the alleged

interference in the US election in 2016 in which a staff member’s account was

compromised through a phishing email sent by the APT group [100]. APT36

linked to state-sponsored actors orchestrated campaigns exploiting people’s

fears on Covid-19 and sending malicious documents purported to be from

health authorities and then deploy the Crimson Remote Administrator Tool

(RAT) on their target systems [101]. The list of various APT groups and

their alleged affiliation can be found in [102].

APT attacks have also been gaining interest from academic researchers,

and several authors have published articles on this subject. In [103], the

authors surveyed APTs and proposed a taxonomy for APT defence classifi-

cation. Similarly, [104] carried a survey on APTs and reviewed some of the

known APT groups’ activities but did not cover defensive or detective tech-

nical measures. This work mostly relied on publicly available data on APTs

shared by the industry, although they described such sources’ limitations.

Another APT attack life cycle methodology was proposed in [105]. The

authors proposed four stages which were, prepare, access, resident, and har-

vest. In the preparation stage, the attackers gather information relating

to the target. The access and harvest stages broadly encompass the step
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involved in compromising the target. According to the authors, the most

common attack vectors for APT include watering hole and spearfishing. In

[106], the authors discussed the tools and techniques available to the attack-

ers and linked them to the various stages of the Cyber Kill Chain, but their

review was more generic. It could have benefited from evaluating specific

APT attacks or groups. Similarly, in [107], the author proposed a taxonomy

for banking Trojans based on the Cyber Kill Chain. In another work [108],

the authors leveraged the Cyber Kill Chain to break down complex attacks

and built a picture of the APT attackers’ tactics, techniques, and proce-

dures (TTPs). The authors analysed over 40 APTs to build their proposed

taxonomy.

In [109], the authors proposed an approach for detecting APT using frac-

tal methods based on a k-NN algorithm, which, according to the authors,

resulted in a reduction in false positives and false negatives. In a similar

report [110], the authors performed experiments to detect the stages of APT

attacks. They used the NSL-KDD dataset and selected Principal Component

Analysis (PCA) for feature sampling.

In [111], the author categorised the APT attack lifecycle into five phases:

reconnaissance, compromise, maintaining access, lateral movement, and data

exfiltration. In [112], the authors categorised APT phases into reconnais-

sance, delivery, exploitation, operation, data collection, and exfiltration and

proposed an APT detection methodology.

In [5] the authors proposed a machine learning-based framework for de-

tecting APT attack stages and built detection modules. The authors ex-

panded on this work by applying Hidden Markov Chain (HMM) model to
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determine the likely sequence of APT stages [113]. According to the author,

their proposed approach was able to predict the sequence of APT stages with

a prediction accuracy of at least 91.80% which is an improvement from the

previous work. Our focus is on their first work, which contained the bulk of

the experiment, including the detection modules and resultant dataset. That

dataset was also the most recent dataset when this research began.

Deep learning approaches have gained interest from APT researchers.

Several works have been carried out to improve APT detection. However,

accurate detection still remains a challenge due to the ever-changing threats

landscape and the complexity of APT attacks. Deep learning methods such

as autoencoders have been applied to large datasets and produced some good

results. Such autoencoders include stacked and convolution autoencoders.

In [114] the authors developed a deep learning stack to APT detection, but

their approach was not evaluated on actual data collected from production

environments. Reference [115] combined individual deep learning networks

such as CNN, LSTM and Multilayer perceptron to help analyse and detect

APT attacks. In [116] the authors used Bayesian network, C5.0 decision tree

and deep learning to detect APT attacks using the NSL-KDD dataset, and

the deep learning model produced the highest accuracy. In [117] the author

proposed autoencoder based deep learning approaches to detect APT attacks

in cloud-based computing and achieved a high accuracy result. Reference

[118] applied autoencoders with deep learning trained on lateral movement to

the Los Alamos National laboratory dataset and achieved some good results.

While progress has been made on APT detection, this is still an area that

is developing, and research is limited compared to other cyber attack types.
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The need for a model capable of detecting the various stages of the APT

lifecycle more accurately is still an ever-pressing one.

2.7.4 Summary and Gaps

This section discussed the various stages of the Cyber Kill Chain (CKC)

and possible defensive security measures for each stage. APT attacks are

very sophisticated and are considered one of the significant challenges faced

by security professionals. APT attackers often have backdoor access to the

network over a significant period before they are detected. In chapter 5, the

dataset will be reconstructed, and the CKC approach is applied by mapping

the detection modules and alerts types to the stages of CKC.

APTs are real threats facing many organisations and are very difficult to

detect due to careful planning and are well-funded organised groups. Accord-

ing to recent research, it takes 56 days on average to detect APT attacks,

which demonstrates the intrusion detection systems are having limiting suc-

cess at detecting APT attacks. Therefore, there is a need for new APT

detection approaches with minimal false positive and false negatives. In

chapter 5 of this thesis, a cyber kill chain approach was leveraged to detect

APT attacks during the various stages of the APT lifecycle. The existing

detection modules and newly proposed ones were applied to different APT

stages to improve the detection.

56



2.8 Cyber attack prediction and forecasting

In the section, an introduction to time series forecasting and attack prediction

will be provided. This section’s content is derived from the work of the author

submitted to a peer-reviewed journal [119].

Cybercriminals’ threat is ever-increasing, and despite significant invest-

ments by organisations, they are still getting beyond the security defences.

No organisation is immune to these kinds of attacks, as demonstrated re-

cently by the attack on a major cybersecurity firm compromised through

SolarWinds updates [120]. One of the challenges in predicting cyberattacks

is the sophistication of the attacks and the evolving techniques.

Traditional security defences such as firewalls are no longer enough on

their own. There is a need to move away from reliance on reactive measures

and move into predictive methods before cybercriminals can cause damage.

According to a recent report by IBM [4], the average cost of a cyber breach

is $4.24 million while the average time to identify and contain a breach is

280 days. Protecting computer systems and the confidentiality, integrity and

availability of the data they contain has been a priority for every organisation.

However, cybercriminals are still finding ways to compromise these systems.

The current trends show that cyber-attacks are likely to increase due

to the vast number of internet-connected devices, which increase the attack

exposure. These devices range from tiny sensors, smart cameras to mobile

devices and found in most organisations. Organised cybercriminals are also

using Advanced Persistent Threats (APT), which are difficult to detect and

defend against using traditional security measures. However, there have been

several work to improve APT detection, such as in [5, 121, 32]. There is a need
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for predictive approaches that can help system administrators better prepare

themselves for potential attacks and preempt such attacks before they occur.

Predictive analytic are proactive measures and can allow resources to be

targeted where they are needed most and put appropriate countermeasures to

mitigate the risks from these attacks. Analysing the attack patterns will help

predict the incoming events and help with implementing corrective measures.

2.8.1 Research findings on forecasting and predictions

Cyber attacks are on the rise, and the last few years have seen a substantial

increase in the severity and intensity of attacks. Researchers from indus-

try and academic circles have been working on improving attack prediction.

This work aims to forecast cyber-attacks based on certain events or features

observed in the network using a data-driven approach and anticipate cyber-

attacks before they occur.

Cyber attacks can be passive or active, and they usually follow specific

steps to achieve their goal. These steps include identifying the target, de-

tecting vulnerabilities, exploiting the systems and maintaining access. These

activities can leave digital artefacts, which can then be used to predict attacks

before monitoring sensors even detect them. Several methodologies, such as

the Cyber Kill Chain, describe how attacks could be detected or stopped

during various stages of the kill chain. Forecasting cyber-events can also be

used to predict events before they even occur by analysing the pattern of the

features and attributing it to an attack type based on the characteristics.

There are several surveys on cyber attacks forecasting and prediction. In

[122, 123, 124], the authors provided an extensive survey on current research
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on cyber attack prediction and forecasting. In [125], the authors used cyber-

event from an operational environment that analysts verified, and they used

that data to perform forecasting for malware events. In [126], the authors

performed forecasting for Distributed Denial of Service (DDoS) attacks using

text stream from Twitter feeds. In [127], the author used hacker’s behaviour

and sentiments analysis of their posts to predict malicious cyber-events. Sim-

ilarly, [128] used sentiment analysis in social media to predict cyber attacks.

In [129], the author used cybersecurity-related keyword searches from Twit-

ter and the dark web to predict cyberattacks.

Time series have been used to forecast events that are likely to occur in

the future. Several machine learning techniques were used based on neural

network and autoregressive time series models. In [130], the authors applied

time series techniques to financial data using four models: multiple linear

regression in excel, multiple linear regression in Weka, Autoregressive in R

and Neural network. They found Weka’s linear regression outperformed the

other three. In [131], the authors used the ARIMA time series to predict

future attacks based on historical data about cyber incidents. In [132], the

authors used time series techniques to build a predictive model for detecting

vulnerabilities in common internet browsers such as Internet Explorer, Fire-

fox, Safari, Chrome and Opera. In another study, the authors performed a

statistical analysis of security breaches between 2005-2017 and proposed for

both the inter-arrival times and breach sizes of hacking breach incidents to

be described in the stochastic process rather than probabilistic distribution.

[133].

Several forecasting methods are widely adopted, including ARIMA, Lin-
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ear regression, SMOreg, Gaussian process, and Multilayer perception. ARIMA

is a statistical method that uses time series to predict future trends. It has

been used widely to model economic, financial, energy consumption, and

weather forecasts [134, 135, 136, 137] for a long period. However, there are

some limitations with ARIMA model and in particular, the difficulty of mod-

elling non-linear relationships [138]. It is considered to be a univariate time

series forecasting model. It performs better when the time series data is

stationary hence why it essential to check the stationary of the data before

performing the forecasting [139]. ARIMA has several other variations such

as ARIMAX and SARIMA (Seasonal Autoregressive Moving Average) [140].

Linear regression is one of the base learners available for forecasting and

is available in Weka. It is a model used to predict the relationship between

two variables and measures their association [141]. Typically this relates to

a dependent variable and one or more independent variables. SMOreg is

another tool available in Weka and provides effective algorithms for solving

Support Vector Machine (SVM) problems. SMOReg can model regression

and prediction with non-linear data more effectively [142].

The Gaussian process is a supervised machine learning approach designed

to solve regression, and probabilistic classification problems [143]. It is also

one of the base learners available in Weka and used for forecasting. Multilayer

Perception contains multiple layers of neurons and is sometimes referred to

as feed-forward ANN (Artificial Neural Networks). Its layers consist of the

input layer, hidden layer and output layer. Except for the input node, each

node is a neuron that uses a non-linear function [144].

Several authors discussed the application of deep learning techniques such
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as LSTM, as discussed in section 2.6.6. LSTM is one of the popular methods

that are widely used in time series forecasting.

2.8.2 Summary and Gaps

Time series data forecasting is not new, and it is widely adopted in fields such

as weather forecasting and stock predictions. Forecasting has been gaining

traction in cyber attack prediction, although this is still an emerging area

[145]. Although several predecessors [129, 146, 122, 147, 126] have carried

out work based on time series prediction and forecasting, its application in

cyber attack detection has been limited compared to other well-established

fields such as weather and stock prediction. The limited work that exists in

the cyber domain are mostly on sentimental analysis of hackers behaviour

based on social media feeds and the Darknet, or on single attacks such as

Denial of Service (DoS) attacks and malware, variant [129, 126, 147, 146, 148].

Most of the existing works are limited by the quality of the datasets, which

impacts the prediction accuracy. This work utilises a large dataset with

multiple attack labels to make the time series forecasting within a specified

time frame to address these challenges. Our opinion is that this work will

significantly improve cyber attack prediction and reduce cyber breaches by

performing forecasting based on the data’s observation and trends, giving the

system administrator the chance to put proactive countermeasures in place.
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2.9 Indicators of Compromise (IoC)

In this section, Indicators of compromise and related work, including current

research findings, are explored. The content of this section is derived from

the work of the author submitted to a peer-reviewed book chapter [149].

The rapid growth of the internet and the proliferation of smart devices

has increased the attack surface. Cybercriminals are exploiting these vulner-

abilities using high-tech tools which are not easily detected by the monitoring

tools. IOCs are artefacts left behind by attackers following their malicious

activities such as malware execution. Incident response teams use IOCs to

detect abnormal activities and piece together the attackers’ digital trails.

The last decade has seen a substantial increase in the number of reported

cyber-attacks. Although organisations have invested heavily in security mea-

sures, cybercriminals are still finding ways to go beyond these security mea-

sures and compromise previously secure systems. The need to link events

together and to build the attackers profile is a pressing one.

Most cyber-attacks leave behind forensic artefacts, which can be used to

determine the type of attack and build the bigger picture using the attackers’

trails. Given the rapid growth of the internet and the proliferation of smart

devices capable of connecting to the internet, it is just a matter of time before

cybercriminal breach the network security defences.

Attackers have access to many freely available tools that can be used to

perform actions ranging from reconnaissance to covering their tracks. Al-

though preventative security measures are crucial in securing systems, it is

also essential to have a detection capability. Such measures can help to con-

tain security breaches and to remove the threats.
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IoCs are widely used to detect security breaches and other malicious ac-

tivities that have occurred in the organisation. For example, it is common

for security personnel to look at the logs and determine malicious activities

such as known malicious IP addresses, domains, file hashes, URLs and login

irregularities, including failures. The information gained from these IoCs can

then be used to increase the network’s security defences by understanding

their patterns and then tuning the rules on the security monitoring systems

to detect similar attacks in the future [150]. The IOCs that are detected

following a breach or shared by the security community can be deployed to

the sensors to detect such attacks in the future during the early phases of the

attack. Cyber attackers also change their tactics regularly to avoid detection,

and security professionals need to have a clear understanding of threat facing

their organisation.

IoCs are mainly categorised into Network-based, host-based and Email

indicators [151]. Network-based IoCs include IP addresses, domain names

and URLs. Host-based indicators include malware names, registry keys and

malicious file hashes. The network and host-based IoCs can be categorised

further according to their impact on confidentiality, integrity and availability.

For example, changes in the traffic pattern involving malicious IP addresses

could be a sign of data exfiltration, affecting confidentiality. Other IoCs

that can affect confidentiality are unauthorised changes to file permission

and privilege escalations. IoCs that affect integrity include configuration

changes and other unauthorised changes initiated by privileged accounts.

IoCs affecting availability includes malformed packets and high CPU usage.

In a typical organisation, extensive volumes of data are generated daily.
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Making sense of this data can be an enormous task for Information Technol-

ogy (IT) professionals. The monitoring tools also generate lots of false pos-

itives and false negatives, which amplifies the challenges. This information

must also be correlated in order to focus on genuine attacks. IoC provides

IT professional or security teams with the chance to find out attacks that

security monitoring systems may have missed.

Several predecessors have carried out work on IoC and proposed vari-

ous approaches. Similarly, industry leaders have also researched IoCs and

provided tools such as OpenIOC [152]. There exist other community-driven

platforms such as IoC bucket [153] which people can share threat intelligence.

Some industry leaders have also been at the forefront of sharing information

on IoCs, including tools. For example, FireEye recently released a tool for

scanning IoC related to CVE-2019-19781, which affects Citrix application

vulnerabilities [154].

Although some improvements were made in the intrusion detection ca-

pabilities, their accurate detection is still a significant challenge due to the

ever-changing cyber threat landscape. Detecting cyber attacks in the early

stages can significantly reduce the impact of security breaches hence why

there is concerted effort to improve the detection capabilities of IoCs in or-

der to both contain the breach and reduce the overall impact of the threat.

Reference [155] performed a survey of threat intelligence sharing and cat-

egorised IoCs into atomic, computed and behavioural. For example, the

atomic provides a specific characteristic of the IOC, such as IP address,

while the computed contains information derived from a group of IoCs such

as the hash keys. The behavioural is derived from both the atomic and the
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computed IOCs, providing the full description of the threat. Reference [156]

carried out a survey on threat intelligence on the more sophisticated emerg-

ing threats and provided an extensive overview of the available literature on

IOCs.

In [157], the author proposed improving IoC detection using the Graph

Convolutional Network approach. In [158], a machine learning framework

for cyber threats attribution was proposed. The framework was designed

to build a profile of the attacker based on the patterns of attacks. The

authors’ used high-level indicators of compromise to attribute the attacks

to cybercriminals. Reference [159] presented a method of analysing threats

based on the IoC used for the cyber attacks. Reference [160] proposed IoC-

Miner, a framework for extracting threat intelligence’s based IoC sourced

from public information-sharing platforms.

