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ABSTRACT Electrostatics plays a key role in many biological processes. The Poisson-Boltzmann equation (PBE) and its
linearized form (LPBE) allow prediction of electrostatic effects for biomolecular systems. The discrepancies between the
solutions of the PBE and those of the LPBE are well known for systems with a simple geometry, but much less for
biomolecular systems. Results for high charge density systems show that there are limitations to the applicability of the LPBE
at low ionic strength and, to a lesser extent, at higher ionic strength. For systems with a simple geometry, the onset of
nonlinear effects has been shown to be governed by the ratio of the electric field over the Debye screening constant. This ratio
is used in the present work to correct the LPBE results to reproduce fairly accurately those obtained from the PBE for systems
with a simple geometry. Since the correction does not involve any geometrical parameter, it can be easily applied to real
biomolecular systems. The error on the potential for the LPBE (compared to the PBE) spans few kT/q for the systems studied
here and is greatly reduced by the correction. This allows for a more accurate evaluation of the electrostatic free energy of
the systems.

INTRODUCTION

Electrostatics plays a key role in biological processes
(Honig and Nicholls, 1995; Davis and McCammon, 1990;
Davis et al., 1991). The binding of small electrolytes to a
biomolecule in solution is kinetically driven by the electro-
static field generated by the molecule and is highly corre-
lated with the electrostatic potential at the surface of the
molecule. In many cases the nonobvious dependence of the
kinetic constants of association between an enzyme and a
substrate on the solution ionic conditions or kinetic path-
ways could be elucidated by analysis of the electrostatic
fields in solution (Gilson et al., 1994; Sharp et al., 1987).
Inspection of many molecular complexes has shown a high
degree of complementarity in the electrostatic properties of
the contacting surfaces (Honig and Nicholls, 1995). The
electrostatic properties of biomolecular systems are influ-
enced by pH and ionic conditions. The extent to which a
group is ionized depends on the electrostatic potential gen-
erated at that site by the molecule (e.g., Antosiewicz et al.,
1994). The ionization state of a biomolecule is in turn
crucial for its function and stability.

The methods that have been used to simulate electrostat-
ics in biological systems may be broadly classified into
those which simulate explicitly all molecules of the system,
including salts and solvent, which are by far the more
demanding, and those which simulate the solvent and salts
through a continuum model. Among the latter, the Poisson-
Boltzmann equation (PBE) has been widely and success-

fully used. In recent years refined theoretical and numerical
tools have been developed to apply the PBE to biomolecular
systems (Gilson et al., 1987; Sharp and Honig, 1990; Zhou,
1994; Madura et al., 1995) and a large number of results
have been achieved (Madura et al., 1994; Honig and Ni-
cholls, 1995).

The reliability of the PBE has been tested for a few
models and real systems by means of more sophisticated
methods, such as Monte Carlo or hypernetted chain simu-
lations (Fixman, 1979; Murthy et al., 1985, Jayaram and
Beveridge, 1996).

The Poisson-Boltzmann equation was first put forward
more than 80 years ago by Gouy (1910) and few years later
by Chapman (1913). The equation was obtained either by
equating to zero the forces acting on a microscopic volume
of the ionic solution (Gouy, 1910) or by equating the
chemical potential throughout the solution (Chapman,
1913). The same approaches have been followed by other
researchers in the field of colloid chemistry (Derjaguin and
Landau, 1941; Verwey and Overbeek, 1948) and electro-
capillarity (Grahame, 1947).

Except for the simple planar geometry in the presence of
symmetrical electrolytes (Gouy, 1910; Chapman, 1913) and
the cylindrical geometry in the absence of added salt (Alfrey
et al., 1951; Lifson and Katchalsky, 1954; Katchalsky,
1971), no analytical solution is available. Debye and Hu¨ckel
(1923), who developed the PBE aiming at explicit calcula-
tion of the free energy for an ionic system, noticed that
under usual experimental conditions the equation can be
linearized to a good degree of accuracy for the computation
of various thermodynamic quantities.

Although a number of software packages allow for the
solution of the nonlinear PBE (Gilson et al., 1987; Madura
et al., 1995), it is often mandatory to employ the linear
approximation to reduce computation time. Depending on
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the system, the solution of the nonlinear PBE takes usually
more than twice the time needed to solve its linear version.
Moreover, since the electrostatic potential in the linear PBE
(LPBE) is the superposition of the electrostatic potentials of
each partial charge on the molecule, for all those applica-
tions where a charge is modified without altering the mo-
lecular shape (like in idealized protonation or deprotonation
of an ionizable group), additional computing time is saved
(Antosiewicz et al., 1994).

There are at least four major applications of the PBE and
its linear form:

(1) calculation of the electrostatic potential at the surface of
a biomolecule, which is expected to give information
about the concentration of small charged solutes in the
neighborhood of the molecule and whose inspection
may suggest docking sites for biomolecules;

(2) calculation of the electrostatic potential outside the mol-
ecule, which is expected to give information on the free
energy of interaction of small molecules at different
positions in the surrounding of the molecule. The elec-
trostatic field is therefore used in Brownian dynamics
simulations employing the so-called test charge approx-
imation;

(3) calculation of the free energy of a biomolecule or of
different states of a biomolecule which gives informa-
tion on the stability of a biomolecule or of its different
states (Sharp and Honig, 1990); and

(4) calculation of the electrostatic field to derive mean
forces to be added in standard molecular dynamics
calculations (Gilson et al., 1993).

It is of interest, therefore, to investigate the limits of
applicability of the LPBE for biomolecular systems and for
these applications.

In the present study we address some of these issues, in
particular:

(1) How accurate are the potentials derived via the LPBE
for typical biomolecular systems?

(2) Is it possible to correct the biomolecular potential maps
obtained via the LPBE in order to reproduce more
faithfully the PBE results?

(3) How accurate is the free energy computed in the linear
approximation?

(4) Is it possible to employ the LPBE potential to reach a
better approximation of the PBE free energy?

We first compare the results obtained from the LPBE and
PBE for systems with a simple geometry (i.e. the plane, the
cylinder, and the sphere). Because the PBE for these shapes
is characterized by a parameter (Gueron and Weisbuch,
1980) (m 5 0, 1, 2 for the plane, the cylinder, and the
sphere, respectively) we can heuristically set this parameter
to intermediate values which could represent behaviors in
intermediate cases.

Then we examine some biological systems and see how
well the considerations for the simple shapes translate to
these highly asymmetrical systems.

THEORY

The PBE

In the Poisson-Boltzmann approach the macromolecule is
treated as a low dielectric cavity with embedded atomic
partial charges. The dielectric constant of the cavity is
typically set between 2 and 4 to take into account electronic
polarization and the limited flexibility of the macromolecule
(Sharp et al., 1992; Gilson and Honig, 1986). The effects of
the solvent molecules, whose motions are much faster than
those of the molecule and the ions, are taken into account on
average through a continuum of high dielectric constant
(McCammon and Harvey, 1987).

