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Abstract: in this paper we give an account of the basic facts to be considered when one attempts
to discretize the semigroup of solution operators for Linear Time Invariant - Time Delay Systems
(LTI-TDS). Two main approaches are presented, namely pseudospectral and spectral, based
respectively on classic interpolation when the state space is C = C(−τ, 0; C) and generalized
Fourier projection when the state space is X = C × L2(−τ, 0; C). Full discretization details
for constructing the approximation matrices are given. Moreover, concise, yet fundamental,
convergence results are discussed, with particular attention to their similarities and differences as
well as pros and cons with regards to solution approximation and asymptotic stability detection.
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1. INTRODUCTION

In this work we consider, for simplicity and ease of nota-
tion, the prototypical Linear Time Invariant - Time Delay
System (LTI-TDS)

x′(t) = ax(t) + bx(t− τ) (1)
where τ > 0 and a, b ∈ C. All the arguments developed in
the sequel apply as well to more general cases with matrix
coefficients and multiple discrete or distributed delays,
the extension concerning only technicalities useless to the
treatment proposed in the paper. Instead, generalization
to the Linear Time Varying (LTV) case is subject of ongo-
ing works by the authors, although commented whenever
it may lead to useful contributions.

In the recent decades, LTI- and LTV-TDS have attracted
the attention of diverse scientific communities, automatic
control and mathematics above all. A central question
from a dynamical point of view is that of asymptotic sta-
bility for the zero solution of (1). Despite the great effort,
analytical results are rather lacking in generality and, at
best, suitable for restricted sub-classes (e.g. single delay
or second order systems). As a natural consequence (Hale,
1977, p.109), a number of approximation techniques have
been proposed, mostly based on computing the character-
istic values (read roots, multipliers, Lyapunov exponents)
associated to the system (see e.g. Breda et al. (2005);
Butcher et al. (2004); Engelborghs and Roose (2002);
Engelborghs et al. (2002); Farmer (1982); Insperger and
Stépán (2002); Jarlebring (2008); Verheyden et al. (2008);
Vyhĺıdal and Źıtek (2009)).

When investigating on stability (but not only), the state
space description of (1) is advantageous, and the classic lit-
erature resorts to the Banach space of continuous functions
C := C(−τ, 0; C), Bellen and Zennaro (2003); Diekmann
et al. (1995); Hale (1977); Wu (1996). This choice seems to
be motivated by the fact that, for rather general selections
of the space of initial data, the “smoothing effect” makes
the (forward) solution be continuous anyway: “...if some
other space than continuous functions is used for initial
data, then the solution lies in C...Therefore, for the fun-
damental theory, the space of initial data does not play a
role which is too significant.” (Hale, 1977, p.33). Anyway,
Hale continues his comment by adding “However, in the
applications, it is sometimes convenient to take initial
data with fewer or more restrictions.” In this sense, an
alternative which has been quite studied is represented
by the Hilbert product space X := C × L2(−τ, 0; C),
Bensoussan et al. (1992, 1993); Borisovic̆ and Turbabin
(1969); Delfour and Mitter (1972); Hadd et al. (2008);
Peichl (1982). This second choice is often justified in the
context of quadratic feedback control and linear filtering
for retarded systems (Delfour (1977); Hadd et al. (2008);
Vinter (1978)), for approximation reasons (Ito and Kappel
(1991); Kappel (1986)), or when orthogonality is necessary
(Breda (2010)).

Once the proper state space is chosen, say S, the long-time
behavior of the evolution can be determined through the
knowledge of the spectrum of suitable infinite dimensional
maps S → S such as the semigroup of solution operators,
its generator, the monodromy operator for periodic prob-
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lems and so forth. Part of this manuscript is then devoted
to resume the basic features of the semigroup approach
for model (1) both in S = C and S = X , focusing on their
similarities and differences. We refer the interested readers
to Engel and Nagel (1999) for a comprehensive treatment
of the theory of general one-parameter linear semigroups.

The reduction of such operators to finite dimension allows
to consider standard eigenvalue problems which can be
easily solved, hopefully providing accurate estimates for
the stability indicators (e.g. the rightmost root or the
dominant multiplier). We present two main approaches
for discretizing the relevant semigroups, namely the pseu-
dospectral one when S = C and the spectral one when
S = X , comparing computational issues and convergence
as well as discussing to what extent they can be applied.
The core of the psuedospectral approach is based on classic
polynomial interpolation and consists in substituting the
exact operation to be done on a given (continuous) func-
tion with the same operation as applied to the interpolat-
ing polynomial. The spectral approach, instead, consists in
considering, in a suitable pre-Hilbert space, the generalized
Fourier projection of the given function to a finite degree.
The books Trefethen (2000) and Canuto et al. (2007) may
serve as a guide for the above methodologies in a context
much broader than TDS.