Reference [161] discussed tools such as the Open Indicator of Compromise

(OpenIOC), which provides a standard format for describing IoCs. Other

threats sharing mechanisms, including STIX and VERIS, have enabled se-

curity professionals to share IoCs with trusted stakeholders in a more stan-

dardised format. Reference [162] proposed a system for detecting IoC and

generating the IoC descriptions using OpenIOC data sharing format. Their

classifier was trained on a dataset containing 150 IoCs and 300 non-IOC us-

ing Support Vector Machine. in another article, the authors’ [163] proposed

an approach for collecting IOC from web pages. The setup also includes

security onion virtual machines.
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Figure 2.4: Pyramid-of-Pain [164]

Several other authors have researched IoC behaviour about threat hunt-

ing, with the most notable being the Pyramid of Pain (PoP) proposed by

Bianco [164] as shown in Fig. 2.4. In the Pyramid of Pain, the author cate-

gorised the IoCs according to their difficulty. Hashes were listed as trivial and

easier to detect because each file or malware has a unique hash key, making

it easier to recognise given there are minimal chances of hash collision. On

the other hand, hashes change even with the slightest modification to the file
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and malware creators often use that to avoid detection. Even though new

hashes are generated regularly, they can easily be stopped once the hashes

are recognised. The IP addresses were classed as easy in the PoP framework,

given that they can be easily attributed to the attacker. However, cybercrim-

inals use proxy servers and Virtual Private Networks (VPNs) to hide their

IP addresses, making cyber incident investigation work very difficult.

Next, the domain names were classed as simple in the PoP framework

because they are easy to track since domain names have to be registered.

However, attackers use Fast-flux DNS, which is associating many IP addresses

to a single domain to hide or protect the primary server. Cyber attackers

have also been using Fast-flux to mask their botnets. Network/Host artefacts

were classed as annoying in the PoP framework. The IoCs artefacts relating

to networks or host are not easy to detect due to the sophistication of the

attackers’ tools and the amount of traffic generated by these systems, making

it difficult to distinguish between genuine attacks and benign activities. The

Tactics, Techniques and Procedures (TTPs) were classed as tough in the

PoP framework and sat on the Pyramid top. TTPs is where the pattern of

activities relating to the threat actors is analysed. These threat groups are

sometimes well funded and can change their tactics and techniques at short

notice if detected, including creating a new payload to exploit their target.

2.9.1 Summary

Researchers carried out lots of work on IoC, but despite these efforts, cor-

rectly identifying IoC and particularly during the early stages, is still a signif-

icant challenge. The detection challenges are due to many factors, including
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the attackers’ motivation, the tools they use, and the sophistication of the

malware. APT groups are challenging to detect due to the abundance of

resources they have to create a crafted malware, and according to a recent

report, it takes on average 56 days to detect APT attacks. However, by then,

these APT groups may have achieved their goal, including data exfiltration.

There has been improvement in sharing detected IoCs over the last few

years due to the availability of threat sharing platforms and acknowledgement

of the benefits of sharing IoCs by the security community.

Chapter 7 of this thesis leveraged machine learning-based threat detection

to detect attacks using Indicators of Compromise (IoC). Windows event logs

and other features such as those of account activities were used to classify

the attack types.

2.10 Security Metrics

This section contains a review of security metrics, and some of the content

derived from the authors’ published work [150, 165].

The advances in technology experienced over the last few decades have

resulted in the manufacture of small devices capable of connecting to the

internet coupled with processing power; however, this has not been matched

by a considerable solution to support the resulting infrastructure.

Researchers and businesses have turned to security metrics to gain in-

sight information on their systems and use that information to secure them.

According National Institute of Standards and Technology (NIST), security

metrics are tools that are designed to help with decision-making and improve
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performance, and accountability [166]

Security metrics has been well researched over the last few years. How-

ever, there is no consensus on what metrics to use, and most of the current

work relates to organisational metrics and are compliance-based.

2.10.1 Security Metrics and its role in decision-making

Security metrics are means of measurement that can be used to demonstrate

the security level of an organisation. Metrics provide insight information and

helps decision-makers to make informed decisions. A report by Thycotic [167]

highlighted the failure of organisations to implement cybersecurity metrics

resulting in a failure to review the performance of their security measures.

According to another report by McAfee lab, [168] most organisations realise

how good their security defences are once they are breached.

In another report by the US cybersecurity research and development

strategic plan [169], there is a need to develop quantifiable security metrics

that can be used to measure attackers effort and capability of the defensive

mechanism to withstand the attack. Several other authors have described

cybersecurity metrics quantification to be a major challenge and often listed

it as a major a hard problems to solve [170], [171], [165], [172]. In [171], the

authors performed a survey on security metrics and proposed some metrics

based on the attack-defensive interactions. Such metrics include: (i) Sys-

tem vulnerability (ii) Defensive strength, (iii) Attack severity, (iv) Situation

understanding.

Although this is a developing area, one of the challenges that are hamper-

ing the implementation of security metric is the lack of an agreed mechanism
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for aggregating security metrics that can assess the overall security posture of

all the systems in the organisation [173]. In [174] the authors developed a set

of metrics for attack and defence interaction and evaluated the effectiveness

of Moving target techniques. The techniques they implemented were net-

work topology shuffle and software diversity. Several other authors discussed

moving targets, including the effectiveness of MTD techniques [175, 176]. In

[177] the authors created ontology-based security metrics and attack goals

determined by several interconnected features. Their ontology has top classes

of metrics such as attack metrics, topological metrics, event metrics, attacker

metrics and response metrics.

2.10.2 Security Measurement Methodologies

There are several security measurement methodologies and these include:

• The Goal-Question-Metrics (GQM) paradigm is a top-down method-

ology used to design security metrics programs and provides struc-

tured methods for metrics according to the organisations’ requirements.

GQM is based on three levels: Conceptional level (goal), Operational

level (questions) and Quantitative level (Metric) [178]. The GQM +

strategies extended the GQM and provide a link between the business

goals and measurement programs to help with decision-making [179].

In the GQM method, the organisation defines the goal they want to

achieve, followed by a question for each goal, and finally, the metrics

required to measure each question.

• Attack graph - metrics based on attack graphs are mainly used to find
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the number of paths an attacker could take to exploit vulnerabilities

on the system and are qualitative, relying on experts’ subjective judg-

ments. [180].

• The Common Vulnerability Scoring (CVSS) framework assigns a nu-

meric value to a vulnerability according to the severity level ranging

from one to ten, with one being the lowest and ten the highest. The

CVSS has three metric groups, which are base, temporal and environ-

mental groups. The basic metrics contain the characteristic of the vul-

nerability that does not change over time and consists of exploitability

and impact metrics. The temporal metric group contains character-

istics of a vulnerability and changes over the lifetime of the vulnera-

bility. The Environmental metric group represents the characteristics

of a vulnerability that relate to a particular system, network, or user

environment [181].

Although the CVSS has metrics such as exploitability and impact,

which can be found within the base score and environmental metrics,

it has its own limitations. The vulnerabilities on CVSS are assigned

to individual vulnerabilities and not aggregated, which can be a chal-

lenge for organisations and security researchers. Another limitation of

CVSS is its inability to consider the link between the vulnerabilities.

Attackers often exploit multiple vulnerabilities in order to achieve their

ultimate goal.

Most of the current security measures are reactive and rely on metrics such

as Mean Time To Detect (MTTD) and Mean Time To Respond (MTTR)
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following a security breach. The proactive approaches are missing from

such metrics. Hence, there is a need for security measures that can forecast

attacks and help decision-makers implement defensive security mechanisms

that could preempt the attacks before the attackers exploit them.

2.10.3 Categories of Security Metrics

Researcher in academia and the industry have been working on develop-

ing various security metrics. The Centre for internet security (CIS) clas-

sified metrics into Management, Operations and technical [182]. The NIST

grouped the metrics according to their implementations, effectiveness/efficiency

and impact [183]. The implementation metrics track the progress of imple-

menting the security program, including individual security controls and the

policies and procedures that underpin the program. The effectiveness/efficiency

metrics track the performance of security controls in terms of their defensive

capabilities and how well they protect the critical assets. The impact metrics

covers the impact the security program had on the overall security inline with

the expectation of the business. Typically the impact is measured in terms

of risk reduction and risk avoidance achieved as a result of implementing the

security program.

2.10.4 Security Metrics Types

There are several types of security metrics, and these include the following:

• Network-based Metrics
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Figure 2.5: Network and Host-based IoC Categories

These metrics are driven by network monitoring tools such as intru-

sion detection systems (IDS), firewalls and intrusion prevention system

(IPS). Fig. 2.6. shows the categories and network and host-based met-

rics.

• Host-based Metrics

Host-based metrics are driven by security logs and monitoring that

detect activities at the host level. These tools include antivirus and

Host Intrusion Detection Systems (HIDS). The HIDS provides visibility

on the activities taking place in the system, which adds an extra layer

of security [184].

• Risk-based Metrics

The reliance on compliance metrics which are tick-box exercises, is not

enough due to the evolving threat landscape, and organisations are

instead embracing risk-based approaches to deal with the impact of

emerging threats. Risk-based metrics can give direction on the level of
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risk and its trajectory. These metrics can quantify the overall impact of

the threat on the business, including deviation from the strategic goals.

These metrics can be used as an early warning to help decision-makers

take corrective measures to mitigate the risk.

• Vulnerability Metrics

Vulnerability is a weakness in a system that a threat can exploit [185].

Vulnerabilities pose a serious threat to systems security, although this

depends on their severity and impact. Most organisations invest in

vulnerability scanning tools to detect existing vulnerabilities. While it

is a good security measure, the task of remediation and how quickly

these are implemented relies on the system administrators. The cyber

attackers can take advantage of these vulnerabilities and exploit the

systems if prompt actions are not taken to resolve the issues. The

existence of vulnerabilities often provides an indication of the security

level of systems, and the time taken to mitigate these vulnerabilities

can matter depending on the severity and criticality of the assets to

business operations.

Several vulnerability metrics are used to provide insightful information

to decision-makers and system administrators. The most widely used

metric is the Common Vulnerability Scoring Systems (CVSS). The vul-

nerabilities are scored from the lowest to the highest ranging from 1

to 10. The list of vulnerabilities and their assigned score can be found

in the National Vulnerability Database (NVD). The CVSS uses three

metric categories, which are Base Score, Temporal Score and Environ-
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mental Score. These metrics provide an aggregation of attributes such

as exploitability, impact and exploit code maturity.

Some of the other vulnerability metrics that can be used to measure

the performance of the security measures include Mean Time To De-

tection (MTTD), Mean Time Time Compromise (MTTC), Mean Time

To Patch (MTTP) and Exposure time. MTTD cover the time taken

by the security monitoring tools or analysts to detect the vulnerability.

MTTC is the time taken by an attacker or penetration tester to break

into the system by bypassing the security defences. MTTP is the time

taken to patch a vulnerability. Exposure time metric is the duration

between detection and application of the patch and could be used to

measure how quickly the system administrators are applying patches.

Several other metrics groups can be used to measure the security of sys-

tems and other functions, as demonstrated in work by [150]. These include:

• Indicators of Compromise (IoC) Metrics

Indicators of compromise are artefacts left behind by attackers that can

be used to identify malicious activities that have taken place on the

target system [163]. Sophisticated attacks such as Advanced Persistent

Threats (APTs) take a long time to be detected, and data breaches

might have occurred by the time they are detected. IoCs are mainly

categorised into Network-based, Host-based and Email indicators and

can be used to piece together the activities of the attack and to build

the digital trail. Once IoCs are detected, they can be shared with the

security community to mitigate future attacks. The sharing platforms
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include STIX and OpenIOC [161]

• Indicators of Attacks (IoA) Metrics

Indicator Of Attack (IoA) is a proactive measure that can be used to

reveal an attack that is in progress before the indicators of compro-

mise become visible [186]. Security professionals can leverage IOAs to

disrupt attackers before they exploit the systems by implementing mit-

igating security measures. For example, IoAs could be used to prevent

attacks such as Phishing and ransomware, which has become a popular

attack vector deployed by cybercriminals. Utilising IoA metrics such

as lateral movements and many failed authentication attempts could

help organisations detect attacks taking place and implement proactive

security measures.

Searching for the indicators of attacks requires both detective and pre-

ventative measure for dealing with cyber attacks. Examples of IOA

include internal hosts communicating with known malicious destina-

tion and network scan originating from internal hosts.

• Risk Assessment metrics

Risk assessment is an essential task in every organisation’s risk manage-

ment strategy due to the evolving threat landscape and the increasing

attack surface. Most organisations rely on interconnected devices to

perform their daily tasks, but these devices introduce vulnerabilities

that cyber attackers could exploit. The purpose of risk assessment is

to inform decision-makers and support risk responses by identifying the

threats facing the organisations, vulnerabilities, impact and likelihood
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of the threat causing harm [187].

There is a need to understand what needs to be protected, which can be

achieved through the risk assessment process. The first step in the risk

assessment process is to perform asset identification and classification

in order to apply the appropriate security measures to critical assets.

A risk register is created as part of the risk management process and

contains the risk description, risk owner and actions taken, among other

information. Organisations with the cyber risk management process

often reduce data breaches by identifying the risk they face through

their risk assessment and implement corrective measures. They are

also more prepared to deal with eventual security breaches should they

occur if they have already identified their critical assets and processes.

Risk assessment is a continuous process due to the ever-changing threat

landscape. Risk metrics can play an important role in ensuring cy-

ber risks are prioritised and adequate countermeasures are assigned to

protect critical assets. Risk assessment metrics that could be utilised

include:

(1) Percentage of risk with critical or severe rating. This metric will

help prioritise and direct resources to deal with the most urgent threats

affecting the critical assets.

(2) Percentage of assets that are not monitored. This metric will help

with monitoring the coverage and determine existing gaps.

(3) Insider threats metrics. This metric includes accidental and mali-

cious incidents attributed to insider threats.
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• Penetration testing metrics

Penetration testing involves finding vulnerabilities on systems and at-

tempting to exploit the weaknesses [188]. Penetration testing can be

costly due to the costs involved in hiring skilled workers and the chances

of unintentional breakdown or data breaches during the exploitation

stage when penetration testers are trying to compromise the systems.

Due to these challenges, organisations tend to perform penetration test-

ing on a quarterly or bi-annual basis. However, the threat landscape

could change very quickly, making such tests redundant within a short

period.

To fill this gap, newer penetration testing tools that operate inside the

network have been developed by companies. For example, Firedrill

developed the AttackIQ [189] which is a tool that performs automated

testing to determine the enterprise security posture, but these tools

are not widely adopted. One way to maximise these tests is to use

penetration testing metrics. Such metrics include but not limited to:

(1) Percentage of penetration tests that discovered high risks. This

metric could be used to measure the performance of the existing secu-

rity controls and their detection capability.

(2) Penetration testing intervals. New threats can arise between the

various penetration testing intervals. Shorter testing intervals are prefer-

able in order to increase the chances of detecting new threats following

the previous test.

(3) Mean Time To Fix (MTTF). These metrics will show the average
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time taken to fix the vulnerabilities identified during the penetration

testing and allow senior managers to measure the capability and average

response times of the technical teams.

• Red and blue teaming metrics

Red teaming is a simulated form of attack in which skilled teams at-

tempt to penetrate the security defences and compromise the systems.

Organisations usually employ the service of red teams in order to test

the maturity of their security controls [190]. After the red team assess-

ment, organisations will have a list of attack vectors they are vulnerable

to and corrective measures to mitigate such risks.

Red teams should be complemented with Blue teams whose role is to

defend against attacks and bolster the security defences. The purpose

of a Blue team is to defend the organisation against both Red teams

and real attackers. Enlisting the service of Red teams can be expen-

sive, and organisations should try to maximise this potential to improve

their security. Red and Blue teams could also be utilised during the

optimisation stages after new security programs are deployed. Organ-

isations can use metrics to measure how well they are integrating the

outcome from the Red team assessment to improve the strength of their

security mechanisms. Such metrics include the skills and knowledge of

the attackers.

• Resilience Metrics

Resilience is the ability for a system to adapt and continue to provide

functionality in the face of an attack [191]. One of the most prevalent
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attacks deployed by cyber attackers is ransomware which encrypts the

files and makes them unavailable to the users until a ransom is paid.

Resilience will enable organisations to withstand adversarial attacks

and ensure continuity of critical services [192]. The following are some

of the metrics that could be used to measure resilience in an organisa-

tion. These metric include Mean Time to Failure (MTTF), Mean Time

to Repair (MTTR and a availability of offline and tested backup

• Threat intelligence metrics

Cyber threats are constantly changing, and attackers employ sophisti-

cated tools and techniques to bypass security defences. These cyber at-

tackers are known to be sharing techniques using the dark web to mask

their identities and digital trails, which reduces the effectiveness of the

traditional security mechanisms. Threat intelligence sharing plays an

important in defeating such attacks and implementing mitigating con-

trols.

Threat intelligence is about finding information relating to the attack-

ers and their techniques. Such information can include the attack-

ers tactic, techniques and procedures (TTPs), motivation, and targets.