The average electrostatic potential (U# ) is determined by
the charge density embedded in the molecule (rf) and by the
average charge density due to the mobile ionsr#m, via the
Poisson equation:

¹Y z ~e¹Y U# ! 5 24pr#m 2 4prf (1)

wheree is the position-dependent dielectric constant and all
terms are expressed in centimeter gram second-electrostatic
units. The charge densityr#m can be expressed in terms of
the bulk concentrations and a potential of mean force:

r#m 5 O
i

ci
`ziq expS2wi

kT D (2)

whereci
` is the concentration of ioni at an infinite distance

from the molecule (or at any reference position where the
potential of mean forcewi is set to zero),zi is its charge
number,q is the proton charge,k is the Boltzmann constant
andT is the temperature.

The key assumptions to obtain the PBE are that the
potentials of mean force are given bywi 5 ziqU and thatU
is equal to the average electrostatic potentialU# :

¹Y z ~e¹Y U! 5 24p O
i

ci
`ziq expS2ziqU

kT D 2 4prf (3)

When the term (ziqU/kT) ,, 1 the exponential can be
expanded in a Taylor series, retaining only the first two
terms. Due to electroneutrality,(ici

`ziq 5 0, the LPBE is
obtained:

¹Y z ~e¹Y U! 5 SO
i

4pci
`

zi
2q2

kTDU 2 4prf (4)

The most serious inconsistency of the PBE (Eq. 3) stems
from the lack of reciprocity, i.e., different distributions are
obtained for an ion pair by switching the definition of the
central ion (Onsager, 1933; Fowler and Guggenheim,
1939). For some time this was regarded as an issue in favor
of linearization.

Electrostatic free energy from the PBE

The electrostatic free energy for the hypothetical process of
charging a sphere, organizing and charging the ionic atmo-
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sphere was earlier calculated according to the adiabate
principle (Onsager, 1933; Verwey and Overbeek, 1948)
where the free energy is obtained from the charging integral:

DGel 5 E
0

t

qU~t9!dt9 (5)

wheretq is the final charge on the sphere.
Another expression for the free energy of the process of

charging the system, put forward by Marcus (1955), em-
ploys standard expressions for the chemical potential of
solute molecules and is closely related to the expression we
give below.

Sharp and Honig (1990) and, independently, Reiner and
Radke (1990) derived the electrostatic free energy from a
variational principle. They considered the PBE and built the
Euler-Lagrange functional, which is extremized by the so-
lution of the PBE. With an appropriate choice of multipli-
cative and additive constants, this functional could easily be
interpreted as the free energy of the system.

The expression for the free energy is

DGel 5E
V

SkTO
i

ci
`F1 2 expS2ziqU

kT DG1 rfU 2
e~¹YU!2

8p DdV

(6)

though other forms, not involving derivatives of the poten-
tial, may be derived by exploiting the basic relationships
*V(e(¹Y U)2/8p)dV 5 *V(rU/2)dV and ci 5 ci

` exp(2ziqU/
kT) (Sharp and Honig, 1990).

The derivation faces several problems, however, includ-
ing the paradoxical observation that the functional is not
minimized but maximized. Nevertheless, it is possible to
show that a proper free energy functional, defined by com-
bining standard thermodynamics and the usual Poisson-
Boltzmann approximations, is minimized by the ionic dis-
tribution obtained via the PBE (Fogolari and Briggs, 1997).
Zhou (1994) showed that the free energy given by Eq. 6
may be alternatively obtained by a standard charging pro-
cess (Eq. 5), and that the free energy is independent of the
charging pathway.

For practical reasons we may rewrite the electrostatic free
energy in terms of different contributions due to the elec-
trostatic energy obtained by integratingrU/2 over two re-
gions entailing the fixed (DGef) and mobile charges (DGem),
and the entropic (for a discussion of the entropy in electro-
static systems see Sharp, 1995) free energy of mixing of
mobile species (DGmob) and solvent (DGsolv),

DGel 5 DGef 1 DGem 1 DGmob 1 DGsolv (7)

where the different contributions read:

DGef 5 E
V

rfU

2
dV (8)

DGem 5 E
V

Oi ciziqU

2
dV (9)

DGmob 5 kTE
V

O
i

ciln
ci

ci
` dV (10)

DGsolv 5 kTE
V

O
i

ci
`F1 2 expS2ziqU

kT DGdV (11)

The latter three terms may be further grouped into a
single term to indicate the outer space contribution to the
free energy density integral:

DGout 5 DGem 1 DGmob 1 DGsolv (12)

This decomposition of the free energy does not corre-
spond to any thermodynamic pathway but, in fact, it is
closely related to the way software packages compute the
electrostatic free energy. Misra et al. (1994) considered a
thermodynamic pathway for charging the molecule and
organizing and charging the ionic atmosphere that allows
identification of the non-salt-dependent contribution to the
free energy of the system (DGns), the contribution arising
from the ionic atmosphere interaction with the molecule
(DGim), the contribution from the ion-ion interactions
(DGii ), and the contribution from the entropy cost of orga-
nizing the ionic atmosphere around the solute (DGorg).

The relationship of such a decomposition with the one
given above (Eq. 7) is straightforward and is reported in
Fogolari et al. (1997).

In the LPBE approach the only term contributing elec-
trostatic free energy isDGef (Sharp and Honig, 1990) up to
the order of the linear approximation, though some simple
corrections may be devised, as we discuss below.

Applications of the LPBE to
biomolecular systems

It is generally recognized that when (qU/kT) ,, 1 the PBE
can be approximated by the LPBE which results from the
approximation sinh(qU/kT) ' qU/kT. But it is common
experience, at least in biomolecular simulations, that the
solution of the LPBE is close to the solution of the PBE
even whenqU/kT at the molecular surface is in the range of
1 to 2, although in such cases the hyperbolic sine is 20% to
80% larger than the corresponding linear approximation.
For higher potentials, even when the potential is several
kT/q, the solutions of the LPBE and the PBE are not as
dramatically distant as sinh(qU/kT) andqU/kT are.

The LPBE solution is usually larger than the PBE one.
For centrosymmetrical ions in symmetrical solutions Gron-
wall, La Mer, and Sandved (1928) have given a series
correction to the solution of the LPBE, but such rather
involved expansion is of little use when dealing with
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irregularly shaped molecules possessing uneven charge
distributions.

Before approaching complex biomolecular systems we
consider systems with a simple geometry, which can be
highly idealized models for proteins, nucleic acids, and
membranes. For these systems we find a general correction
rule that brings the LPBE potential close to the PBE poten-
tial at the surface. We also define some simple rules to
derive free energies from the solution of the LPBE, which
include contributions to the free energy integral from the
outer volume of the molecule.

Systems with a simple geometry

The PBE and LPBE have been numerically solved and
compared for systems with a simple geometry (SSG) where
the corresponding equations are dependent on either one or
two variables, depending on the symmetry of the system.
Much attention has been given to planar, cylindrical, and
spherical shapes (Gueron and Weisbuch, 1980; Stigter
1978) and, more recently, to spheroidal geometries (Yoon
and Kim, 1989; Hsu and Liu, 1996a,b).