The paper is structured as follows. Section 2 resumes
the semigroup theory for (1). After some preliminaries
discussed in Section 3, Section 4 deals with the discretiza-
tion in C. The same role is played by Sections 5 and 6,
respectively, for X . Section 7 collects some results and
discussion on convergence.

As a final introductory comment, we recall that elements
in L2 (or similar Lebesgue spaces) have to be intended
as equivalence classes of functions rather than functions
themselves, Davis (1975). As a consequence, the notion
of “value of a function at a given point” is meaning-
less, contrary to the continuous case. Moreover, in C we
use the standard maximum norm ‖ϕ‖C := max

θ∈[−τ,0]
|ϕ(θ)|

while in X we use the norm induced by the inner prod-

uct < (u, ϕ), (v, ψ) >X := vHu +
0∫
−τ

ψH(θ)ϕ(θ)dθ, i.e.

‖(u, ϕ)‖2X := |u|2 + ‖ϕ‖2L2(−τ,0;C).

2. SEMIGROUP THEORY IN C AND X

For a well-posed Initial Value Problem (IVP) for (1) with
a given, fixed r ≥ 0, the classic choice of initial data in
S = C leads to{

x′(t) = ax(t) + bx(t− τ), t ∈ [0, r]
x(θ) = ϕ(θ), θ ∈ [−τ, 0] (2)

for a given ϕ ∈ C. Diversely, if S = X is chosen, then the
IVP readsx

′(t) = ax(t) + bx(t− τ), for a.a. t ∈ [0, r]
x(0) = u
x(θ) = ϕ(θ), for a.a. θ ∈ [−τ, 0)

(3)

for a given (u, ϕ) ∈ X . Both IVPs admit a unique solution
which continuously depends on the initial data, see e.g.
Hale (1977) for (2) and Breda (2010) for (3). This allows
to introduce the solution operator as the one-parameter
linear and bounded operator T (r) : S → S given by

T (r)x̂(0) = x̂(r) (4)
where S is either C or X , and x̂(r) denotes the state of the
system at time r ≥ 0. In particular, we have

x̂(r) := xr ∈ C with x̂(0) = ϕ ∈ C (5)
if S = C or

x̂(r) := (x(r), xr) ∈ X with x̂(0) = (u, ϕ) ∈ X
if S = X , where we adopt the standard Hale-Krasovskii
notation for the function [−τ, 0] 3 θ 7→ xr(θ) ∈ C defined
as xr(θ) := x(r+ θ), Hale (1977); Krasovskii (1959). In X
this latter holds for a.a. θ ∈ [−τ, 0].

For completeness, the corresponding infinitesimal genera-
tor has action and domain dependent on the choice of S.
In particular, the linear unbounded operator A : D(A) ⊆
S → S is{

D(A) =
{
ψ ∈ C1 : ψ′(0) = aψ(0) + bψ(−τ)

}
Aψ = ψ′,

(6)

when S = C, while for S = X{
D(A) =

{
(v, ψ) ∈ X 1 : ψ(0) = v

}
A(v, ψ) = (av + bψ(−τ), ψ′) . (7)

Above we used C1 := C1(−τ, 0; C) and X 1 := C ×
H1(−τ, 0; C) whereH1 is the Sobolev space of L2 functions
with first (weak) derivative in L2.
Remark 1. Let us underline that as far as the LTV case is
considered, (4) can be extended to

T (r, s)x̂(s) = x̂(r)
where s is the initial time for the relevant IVP (which
inevitably matters), while (6) and (7) can be extended to{
D(A(t)) =

{
ψ ∈ C1 : ψ′(0) = a(t)ψ(0) + b(t)ψ(−τ)

}
A(t)ψ = ψ′

(8)
for S = C and{

D(A(t)) =
{

(v, ψ) ∈ X 1 : ψ(0) = v
}

A(t)(v, ψ) = (a(t)v + b(t)ψ(−τ), ψ′) (9)

for S = X . At this point it is necessary to stress that the
time dependency is confined to the domain for (8) and
to the action for (9). This makes (8) difficult to treat,
see e.g. (Chicone and Latushkin, 1999, p.59), (Diekmann
et al., 1995, p.341), (Hadd et al., 2008, p.4), practically
leaving (9) as the only possible extension of the concept of
generator to the time-varying case, Breda (2010).