Threat feeds are becoming popular, and organisations have realised the

importance of threat sharing and leveraging the expertise of the secu-

rity community. An organisation can use security metrics to measure

their threat intelligence capability and determine how well they are

prepared in the event of an attack. Such metrics include:

(1) Number of known threats groups targeting your organisation or
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sector at any given time. This metric could be used to measure how

well you are capable of dealing with threats from these communities.

Information about these groups could be obtained from in-house threat

intelligence teams or vendors and the security community.

(2) Access to vendor threat intelligence report directly related to your

organisation. Vendors have huge capabilities and resources, including

threats sharing with their industry partners. Having access to these

threat intelligence feeds will provide your organisation with an edge

over the attackers.

(3) Metric from Indicators of Compromise (IoC). The IoCs can be used

to identify or attribute to particular attack types.

2.11 Summary

In this chapter, we discussed security metrics and their role in helping to

secure organisations against potential cyber attacks by measuring the effec-

tiveness of the security measures. The ultimate goal of security metrics is to

support decision-making and to provide accountability. There are no sets of

agreed security metrics, although several bodies such as CIS have proposed

their own metrics, and organisation can implements metrics that suit their

goal and business objectives. Metrics can be obtained from sources such

as vulnerability scanners, intrusion detection/prevention systems, and other

network monitoring systems such as Antiviruses, Firewalls and SIEMS. Al-

though metrics from these systems are valuable, they have their limitations,

such as false alarms, which can impact organisations in terms of threats that
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may have been misclassified and the large number of resources required to

triage these alerts. For example, an antivirus system might show metrics

such as the total number of malware detected and in a given month but does

not show the number of malware not detected in that same period. Some of

the malware not detected by the antivirus system can be obtained through

forensic audits, and IoCs left behind following an attack or malware infection

reported by end-users.

This thesis uses performance metrics such as detection accuracy and false

alarm rate, which can help decision-makers evaluate their security systems’

effectiveness. Machine learning models are utilised to forecast cyber events,

detect the stages of cyber attacks such as APTs and perform reactive ap-

proaches based on indicators of compromise, which are forensic artefacts left

behind following an attack.

Next, some of the key cybersecurity frameworks will be discussed and

summarised to show how they relate to our work.
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Chapter 3

Cybersecurity Frameworks

Cyber attacks and associated risks have been a concern faced by many organ-

isations. Several frameworks and industry best practices are widely adopted

to help organisations secure their critical assets and be prepared for eventual

security breaches through better resilience and recovery.

The most common frameworks for security assurance are (1) Centre for

Internet Security (CIS 18), (2) ISO 27001, (3) ISO 27004, (4) Cyber Es-

sentials, (5) NIST Cyber Security Framework, (6) NCSC Cyber Assessment

Framework.

3.1 Centre for Internet Security (CIS 18)

These are the top 18 control sets proposed by the Centre for Internet Security

(CIS). They are operational controls that provide system administrators with

a means to secure their systems and protect against common cyber attacks

[193]. The CIS 18 controls are more prioritised and actionable controls that
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are easier to implement than the more comprehensive frameworks such as

ISO 27001 and NIST Cybersecurity framework. These controls range from

inventory and control of enterprise assets to penetration testing.

CIS Control No. CIS Top 18

1 Inventory and Control of Enterprise Assets

2 Inventory and Control of Software Assets

3 Data Protection

4 Secure Configuration for Enterprise Assets and Software

5 Account Management

6 Access Control Management

7 Continuous Vulnerability Management

8 Audit Log Management

9 Email Web Browser and Protections

10 Malware Defenses

11 Data Recovery

12 Network Infrastructure Management

13 Network Monitoring and Defense

14 Security Awareness and Skills Training

15 Service Provider Management

16 Application Software Security

17 Incident Response Management

18 Penetration Testing

Table 3.1: CIS18 controls [193]
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3.2 ISO 27001/2

The ISO 27001 is an Information Security Management System (ISMS) frame-

work whose objective is to apply appropriate countermeasures to protect

critical assets and reduce the threats’ impact. The purpose of ISMS is to

protect the confidentiality, integrity and availability of information assets.

The European Union Agency for Cybersecurity (ENISA) [194] described six

steps involved in the development of ISMS. These include (1) Definition of

security policy, (2) Definition of ISMS scope, (3) Risk Assessment, (4) Risk

Management, (5) Control selection, (6) Statement of Applicability (SOA).

ISO 27001 is a widely adopted industry best practice for information secu-

rity and allows organisations to demonstrate their commitment to continuous

protection of the information they hold through regular audits. There is a

revalidation audit to ensure organisations are continuously complying with

the requirements, and any non-conformance is highlighted and must be cor-

rected before the certifications are reissued. The uptake of ISO 27001 is

higher in larger organisations due to the need to protect the vast amount of

personal data they hold or process, demonstrate information security best

practice and comply with legal and regulatory requirements.

The ISO 27002 provides guidance on applying the controls and helps

organisations select the appropriate controls during the implementation of

27001. The ISO 27002 provides more detailed information about the controls

sets and allows users to select the controls that mitigate the risks based on the

risk assessment results. Although both the ISO 27001/2 are used together,

it is only the ISO 27001 that organisations are certified against.
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3.3 ISO 27004

The ISO 27004 is a standard for evaluating the performance of the Informa-

tion Security Management Systems (ISMS) to fulfil the requirements for ISO

27001. The current version of this standard is ISO 27004:2016 and provides

guidance on monitoring and measurements of the ISMS [195].

The foundation of ISO 27004 is ISO 27001, one of the primary standards

for managing information security. The ISO 27004:2016 focus on security

metrics for measuring the performance of the ISMS. Metrics support decision-

making and allow senior executives to gain insight into how the security

mechanisms are performing.

This standard provides guidance on how to construct information secu-

rity programs, including what to measure. The framework provides several

examples of security measures and how the effectiveness of these measures

could be assessed. ISO 27004 can be used by any organisation regardless of

its size.

3.4 Cyber Essentials

Cyber essentials is a simple and basic framework proposed by the National

Cyber Security Centre (NCSC). The framework consists of five controls which

organisations can use to secure their systems and provide a security baseline

[196]. These five controls are (1) Firewall, (2) Patch management, (3) Mal-

ware protection, (4)Access control, (5) Secure configuration.
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3.4.1 Cyber Essentials Controls

1. Firewall

Boundary firewall and internet gateways protect the organisation and

can be effective if appropriately configured. Cyber essentials provide

a set of basic checklists which organisations can use to achieve a basic

level of protection. A firewall monitors traffic and can stop malicious

traffic from entering the network.

2. Patch Management

Patch management is keeping software and systems up to date. Cy-

ber attackers are known to be exploiting vulnerabilities on these sys-

tems. Although there are zero days vulnerabilities, most of the security

breaches are associated with exploiting known vulnerabilities where a

patch is already available.

Cyber essentials require organisations to have a mechanism for imple-

menting patch management and gives guidance on some of the best

practices, which include: Ensuring software is supported and licensed,

Removing legacy systems that are no longer supported, Patching high

and critical risks within 14 days of a patch release.

3. Malware Protection

The protection of their systems is at the forefront of most organisa-

tions. The malware protection mechanism is one of the key invest-

ments to make in order to protect these systems from threats such as

Ransomware which has become a prevalent tool for cybercriminals in
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recent years.

4. Access Control

Access control provides authentication and authorisation. Organisa-

tions should have access control to ensure user privileges are assigned

appropriately and misuse is prevented. Administrative privileges should

be limited and monitored in order to avoid intentional or unintentional

risks. Cybercriminals are known to target accounts with administrative

rights that help them execute malware and perform privilege escalations

and lateral movements.

5. Secure Configuration

Secure configuration allows systems to be more secure and more re-

silient to cyber risk. Hackers are known to exploit misconfigurations

on systems. Standardising the configuration of the systems can also

make managing and pushing security patches much more manageable.

Cyber essentials provide guidance on implementing secure configura-

tion, and these include:

3.5 NIST Cyber Security Framework (NSF)

The NIST cybersecurity framework is a comprehensive framework that guides

organisations on identifying, preventing, detecting, and responding to cyber-

attacks in a timely manner. This framework references other frameworks

such as ISO 27001, CIS, COBIT 5 and NIST SP 800-53 Rev4.
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The framework is designed for critical infrastructure but is flexible enough

to be implemented in other sectors. It consists of five core functions, and

each is divided into categories and sub-categories [197]. The core functions

are (1) Identify, (2) Protect, (3) Detect, (4) Respond, (5) Recover.

3.5.1 Identify

The primary goal of the identify function is to determine the inventory of all

assets and the risk they face.

The key categories of this function are (1) Asset Management, (2) Busi-

ness Environment, (3) Governance, (4) Risk Assessment, (5) Risk Manage-

ment Strategy, (6) Supply Chain management.

3.5.2 Protect

The goal of the protect function is to guide the implementation of security

mechanisms to protect critical assets from harm.

The key categories of this function are (1) Identity Management, Authen-

tication and Access control, (2) Awareness and training, (3) Data Security,

(4) Information Protection Process and Procedures, (5) Maintenance, (6)

Protective Technology.

3.5.3 Detect

The detect function provides guidance on the detection of anomalies and

other malicious activities in the network. Detecting anomalies can help cap-

ture attacks in their early stages, allowing system administrators to deploy
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countermeasures to mitigate the risks.

The key categories of the detect function are (1) Anomalies and Events,

(2) Security Continuous Monitoring, (3) Detection Process.

3.5.4 Respond

Despite best efforts, it is possible organisations security defences will be

breached at some point. The respond function provides guidance on how

to deal with such eventuality should it occur. It is crucial to have effective

and tested response plans to be in place to limit the impact of such threats

on the organisation.

The key categories of the response function are (1) Response planning,

(2) Communications, (3) Analysis, (4) Mitigation, (5) Improvements.

3.5.5 Recover

The recover function provides guidance on how to bring services back to

the operational state following a disruption. This function also encompasses

disaster recovery and business continuity plans.

The key categories of the recovery function are (i) Recovery Planning, (2)

Improvements, (3) Communications.

3.6 NCSC Cyber Assessment Framework (CAF)

NCSC Cyber Assessment Framework (CAF) is a framework that provides

an approach of assessing the impact of cyber risk on critical functions and

contains four objective and 14 principles [198].
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• Objective A: Managing Risks

This objective deals with managing risks to critical systems and func-

tions. It contains four principles which are governance, risk manage-

ment, asset management and supply chain.

• Objective B: Protecting against Cyber Attacks This objective deals

with the application of security measures to protect critical functions

consist of six principles which are service protection policies and pro-

cedures, identify and access controls, data security, system security,

resilient network and systems and staff awareness training.

• Objective C: Detecting Cyber Security Events This objective deals with

cyber threat detection capability and consists of two principles which

are security monitoring and proactive security event discovery.

• Objective D: Minimising the impact of cybersecurity incidents This ob-

jective deals with the organisations’ capability to minimise the impact

of security incidents and consists of two principles which are response

and recovery planning and lesson learnt

3.7 Summary

Cybersecurity frameworks play an important role in improving the security

posture of organisations. Some of these frameworks, such as ISO 27001 and

NIST cybersecurity framework, are comprehensive and, if implemented cor-

rectly, can reduce the number of security breaches and increase resiliency.
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The CIS 18 controls are operational metrics that are much easier to imple-

ment compared to the ISO 27001 and the NIST Cybersecurity Frameworks,

while Cyber essentials provide five basic sets of controls to protect against

common online threats.

Although these frameworks can improve the security posture if imple-

mented correctly, they mainly provide guidelines, and their effectiveness de-

pends on how well they are implemented. Most of the frameworks listed

above have some relations to the work carried out in this thesis, but they do

not provide a mechanism for measuring security assurance quantitatively and

the effectiveness of the security measures without manual intervention and

allocation of substantial resources to scope the work. The framework that is

closest to work carried out in this thesis is the ISO 27004 standard which pro-

vides metrics-based measurements. However, these are manually computed

and rely on the human factor, which can introduce errors. This thesis will

improve these frameworks by adding automated capture of potential security

attacks and issues as part of the algorithm, which will pave the way for au-

tomating cybersecurity intervention and proactive detection. In this thesis,

machine learning-based techniques were used to identify attacks and their

stages correctly. The evaluation metrics used include detection accuracy and

false alarm rate, covering both false positive and false negatives.
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Chapter 4

Proposed Framework

Enterprises are relying on protective measures to protect their critical sys-

tems, but these measures are shown to be less effective at dealing with an ad-

vanced and complex cyberattack. Therefore, comprehensive solutions capa-

ble of predicting, preventing, detecting and responding to these cyber threats

are needed. It is anticipated that this framework will address some of these

challenges by introducing predictive, detective and forensic capabilities.

In this chapter, our proposed framework for the security monitoring of

networked systems is presented. The main focus is the machine learning

aspect of the framework, where a rigorous analysis of the results occurs.

The performance of the key components is evaluated. Such components in-

clude the cyber attack detection and prediction using the Cyber Kill Chain

approach to detect the stages of advanced persistent threats, time series fore-

casting for attack prediction, and indicators of compromise to collect forensic

artefacts. The frameworks components will be discussed in the following sec-

tions.
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4.1 Framework Blocks

The framework consists of five blocks that summarise the key activities un-

dertaken in this research, as shown in Fig. 4.1. The first block consists of the

network systems where data is collected using probes. Overall, there were

four major experiments in the research. The first and second experiments

utilised a publicly open IDS dataset [5, 34] where the dataset providers ran

probes and provided a machine learning dataset with the various features.

The labs are setup in the third and fourth experiments, and simulated at-

tacks are performed to collect the datasets involving Indicators of Compro-

mise(IoC). The second block contains the primary datasets, which are APT

[5], CSE-CIC2018 [34] and the IoC datasets. The exploited vulnerabilities

used during the datasets’ creation are checked to confirm the exploits and

tools used in these experiments. Log data was collected from these hosts

and downloaded as part of the CIC2018 and IoC datasets. The logs provide

essential information such as the timestamps and the events that took place

on these systems.

The third block contains the network parameters, host parameters and

IoC variables derived from the dataset. These parameters are primarily fea-

tures relating to networks and hosts. The network features include flow data

such as packet lengths, while host features include events ids. The IoC arte-

facts can be used to identify the presence of threats on the affected systems.

Abstraction, optimisation and aggregation were performed on these parame-

ters and artefacts to fine-tune the features before feeding them to the machine

learning model for classification.

The central part of the framework is the fourth block related to machine
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learning. In this block, the prepared and constructed datasets are fed into

the machine learning model, where classification is performed. Feature en-

gineering is also performed here to select the best features to maximise the

efficiency of the model. It is a continuous process where the parameters

are optimised until optimal results are achieved. This research used four

datasets: APT, CSE-CIC2018 and two IoC datasets to create our machine

models. The APT dataset captures realistic stages of an APT attack that is

highly sophisticated and challenging to detect. Dataset reconstruction was

performed, and the Cyber Kill Chain was then applied to detect the various

stages of the attack. The work of the APT dataset provider [5] was used as a

baseline to expand on the machine learning aspect of their work, as shown in

Fig. 4.1. The machine learning algorithms used for classification are SVM,

Random Forest, BayesNet, Naive Bayes and KNN. The APT stage detec-

tion will be covered in chapter 5. The second dataset, the CSE-CIC2108,

is a realistic cyber defence dataset with various attack labels performed on

a secure network. The dataset used for attack prediction and time series

forecasting is covered in more detail in chapter 6. The final dataset is the

IoC datasets created from the networks set up during our experiments and

discussed in chapter 7. The IoC datasets contain the artefacts comprising

Windows events and other features to piece together attacks on this system.

4.2 Framework Modules

Fig. 4.2 shows a high-level overview of our machine learning framework’s

components taking place in this part of the framework (block 4). The three
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models that were created will contribute to the networked system’s effective

security monitoring and allow the system administrators to secure their net-

works. The three components shown in Fig. 4.2 are (i) attack stage detection,

where a model to detect advanced persistent threat was created; (ii) attack

prediction, where a model for predicting cyber events using time-series fore-

casted features was created, (iii) the IoC detection detection, where a model

for detecting IoCs was created. System administrators can feed these de-

tected IoCs to their monitoring systems such as Security Information and

Event Management Systems (SIEMS) and Intrusion Detection/Prevention

Systems(IDS/IPS) to correctly detect them in the future and alert the sys-

tem administrators or take preventative actions. System administrators can

build a module for each of these three components shown in Fig. 4.2 and

deploy it on the network to enhance their security defences and determine

their network monitoring tools’ accuracy.

The fifth and final block of the framework is the visualisation charts.