Usually the equations are solved for simple boundary
conditions, like constant surface charge or potential, or for
a mix of these. This is an excellent approximation in the
fields of colloid chemistry, where the surface charge is often
controlled via ionizable groups sensitive to changes in pH,
or electrocapillarity, where the electrode potential is exter-
nally controlled. However, it is bound to give only a very
rough picture of biomolecules.

Moreover, SSG are very rough representations of real
biomolecules. For instance the cylindrical model does an
excellent job for regular biopolymers like DNA, but it is
very difficult to model proteins with spheres or ellipsoids of
constant charge. A more sophisticated approach was pro-
posed by Kirkwood (1934), but still it appears too simplistic
to represent real biomolecules. Nevertheless, SSG may be
easily and extensively studied and conclusions reached
about these systems may apply to complex systems. For
these reasons SSG have received much attention in the past
as model systems.

The relevant equations and definitions for SSG are re-
ported in Appendix A. It is apparent that the solution of the
PBE and all the derived thermodynamic quantities depend
on the boundary conditions which may be imposed through
the reduced electric fieldf9(x0) at the surface position
expressed in Debye lengths. These are in turn determined by
the interplay of three relevant length scales: the radius of
curvature, the Debye length, and the electric field scale
length, defined in Appendix B. Previous results obtained on
SSG, summarized in Appendix B, showed similarities be-
tween the behavior of the PBE solution for systems with
different geometry and showed that for all systems the ratio
lD/Q appears critical for the applicability of the lineariza-
tion. Rather than studying the solution of the PBE, which
depends on the shape and on the radius of curvature, we

reasoned that the relationship between the solutions of the
LPBE and the PBE should depend, in addition to the abso-
lute values they can take, on the parameterlD/Q itself. In
particular they should be coincident when (lD/Q) .. 1,
whereas for (lD/Q) ,, 1 we havefPBE ' 2 ln(ufPBE/
xx0

u). Therefore we searched for a correction to be applied
to the solution of the LPBE which depends only on the ratio
lD/Q, to recover the PBE solution. For its simple connec-
tion with the boundary conditions we rewritelD/Q in re-
duced units: (lD/Q) 5 (2/f9(x0)), where the derivative is
taken with respect tor/lD.

MATERIALS AND METHODS

Calculation protocols

For SSG the one-variable PBE and LPBE were solved numerically using
an adaptive Runge-Kutta fourth-order algorithm (Press et al., 1990). Ten-
tative values were put forward for the value of the potential at the surface
and the behavior of the potential or its derivative at$5 Debye lengths from
the surface was checked. The guess value for the surface potential was reset
until the reduced potential and its derivative were,0.005 at 5 Debye
lengths. All thermodynamic quantities were then obtained using the dis-
cretized analogs of the equations reported in the theory section.

All biomolecular simulations were performed with the software package
UHBD (Madura et al., 1995) using standard procedures. The calculations
employed a grid of 1103 110 3 110 points with a grid mesh of 1.37 Å
and one focusing step for a final grid mesh of 0.51 Å. In all calculations the
dielectric constants of the solvent and solute molecules were 78 and 4,
respectively. The radius of the ions was 2.0 Å and the solvent probe radius
was 1.4 Å.

For the test of the electrostatic potential inside the molecule we used a
grid of 1103 1103 110 points with a grid mesh of 1.0 Å in order to have
all surface points inside the grid.

We have run a few tests on different conformers of amino acids in
model dipeptide and tripeptide compounds studied by Fogolari et al. (1998)
and on some anthracycline drugs studied by Baginski et al. (1997). In all
these cases, studied at 150 mM ionic strength, the LPBE and the PBE gave
virtually identical results.

We have chosen the following systems as test cases: a complex between
the Antennapedia homeodomain with Cys 39 substituted by a serine (Antp
C39S HD) (Billeter et al., 1993) and a stretch of 31 base pairs of DNA as
a highly charged system with positive and negative regions of irregular
shape (for details on the construction of the molecular model see Fogolari
et al. (1997)), the isolated homeodomain which possesses an extended arm
with positively charged residues as a highly positively charged mainly
globular but irregularly shaped system, the isolated DNA as a highly
charged cylindrical system and monomeric bovineb-lactoglobulin at pH 2,
as a highly charged overall globular system. For the last system the most
probable protonation state was obtained following the protocol of An-
tosiewicz et al. (1994) applied on the structure of the monomeric unit A,
recently obtained by Sawyer and coworkers (Brownlow et al., 1996), but
using the partial charges taken from the forcefield CHARMM (version 22)
(Brooks et al., 1983). For this protein the presence of a stable core in the
monomer with most native connectivities at pH 2 was established by
Ragona et al. (1997) via NMR spectroscopy. Because in the most probable
protonation state only few carboxylic groups are still deprotonated making
the overall net charge positive and very high, we have decided to keep all
the ionizable sites protonated, since in the present context this theoretical
model is chosen only for the purpose of comparing the LPBE and PBE
solutions.

Optimized parameters for liquid simulation charges and atomic radii
(Jorgensen and Tirado-Rives, 1988, Pranata et al., 1991) were employed in
the calculations on the homeodomain-DNA complex, and isolated DNA
and homeodomain, while forb-lactoglobulin the set of CHARMM charges
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and radii was used (Brooks et al., 1983). The temperature was set to 300
K. The net charge of the molecules is247 for the homeodomain-DNA
complex,262 for the DNA, 15 for the homeodomain and 21 forb-lacto-
globulin. b-lactoglobulin (2580 atoms) and homeodomain (790 atoms)
have a radius of;25 Å, while DNA (2754 atoms) is approximately a
cylinder with radius 10 Å and length 100 Å. Thermodynamic quantities
were computed from the output accessibility and potential maps. Surface
points were obtained as the interfacial points in the solvent.

Computation times

Typically, 3800 to 6200 s were required by UHBD on a Silicon Graphics,
Inc. (Mountain View, CA) O2, R5000, 180 MHz computer with 128
Mbytes RAM to solve the larger and focused grid. Corresponding times for
the LPBE ranged from 1800–2600 s. Generating the corrected potential
grid map and extracting thermodynamic quantities from the map takes
,120 s, so that the correction procedure is negligible on the overall
computation time. The generation of the potential inside the molecule,
tested only forb-lactoglobulin (2580 atoms and 6328 interfacial points)
takes ;200 s, but this time could be greatly optimized by properly
selecting the interfacial points and possibly by choosing faster ways to
solve Laplace’s equation with Dirichlet boundary conditions.

RESULTS AND DISCUSSION

SSG

We have solved numerically the PBE and LPBE for a large
number of boundary conditions and for different values ofm
(0, 0.4, 0.5, 0.8, 1.0, 1.2, 1.5, 1.6, and 2.0). Although
noninteger values ofm do not have a general physical
counterpart, we expect these to represent intermediate cases
between the three limiting simple shapes.

Surface electrostatic potentials

The plots of the solution of the PBE versus that of the LPBE
at the surface (Fig. 1) for different values ofm and x0

(ranging from 0.1 to 2.5, corresponding tor0 in the range
0.5 to 12.5 Å at;350 mM ionic strength) lie on smooth
curves that depend only on the value of (f/x)ux0

. This fact
legitimates the hope of finding a correction to the LPBE
which depends only on the electric field at the surface, a
value which may be readily estimated for biomolecules
from the solution of the LPBE itself.

We notice further that the LPBE potential at the surface
is always overestimated with respect to the PBE. In the
range examined, the surface LPBE potential may be up to
almost 5 times larger than the PBE potential. As expected,
for low values of the PBE potential, the LPBE and the PBE
give the same result. For large values of the PBE potential
at the surface this is determined only by (f/x)ux0

(ranging
here from21.0 to 240.0). In particular this may be ratio-
nalized by considering that in such cases the electric field is
very strong and under its scaling length all geometries
resemble the planar geometry, for which the potential is
related in a simple fashion to the electric field:

fPBE < 2 lnSUf

x
U

x0

UD (13)

We have chosen the following function which preserves
the theoretical asymptotic behavior of the surface potential
from the LPBE versus that from the PBE, to fit the curves
reported in Fig. 1:

f# PBE 5 ASf

x
U

x0
D z tanhS fLPBE

ASf

x
U

x0
D D (14)

where f# PBE indicates the estimate for the correct (PBE)
potential and

ASf

x
U

x0
D ~A~u! 5 23.0371 0.1940u 1 0.00227u2!

has been built as a quadratic function whose coefficients
have been determined from direct fit of the best fit values of

ASf

x
U

x0
D

corresponding to different values of (f/x)ux0
.

The wide range of applicability of the above correction is
apparent. Note that in Fig. 1 the value offLPBEx0

varies
over a very large range and that the value of (f/x)ux0

varies from21.0 to240.0).

Electrostatic potentials outside the model molecules

We have applied the same correction to the potential using
the local values off/x at varying distances from the

FIGURE 1 fo 5 fx0
obtained from the PBE versusfo 5 fx0

obtained
from LPBE for various values of the shape parametersm andx0. The data
computed for each value of (f/fx)ux0

and different values ofm and x0

group along curves which have been described by Eq. 14:

f# PBE5 ASf

x
U

x0
D z tanhS fLPBE

ASf

x
U

x0
DD

wheref# PBE indicates the estimate for the correct (PBE) potential and the
function A((f/x)x0

) has the following form: A(u) 5 23.037 1
0.1940u 1 0.00227u2. The coefficients in the latter equation have been
determined by best fit of all points in the plot.
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surface (Fig. 2). Although the correction brings the LPBE
solution closer to the PBE curve, the two are still too distant
for the approximation to be useful away from the surface (at
least in a rather extreme case like the one reported in Fig. 2).
The main reason for this is that the decay of the LPBE
potential is far too slow compared to that of the PBE
potential. Obviously, although at the surface the boundary
condition is the same for both equations and therefore the
derivative of the LPBE potential used for correction is the
same as that for the PBE, away from the surface we must
use the derivative from the LPBE, which is significantly
larger than the derivative from the PBE (Fig. 2). This partly
compensates for the slower decay.

Another alternative to obtaining the potential from the
LPBE would be to consider an effective potential, as de-
scribed below, which, substituted in the nonlinearized PBE,
reproduces the ionic charge density of the LPBE. The re-
sults (shown in Fig. 2 for a highly charged system) are less
satisfactory than those obtained with our correcting formula
(Eq. 14).

Free energies

The value of the potential at the surface is sufficient to
compute the free energy of SSG in the LPBE approach.

Indeed, for the LPBE the only free energy term would be
(DGef/kT) 5 (f(x0)/2). For the PBE this term would be
accurate up to the order of the integral of (2f(x0)

4/4!) over
the outer space of the molecule. A comparison of the
estimated free energy per unit charge obtained from the
LPBE and the PBE is reported in Fig. 3. For values.1 kT
(which corresponds to a reduced potential at the surface
equal to 2.0) the LPBE overestimates the free energy. Al-
though the term (DGef/kT) 5 (f(x0)/2) may constitute the
most relevant contribution to the PBE free energy, this is not
necessarily close to that estimated via the LPBE. So there

are two main sources of errors in approximating the PBE
free energy with the LPBE free energy: consistent overes-
timation of the potential at the surface and neglect of the
contribution to the free energy density integral from the
outer space, which is smaller and positive. The two effects
partly compensate for each other.

For the studied SSG we have estimated the different
contributions to the free energy integral from the surface
charges and the outer space to the free energy per unit
charge on the surface. It is seen from Fig. 4 that for a global
free energy up to 1.0kT per unit charge on the surface, the
free energy from the outer space is negligible. This is also
roughly the range of applicability of the LPBE and therefore
also the range through which the free energy estimates
obtained via the LPBE and the PBE are close.

Even in this range it should be remembered that theLPBE
and PBE differ enough to prevent any attempt to substitute the
LPBE solution in the equation for the PBE free energy, be-
cause even small differences are magnified by the hyperbolic
functions. Somewhat better (but still approximate) results are
obtained when considering that the mobile charge density in

FIGURE 2 f and f/x plotted as a function of the reduced distance
from the center of a charged cylinder (m 5 1.0,x0 5 0.5, and (f/x)ux0

5
220.0) for the PBE (solid lines) and LPBE (dotted lines). The LPBE
potential, corrected according to the local LPBE electric field, is shown
(dashed line). The plot of the “effective” LPBE potential and of its
derivative is also shown (long dashed lines).

FIGURE 3 DGel/kT from the PBE versusDGef/kT from the LPBE.

FIGURE 4 DGef/kT (circles) andDGout/kT (squares) contribution to the
electrostatic free energy versus the electrostatic free energyDGel/kT from
the PBE.
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the LPBE is given by(ici
`(zi

2q2ULPBE/kT). We can define an
effective potentialŨ such that

O
i

ci
`ziq expS2ziqŨ

kT D 5 O
i

ci
`
zi

2q2ULPBE

kT
(15)

The behavior of the effective potential for a high surface
potential is shown in Fig. 2. For lower potentials this would
be closer to the PBE potential. Employing the effective
potential in the PBE expressions for the free energy (DGout 5
DGem 1 DGmob 1 DGsolv) leads to reasonable estimates for
the termDGout for small values of the free energy (Fig. 5).
For high potentials the use of an effective potential brings
the termDGout into the same range as the corresponding
PBE one, although the latter is much smaller. We have also
computed the termDGout using the corrected LPBE poten-
tial and similar considerations apply. For those systems
whereDGout per unit charge on the surface is lower than,
say, 0.5kT, the estimates forDGout, obtained via either the
effective or the corrected LPBE potential, are not dramati-
cally distant from the PBE values. Although the values of
DGout span for the studied systems a range of approximately
2.0kT per unit charge on the surface, in usual biomolecular
systems this contribution to the free energy integral will be
much lower. Indeed, we have chosen the set of boundary
conditions in order to represent also possibly intense local
electric fields. Rarely, however, will these conditions apply
to the whole surface.

In summary, for the SSG studied it is seen that both the
potentials and the free energies estimated using the LPBE
are accurate up to values of the electrostatic potential at the
surface of 2(kT/q). A simple electric field-dependent cor-
rection at the surface reproduces with high accuracy the
PBE electrostatic potential at the surface. The free energy
estimates obtained via the LPBE, taking into account the
contribution to the free energy integral from the outer space

in a reasonable fashion, are accurate up to few tenths ofkT
per unit charge, up to reduced surface potentials of 2 to 3.