This charts display the model’s performance result using metrics such as

accuracy, precision, recall, and the false alarm rate. This visualisation chart

will allow decision-makers to have a high-level overview of the security status

and determine how well their security controls performed by linking it to

the detection accuracy and then performing proactive measures to prevent

attacks.
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4.3 Summary

In this chapter, the definitions of functional blocks in the framework was

given. Machine learning was leveraged to detect the stages of sophisticated

attacks such as APT. Time series forecasting was applied to predict cyber-

attacks before they occur by looking at the pattern of cyber events, which

should give system administrators time to perform proactive approaches to

mitigate the risk that may be realised from incoming attacks. Finally, IoC

artefacts from hosts were used to build a picture of attacks that the secu-

rity monitoring systems may have missed. Such artefacts can lead to these

attacks being detected and reduce their adverse effects by allowing system

administrators to act promptly. It is anticipated that the combination of

attack stages detection, cyber-attack event forecasting, prediction, and IoC

detection proposed in this framework will reduce cyber breaches by allowing

the system administrators to implement corrective and preventative measures

to mitigate these risks.
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Chapter 5

Machine learning for APT

attack detection

In this chapter, the proposed cyber kill chain approach for detecting advanced

persistent threats will be presented. most of the content of this chapter

was derived from the author’s work, which was published in a peer-reviewed

journal [32].

While several predecessor works have investigated machine learning for

APT detection and mitigation, there have been various shortcomings in their

effectiveness for wider uses. These include: (i) a lack of reliable publicly-open

APT datasets, (ii) a lack of alignment with Industry-informed practice on the

available dataset construction, (iii) limited experimental works to evaluate

the learning algorithm effectiveness. This work proposes to advance the

machine learning application for APT detection by addressing the latter two

shortcomings from the previous works. Our main contributions include:

• Building upon a recently proposed APT dataset in [5], The industry-
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informed framework of Cyber Kill Chain was leveraged to reconstruct

a dataset that captures realistic APT stages. Data intelligence was

employed via machine learning that exploits possible patterns within

the reconstructed dataset.

• Feature extraction was performed via Multiple Factor Analysis (MFA)

to overcome the limitations in the number of features in the APT

dataset.

• Feature selection techniques were utilised to select optimal features for

the APT stage detection and classification.

• An in-depth and rigorous analysis of the experimental results was per-

formed to assess the trade-off of the classifiers’ performance using a

variety of performance metrics.

This experiment improved on the work [5] by leveraging the Cyber Kill

Chain approach for dataset reconstruction to enhance the attack stages and

associated alert types that are critical to accurate detection of APT stages.

The alert grouping was refined such that one alert could correspond to mul-

tiple attack stages in order to remove direct linkage between stages and alert

types as found in [5].

Despite recent progress on APT research, there is limited experimental

evidence of explicit association and linkage between existing APT datasets

and the corresponding machine learning with the Cyber Kill Chain data mod-

elling. This work attempts to address this gap by reconstructing a recently

shared APT dataset. However, the original dataset has its own limitation,

including the limited number of features. Machine learning was used to gain
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insight into the data and to perform rigorous analysis of the experiments.

This work can provide a foundation for future provisioning of automated

APT detection and classification with minimised human intervention.

5.1 Cyber Kill Chain Informed Modelling

The Cyber Kill Chain (CKC) was developed by Lockheed Martin’s and con-

sisted of seven stages covering the whole attack life cycle, as discussed in

section 2. In this section, the dataset will be reconstructed and map the

detection alerts to the CKC stages. We then perform feature extraction and

feature selection to improve the detection of the stage detection model. Fig.

5.4 shows the data preparation stages.

Fig. 5.1 depicts the APT stages proposed by the original dataset providers

[5] alongside our work based on the Cyber Kill Chain. This work builds on

their work as a baseline to expand on the machine learning aspect of their

framework with the aim of improving the overall detection accuracy. The

methodology proposed by these authors covers six stages, but they only con-

sidered four of these as detectable stages. These stages are (i) Point of en-

try, (ii) C&C Communication, (iii) Asset/data Discovery, (iv) Data exfiltra-

tion [5]. Their proposed detection modules are Disguised exe File Detection

(DeFD), Malicious File Hash Detection (MFHD), Malicious Domain Name

Detection (MDND), Malicious IP Address Detection (MIPD), Malicious SSL

Certificate Detection (MSSLD), Malicious Flux Detection (MDFD), Scan-

ning Detection (SD) and Tor Connection Detection (TorCD) [5] as shown in

Fig 5.3.
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According to the original dataset providers [5], the Disguised exe File De-

tection (DeFD) module is designed to detect files whose extension have been

manipulated to avoid detection. Malicious File Hash Detection (MFHD) is

designed to detect malicious files download on the systems based on a black-

list of malicious hashes. Malicious Domain Name Detection (MDND) is

designed to filter malicious domains based on blacklisted domains. Similarly,

the Malicious IP Address Detection (MIPD) module detects malicious IP

addresses and is based on blacklisted IP addresses. The Malicious SSL Cer-

tificate Detection (MSSLD) module aims to detect malicious SSL certificates

based on blacklisted SSL certificates. The Scanning Detection (SD) mod-

ule aims to detect port scanning. The Tor Connection Detection (TorCD)

module aims to detect connections to networks by looking at the source and

destination of the traffic and referencing against a list of known Tor servers.

Fig. 5.3 depicts that their stages and detection modules fall within the

delivery, command & control, and action on objectives stages of the CKC.

Their point of entry stage, which corresponds to the delivery stage of CKC,

is broad and can be matched to the other stages. However, in our opinion,

it is more suitable for the delivery stage of the CKC, given that this was

considered the initial point of compromise. In the next part, each of the

seven CKC stages and their assigned detection modules will be discussed,

including those proposed by the APT dataset providers and others from our

proposed work.
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5.1.1 Reconnaissance Detection

In the reconnaissance stage, the attackers gather information about the tar-

get. Although there were no proposed detection modules for reconnaissance

in the work by the original dataset providers, given the importance of this

stage, it is crucial to have a detection module to prevent such attacks or

detect them in the early stages.

Therefore this work proposes detection modules which can be used detect

reconnaissance attacks. These detection modules will be built in our future

work. Our proposed detection methods for this stage include: (i) OS finger-

printing [199], (ii) Port scanning [199], (iii) Alerts on robot.txt access which

can reveal restricted paths [200], (iv) DNS enumeration [201], (v) DNS honey

tokens [202].

• OS fingerprinting

Attackers can perform OS fingerprinting to find more about the tar-

get system and create payloads designed to target vulnerabilities on

that particular operating system. Likewise, system administrators can

perform OS fingerprinting to determine the security of their networks.

The OS detection module will monitor traffic and logs to detect the

scan and notify the system administrators, who can then use this in-

formation to harden their system. Source IP addressed will also be

checked against a blacklist of IP addresses.

• Port scanning

Scanning is a common task performed by cyber attackers during the
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reconnaissance stage. Some of the most common tools used include

NMAP for scanning open ports and services running on them.

The port scanning detection module will monitor traffic to detect mali-

cious port scanning by looking at triggers such as patterns of the scans

and malicious source IP address.

• Alerts on robot.txt

The robot.txt file can reveal restricted information, including disal-

lowed directories, if it is not configured correctly. This detection mod-

ule will monitor the contents of robot.txt files and files accessible to

the crawlers.

• DNS enumeration

A typical DNS server contains a list of all computers, IP addresses and

services running on them. This helps the attackers build a map of

your network, which they can use in the attack. The DNS enumeration

detection module will monitor triggers such as suspicious requests from

non-DNS servers and sources with excessive requests. It will also notify

systems administrators when suspicious activities are detected .

• Honey tokens

Honey tokens can be accounts or other resources designed to trap cy-

bercriminals and shadow their activities. The proposed honey tokens

detection module will monitor these activities, and any attempt to ac-

cess the accounts or resources will trigger an alert which will also be

sent to the systems administrators
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5.1.2 Weaponization Detection

During this stage, the attackers use the information that was obtained during

the reconnaissance stage to create a carefully crafted malicious payload. The

attackers usually use automated tools for packaging their malware. Remote

Access Trojan (RAT) and exploits are used during the weaponisation.

The original APT dataset provider’s work did not create a detection mod-

ule for this stage in their framework, given that the attackers will not be in-

teracting with the target at this stage. We agree with the dataset providers

and have not assigned any alert to this stage in our CKC informed model.

5.1.3 Delivery Detection

Malicious actors deploy a weaponised payload to the target during the de-

livery stage. There are multiple means for payload delivery available to the

attackers, including malicious emails, click-by downloads, watering hole [203],

or infected USB devices [204]. The authors of the original APT dataset called

it the point of entry in their proposed APT lifecycle. They used the detection

methods in Fig. 5.3 to detect their APT steps. However, this was expanded

further in our work, considering some of the sophisticated APT attacks, such

as Stuxnet, were delivered using infected USB sticks [204]. Infected USB

drives, malicious links [205], and injection attacks [206] were added to the

list of alerts in our proposed detection methods and are planning to build

the detection modules in our future work.

• Disguised exe file

This module detects files whose extension have been manipulated to
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avoid detection.

• Malicious file hash

This module detects malicious files that have been download on the

system based on a blacklist of malicious hashes. Hashes are calculated

for each new files, and their MD5, SHA1 and SHA256 keys are crossed

checked against the blacklist.

• Malicious domain name

This module checks for connections to malicious domains based on a

blacklist of known malicious Domain names. DNS requests are filtered

and cross-referenced against the blacklist

• Infected USB devices

USB devices have been used to spread malware between computers,

whether connected to the internet or offline. USB devices have been

used to spread malware in complex attacks such as Stuxnet. Our pro-

posed detection module for infected USB will trigger alerts if actions

such as auto-runs are detected.

• Malicious links

Malicious URLs are commonly utilised by cybercriminals including in

phishing attacks. Our proposed detection modules will check this link

against blacklists and other indicators.

• Injection attack
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Injection attacks are common in web applications, and APT attackers

use methods such as SQL injection and Cross-site scripting to establish

a foothold on their target system. The proposed module will monitor

malicious activities on web application and logs for triggers of scripting

attacks, including inserting unexpected parameters in a user input field

to try and expose personal information.

5.1.4 Exploitation Detection

A vulnerability must exist first before a malicious payload can be executed

successfully. In work by the APT dataset provider, the authors did not

directly specify a detection module and alerts for the exploitation stage.

However, their point of entry stage may overlap with this stage. In this

stage, two alerts from the original authors and three from our list were added,

namely: (i) Brute force detection, (ii) Pass hash detection alerts, (iii) Task

schedule, (iv) Scripting, (v) PowerShell [207]. Next, a brief description of the

proposed detection modules will be given.

• Task schedule

Task schedule runs in privileged mode and can be exploited by at-

tackers, as demonstrated in a recent exploit targeting Window 10 task

scheduler addressed in CVE-2019-1069[208]. New variants of malware

and some APTs are targeting Task scheduler to deploy their programs

in privileged mode.

The proposed detection module will monitor the task scheduler for any

new, unexpected or hidden tasks. It will also be configured to reference
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auto-start applications to detect application such as malware that was

scheduled to auto-run. Other tools such as Auto-run for Windows could

also be utilised.

• PowerShell

Powershell is a Microsoft tool that system administrators widely use.

However, it has become a favourite tool for cybercriminals in recent

years due to its capability to run in memory without writing to disk

and bypassing the security monitoring tools.

It is also a trusted application which means it can execute scripts with-

out being blocked. Attackers are known to use PowerShell to execute

the malware on their target systems and using tools such as invoke-

Mimikatz, Powercat and PowerSploit. Attackers are known to use Pow-

erShell to create scripts that automate data exfiltration. The proposed

detection module will monitor Powershell activities to detect malicious

and unexpected tasks in order to detect attempts to exploit systems

through PowerShell.

• Brute force

In brute force, the attackers try all possibilities and combinations until

they find a working one. The main motivation behind brute force

attacks is to gain access to restricted information or resources. Our

proposed module for brute force detection will monitor log files and look

at brute force triggers such as repeated failed account login attempts.

• Pass hash detection
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Pass hash is a post-exploitation technique used by cybercriminals to

steal credentials and perform lateral movement. Attackers extract

hashes using tools such as Mimikatz. This detection module will moni-

tor account activities using Windows events to detect pass hash attacks.

• Scripting

Scripting attacks are more common in web applications, and APT at-

tackers use methods such as SQL injection and Cross-site scripting to

establish a foothold on their target system. The proposed module will

monitor malicious activities on web applications and logs for scripting

attacks, including inserting unexpected parameters in the user input

field to expose personal information.

5.1.5 Installation

Attackers execute the malware during the installation stage of the CKC.

In this stage, One alert from the detection methods proposed by the APT

dataset provider [5] and a further two from our list were added: privilege

escalation and injection attack alerts, as shown in Fig. 5.3.

• Brute force

Attackers try all possibilities and combinations to achieve their goal.

The main motivation behind brute force attacks is to gain access to

restricted information or resources. This brute force detection module

will monitor log files and look for brute force triggers such as repeated

failed account login attempts.
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• Privilege escalation

Privilege escalation allows attackers to gain elevated permissions. At-

tackers take advantages of vulnerabilities such as misconfigurations to

achieve their goal. Our proposed detection module will trigger alerts if

activities such as unauthorised access to endpoints or anomalies relat-

ing to accounts are detected.

• Injection attacks

Injection attacks are common in web applications, and APT attackers

use methods such as SQL injection and Cross-site scripting to establish

a foothold on their target system. The proposed module will monitor

malicious activities on web application and logs for triggers of scripting

attacks, including inserting unexpected parameters in the user input

field to try and expose personal information

5.1.6 Command and Control

In this stage, the detection methods proposed by the original APT dataset

provider [5] were used, which are: (i) Malicious IP address, (ii) Malicious

SSL certificate, (iii) Malicious domain flux detection, as discussed in section

5.1.

• Malicious IP address

The malicious IP Address Detection (MIPD) module detects malicious

IP addresses and is based on blacklisted IP addresses. Malicious IP

addresses are filtered and alerts sent to system administrators.
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• Malicious SSL certificate

The Malicious SSL Certificate Detection(MSSLD) module aims to de-

tect malicious SSL certificates based on blacklisted SSL certificates.

The connections are filtered and checked against a list of blacklisted

certificates.

• Malicious domain flux detection

Domain flux is a technique closely associated with botnets that generate

a large number of domain names randomly to maintain access and

protect their Command and Controls servers [209].

This detection module will trigger alerts when events such as high vol-

ume of DNS queries resolved against a particular IP address.

• Tor Connection

Tor provides anonymity; the cybercriminals use Tor to hide their ac-

tivities and to avoid detection. The Tor detection module will detect

connections from the Tor network using a list of servers from the Tor

network. All traffic will be checked for the source and destination ad-

dress and compared against the Tor server list.

5.1.7 Action on Objectives

This module refers to the final part of the Cyber Kill Chain. The dataset

providers [5] used Tor connection alerts and scanning as their detection meth-

ods, and DNS tunnelling detection was added from our list.

• DNS Tunnelling
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Attackers encode malicious data in DNS queries and responses and

then exploit these for their malicious activities [210]. Our proposed

detection module will monitor traffic to look for the pattern in the

data and check the frequency of the DNS request.

• Tor Connection

The Tor detection module will detect connections from Tor network

using a list of servers from the Tor network. All traffic will be checked

for the source and destination address compared against the Tor server

list.

• Scanning

Cybercriminals use scanning tools to scan for open ports and services

during the reconnaissance stage. The same scanning is also performed

during the final stages of the attack to find other systems of interest in

the internal network and perform lateral movement. This module will

track scanning activities based on predefined rules and threshold, and

alerts will be sent to the system administrators.
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Figure 5.1: MLAPT [5] alongside our work
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Figure 5.2: APT alerts mapped to the CKC, demonstrating state-of-the-art
assignment with experimental machine learning and comparison with our
work

In the next part, the data preparation stages will be covered and how the

alerts align to the Cyber Kill Chain stages.

5.1.8 Data preparation stage

The data preparation stage is one of the most important tasks in the creation

of machine learning datasets. The original APT dataset consists of 8 features

and 3676 observations mapped to a label comprising 6 APT stages proposed
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by the authors. The dataset was then reconstructed, performed feature ex-

traction and selection during the dataset preparation stage, as shown in Fig.

5.3. In the next part, we are going to explain our feature extraction and

selection process.