Biomolecular systems

Next we discuss the limits of applicability of the LPBE for
a few systems of biological interest that may be represen-
tative of a diversity of shapes and that correspond to high
charge densities. For low-charge systems the LPBE is usu-
ally in striking agreement with the PBE.

As for the SSG we discuss separately three areas where
we can extend and put to use the results obtained for the
SSG models: first, calculation of the electrostatic potential
at the surface of the molecule; second, calculation of the
electrostatic potential outside the molecule; and third, cal-
culation of the free energies of the system. In addition we
discuss the correction of the electrostatic potential inside the
molecule.

Most of the results are illustrated for the homeodomain-
DNA complex (Fig. 6), the most irregular of the systems
studied in terms of shape and charge density. Results for the
other systems are summarized in few figures and in one
table. Physiological (145 mM) and low (14.5 mM) ionic
strengths have been considered. The agreement between the
LPBE and PBE increases with increasing ionic strength
(i.e., with better screening of the potential).

Surface electrostatic potentials

Discrepancies between the LPBE and the PBE at the solvent
accessible surface for highly charged systems are usually as
large as severalkT/q at low ionic strengths, as can be seen
from Fig. 1. In the studied cases the error from linearization
is larger where the potential is larger, as expected, because
this is exactly the condition in which the LPBE and the PBE
differ. However, note that the linearized equation also does
not reproduce in general the PBE potential in those regions
where the linearization can be safely applied. This point will
be discussed in the next section.

We have applied the correction formula (Eq. 14) at the
surface of the biomolecule. The accessibility map was first
obtained using the UHBD program and then the boundary
points on the grid between the low dielectric cavity and the
solvent were selected. For these points the electric field was
obtained using finite differences between the potentials in
the neighboring points. Finally the reduced electric field
was employed in the correction formula. Unlike the SSG
considered above, the electric field determined in this way
for the LPBE is not the same as for the PBE, but must be
considered an estimate of the true electric field. The inten-
sity of the electric field as obtained from the LPBE and PBE
for the Antp HD-DNA complex are reported in Fig. 7. The
two give almost identical patterns at the surface of the
molecules but are different in the surrounding volume,
although similar trends are found. This is remarkable be-

FIGURE 5 DGout/kT from the LPBE using the correcting formula (Eq.
14) (squares) or estimated through an effective potential (Eq. 15) from the
LPBE (circles) versusDGout/kT obtained from the PBE. Only values in the
range 0.0 to 3.0 for both variables are shown.

Fogolari et al. LPBE for Biomolecular Electrostatics 7



cause electrostatic forces in molecular dynamics simula-
tions are computed from the electric field at the surface and
inside the molecule, rather than from the potential (Gilson et
al., 1993). We found a larger electric field from the LPBE
than from the PBE, which is expected to result in a correc-
tion slightly larger than that obtained from knowledge of the
exact electric field.

The plot of the LPBE electrostatic potential (with and
without correction) versus the PBE electrostatic potential at
14.5 mM ionic strength is reported in Fig. 8. It is seen that
the correction largely reduces the error in all cases. The
distributions of the number of points with the error magni-
tude at the surface and their integrals are very similar to
those obtained in the whole volume surrounding the mole-
cule; therefore, they will not be discussed here.

Results obtained for the same systems at 145 mM ionic
strength are very similar, although the range of the potential
is reduced by approximately one-fourth.

Electrostatic potentials inside the molecule

The electrostatic potential inside the molecule (f 5 (qU/
kT)) may be written as the sum of a direct Coulombic term
(fC) due to all atomic partial charges inside the molecule
and a reaction field term (fR) due to polarization charges at
interface and ionic charges outside the molecule:f 5 fC 1
fR.

The reaction field inside the molecule satisfies Laplace’s
equation and therefore can be expanded in any suitable set
of basis functions that satisfy Laplace’s equation. The co-
efficients of the expansion are unambiguously determined
by the boundary conditions, obtained by subtracting from
the electrostatic potential at the surface the easily computed
direct Coulombic contribution. Therefore, possessing an
accurate description of the potential at the surface allows for
an accurate evaluation of the electrostatic potential inside
the molecule. To test this point, we have considered the
fully protonated form ofb-lactoglobulin, which is globular

FIGURE 6 The electrostatic potential (inkcal/q z mol units) at the surface of the Antp C39S HD-DNA complex at 14.5 mM ionic strength as obtained
from the PBE, visualized with the software GRASP (Nicholls, 1993). A similar, but reduced in magnitude, potential pattern is obtained at 145 mM ionic
strength. Only the potential from the last focused region is shown.
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overall with a rough surface, and we expanded the reaction
field inside the molecule at 15 mM ionic strength using the
following set of functions related to spherical harmonics:

fR 5 O
l50,L

m52l,l

almr lPlm~cosq!Hsin~mw!
cos~mw!J (16)

wherePlm(cosq) are Legendre’s polynomials andr, q and
w are spherical coordinates (Jackson, 1962) andL 5 10 in
all calculations.

The expansion coefficients {alm} are obtained by best fit
of the boundary conditions. This procedure amounts to
solving a set of linear equations via Singular Value Decom-
position retaining all eigenvalues (see Press et al., 1990).
For other molecular shapes, other basis functions or other
ways to solve Laplace’s equation should be chosen. Virtu-
ally identical reaction field potentials at atomic positions
(RMSD5 0.045 (kcal/q z mol)) were obtained using bound-

ary conditions derived from PBE and corrected LPBE,
clearly distinguishable from the case in which boundary
conditions from LPBE had been employed (RMSD5 0.490
(kcal/q z mol)).

Electrostatic potentials outside the molecule

An error similar to that found at the surface of the biomol-
ecules studied is found in the whole space surrounding the
molecules. As for SSG, the LPBE consistently overesti-
mates the potential. A simple explanation is that because the
PBE, due to the hyperbolic function, puts more counterions
in the proximity of the molecule, the potential decays faster.
The correction determined at the surface of SSG also retains
its validity (although to a lesser extent) away from the
surface.

The maps reported in Fig. 9 show, for instance, that the
range of the error in absolute value on the potential in a

FIGURE 7 The electrostatic field (in reduced (kT/q)kD

units) from the PBE (upper panel) and from the LPBE (lower
panel) in a plane orthogonal to the DNA axis going through
the center of geometry of the Antp C39S HD-DNA complex.
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plane orthogonal to the DNA longitudinal axis going
through the center of geometry of the Antp C39S HD-DNA
complex can be as large as 3(kT/q). It is apparent that the
error is larger where the potential is larger, although the
difference is not as large as the difference between the
potential and the hyperbolic sine of the potential. The error
is halved by the correction.

The results shown in Fig. 9 are typical, although the range
of the error varies depending on the system and the ionic
concentration. A useful representation of the results, in
order to visualize the information contained in almost one
million points, is the distribution of points corresponding to
small intervals on the error axis and its integral. This is a
measure of the reliability of the linearization approximation.