Figure 5.3: Data Preparation Stages

5.1.9 Feature Extraction

Feature extraction represents the task of obtaining a set of features from

sample data and enhancing the classifier’s performance [211]. In our exper-

iment, we considered several feature extraction methods, including Princi-

pal Component Analysis (PCA), Multiple Correspondence Analysis (MCA),

and Multiple Factor Analysis (MFA). PCA denotes a method for reducing

large datasets dimensionality while minimizing information loss using linear

combinations (weight average) of a set of variables [38]. MCA is another sta-

tistical technique best suited for tables with individuals described by several

qualitative variables [212]. MFA is a PCA variation, making it possible to

analyze more than one data table representing a group of variables collected

115



on the same observations [213]. Given that this dataset contains qualita-

tive and quantitative variables, MFA was selected as our feature extraction

method. However, other feature extraction methods such as Stacked Auto-

encoders (SAE) could be used to extract features. This research explored

a low complexity machine learning process that can achieve sufficient per-

formance, including faster speeds. SAE will involve neural networks that

introduce complexities such as resource constraints and is more suited to

unsupervised tasks.

5.1.10 Feature Selection

Feature selection refers to selecting only the most important features based

on their ranking to reduce complexity, remove noise, and increase the model’s

efficiency. The feature selection process’s objective is to build a less complex

but comprehensive model without compromising accuracy [214] by removing

redundant or less relevant futures. This work selected Information Gain (IG),

Gain Ratio (GR), and OneR as the feature selection methods, as shown in

Table 5.3. The main reason for selecting these methods is that they all

provide scores and rank features according to their relevance.

5.2 Attack Stage Classifiers

5.2.1 Feature Selection

This work applied a set of machine learning classifiers, namely BayesNet,

Naive Bayes, Support Vector Machine (SVM), Random Forest, and KNN.
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These classification techniques were discussed in Section 2, which is the back-

ground section. Weka machine learning tool was used for this experiment.

5.2.2 Analysis and Discussions

This section discusses the steps involved in the setup of our experiment and

the analysis of the results, starting with the performance evaluation metrics,

which will be used to examine the model’s effectiveness. This will be followed

by the experiment setup and a reflection of the results.

5.2.3 Evaluations Metrics

The performance of the model was investigated using performance metrics.

These metrics include accuracy (Acc), detection rate (DR), F-measure (F1),

and false alarm rate (FAR). The accuracy score is a reflection of the effec-

tiveness of the algorithms used. The detection rate is the number of actual

stages detected over the total number of stages detected in the dataset. The

measurement for these metrics is defined in Eqs. (5.1)–(5.7) as used in [215].

Accuracy =
TP + TN

TP + TN + FN + FP
(5.1)

DR =
TP

TP + FN
(5.2)

Precision =
TP

TP + FP
(5.3)
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FAR =
FP

TN + FP
(5.4)

FNR =
FN

FN + TP
(5.5)

F 1 =
2TP

2TP + FP + FN
(5.6)

MCC =
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5.7)

Table 5.1: Results of feature selection with Näıve Bayes clas-
sifier

Feature selection Acc (%) DR (%) FAR (%) F 1 (%)

OneR 91.1 91.1 1.3 91.2

Gain Ratio 90.5 90.5 1.2 90.6

InfoGain 87.3 87.3 1.9 87.4

Herein TP and TN refer to True Positive and Negative, respectively, while

FP and FN denote false positives and negatives. DR refers to Detection

Accuracy. Table 5.1 shows an example of the results obtained using the

Näıve Bayes classifier.

Table 5.1 shows the result from the performance metrics using Naive

Bayes. In this example, the highest prediction accuracy of 91.1% was ob-
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tained with features from OneR, while the lowest FAR of 1.2% was obtained

with features from GainRatio. The highest detection rate was achieved with

OneR. The results from the F1-measure showed features from OneR scored

the highest results with a prediction of 91.2%.

5.3 Experimental Setup

This experiment began by examining the original dataset to understand the

various features and observations. The following steps were then performed

to reconstruct and relabel the original dataset.

• Removed feature “alert id” from the original dataset. This was a re-

dundant feature that was not contributing to our model, leaving us

with 7 features.

• Perform classification based on the 7 features using Naive Bayes, Bayes

Net, k-NN, Random Forest, and SVM classification algorithms. These

will be our baseline results.

• Extract a further 7 features using MFA from the original 7, giving us

a total of 14 features.

• Perform classification on the 14 features using the same classifiers.

• Selected the top 10, 7, and 5 features in turns and performed the clas-

sification.
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Table 5.2: Numerical experiment scenarios

Experiment stages Description

Dataset-CKC stage la-
belling

labelled dataset mapped to CKC
stages

Dataset-CKC+MFA Ex-
traction

labelled dataset mapped to CKC
stages and feature extraction

Dataset-CKC+MFA+FS1 labelled dataset mapped to CKC
stages, feature extraction and feature
selection1(FS1)

Dataset-CK+MFA+FS2 labelled dataset mapped to CKC
stages, feature extraction and feature
selection2(FS2)

DatasetCK+MFA+FS3 labelled dataset mapped to CKC
stages, feature extraction and feature
selection3(FS3)
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5.4 Results and Discussions

The main aim of this research was to improve the detection accuracy of the

APT stages. A dataset on APT was used, which other researchers shared.

The main challenge faced was the limited number of features on the dataset.

This limitation was addressed by performing feature extraction and selection

techniques. Our experiment set the threshold of a satisfactory outcome to

be 84.9% for the prediction accuracy based on the original APT dataset

provider’s work. Our results achieved a prediction accuracy of 91.1%, which

was more than the threshold. The results of our feature extraction and

selection processes will be discussed in the next part, followed by our classifier

results.

5.4.1 Results from Feature Extraction and Selection

The original APT dataset contains 8 features and 1 label. The “alert id” was

removed, and resulting in 7 features. R package’s FactoMinerR was used to

convert the non-numerical features to categorical features before extracting

the feature. The final features were 14 features in total, including 7 extracted

features. Information gain, Gain ratio, and OneR feature selection techniques

were then used to choose the features that contributed most to our model.

All the features were selected from the start, including the extracted ones.

The features were then reduced gradually until the optimal level.

The features were ranked from highest to lowest using the techniques de-

scribed above. The results showed that 14 of the features had a value greater

than zero, which means the MFA feature extraction technique successfully
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extracted the features relevant to the model. All our extracted features had

a value greater than zero. Further feature selection processes were then per-

formed until the final 5 features were left. Table 5.3 shows the top 5 features

from the InfoGain, GainRatio, and OneR feature selection methods. Features

from OneR produced better results, followed by the features from GainRatio

and then InfoGain. The top 5 features from OneR consist of two original

features and three extracted features, while the top 5 features from GainRa-

tio consist of three original features and two extracted features. The top 5

features from InfoGain are all original features, but their prediction accuracy

was less than the other two method’s features. The results from the exper-

iment stages were compared, and it was found that our feature extraction

and selection processes improved the model’s prediction accuracy.

Table 5.3: Selected features used across all the selected
classifiers

Feature Selection Methods Selected top 5 Features

OneR 1,6,13,14,9

GainRatio 1,6,10,5,13

InfoGain 1,5,6,3,7

5.4.2 Classifier Results

The classification of the remaining 7 features was performed once the data

relabelling and the removal of redundant features were completed. Table 5.4
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shows the classifier’s results, including their prediction accuracy. This result

will be our baseline. The result shows that the highest accuracy score of

87.43% was obtained with the SVM classifiers.

Our next step was to perform classification on the 14 features, including

the 7 extracted features. The result shows that the highest prediction ac-

curacy of 87.87% was obtained with the SVM classifier, as shown in Table

5.4. We then performed the classification using the top 10 features consist-

ing of 4 original and 6 extracted features, which shows our extracted features

are relevant to the model. The original features are feat1, feat2, feat6, and

feat8, while the extracted features are feat9, feat10, feat11, feat12, feat13,

and feat14. The result showed improvements in accuracy compared to the

14 features. The highest accuracy of 91.41% was obtained with SVM.

After analysing the top 10 features’ classification results, the top 7 fea-

tures were then selected and performed further classifications. The 7 features

in the ranking were feat1 and feat6 from the original dataset and feat9, feat11,

feat12, feat13, and feat14 from the extracted features. The results show a

slight decrease in the accuracy results compared to the top 10 features. The

top-performing classification algorithm was Bayes Net, which had a predic-

tion accuracy of 90.85%. Finally, the top 5 features were selected according

to their ranking score, and the highest prediction accuracy of 91.1% was

obtained with Naive Bayes. Tab. 5.2 shows the experiment stages and the

corresponding description. There are five stages in total, which start with

the relabelled dataset until the final stage, consisting of the relabelled data,

extracted features, and top selected features. In this table, CKC stands for

the Cyber Kill Chain, and FS stands for feature selection. In FS1, FS2, and
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FS3, the top 10, 7, and 5 features were selected, respectively. Fig. 5.4 shows

the experiment stages and the selected features, along with the results ob-

tained from the classifiers. From the figure, it is evident that the prediction

accuracy is affected by the number of features, as shown in Fig. 5.5.
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Herein NB and BN refer to Naive Bayes and Bayes Net, respective, while

RF and SVM denote Random Forest and Support Vector Machine as shown

in Table 5.4.

Figure 5.5: Classifier accuracy rates under various numbers of selected fea-
tures for classification

The following parameter were applied when performing the classification

using the various algorithms.

In Bayes net the Estimator was set Simple Estimator -A 0.5, this search

parameter is used for estimating conditional probability, the SearchAlgorithm

was set to K2 P -S BAYES, InitAsNaiveBayes:True, MarkovBlanketClassi-

fier:false and maxNrOfParents was set to 1. In KNN the K value was set to

5. In Random Forest the parameters were set to RandomForest -P 100 -l 100

-num-slots 1 -K2 -M1.0 -V0.001 -S1 with Numiterations set to 100 and the

Numfeatures set to 2. The parameter is SVM was set to C=1.0, FilterType:
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Normalize training data and Kernel set to Polykernel -E 1.0 -C 250007.

In this work, our proposed approach has been studied to detecting APTs

relevant attacks using the Cyber Kill Approach. Further research may con-

sider applying the Cyber Kill Chain concept to securing specific areas of

IoT-enabled applications.

5.4.3 Summary

This section discussed our work on the machine learning approach for detect-

ing Advanced Persistent Threats using the Cyber Kill concept. As part of

this experiment, we performed feature extraction and selection techniques to

increase the features and tune the model using the best features. This next

subsection will explore feature extraction and selection techniques further

using deep learning techniques such as auto-encoders and wrapper method

for feature selection. We published a paper on this work in a peer-reviewed

journal [216]. My main contribution to this paper was on the feature selec-

tion methods. We then combined the features from the three algorithms to

obtain the best features for the model. In the next subsection, we explore

the main work of this paper and my main contribution to the article. A

conclusion that summarises the key points will be provided towards the end

of this chapter.
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5.5 Machine learning techniques for improv-

ing intrusion detection

Intrusion detection is an area that has been widely researched for many

years but the accurate detection of cyberattacks remains a challenge. Recent

research demonstrated advances in intrusion detected [217], [38], [218], [219]

Machine learning approaches for intrusion has yielded some good re-

sults depending on the quality of the dataset used and classification algo-

rithms, which perform better under various scenarios. Most machine learn-

ing datasets start with data preparation, followed by feature extraction or

selection before the data is fed to the model.

In the earlier APT stage detection, feature extraction and feature se-

lection methods such as MFA, Information gain and Gain ratio were used.

Machine learning classifiers such as SVM, KNN and Random Forest were

applied. To expand on that work, we collaborate with other colleagues on

expanding the use of feature selection in intrusion detection. The resulting

work explored feature extraction based on deep learning, used a wrapper-

based classifier for feature selection and Artificial Neural Networks (ANN)

for classification [216].

My main contribution to this paper was in the feature selection meth-

ods. In the paper, an effective feature selection technique was leveraged to

improve intrusion detection. The proposed approach used deep feature ab-

straction in the form of unsupervised auto-encoders to extract more features.

Wrapper-based feature selection techniques were then utilised using Support

Vector Machine (SVM), Naive Bayes and Decision tree to select the highest-
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ranking features. Artificial Neural Networks (ANN) classifier was then used

to distinguish impersonation from normal traffic.

5.6 Feature Selection

Feature selection is a technique widely used to rank features according to

their relevance. The two main categories of feature selection are wrapper-

based and filter-based. The primary reason for feature selection is to reduce

noise and optimise the performance of the model. Fig. 5.6 depicts a high-level

overview of the feature combining process.

Wrapper methods for feature selection are widely used to deal with clas-

sification problems and reduce noise by selecting the optimal features for

the model. In this paper, we proposed a method for selecting features us-

ing three different algorithms and then combined the features. The wrapper

based techniques used in this paper were Support Vector Machine, C4.5 and

Naive Bayes.

The total number of features in the dataset was 204, and we selected

the top 20 features. We selected the 7 top-ranked features from SVM and

C4.5 and then the top 6 features from NB, which gave us a total of 20

top features. To reduce duplication due to the features overlapping, we

skipped to the next feature if it already appeared in the top features for

any of the other algorithms used. The classification was then performed for

the combined features using Artificial Neural Networks, and we achieved an

overall accuracy was 99.95%.
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Figure 5.6: Architecture of combining best feature and classification

5.7 Conclusion and Key Points from Our APT

experiments

This chapter discussed machine learning approaches for detecting APT at-

tacks by leveraging the Cyber Kill Chain concept. APT attacks are challeng-

ing to detect and can cause substantial damages. Although some progress

was made on APT detection, it remains a challenge, given the time it takes

to detect the APT attacks. According to a recent report by FireEye [80], it

takes on average; 56 days to detect APT attacks. We used the APT dataset

provider’s work [5] as a baseline to expand on the machine learning aspect

of their work. In this work, we also used feature extraction and selection

techniques to increase our model’s efficiency. The APT dataset used had

a limited number of features. We overcame that limitation by performing

feature extraction techniques using Multiple Factor Analysis (MFA), which

doubled the number of features. We then performed feature selection using

Information Gain (IG) and Gain Ratio (GR) methods to deliver our model’s
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most relevant features. We selected the top 5 feature IG and GR methods

and obtained a detection accuracy of 91.1%.

To explore the feature selection techniques, we published another paper

on “Effective combining of feature selection techniques for machine learning-

enabled IoT intrusion detection”. In this work, we utilised feature extraction

using deep learning techniques. We then performed feature selection using

the wrapper methods, selected the top 20 features, and obtained an overall

detection accuracy of 99.5%.

We hope our proposed alert modules mapped to Cyber Kill stages will

help detect APT attacks and reduce the cost of data breaches. Furthermore,

the feature selection and extraction concept explained in the second paper

can also be applied to APT stage detection in the context of the Internet of

Things (IoT).
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Chapter 6

Feature forecasting for cyber

attack prediction

This chapter presents our work on cyber attacks events forecasting and pre-

diction based on time series data. Some of the content of this chapter is

derived from the author’s work, which was recently submitted to a peer-

reviewed journal [119]. In this work, we used a recently released dataset

that contains several attack types on a realistic secure network and then con-

structed times-series models with tuned parameters to assess the effectiveness

of the various time series forecasting techniques such as Linear Regression,

Sequential Minimal Optimization for regression (SMOreg) and Long Short

Term Memory (LSTM) to forecast the cyber events.

Time series data forecasting is not new, and it is widely adopted in fields

such as weather forecasting and stock predictions. Forecasting has been

gaining traction in cyber attack prediction, although this is still emerging

area [145]. While several predecessors have carried out work on cyber attack
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prediction and forecasting, there are limitations on the datasets’ quality,

which are mainly derived from honeypots [129, 148] and social media feeds

[126, 147, 146]. Such work often looked at a single attack, such as Denial of

Service (DoS) and malware variant. Most of these existing works on fore-

casting does not provide enough information to help implement proactive

approaches due to the dataset limitations. To overcome these challenges, we

have used a large dataset with multiple attack labels [34]. We then performed

event forecasting to predict cyber attacks within a specific time frame. The

main contributions of our research are as follows:

1. Perform time series resampling based on original data to make sure we

have equally-spaced samples for prediction.

2. Perform and evaluate time series forecasting based on linear regression,

SMOreg and LSTM.

3. Evaluate the performance of the forecasted events using the metrics

MAE and RSME.

4. Use time-series data to forecast cyber-attack events within a specified

period.

6.1 Cyber Event Forecasting Model

In this work, we created a time series based cyber event forecasting model.

The model’s primary goal is to predict cyber-attack events and help decision-

makers take proactive measures to protect their networked systems. To
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achieve this research’s objectives, we used a publicly available dataset con-

taining various attack types on a realistic and secure network. The distribu-

tion of the data was Benign 64%, SSH-Bruteforce 18% and FTP-Bruteforce

18%. The dataset providers selected the attack types based on McAfee report

on the most common attacks [220].

The dataset consists of several attack types collected over five days, and

our focus was on data collected over 24 hours. The dataset contains three

labels which are SSH-Bruteforce, FTP-Bruteforce and Benign data. The

dataset consisted of 79 features and 1048575 observations. Data resampling

will be performed based on 30 seconds intervals, and from there, the data

was partitioned into training and test portions.