For instance, the quantitative analysis for the Antp C39S
homeodomain-DNA complex (Fig. 10) at 14.5 mM ionic
strength shows that the distribution of the error for the
corrected LPBE has a sharp peak centered at;0.8(kT/q),
whereas the error for the uncorrected LPBE follows a
smooth distribution curve.

The cumulative distribution of the error is also interesting
and places 99% of the points for the corrected LPBE within
1(kT/q) of the PBE ones, although for the uncorrected LPBE
a significant amount of points (more than 1%) is affected by
an error larger than 3(kT/q).

These are typical results at low ionic strengths. The LPBE
at larger ionic strengths performs better for globular sys-
tems. This is a simple consequence of the overall decrease
in magnitude of the potential due to more efficient ionic
screening and reduced polyelectrolytic effects. However, in
this case the correction also brings the values of the poten-
tial closer to those obtained by the PBE.

Sometimes the LPBE or the spherical Debye-Hu¨ckel
potential is used to compute electrostatic fields far from the
molecule. A problem not always recognized with this usage
of the LPBE is that the validity of the linearization condition
((ziqU/kT) ,, 1) in a certain region of space does not
guarantee that the solution of the LPBE and PBE will
coincide, because the boundary conditions in that region
might be influenced by the solution of the equation in
regions of the space where the linearization condition is not
valid. This is particularly clear, for instance, from the plot of
the potential versus the distance from the axis of a cylinder
reported in Fig. 2. The plot of the LPBE potential in the
space surrounding the homeodomain-DNA complex versus
the PBE potential is very similar to that obtained at the
surface and confirms this point even for very small values of
the PBE potential.

Electrostatic free energies

A word is due on electrostatic free energies with finite
difference solution of the PBE equation. Whereas the con-
tributions to the free energy integral from the outer space of
the molecule may be obtained analogously to the SSG, for
biomolecules with discrete charge distributions, there is not
a direct counterpart to the free energy contribution due to
the surface charge term. Indeed the termDGef is strongly
dependent on the discretization of the charge and one is
usually interested in computing physical quantities, like the
reaction field energy, obtained through subtraction of self-
energy, grid-dependent terms. The reaction field, i.e., the
field due to salt and solvent polarization charges, may be
obtained alternatively solving the Poisson equation with
standard methods within the molecule with Dirichlet bound-
ary conditions obtained via a finite difference PBE or LPBE
calculation. The degree of accuracy of the solution of the
Poisson equation will ultimately depend on the accuracy of
the boundary conditions. We tested this point on the fully
protonated form ofb-lactoglobulin. The correction onDGef,
computed from the solution of Laplace’s equation inside the
molecule, as described above), is25.7 kcal/mol both for the
corrected LPBE and PBE. This figure is slightly different
from 26.4 kcal/mol obtained from the UHBD program, as
a possible consequence of the poor choice for the set of
basis functions (or Laplace’s equation solver) or the slightly
different definition of the boundary in our model and the
more accurate definition given by UHBD.

The contributions to the free energy density integral from
regions outside the molecule depend on the potential
through hyperbolic functions; therefore, small errors in the
potential will be greatly amplified. The conclusions reached
on SSG also apply here, though the discrepancy is less
severe, ranging up to one or two orders of magnitude. Using
the effective potential defined above (Eq. 15) is a simple
way to offset the exponential terms. Indeed, the figures
obtained forDGout are in the correct range but consistently
underestimated. Similar quantitative results on all terms are
obtained using the corrected LPBE potential, which also

FIGURE 8 The average electrostatic potential (inkT/q units) from the
LPBE (dashed lines) and from the corrected (Eq. 14) LPBE (solid lines) at
the surface of the Antp C39S HD-DNA complex, the isolated DNA and
HD and fully protonatedb-lactoglobulin at 14.5 mM ionic strength versus
the electrostatic potential obtained from the PBE. CPLX, HD, DNA and
BLG stand for the homeodomain-DNA complex, the isolated homeodo-
main, the isolated DNA stretch and fully protonatedb-lactoglobulin. The
RMSD are also given as vertical bars only for the Antp C39S HD-DNA
complex to avoid excessive plot crowding. The corrected and uncorrected
LPBE can be easily paired because they obviously span the same range of
the x-axis.
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FIGURE 9 Maps of the electrostatic potential (inkT/q
units) from the PBE (upper panel) in a plane orthogonal to
the DNA axis going through the center of geometry of the
Antp C39S HD-DNA complex at 14.5 mM ionic strength.
The difference in absolute value between the potential ob-
tained from the LPBE (middle panel) and the corrected (Eq.
14) LPBE (lower panel) are shown.
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brings the obtained figures in the correct range, but seems to
consistently overestimate the free energy. It seems that the
average of the two is able to reproduce the PBEDGout.

From Table 1 the different behavior of the LPBE equa-
tion in low and relatively high ionic strengths is apparent. In
the latter case the electrostatic potential becomes smaller; in
most of the space it is within the range of one or twokT/q.
Contributions to the free energy density integral are, to a
first approximation, proportional to the integral of (2f(x0)

4/
4!). If this term is small, then it is also legitimate to expect
that the linearization condition holds. This is true for overall
globular protein like the homeodomain orb-lactoglobulin at
145 mM, while it is seen that the polyelectrolytic behavior
of the DNA, partly neutralized by the homeodomain in the
complex, leads, as expected, to high potentials and therefore
to large discrepancies between the PBE and LPBE poten-
tials. As a consequence the free energy is not properly
recovered from the LPBE potential.

CONCLUSIONS

The LPBE is a widely used approximation of the PBE for
biomolecular simulations. Results on SSG show that the
potential at the surface obtained using the LPBE may be
easily corrected to reproduce fairly accurately that obtained
from the PBE. The correction depends on the reduced
electric field at the surface, but does not involve any geo-
metrical parameter. Although it might be surprising that
systems as different as spheres, cylinders, and planes be-
have very similarly in this respect, the results may be
rationalized taking into account that the deviations from the
linearization condition depend on the ratio between the

FIGURE 10 The distribution of the difference (inkT/q units) in absolute
value between the PBE potential and the potential obtained from the LPBE
and the corrected (Eq. 14) LPBE for the Antp C39S HD-DNA complex and
isolated DNA (upper panel), and isolated homeodomain and fully proton-
atedb-lactoglobulin (lower panel) at 14.5 mM ionic strength, shown as
percentage of points in small intervals of thex-axis. The integral of the
distribution is also shown. The uncorrected LPBE curves are recognizable
because they span a larger error range.

TABLE 1 Contributions to the electrostatic free energy

at 14.5 mM ionic strength

CPLX DNA HD BLG

PBE LPBE* LPBE# LPBE§ PBE LPBE* LPBE# LPBE§ PBE LPBE* LPBE# LPBE§ PBE LPBE* LPBE# LPBE§

DGem 213.3 24.1 224.3 214.2 226.8 28.0 263.7 235.9 25.2 21.8 26.1 23.9 26.7 22.3 28.1 25.2
DGmob 26.5 8.2 48.7 28.4 53.6 16.0 127.4 71.7 10.5 3.5 12.1 7.8 13.3 4.5 16.1 10.3
DGsolv 26.6 23.0 212.4 27.7 212.6 25.6 229.3 217.5 23.0 21.4 23.7 22.6 24.0 21.8 25.0 23.4
DGout 6.6 1.1 12.0 6.5 14.2 2.4 34.4 18.4 2.3 0.3 2.3 1.3 2.6 0.4 3.0 1.7

at 145 mM ionic strength

CPLX DNA HD BLG

PBE LPBE* LPBE# LPBE§ PBE LPBE* LPBE# LPBE§ PBE LPBE* LPBE# LPBE§ PBE LPBE* LPBE# LPBE§

DGem 29.2 26.2 213.5 29.8 216.7 211.2 227.5 19.4 24.6 23.0 25.7 24.3 25.7 23.9 26.9 25.4
DGmob 18.4 12.3 27.0 19.6 33.3 22.4 55.0 38.7 9.1 6.0 11.4 8.7 11.3 7.8 13.8 10.8
DGsolv 26.6 25.2 29.7 7.4 211.4 29.2 218.9 214.1 23.4 22.6 24.3 23.4 24.4 23.5 25.5 24.5
DGout 2.6 0.9 3.8 2.4 5.2 2.0 8.6 5.3 1.1 0.4 1.4 0.9 1.2 0.4 1.4 0.9

The contributions to the free energy density integral from the outer space of the biomolecules (see Eqs. 8–12). CPLX, HD, DNA, and BLG stand for the
homeodomain-DNA complex, the isolated homeodomain, the isolated DNA stretch and fully protonatedb-lactoglobulin, respectively. In the column labeled
PBE the values obtained with the full PBE are reported. In the column labeled LPBE* the effective potential (Eq. 15) is employed. In the column labeled
LPBE# the corrected LPBE potential (Eq. 14) is employed. In the column LPBE§ the mean between LPBE* and LPBE# is reported.
*Effective potential from Eq. 15 used to compute the free energy.
#Corrected LPBE potential from Eq. 14 used to compute the free energy.
§Mean between the previous two columns.
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electric field and the Debye scale length and not on geo-
metrical parameters.

Results on high charge density systems show that there
are limitations to the applicability of the LPBE to biomo-
lecular systems at low ionic strength (14.5 mM) and to a
lesser extent at higher ionic strength (145 mM). For systems
in physiological ionic strength with lower charge density the
LPBE gives virtually the same results as the PBE. The range
of the error in the potential for the LPBE (compared to the
PBE) spans fewkT/q for the systems studied here. The
LPBE can be corrected with a simple formula that does not
involve any geometrical parameter, as inferred from the
study of SSG. The correction allows for more accurate
calculation of the electrostatic free energy of the systems.

APPENDIX A

The PBE for systems with a simple geometry

The PBE in the solution surrounding SSG is written in the following form:

¹Y z ¹Y U 5 2
4p

e
O
i

ci
`ziq expS2ziqU

kT D (A1)

with the boundary conditions given by the field at the low dielectric region
surface.

Particularly when uniformly charged planes, cylinders, or spheres are
considered, the solution depends on a single variable and the equation may
therefore be recast as:

2U

r2 1
m

r

U

r
5 2

4p

e
O
i

ci
`ziq expS2ziqU

kT D (A2)

wherem is 0, 1, and 2 for the plane, cylinder, and sphere respectively, and
r is the distance from the surface of the plane, from the axis of the cylinder,
or from the center of the sphere for the corresponding values ofm. The
boundary condition is given by the value ofU/r at r0 which defines the
boundary (i.e. the radius of the sphere or the cylinder, and any arbitrary
position of the planar boundary). With the aid of the reduced potentialf 5
(qU/kT) and reduced lengthx 5 kDr, wherekD 5 =4p(ici

`zi
2q2/ekT is the

Debye screening constant, for a 1:1 electrolytic solution, the PBE may be
rewritten as:

2f

x2 1
m

x

f

x
5 sinh~f! (A3)

The solution of the equation is determined by the boundary condition
f9(x0).

In order to have reasonable values for bothx0 andf9(x0) we considered
the following surface area elements in terms of the Bjerrum lengthlB 5
(q2/ekT):

S5 lB
2 3 p for the plane,

S5 lB 3 2pr0 for the cylinder, and

S5 4pr0
2 for the sphere,

or with the previous notation:

S5 lB
(22m) 3 2mpr0

m (A4)

Notice that for a givenf9(x0) the number of chargesz in the areaS is:

z5
2kDlB

4
f9~x0! for the plane

z5
2x0

2
f9~x0! for the cylinder

z5
2x0

2

kDlB
f9~x0! for the sphere

or in a general form:

z5
2x0

m

222m~kDlB!m21 f9~x0! (A5)

Usual biomolecular systems modeled as uniformly charged planes,
cylinders, or spheres typically have average charge densities lower than
two charges per element areaS 5 lB

2 3 p. Because the productkDlB will
range for typical monovalent ionic solutions between 0.2 and 2 (corre-
sponding to ionic strengths in the 7–700 mM range), reasonable values of
f9(x0) will be ,40.

The free energy per unit charge (expressed inkT units) may be easily
calculated:

DGef

kT
5

f~x0!

2
(A6)

DGem
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1

zE
V

kD
2

8plB
f sinh~f!dV (A7)

DGmob

kT
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zE
V
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2

8plB
f sinh~f!dV (A8)

DGsolv

kT
5 2

2

zE
V

kD
2

8plB
~cosh~f! 2 1!dV (A9)

The scaled volume element (kD
2 /z8plB)dV is written as: (kDlB/8z)dx,

(x/4z)dx and (x2/2lBkDz)dx for the plane, cylinder, and sphere, respectively
or, substituting the expression for the chargez, in general form:

kD
2

z8plB
dV 5 2

1

2f9~x0!
S x

x0
Dm

dx (A10)

Therefore also the free energy stabilization per unit charge is dependent
only on the reduced variablesx0 andf9(x0).

APPENDIX B

Previous results on systems with a simple
geometry and relevant length scales

The limits of applicability of the LPBE on SSG have been known for some
time and empirical formulae have been put forward to recover from the
LPBE potential, the PBE potential, or also the PBE charging free energy
(see below). Some of the previous results unify the treatment for different
shapes and it is therefore tempting to try to further generalize these results
to shape-independent formulae.

We aim to find a general relationship between the solution of the LPBE
and that of the PBE that avoids the definition of any geometrical parameter,
because this would not be unambiguously identified for irregularly shaped
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biomolecules. (However, for a definition of a radius of curvature in
conjunction with protein electrostatics, see Abagyan and Totrov (1994).)

We review hereafter some important general results obtained by Stigter
(1975, 1978) and the group of Gueron and Weisbuch (1979, 1980; Weis-
buch and Gueron, 1981, 1983; Gueron and Demaret, 1992).

In particular, Stigter (1975, 1978, and references cited therein) fur-
nished a table of correction factors for some thermodynamic quantities
derived from the LPBE for cylinders and spheres and made the following
observations:

(1) for high charge densities the counterion concentration at the surface is
rather insensitive to salt dilution;

(2) for spheres and cylinders possessing the same charge density and the
same radius of curvature (RC 5 r0 for the sphere andRC 5 2r0 for the
cylinder), in similar ionic conditions, the surface potential is similar;
and

(3) for high charge densities spheres, cylinders, and planes have similar
surface potentials.