Forecasting is not new, and it has been widely used over the years to

predict customer trends, energy consumption, weather patterns and stock

forecasting. Several authors have carried research on forecasting energy con-

sumption in smart meter environment [221, 222, 223, 224, 225]. Weather

forecasting has been used for many years, and we are used to checking the

weather forecasts regularly. Several authors carried research on weather fore-

casting using machine learning techniques to improve the accuracy of the

prediction [226, 227, 228, 229].

Although time series forecasting techniques are well established in weather

forecasting and stock prediction areas, it has not been widely explored to

predict cyber-events due to the challenges of the ever-changing threat land-

scape and the volume of data exchanged, which can be quite high even for

a small network. Cyber-events forecasting is a proactive measure that can

help with early detection and help decision-makers make informed decisions,
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and take corrective measures to mitigate potential threats. In this work, we

will focus on cyber-events forecasting to help anticipate future attacks and

determine whether an attack is likely to occur at a given time based on a

combination of certain features and events. The purpose is to help technical

teams and decision-makers to intervene before cybercriminals execute their

malicious activities and compromise their systems. Fig. 6.1 shows the data

preparation stages, including the forecasting.

Figure 6.1: Forecasting Stages

6.1.1 Data Preparation

This work used the CSE-CIC-IDS2018 dataset [34], a recently released pub-

lic dataset on intrusion detection. We initially went through the dataset

and explored the various features and labels. The sequence of the dataset

preparation and experiment stages are (i) Dataset preparation and feature

selection, (ii), Time series forecasting, (iv) Performance evaluation, as shown

in Fig. 6.1.

135



Our focus was on the portion of the original dataset collected over 24

hours and consisted of 79 features and 1048575 observations. The next step

was to perform data selection based on a time interval of 30 seconds and

ended up with 79 features and 1084 observations. The time-series data was

then checked to ensure it was stationary.

6.1.2 Feature selection

Feature selection was applied to reduce the number of features and increase

the model’s efficiency using Information Gain (IG) selection methods that

use ranking based on their relevance to the model. The top 21 features

were then selected based on IG. These features were selected based on their

ranking and contribution to the model. The first 884 portions of the data

were selected as training data and the remainder 200 as the test data.

6.2 Experiment Setup

The CSE-CIC-IDS2018 dataset was used in this experiment, and data re-

sampling and time series forecasting were then performed. This was a large

dataset collected over five days and consists of seven attack types which are

(i) Bruteforce, (ii) DoS attack (iii), Web attack, (iv) Botnet attacks, (v)

Infiltration, (vi) DDos, (vii) Heartbleed. Our research’s primary focus was

data collected over 24 hours containing SSH-Bruteforce, FTP-Bruteforce and

Benign data.

The victim network consists of five departments with 450 computers and

30 servers, and while the attack network consists of 50 machines. The cap-
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tured data includes network traffic and log files from each host in the net-

work, making it a comprehensive dataset. Time series were used to collect

the data at regular intervals of 30 seconds which reduced the dataset to 1084

observations. The dataset was then divided into training and test portion.

Figure 6.2: Flow chart - forecasting model
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The flow chart in Fig 6.2 shows the steps and algorithms used in the

experiment. We believe that the flow chart will be more representative to

capture the step that was done in applying machine learning.

6.2.1 Experiment overview

Time-series resampling was performed based on the original data to en-

sure equal sampling for the prediction. The resampling process reduced the

dataset to 1084 observations during the data preparation stage, and from

there, we reserved 884 observations for training and the reminder 200 for

testing. The next step was to perform the forecasting based on the subse-

quent 200 events. WEKA machine learning tool was used to perform the

experiments. During the experiment, several base learners such as Linear re-

gression, SMOreg, LSTM, Gaussian and multilayer perceptron were explored

but eventually selected Linear regression, SMOreg and LSTM for our exper-

iment. The next step was to perform the cyber event forecasting using these

base learners in turns and evaluate the performance using metrics such as

Mean Absolute Error (MAE) and Root Square Means Error (RSME). MAE

gives the absolute value of the error and is useful when determining the dif-

ference between the actual and predicted values. RSME is another metric

for evaluating the performance of models and is used to show how far the

predictions are from the actual values using Euclidean distance. This work

will be using both of these metrics to measure the performance of our model.
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6.3 Time Series Forecasting

This work performed forecasting on time series data to predict attacks based

on events’ patterns. In the forecasting, the time series data were collected at

the regular intervals of 30 seconds, reducing the dataset to 1084 observations.

The following base learners were explored during the experiment (i) Linear

regression, (ii) SMOreg, (iii) LSTM, (iv) Gaussian Processes (v) Multilayer

Perceptron. The next step was to forecast 200 events using each of the base

learners described above.

The events that were forecasted through linear regression, SMOreg and

LSTM were then chosen. Next, the parameters used in the forecasting ex-

periment will be listed. In Linear regression the parameters used were:

(i)attributeSelectionMethods was set to M5 methods, (ii) eliminateColin-

earAttributes was set to true, (iii) ridge - the default value was selected. In

SMOreg the following parameter were set (i) the c value = 2.0, (ii) Ker-

nel = PolyKernel, (iii) RegOptimizer = RegSMOImproved, (iv) filtetype =

Normalize training data. In LSTM the parameter were set to (i) Activation

function = ActivationReLU, (ii) Number of outputs = 3, (iii) gate Activation

function = ActivationSigmoid. The result of the experiment can be found in

figures 6.2 and 6.2.

6.4 Performance Evaluations

In this work, the metrics Mean Absolute Error (MAE) and Root Square

Mean Error (RSME) were used to evaluate the forecasted data’s performance.

These metrics will be discussed in sections 6.4.1 and 6.4.2
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6.4.1 Mean Absolute Error (MAE)

The metric Mean Absolute Error (MAE) was used in this experiment to

evaluate the times series forecasted data’s performance. Table 6.1 shows the

result of the MAE. In Table 6.1, we have selected the top five forecasted

features obtained with linear regression, SMOreg and LSTM. The results

show that SMOreg forecasted features or events performed better than the

Linear regression and LSTM predictions by producing the lowest MAE value

although linear regression was not far behind. The equation below shows

how MAE is calculated as used in [230]

MAE = (
1

n
)

n∑
i=1

|yi − xi| (6.1)

Herein y i = prediction, x i = actual value and n = total number of data

points.

Target Feature Linear Regression SMOreg LSTM
Tot Fwd Pkts 0.0105 0.0038 2.6127
Tot Bwd Pkts 0.0034 0.0025 0.4981
Pkt Len Min 0.0002 0.008 0.0054

Fwd Seg Size Min 0.4912 0.0182 0.0494
Subflow Bwd Byts 0.718 0.7251 31.9957

Table 6.1: Mean Absolute Error
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6.4.2 Root Mean Square Error Absolute Error (RMSE)

The Root-Mean-Square Error (RMSE) measures the accuracy of predictions

obtained by a model by measuring the differences between actual and pre-

dicted values. In the RMSE, the first step is to calculate the difference

between the numbers and then square them. This is followed by finding the

mean of these numbers and, finally, the square root of the mean is calculated

as shown in equation 6.2.

Target Feature Linear Regression SMOreg LSTM
Tot Fwd Pkts 0.0129 0.0045 2.8946
Tot Bwd Pkts 0.0039 0.003 0.5842
Pkt Len Min 0.0002 0.0096 0.0063

Fwd Seg Size Min 0.0198 0.8776 0.0497
Subflow Bwd Byts 0.8163 1.2969 35.0395

Table 6.2: Root Mean Square Error

RMSE =

√√√√(
1

n
)

n∑
i=1

(yi − xi)2 (6.2)

6.4.3 Long short-term memory (LSTM)

Recent advances and availability of large data have resulted in the popu-

larity and application of deep learning-based algorithms such as Recurrent

Neural Network (RNN) and Long Short-Term Memory (LSTM) to forecast

future trends in sectors such as finance. For example, LSTM models have

been deployed to process events sequence and are widely adopted in time
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series forecasting. LSTM is a variant of Recurrent Neural Network(RNN)

and can predict future events based on previous data. It performs better

than traditional forecasting methods such as Auto-Regressive Moving Aver-

age (ARIMA), which is one well known classical forecasting method [231].

Although ARIMA is also widely adopted for time series based forecasting, it

has its own limitation, such as the inability to model nonlinear relationships

between variables [232]. In this experiment, LSTM was used to forecast the

subsequent 200 events. The metrics Mean Absolute Error (MAE) and Root

Mean Square Error (RMSE) were then used to evaluate the model’s perfor-

mance. Figures 6.1 and 6.2 show the performance results of the two metrics.

The results show that LSTM forecasted events had the least accuracy com-

pared to those obtained through linear regression and SMOreg.

6.5 Analysis of the results

In this section, an analysis of the results of this experiment is provided. The

results show that the events forecasted through SMOreg performed better

than those from linear regression and LSTM when the metric MAE is used

for evaluation. SMOreg forecasted event produced the best predictions in

three out of the 5 top features selected. These features were Tot Fwd Pkts,

Tot Bwd Pkts and Fwd Seg Size Min, as shown in table 6.1. The lower

the MAE score, the better the performance. Linear regression forecasted

events produced the second-highest predictions, with two out of the 5 top

features performing better than the other two base learners. When the RMSE

metric was used to evaluate the model, the linear regression forecasted events
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produced the highest predictions accuracy in three out of the top five features

selected. In contrast, SMOreg forecasted events produced the second-highest

predictions in two out of the 5 top features selected, as shown in table 6.2.

LSTM produced the lowest accuracy for MAE and RMSE evaluation metrics

compared to SMOreg, and linear regression forecasted events.

Security teams can use these metrics to determine the model’s accuracy

and forecast to anticipate cyberattacks and implement corrective measures

before the actual attacks are executed.

In the next part, the performance metrics and evaluate results will be

covered.

6.6 Summary

In this chapter, our cyber events forecasting and prediction model was dis-

cussed. The experiment used a recently released IDS dataset captured from

realistic network settings, and the dataset contained seven different attack

types and benign traffic. The research began by preparing the dataset, per-

forming data re-sampling and feature selection. Cyber events forecasting

was then performed using the base learners linear regression, SMOreg and

LSTM to forecast the subsequent 200 events for each technique. The metrics

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were

then used to evaluate the performance of the forecasted events. The results

showed that the forecasted events from SMOreg performed better by produc-

ing the lowest MAE compared to others in three out of the five top selected

features. At the same time, linear regression forecasted events performed
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better in three of the selected top 5 features when the RMSE metric was

used for the evaluation.

Given the limited research on cyberattack prediction using time series

forecasting, we believe our work will contribute to the accurate detection of

cyberattack detection and ultimately prevent data breaches by allowing secu-

rity professionals and decision-makers to anticipate attacks and take proac-

tive measures to prevent potential attacks before they occur. Our forecasting

was limited to specific time frames in this work, which was in hours due to

the dataset’s constraints. However, we believe this is a reasonable time to

take corrective measures given the evolving threat landscape. We also plan to

expand on this work in our future work and increase the forecasting window

to between 1 to 7 days.
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Chapter 7

Threat detection using

Indicators of Compromise (IoC)

Indicator of compromise are artefacts left behind following the action of ma-

licious actors. These artefacts can be found on a network or computer sys-

tems, giving the investigator some degree of confidence that a cyber-attack or

intrusion has taken place. Threat hunting is a proactive approach to search-

ing for cyber threats that were not detected and hidden in the network.

These artefacts can be found in networks, endpoints or previously collected

datasets. The investigations performed by the threat hunters is influenced

by factors such as the threats landscape and known IoCs or indicators of

attack. There are triggers such as malicious activities on computer systems

or networks that can also result in investigations to be carried out by the

threat hunters. Our focus is on data-driven investigation and utilises Ma-

chine learning approaches to detect IoCs. We look at system logs to search

for hidden anomalies to build the pattern of the attack.

145



In this chapter, we present our work on cyber threat detection using In-

dicators of Compromise. Some of the contents of this chapter are derived

from the author’s work, which was recently submitted to a peer-reviewed

book chapter [149]. We designed an experiment and simulated attacks on

Windows-based systems using Kali Linux as the attack machine. We col-

lected data from logs and alert systems to create a dataset for machine

learning classification. The experiment was in two stages, and the first part

involved 3 Windows clients and a Kali machine. Although this experiment

produced some good results with the best accuracy of 96.7%, there was the

challenge of over-fitting, which we had to deal with due to the limitation and

size of the dataset. To expand on this work, we performed further experi-

ments and increased the datasets to 42 features and 215 observations from

the original 29 features and 87 observations. We also added two new attack

labels, which were reconnaissance and infiltration attacks, to the dataset.

Although several predecessors have researched indicators of compromise

and its role in intrusion detection, there have been some shortcomings and

challenges in their broader implementation. These challenges include: (i)

limited availability of publicly available datasets on IoCs (ii) limited work on

host-based IoC mainly due to restrictions on information sharing for fear of

litigation (iii) limited experimental work to validate the effectiveness of the

proposed solutions. In this work, we will target (ii) and (iii) by creating a

dataset collected from windows hosts and performing experimental validation

of the work. There are very few existing host-based IOC datasets, but these

are heavily anonymised, limiting their capability. Some of these datasets are

also old. Anonymisation of the data is the main reason why the IoC dataset
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was created in our experiment. Next, we are going to start with the first IoC

experiment.

7.1 Experiment I

In the first experiment, we created a small network, as shown in Fig. 7.1 and

simulated various attacks. We then collected data relating to both benign

and attacks events which constituted our dataset. The experiment setup

consists of a Kali Linux attack machine and three Windows clients. The

Windows machines were Windows 10, Window 8.1 and Window 7 clients. In

this experiment, we used the stages of the Cyber Kill Chain (CKC) when

simulating the attacks. The CKC was developed by Lockheed Martin and

consists of seven stages which are: (i) Reconnaissance (ii) Weaponisation (iii)

Delivery (iv) Exploitation (v) Installations (vi) Command and Control(C2)

(vii) Action on Objectives. Other frameworks used for attack stage detec-

tion include the MITRE ATT&CK and Unified Kill Chain, which combines

elements from the CKC and MITRE ATT&CK.

The Kali Linux machine was used as the attacking platform, and several

attacks were executed against the Windows victim machines. The attack

labels can be found in Fig. 7.5. The distribution of the attack labels is

depicted in Fig. 7.6. From the diagram, it is evident majority of the attacks

was directory scanning and privilege escalations followed by Brute force and

SMB attacks. The target machines were attacked over a 24 hour period

at random times. Kali Linux tools such as Dirb and NMAP were used for

scanning attack, and Metasploit was used for the SMB attack, while hydra
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was used for the Brute force attack. The Dirb tool was used for directory

scanning and useful to detect hidden directories, while NMAP was used to

scan for open ports and services. Metasploit was used to search and execute

the exploits, while hydra was used for password cracking. Security onion was

used as the network security monitoring and log management tool. Security

onion contains a collection of security tools such as Snort, Zeeks and Suricata

IDS systems [233]. It also contains Sguil, Squirt, Elastisearch, Logstash and

Kibana, which provides the front-end visualisations. Security onion is a free

open source tool that provides comprehensive solutions and can be used for

threat hunting.

The dataset we created consists of 29 features, 87 observation and 5 la-

bels. Fig. 7.3 shows the list of features and their descriptions, while Fig.

7.5 shows the attack labels. Included in the features are several Windows

event IDs, as shown in Fig. 7.4. These events IDs can be used to piece

together the activities under-taken by malicious actors and aid with the ac-

curate detection of IoCs. Building the digital trail of the attackers can help

incident response teams execute corrective measures to contain incidents and

implement proactive approaches to prevent similar attacks occurring in the

future by deploying extra security measures or fine-tuning the existing tools.

Detecting intrusion in the earlier stages can help limit the damage caused

by cyber attackers. IoC detection can play an essential role in preventing

such attacks from moving through the network undetected and detecting

any lateral movements.

Attackers do not often restrict themselves to a single compromised host,

and they try to find other vulnerable systems in the network. Cybercriminals
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are also known to search for online backups, especially in attacks involving

ransomware. If successful, they tend to encrypt the backup first before en-

crypting the production systems. Therefore it is crucial to quickly detect

IoCs accurately and prevent or contain the attack if it is still in progress.

Logs files play an essential role in intrusion detection, and they are consid-

ered a rich source of information when looking for signs of compromise on

target hosts. These logs provide information such as login attempt, privilege

escalation and other suspicious activities that form broader patterns that

point to an attack.

In the next part, we will explain how we prepared the dataset.
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Figure 7.1: IoC Network Architecture Experiment I
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7.2 Dataset Preparation

We constructed the dataset, which consisted of 29 features and 87 observa-

tions. We then explored feature selection methods to remove features that are

redundant to our model. Fig. 7.2, shows the stages involved in the dataset

preparation. Once we created the dataset, we performed feature selection

to choose the best features and then proceeded with the machine learning

classification.

Fig. 7.3, represents the list of the features contained in the dataset while

Fig. 7.5, shows the labels. Fig. 7.4, describes of some of the Windows event

that forms part of the features in the dataset. Windows events provide a

snapshot of the activities taking place on these systems. During the pre-

processing, the attributes relating to the Windows events were converted to

binary form. The presence of an event was denoted by 1 and the absence of

event by 0. We used Weka machine learning tool in these experiments.

Figure 7.2: IoC Data Preparation and Classification Experiment I
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In the next part, we will cover how the feature selection was performed

and the chosen selection methods.

7.2.1 Feature Selection

Feature selection is the process of choosing features that are most relevant

to the model. They are used to reduce noise and increase the efficiency

of the model. There are several feature selection methods such as Infor-

mation Gain (IG), Gain Ratio (GR), OneR, Principle Components (PC),

Correlation, Wrapper and Support Vector Machine (SVM). Feature extrac-

tion can also be performed before the feature selection in order to increase

the number of features. Some of the most common feature extraction meth-

ods include Principal Component Analysis (PCA) and Multiple Component

Analysis (MCA). Other feature extraction methods include deep learning ap-

proaches such as auto-encoders as demonstrated in [216]. In this work, we

selected Information Gain and Gain Ratio feature selection methods. The

reason for selecting these methods is that they rank features according to

their importance.
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Figure 7.3: IoC Feature Description Experiment I
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Figure 7.4: Event Logs [234]

Figure 7.5: Attack label Experiment I
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7.3 Attack Classification

Many classification algorithms are widely used in machine learning. In this

experiment, we used BayeNet, Naive Bayes, Support Vector Machine (SVM),

K Nearest Neighbour(KNN) and Random Forest. We carried classification

using the best 7 features from Information Gain (IG) and Gain Ration (IG),

as shown in Table 7.1. We then performed classification on the 7 top features

from Information Gain using the classifiers BayeNet, Naive Bayes, Support

Vector Machine (SVM), K Nearest Neighbour(KNN) and Random Forest.

Table 7.2 shows a breakdown of the classifier performance. The classifier

performance on the Information Gains features can also be seen in Fig. 7.7.

Similarly, we performed the same steps on the 7 top features obtained through

the Gain Ratio feature selection method, and the performance of the classifier

is shown in Fig. 7.8. Similarly, the classification performance of the Gain

ratio and Info gain features using the Naive Bayes classifier can be seen in

Table 7.3.

Table 7.1: Selected features

Feature Selection Methods Selected top 7 Features

InfoGain 3,16,17,20,21,27,28

GainRation 3,5,8,22,23,24,25
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Table 7.2: Classifier results

Feature selection BN NB SVM KNN RF

Gain Ratio 93.3% 96.7% 90.0% 90.0% 94.3%

InfoGain 94.28% 94.28% 83.33% 93.3% 96.7%

Herein BN and NB refer to Bayes Net and Naive Bayes, respectively, while

SVM, KNN and RF denote Support Vector Machine, k-Nearest Neighbour,

and Random Forest.

Figure 7.6: IoC Attack Label Distribution Experiment I
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Figure 7.7: Info-Gain Top 7 Features

Figure 7.8: Gain-Ratio Top 7 Features
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7.3.1 Evaluation Metrics

In this experiment, we used performance metrics to evaluate our model.

These metrics include accuracy (Acc), detection rate (DR), Precision, F-

measure (F1), Matthew correlation efficiency (MCC), False negative rate

(FNR) and false alarm rate (FAR). The measurement of these metrics is

defined in section 5.2.3.

Table 7.3: Performance results using Naive Bayes Classifier

Feature selection Acc Precision FAR F 1 Mcc

Gain Ratio 96.7% 97% 0.7% 96.6% 95.5%

InfoGain 94.28% 95.4% 0.7% 94.3% 92.8%

7.4 Analysis and Discussions

In the first part of the chapter, we explored the role of indicators of com-

promise (IoCs) in threat hunting and utilised machine learning approaches

to improve detection accuracy. IoCs play an essential role in detecting cyber

breaches and adopting proactive measures to prevent similar attacks from

occurring in the future. In this work, we started with creating the experi-

ments and collecting data that captures both attacks and benign traffic. The

dataset we created was then used for machine learning classification using

algorithms such as BayesNet, Naive Bayes, SVM, KNN and Random For-
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est. We performed feature selection during the data preparation stage and

chose the best 7 features from Information Gain (IG) and Gain Ratio (GR).

We obtained a high classification accuracy of 96.7% with Naive Bayes and

Random Forest.

We then used performance metrics to test the performance of the model.

The metrics we used were: (i) Accuracy (Acc), (ii) Precision, (iii) False Alarm

rate (FAR), F-Measure (F 1) and Matthews Correlation Coefficient (MCC).

We used the top features from IG and GR feature selection methods and

used the Naive Bayes classifier. The result shows features from Gain Ratio

performed better in terms of the accuracy score, precision, F 1 and MCC,

while the False alarm rate was 0.7% for both sets of features as shown in

Table 7.3. The performance of the top 7 features for IG and GR can be also

be seen in Fig. 7.7 and 7.8.

We carried further experiments to improve the work performed in the first

part of the chapter to address some of the data limitation found in the first

experiments. The primary challenge was overfitting, which we overcame by

performing feature selection to remove features that were not contributing

to the model’s efficiency. In the next part, we will discuss how we performed

the second experiment, in which we increased the dataset to 42 features and

125 observations.

7.5 Experiment II

In this experiment, we expanded on the work performed in Experiment I to

deal with some of the challenges encountered due to the dataset limitations.
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In the second experiment, we increased both the features and observations to

42 and 215, respectively, from the original 29 features and 87 observations.

We also added a further two attack labels to the dataset. The experiment

setup involved a Kali Linux attack machine and four Windows hosts, which

were the victim machines, as shown in Fig. 7.9. The Windows machines

were Win XP, Win7, Win 8 and Win 10. Similar to the first setup, we

used Security Onion for network monitoring and log management. In this

experiment, we used the stages of the cyber kill chain described in section

7.1.

7.5.1 Attack Simulations

Kali Linux was used as the attacking machine, and several attacks were

executed against the Windows victim machines. The attack labels can be

found in Table 7.6. The distribution of the attack labels for this second phase

of the experiment is depicted in Fig. 7.11. From the diagram, this time, it is

evident majority of the attacks were Reconnaissance and Infiltration followed

by directory scanning, privilege escalations, Brute force and SMB attacks.

The target machines were attacked over 24 hours at random times as per

the first experiment. The attack types, tools and systems involved can be

seen in Table 7.7. Security Onion was again used as the network monitoring

and log management tool. The dataset preparation stage followed similar

steps as described in Section 7.2. The attacks involved directory scanning

attacks using tools available in Kali Linux, and these tools include Dirb and

Gobuster, which can be used to discover hidden directories. In the SMB

attacks, we used Metasploit to deliver working exploits to gain access to
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these Windows systems. We utilised eternal blue, which is a well-known

exploit for Windows SMB vulnerability.

It is common for skilled cyber attackers to perform privilege escalations

once they compromise a system to perform further activities that may require

elevated privileges. In this experiment, we demonstrated privilege escalation

using various tools. One of the primary tools used in this experiment was

Metasploit which we used to search and deploy exploit to compromise these

systems and elevate the privileges. We added new user accounts to the com-

promised machines and then added them to the administrative group. Other

tools we used for the privilege escalation include Getsystem, which gives

system-level access; Mimikatz is also a useful tool for obtaining passwords

and other information. In this experiment, we used Mimikatz to obtain cre-

dentials and elevate privilege. We also used it to perform pass the hash

attacks, which allowed us to authenticate without the need for the actual

password by using the hash. Mimikatz is a very good tool for privilege es-

calations. We also used Armitage, which provided a graphical interface for

Metasploit and used it to deploy exploits to access these systems. For the

Brute force attack, we used Hydra, which is a tool available in Kali Linux.

Reconnaissance is one of the most important steps that precede the ac-

tual active attacks. To perform reconnaissance, we used several tools against

our target Windows machines. The tool we used in this experiment includes

NMAP, Netcat and Enum4Linux. NMAP is a popular open-source tool for

reconnaissance. In this experiment, we used it to scan ports and services

that ran on them and OS fingerprinting to determine the version of the op-

erating systems; this will help deploy the correct exploit that works against
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the operating system. Netcat was also used for port scanning during the

experiment, and it can also be used during the lateral movement stage to

establish a listener on a particular port. In the infiltration, we gained ac-

cess to these systems using Metasploit and deploying exploits to access the

Windows Systems. From there, we created accounts with admin privileges

and performed actions such as internal reconnaissance for lateral movement.

We also performed remote interactions with the target machines, which were

compromised and copied infected files across to the systems and run them

remotely to demonstrate the action of actual attackers. Once we got full

control of these systems and performed the actions needed to achieve our

goal, we proceeded to stop all the running services relating to the security

monitoring tools and delete all the audit logs and system logs to hide our

audit trail.

Before deleting the logs, we exported the Windows logs to capture all

the triggered events during our experiments, especially during the active

attack stages. We also collected alerts and other security information from

our security Onion network monitoring tool. We obtained the alerts from

other sources such as Squert and Kibana. Squert is a web-based portal

used to query events stored in the Squil IDS database. Kibana provides

visualisation for events from the logs. We used information from these sources

and Windows Events to build and prepare our machine learning dataset.
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Figure 7.9: IoC Network Architecture Experiment II
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7.6 Feature Selection

In the feature selection process, we followed same feature selection methods

which were described in the section 7.2.1. We used InfoGain and GainRatio

methods to select the most suitable features for our model until we were left

with final seven features. Table 7.4 show the top seven selected feature for

the two methods. Fig 7.12 shows the list of features used in the 2nd IoC

experiment.

Table 7.4: Selected features from experiment II

Feature Selection Methods Selected top 7 Features

InfoGain 9,12,13,15,17,33,39

GainRatio 8,10,15,22,30,32,33

7.7 Attack Classification

In the attack classification, we used the top features chosen during our fea-

ture selection process. We then used machine learning classifiers such as

BayesNet, Naive Bayes, SVM, KNN and Random Forest. Table 7.5 shows

the performance of the classifiers, with features from InfoGain performing

better in the classification. We used performance metrics such as accuracy,

precision, recall, false alarm rate, f-measure and Matthews correlation coeffi-

cient (MCC) to evaluate the performance of our model. Fig. 7.10 shows the
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classifier’s performance based on the Infogain selected features side by side.

Table 7.5: Performance results with Naive Bayes Classifier - Experiment II

Feature selection Acc Precision Recall FAR F 1 Mcc

InfoGain 98.8% 98.9% 98.8% 0.2% 98.8% 98.7%

Gain Ratio 97.7% 97.8% 97.7% 0.5% 97.1% 96.9%
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Figure 7.10: Info-Gain Top 7 Features-Experiment II
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Label ID Description

1 Normal

2 Directory Scanning Attack

3 SMB Attack

4 Privilege Escalation

5 Brute Force

6 Reconnaissance

7 Infiltration

Table 7.6: Expanded Attack Labels Experiment II

Figure 7.11: IoC Attack Label Distribution Experiment II
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Attack Tools Attacker Victim
Directory Scanning Attack Dirb, Gobuster Kali Linux Win 7, Win 8

SMB Attack Metasploit and Eternal Blue Kali Linux Win XP, 7, 8 and 10
Privilege Escalation Metasploit, Eternal Blue, GetSystem , Mimikatz and Armitage Kali Linux Win 7, 8 and 10

Brute Force Hydra Kali Linux Win 7, Win 8 and Win 10
Reconnaissance NMAP, Netcat, Enum4Linux Kali Linux Win XP, 7, Win 8 and Win 10
Infiltration Metasploit, Metsvc Kali Linux Win XP, 7, Win 8 and Win 10

Table 7.7: Attack Labels and Tools

Figure 7.12: IoC Feature Description - Experiment II

7.8 Threat hunting example with Windows

Events

Windows event ids play a vital role in threat hunting and help threat hunters

to link together events that happened to determine whether a cyberattack
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has taken place on their systems. This section discusses how Windows events

IoCs could be collected from the target machines and demonstrate how these

could lead us to the attack that may have remained undetected by other

network security monitoring tools. In this example, we used a simple SMB

attack to demonstrate the concept.

In the example, we assume the system has been exploited through SMB

vulnerabilities on the target Windows systems. Attackers perform further

activities once the systems are compromised, and these include privileges

escalation and lateral movement. Here we explain possible Windows event ids

that are triggered when such actions are executed and group them according

to the actions performed by the attackers. We also perform some typical

post exploitation steps performed on target machines and explain the various

event ids that are triggered and link them to build possible attacks that may

have taken place.

1. Target machines exploited through SMB vulnerabilities.

2. Gain access to the remote target systems

3. Perform privilege escalations

4. Perform interactive remote desktop connection to the target machines

5. Stop the firewall services

6. Re-enable and reset the password for an existing user

7. Perform lateral movements

8. Create scheduled tasks to install backdoor malware
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9. Move files from the target machine (data filtration)

10. Clear security audit logs

11. Logs out from the session

In this example, we look at the Windows events IDs relating to this kind

of attack and subsequent steps directed at the target systems. Fig. 7.13

shows the steps involved, and the relevant Windows IDs generated to piece

the attack together. The process starts with an SMB attack that targets SMB

vulnerabilities on Windows systems. SMB is a trusted protocol that enables

computers to communicate, making it a popular target for cyber attackers.

Once the target system is compromised, the attackers perform various actions

that led to the remote host’s Windows Event IDs. In this scenario, a user

account was added to the remote hosts that generated Windows event IDs

4704, 4672, and 4722. On their own, each of the individual events might

be harmless. However, when you are investigating incidents and notice an

account that was just created and then assigned a special privilege as per

event ID 4672, further checks such as the login id and details of the remote

system used to create should be performed. Cyber attackers will often do this

step in order to access restricted sources. Next, an existing account on the

target system was re-enabled, and the password reset. These actions generate

Windows event Ids 4722, 4738 and 4724. These actions demonstrated that an

account was enabled and changes made to it. Cyber attackers usually prefer

to use existing accounts instead of creating a new one which can generate

some noise on the monitoring tools or picked through audits and new account

request management process. In this case, it will also be good to link all these
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event ids IoCs and see whether there is a possibility of a breach.

In the next step, a privilege escalation was performed to control these

systems and perform lateral movement during the later stages. Commands

such as getsystem can be used to gain system-level access during the privi-

lege escalation, and many other tools are available for privilege escalations.

Further actions such as creating accounts, giving them administrative access,

and then logging with these credentials can be performed with privileged ac-

cess. Regular user accounts have limitations on what the cyber attacker can

do, hence why privilege escalation is necessary. In this scenario, the attackers

then stopped the firewall service, which is not an action usually performed

by standard users, and this action triggers Windows event id 5025. The per-

son who stopped the firewall services must have administrative access, which

demonstrates the attacker has already gained elevated privileges, and it is

worth investigating it further. Although it is rare for attackers to perform a

remote desktop connection to the victim machines, it is a possibility that was

considered in this scenario. Initially, they might get a connection error that

triggered Widow event id 4825, followed by re-enabling the remote desktop

service and successfully log in, which generated event Id 4625. Again, most

organisations will disable remote desktop by default due to the various vul-

nerabilities associated with it, and event id 4825 combined with a successful

login (event id 4625) should trigger some investigations. A lateral movement

can then be performed using tools such as Mimikatz and then run some pro-

grams which can trigger Window event ID 4688 and 4656. The event 4688 is

generated when a new process is started and shows who started, the process

path and what actions were taken. A scheduled task was then created to run
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a program on the target machines, which triggers Windows event ids 4698,

602 and 4688. Attackers can use scheduled tasks to deployed malware on

the target machine, and scheduled tasks need to be monitored. Finally, an

attempt was made to delete the audit logs, which triggers event id 1102 and

517. This an anti-forensic action performed by skilled cybercriminals to hide

their tracks.
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Figure 7.13: Windows Event-ID Based Scenario
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7.8.1 Scenario Summary

This section demonstrates the concept of using Windows event ids IoCs to

build the attacker’s action to compromise systems and determine the various

steps involved. There are manyWindows event logs, and piecing this together

is not an easy task. Most of the event ids are harmless on their own but can

be used to build a picture of the attack once the various events are combined.