Gueron and Weisbuch (1980) extend these observations and recognize
the importance of the interplay of two natural scale lengths of the problem.
They compare spheres and cylinders characterized by the same parameter
h 5 (r0/lD (where lD 5 (1/kD), the inverse of the Debye screening
constant, is the Debye length), same surface charge densitys and related
parameterj 5 p(s/q)lBRC.

The invariance of the surface concentration of counterions (CIV5
Concentration in the Immediate Vicinity) with ionic strength is also ob-
served here. Most important, Gueron and Weisbuch (1980) observe that the
CIV is determined mainly by the surface charge density (for ionic concen-
trations larger than 10 mM) and not by the shape. In later works they
propose some approximate expressions for the potential and the free energy
for spheres and cylinders in reference to a plane possessing the same
surface charge density (Gueron and Weisbuch, 1979, 1980; Weisbuch and
Gueron, 1981; Gueron and Demaret, 1992). In order to classify SSG
Weisbuch and Gueron (1983) propose to consider an additional scale
length which is set by the electric field (i.e., for SSG, by the surface charge
density).

This scale length is defined as:

le 5

Sf

r D
r5r0

S2f

r2D
r5r0

(B1)

For the plane this can be written as:

le 5
lD

coshSf~r0!

2 D (B2)

Then a related quantityQ may be defined as the ionic layer thickness:

Q 5
1

2pSs

qDlB
(B3)

for the plane this is the distance from the surface at which ionic concen-
tration is reduced to one-quarter of that at the surface, whenf(x0) .. 1.

By using the first integration of the PBE for the plane we obtain:

Sf

r D
r5r0

5

2 sinhSf~r0!

2 D
lD

5
2

Q
(B4)

which may be further rearranged:

lD

Q
5 sinhSf~r0!

2 D (B5)

The latter equation clearly shows that the linear or nonlinear regime
depends upon the ratiolD/Q, i.e., following from Eq. B4, the reduced
electric field at the surface.

When Eq. B5 is substituted in Eq. B2 the electric field scale length is
expressed in terms of

le 5
lD

S1 1
lD

2

Q2D1/2 (B6)

The latter relation shows that the relevant scale length for the electric
field is eitherlD or Q depending upon their ratio.

The previous discussion has been summarized for cylindrical geome-
tries in the following table by Rouzina and Bloomfield (1996), in which the
mutual relationship between the three scale lengths mentioned and the
behavior of the PBE solution are compared:

lD , Q , RC linear, planar

Q , lD , RC nonlinear, planar

Q , RC , lD nonlinear, cylindrical

lD , RC , Q linear, cylindrical (pseudoplanar)

RC , lD , Q linear, cylindrical

RC , Q , lD weakly nonlinear, cylindrical

An interesting observation of that study was that for a highly charged
cylinder the ionic distributions, properly scaled, are very similar to those of
a plane of the same charge density. Since the charge density is directly
related to the electric field, the distance from the surface was also scaled by
lD, and the comparison was made for equal ionic strengths, we may recast
that observation in the following form: planes and cylinders for which the
boundary condition (f/x)ux0

is fixed show similar behavior.
We further note that of the three relevant scale lengths,lD andQ are

also easy to identify for irregularly shaped and charged biomolecules. For
these cases the electric field is not given, but may be obtained by solving
the PBE, or rather estimated from the solution of the LPBE. Starting from
Eqs. B4 and B5 we have identified the reduced electric field at the surface
(f/x)ux0

as a key parameter to correct the LPBE potential.
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Wüthrich. 1993. Determination of the nuclear magnetic resonance so-
lution structure of anAntennapedia-DNA complex.J. Mol. Biol. 234:
1084–1097.

Brooks, B. R., R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swami-
nathan, and M. Karplus. 1983. CHARMM: a program for macromolec-
ular energy, minimization, and dynamics calculations.J. Comput. Chem.
4:187–217.

Brownlow, S., J. H. Morais Cabral, R. Cooper, D. R. Flower, S. J. Yewdall,
I. Polikarpov, A. C. T. North, and L. Sawyer. 1996. Bovineb-lactoglob-
ulin at 1.8 Å resolution: still an enigmatic lipocalin.Structure.
5:481–495.

Chapman, D. L. 1913. A contribution to the theory of electrocapillarity.
Phil. Mag. 25:475–481.

Davis, M. E., and J. A. McCammon. 1990. Electrostatics in biomolecular
structure and dynamics.Chem. Rev.90:509–521912.

Davis, M. E., J. D. Madura, J. Sines, B. A. Luty, S. Allison, and J. A.
McCammon. 1991. Diffusion-controlled enzymatic reactions.Methods
Enzym.202:473–497.

Derjaguin, B., and L. Landau. 1941. A theory of the stability of strongly
charged lyophobic sols and the coalescence of strongly charged particles
in electrolytic solution.Acta Phys.-Chim. USSR.14:633–662.

Debye, P., and E. Hu¨ckel. 1923. Zur theorie der elektrolyte.Physik.
Zeitschr.24:185–206.

Fixman, M. 1979. The Poisson-Boltzmann equation and its application to
polyelectrolytes.J. Chem. Phys.70:4995–5005.

Fogolari, F., and J. M. Briggs. 1997. On the variational approach to the
Poisson-Boltzmann free energies.Chem. Phys. Lett.281:135–139.

Fogolari, F., A. H. Elcock, G. Esposito, P. Viglino, J. M. Briggs, and J. A.
McCammon. 1997. Electrostatic effects in homeodomain-DNA interac-
tion. J. Mol. Biol. 267:368–381.

Fogolari, F., G. Esposito, P. Viglino, J. Briggs, and J. A. McCammon.
1998. pKa shift effects on backbone amide base-catalyzed hydrogen
exchange.J. Am. Chem. Soc.120:3735–3738.

Fowler, R. H., and E. A. Guggenheim. 1939. Statistical Thermodynamics.
Cambridge University Press, Cambridge.

Gilson, M. K., M. E. Davis, B. A. Luty, and J. A. McCammon. 1993.
Computation of electrostatic forces on solvated molecules using the
Poisson-Boltzmann equation.J. Phys. Chem.97:3591–3600.

Gilson, M. K., and B. Honig. 1986. The dielectric constant of a folded
protein.Biopolymers.25:2097–2119.

Gilson, M. K., K. A. Sharp, and B. Honig. 1987. Calculating the electro-
static potential of molecules in solution: method and error assessment.
J. Comp. Chem.9:327–335.

Gilson, M. K., T. P. Straatsma, J. A. McCammon, D. R. Ripoll, C. H.
Faerman, P. H. Axelsen, I. Silman, and J. L. Sussman. 1994. Open “back
door” in a molecular dynamics simulation of acetylcholinesterase.Sci-
ence.263:1276–1278.

Gouy, M. 1910. Sur la constitution de la charge e´lectrique a la surface d’un
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