There are always some chances of false positives, and it is always a good idea

to crosscheck the Windows events with alerts from other monitoring tools if

they exist to ensure the events are malicious.

7.9 Analysis and Discussion - Experiment II

In this second experiment, we expanded on the first experiment to improve

our work. We added two other attack labels to the dataset, namely recon-

naissance and infiltration, making seven labels as shown in Fig. 7.6. The

distribution of the attack is in Fig. 7.11.

We increased the features and observations to make the data more repre-

sentative. We used four Windows machines and a Kali Linux attack system

in our experiment and then collected the data, including alerts, to prepare

the new machine learning dataset. In the dataset, we performed feature se-

lection to choose the best features for our model. The list of features selected

through InfoGain and GainRatio are in Table 7.4.

We then performed machine learning classification using Naive Bayes,

BayesNet, KNN, SVM and Random Forest. The result of the classification

using the Naive Bayes classifier is shown in Table 7.5. Looking at the results,
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we can see that the features from InfoGain performed better than those from

GainRatio using the Naive Bayes classifier. We used performance metrics

such as accuracy, precision, recall, f-measure and Mcc to evaluate our model’s

effectiveness. We obtained the best performance accuracy of 98.8%, which is

an improvement from the first experiment where we obtained an overall score

of 96.7% with the feature from GainRatio. Overall the features from InfoGain

performed better on all six metrics. Fig. 7.10 shows the top seven features

from InfoGain using the Naive Bayes classifier performed in experiment two.

We also demonstrated a scenario on threat hunting based on Windows event

ids and utilising SMB attacks, as shown in Section 7.8

7.10 Summary

This chapter demonstrated IoC’s role in threat hunting and how various

events can be used to reconstruct the attacker’s digital trail. In the first

experiment, we constructed a dataset that contained 29 features and 87 ob-

servations. Although we achieved good results from this work and achieved

an overall accuracy of 96.7% for our model, we decided to improve this work.

We created a new testbed and expanded on the machine learning dataset

features to 42 features and 215 observation, which removed the limitations

of the original dataset. We compared our model’s performance based on the

two experiments. The newer model from Experiment II produced a better

classification accuracy of 98.8% with features from InfoGain. We believe our

work, including the rigorous analysis of the results, will contribute to the

effective detection of IoCs and reduce data breaches by allowing system ad-

175



ministrators to implement proactive approaches to deal with IoC that may

be hidden or remained undetected in the system or network. In our future

work, we intend to expand on this work and create a large dataset consist-

ing of both indicator of compromise (IOC) and indicator of attacks (IOA)

to help improve detection of cyber breaches or prevent such attacks through

proactive approaches.
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Chapter 8

Conclusions and Future Work

8.1 Conclusion

Cybercriminals are using advanced techniques to bypass the security defences

and compromise secure networks. The availability of highly sophisticated tool

has enabled cybercriminals to execute attacks with ease. The motivation of

these attackers vary and range from financial gains, intellectual property

theft to espionage. We discussed several APT groups in section two that

were attributed to nation-state actors. However, there are also other groups

driven by criminal activities serving their interests. These criminal entities

include those driven by financial gains who sell and share stolen data on the

dark web and damage the reputations of the affected organisations. That is

one reason why there are substantial security investments to protect critical

systems and the data hold. There are also data protection regulations that

mandate the protection of confidential personal data, such as the EU General

Data Protection Regulations and the UK Data Protection Act 2018. These
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data breaches attract the regulators’ attention.

Despite all these efforts, cybercriminals are finding ways to go beyond the

security defences. Most of the current solutions are reactive and send alerts

to system administrators when anomalies are detected, but these alerts can

be overwhelming for the analyst and require triaging. There are also many

false positives and negatives generated by these systems, which can result

in important alerts being missed. Although some of these tools, such as

antivirus, intrusion detection systems and firewalls, detect cyber threats and

prevent cyber attacks, their performance against complex attacks such as

advanced persistent threats has not been consistent, given APT attacks take

on average 56 days to be detected [80]. It is in this backdrop that we are

aiming to propose a framework for security monitoring of network systems

that demonstrate the capability to detect cyber threats with minimal false

positives.

Our proposed framework consists of three key attacks detection compo-

nents, and systems administrators can create a module for each to detect

cyber threats. This framework is data-driven, and the focus is mainly on the

machine learning aspect. The first components is a machine learning model

for detecting sophisticated attacks such as APTs. In this model, we built

on the work by the APT dataset provider [5] and improve on the machine

learning aspect of their work. We used some of their APT stage detection

modules and proposed our modules as shown in Fig. 5.3. We reconstructed

the dataset, performed feature extraction and selection to improve the model

efficiency. We leveraged the Cyber Kill Chain (CKC) approach and mapped

the detection modules to the CKC stages. The CKC is a well-known indus-
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try informed model that describes the various phases of a cyber attack. We

set the threshold of a satisfactory outcome to be 84.9% for the prediction

accuracy based on the original APT dataset provider’s work. We achieved

91.1% in our work which was more than the threshold. This work was pub-

lished in a peer-reviewed journal [32]. To expand on the feature selection

techniques, I contributed to another paper that was also published in a peer-

reviewed Journal [216]. This paper was on ”Effective combining of feature

selection techniques for machine learning-enabled IoT intrusion detection”,

and most of my individual contribution was on the feature selection meth-

ods. We utilised feature extraction using deep learning techniques and then

performed feature selection using the wrapper method using three different

classifiers. We then combined the features, selected the top 20, and obtained

an overall detection accuracy of 99.5%. We hope our proposed model and

the Cyber Kill approach that was utilised will help detect APT attacks and

reduce the cost of data breaches. Furthermore, the feature selection and ex-

traction concept explained in the second paper can also be applied to APT

stage detection in the context of the Internet of Things (IoT).

The second component of the framework is cyber attack prediction using

machine learning-enabled feature forecasting. Given the sophistication of the

cyber attacks and the limitations of the reactive approaches, we proposed the

cyber attack prediction model, which can be used to detect cyber attacks and

provide a time window which system administrators can use to implement

proactive approaches to mitigate the predicted risks before the cybercriminal

exploit these vulnerabilities. Although time series forecasting has been used

widely in weather and stock prediction, it has not been widely explored to
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predict cyber events. Our prediction model will look at patterns of cyber

events to predict the cyber attacks. We utilised an open dataset from a

realistic secure network with various departments consisting of 450 machines

victim machines, including servers and 50 attack machines. The dataset

contained seven different attack types and benign traffic. We reconstructed

the dataset and created equal portions using time intervals. To evaluate this

model, we used performance metrics and obtained a top accuracy of 90.4%.

We also used the metric Mean Absolute Error (MAE) to evaluate the time

series data’s performance. The results showed that the forecasted features

from linear regression produced the best results with a low MAE compared

to the SMOreg features. We believe this prediction model will reduce cyber

breaches by predicting the attacks and allowing systems administrators time

to implement proactive approaches.

This framework’s third machine learning component is threat detection

using Indicators of Compromise(IoC). In this component, we created our

experiments and collected data to create the dataset. IoCs are artefacts

left behind following an attack, which can be used to build the attacker

picture. Several high profile attacks have been detected through IoC. The

security community are sharing IoC to help the mitigate risk associated with

these threats. There is limited dataset availability for host IoCs due to

fear of litigation which necessitated us to create our dataset. We created

two experiments related to IoC detection in hosts. In the first experiment,

we achieved an accuracy of 96.7%, and the work was submitted to a peer-

reviewed book chapter [149]. We followed this up with another experiment

for IoC detection to deal with the limitations of the first experiment. We
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expanded on the features, observation and attack labels and performed a

rigorous analysis of the results. In the second experiment, we achieved an

accuracy result of 98.8%.

Finally, we have the visualisation charts for decision-making. The charts

displays the results from the machine learning models, such as accuracy and

false alarm rates, which can assist with determining how well the security con-

trols are performing. The visualisation can be performed using third-party

tools such as Excel. Systems administrators can build detection modules for

each of these models and feed the results to the charts.

In the framework, we choose these three machine learning models, which

are (i) cyber attack detection, (ii) prediction using time series enabled feature

forecasting, (iii) IoC detections. There is a need for a solution that can

detect attacks, predict cyber events, and capture IoCs using the attackers’

artefacts and trails. We believe the framework we are proposing will capture

these three elements and reduce cyber breaches. Systems administrators

and decision-makers can use this framework to determine how well their

security controls are performing by looking at their detection accuracy based

on the models. Although time series based cyber event forecasting received

little attention from researchers, we believe our work will contribute to the

advancement of this domain in terms of cyberattack prediction. The IoC

element can be used to detect attacks missed by the security monitoring

tools. The IoCs that were detected can then be fed to the security monitoring

tool to detect similar attacks in the futures. In this work, we achieved high

accuracy results with minimal false alarm rate.
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8.2 Limitation of this research

In this research, four datasets were used, of which two were publicly available

open datasets and the others derived from our own experiments. The two

open datasets were selected based on their quality and alignment to the

research performed in this thesis and to help answer the research questions

and meet the objectives. Although these datasets were enough to fulfil our

requirement, there were some limitations. In the APT dataset, there were

only 8 features, 3676 observation and a label which meant the features were

limited. We overcame this challenge by performing feature extraction using

Multiple Factor Analysis (MFA). The CSE-CIC2018 IDS dataset was more

comprehensive and contained 79 features and large observations, but the time

window was very short, which meant that when we performed resampling

based on a 30-second interval, the number of observations was substantially

reduced, which resulted in our attack prediction window to be in hours due

to the dataset’s constraints. However, we believe this is a reasonable time

to take corrective measures given the evolving threat landscape. We plan to

expand on this work in our future work and increase the forecasting window

to between 1 to 7 days.

8.3 Future Work

In this research, we proposed a framework for the security monitoring of

networked systems. We leveraged machine learning to create our models,

which we believe will reduce cyber breaches through accurate detection and

prediction of cyber attacks. Through this research, we identified several areas
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of future research and these include:

• Applying our proposed APT detection in the context of the Internet

of Things (IoT.) Our proposed framework was more generic and could

be applied in various setups but these could be extended and applied

in the context of IoT. The proposed detection modules could particu-

larly be applied in the IoT environment to detect sophisticated threats

targetting IoT ecosystems. The threat from IoT devices will continue

to increase due to the sheer number of devices deployed across organi-

sations and their associated vulnerabilities.

• Correlating Indicator of compromise and indicators of attacks. Indi-

cators of compromise are forensic artefacts left behind by attackers,

while the indicators of attacks are malicious behaviours observed in

live production environments that could indicate an attack in progress.

Correlating these two indicators and how they can influence each other

is a possible area of future research.

• Expanding on the prediction windows to days and weeks. In this re-

search, our forecasted cyber events were in hours due to the dataset

constraints and expanding these forecasted cyber events to days and

weeks could be an option. Comparing the results and performance

from these time window could be an area of further research. Given

the rapidly changing threat landscape, we believe prediction in hours

is the best option, especially if the organisation in question has enough

resources. However, exploring the forecasted features in days and weeks

might also be feasible for other organisations, hence why we will follow
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this in our feature research. The challenge with longer prediction times

is the complexity of the data needed to make an informed decision

and the chances of the predicted attack materialising before corrective

actions can occur. This is due to the dynamic nature of the threat

landscape, making such predictions redundant, especially if they are

based on weeks and over.

• Build more comprehensive detection modules, including those from

other challenging attack types such as fileless malware. In this research,

we built on some existing detection modules and added our own pro-

posed modules to detect APT attacks. We believe expanding these

attack modules to include other sophisticated attacks such as fileless

malware and complex ransomware attacks will contribute to advances

in detecting the highly complex attacks that are difficult to detect. For

example, fileless malware is executed in memory and often embedded

in trusted applications such as PowerShell, making it difficult to be

detected by the security monitoring systems. This is an area we are

planning to explore in our future work.

• Expanding the IoC dataset. Currently, there are limited IoC datasets

relating to host systems, and organisations are not sharing these data

for fear of litigations. Creating a large dataset that brings together

both host and network IoCs and determining how they inform each

other could be an area of future research. We plan to explore this

further in our future work to build large networks to collect such data

from the hosts and network devices.
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[213] Hervé Abdi, Lynne J Williams, and Domininique Valentin. Multiple factor

analysis: principal component analysis for multitable and multiblock data

sets. Wiley Interdisciplinary reviews: computational statistics, 5(2):149–179,

2013.

[214] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P

Trevino, Jiliang Tang, and Huan Liu. Feature selection: A data perspec-

tive. ACM Computing Surveys (CSUR), 50(6):1–45, 2017.

[215] Seo Jin Lee, Paul D Yoo, A Taufiq Asyhari, Yoonchan Jhi, Lounis Chermak,

Chan Yeob Yeun, and Kamal Taha. Impact: Impersonation attack detection

via edge computing using deep autoencoder and feature abstraction. IEEE

Access, 8:65520–65529, 2020.

[216] Md Arafatur Rahman, A Taufiq Asyhari, Ong Wei Wen, Husnul Ajra, Yus-

suf Ahmed, and Farhat Anwar. Effective combining of feature selection

211



techniques for machine learning-enabled iot intrusion detection. Multimedia

Tools and Applications, pages 1–19, 2021.

[217] Radhika Chapaneri and Seema Shah. A comprehensive survey of machine

learning-based network intrusion detection. Smart Intelligent Computing

and Applications, pages 345–356, 2019.

[218] Nasrin Sultana, Naveen Chilamkurti, Wei Peng, and Rabei Alhadad. Survey

on sdn based network intrusion detection system using machine learning

approaches. Peer-to-Peer Networking and Applications, 12(2):493–501, 2019.

[219] Elike Hodo, Xavier Bellekens, Andrew Hamilton, Christos Tachtatzis, and

Robert Atkinson. Shallow and deep networks intrusion detection system: A

taxonomy and survey. arXiv preprint arXiv:1701.02145, 2017.

[220] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward

generating a new intrusion detection dataset and intrusion traffic character-

ization. In ICISSP, pages 108–116, 2018.

[221] Zafar A Khan and Dilan Jayaweera. Approach for forecasting smart customer

demand with significant energy demand variability. In 2018 1st International

Conference on Power, Energy and Smart Grid (ICPESG), pages 1–5. IEEE,

2018.

[222] Xiaoou Monica Zhang, Katarina Grolinger, Miriam AM Capretz, and Luke

Seewald. Forecasting residential energy consumption: Single household per-

spective. In 2018 17th IEEE International Conference on Machine Learning

and Applications (ICMLA), pages 110–117. IEEE, 2018.

212



[223] Eugene Yu Shchetinin. Cluster-based energy consumption forecasting in

smart grids. In International Conference on Distributed Computer and Com-

munication Networks, pages 445–456. Springer, 2018.

[224] Surbhi Vijh, Adesh Kumar Pandey, Garima Vijh, and Sumit Kumar. Stock

forecasting for time series data using convolutional neural network. In 2021

11th International Conference on Cloud Computing, Data Science & Engi-

neering (Confluence), pages 866–870. IEEE, 2021.

[225] R Geetha, K Ramyadevi, and M Balasubramanian. Prediction of domestic

power peak demand and consumption using supervised machine learning

with smart meter dataset. Multimedia Tools and Applications, pages 1–19,

2021.

[226] Kumar Abhishek, MP Singh, Saswata Ghosh, and Abhishek Anand. Weather

forecasting model using artificial neural network. Procedia Technology,

4:311–318, 2012.

[227] S Santhosh Baboo and I Kadar Shereef. An efficient weather forecasting sys-

tem using artificial neural network. International journal of environmental

science and development, 1(4):321, 2010.

[228] Tanzila Saba, Amjad Rehman, and Jarallah S AlGhamdi. Weather forecast-

ing based on hybrid neural model. Applied Water Science, 7(7):3869–3874,

2017.

[229] Dires Negash Fente and Dheeraj Kumar Singh. Weather forecasting using ar-

tificial neural network. In 2018 second international conference on inventive

communication and computational technologies (ICICCT), pages 1757–1761.

IEEE, 2018.

213



[230] Tianfeng Chai and Roland R Draxler. Root mean square error (rmse) or

mean absolute error (mae). Geoscientific Model Development Discussions,

7(1):1525–1534, 2014.

[231] Felix A Gers, Douglas Eck, and Jürgen Schmidhuber. Applying lstm to time

series predictable through time-window approaches. In Neural Nets WIRN

Vietri-01, pages 193–200. Springer, 2002.

[232] Arul Earnest, Mark I Chen, Donald Ng, and Leo Yee Sin. Using autore-

gressive integrated moving average (arima) models to predict and monitor

the number of beds occupied during a sars outbreak in a tertiary hospital in

singapore. BMC Health Services Research, 5(1):1–8, 2005.

[233] November 2021.

[234] Microsoft. Events to monitor, July 2018.

214