3. PRELIMINARIES AND NOTATION IN C

Depending on the role of the various mathematical objects,
in general we use normal case for operators and functions
(infinite dimension), bold case for matrices and vectors
(finite dimension).

Set C− := C = C(−τ, 0; C), C+ := C(0, r; C) and C± :=
C(−τ, r; C). Whenever required, functions are denoted as
f− ∈ C−, f+ ∈ C+ and f± ∈ C±, but simply f ∈ C (= C−)
when reference to the state space has to be stressed. Also,
f± ∈ C± is tacitly intended as divided into f− := f±|[−τ,0]
and f+ := f±|[0,r]. The same notation holds for spaces
(and functions) other than C. In particular, we denote Π−N
and Π+

N the spaces of polynomials of degree at most N ,
respectively on [−τ, 0] and [0, r].



Rewrite the IVP (2) as{
x′(t) = (Gx)(t), t ∈ [0, r],
x(θ) = ϕ(θ), θ ∈ [−τ, 0] (10)

where the operator G : C± → C+ is defined as
(Gx)(t) = ax(t) + bx(t− τ) (11)

for t ∈ [0, r]. For a given positive integer N , consider the
grid of distinct nodes Ω−N := {−τ = θ−N < · · · < θ−0 = 0}
in [−τ, 0] and set C−N := CN+1 as the discrete counterpart
of C−, i.e. a function f− ∈ C− is discretized by the
vector f−N = R−Nf− = (f−(θ−0 ), . . . , f−(θ−N ))T ∈ C−N ,
R−N : C → C−N the restriction operator. Correspondingly,
let f−N = P−Nf−N ∈ Π−N , P−N : C−N → Π−N ⊂ C− the
prolongation operator, be the polynomial of degree at most
N interpolating the values f−N at the nodes Ω−N , i.e.

f−N (θ) :=
N∑
j=0

`−j (θ)f−(θ−j ), θ ∈ [−τ, 0],

with

`−j :=
N∏
k=0
k 6=j

θ − θ−k
θ−j − θ

−
k

, j = 0, . . . , N,

the Lagrange basis polynomials relevant to the nodes Ω−N .
Observe that R−NP

−
N = I−N : C−N → C

−
N , the identity in

C−N , while P−NR
−
N = L−N : C− → Π−N ⊂ C−, the Lagrange

interpolation operator on Ω−N .

Similarly, let Ω+
N := {0 < θ+1 < · · · < θ+N < r} in

(0, r) together with the auxiliary node θ+0 := 0 (= θ−0 ).
Then, for a function f+ ∈ C+, set f+

N = R+
N,0f

+ =
(f+(θ+0 ), . . . , f+(θ+N ))T ∈ C+N and f+

N = P+
N,0f

+
N ∈ Π+

N ,
with the analogous meaning for R+

N,0 : C → C+N and
P+
N,0 : C+N → Π+

N ⊂ C+ w.r.t. the nodes {θ+0 } ∪Ω+
N . When

only the nodes in Ω+
N are considered, the suffix 0 is drop

and L∗N = P+
NR

+
N is the relevant Lagrange interpolation

operator.

Finally, for a given state (according to (5)) x̂(t) ∈ C,
t ∈ [0, r], we consider x̂N (t) = R̂−N x̂(t) ∈ C−N as the vector
of its values at the nodes Ω−N and x̂N (t) = P̂−N x̂N (t) ∈
Π−N ⊂ C as the relevant interpolating polynomial.

4. SEMIGROUP DISCRETIZATION IN C

We aim at finding a finite dimensional approximation
TN (r) of the solution operator T (r) in (4) for S = C. We
basically use collocation to advance from [−τ, 0] to [0, r]
together with classic polynomial interpolation for discrete
representation as introduced in Section 3. Collocation
approaches have been proposed in Breda (2004, 2006).
Alternatives have been considered also in Engelborghs and
Roose (2002); Insperger and Stépán (2002); Verheyden
et al. (2008).

According to the notation set in Section 3, we first con-
struct matrices U−N : C−N → CN and U+

N : C+N → CN
relating the discretized initial function to the discretized
collocation polynomial:

U+
Np+

N = U−Nϕ−N (12)

where pN ∈ Π±N is divided into p−N = ϕN and p+
N

determined by collocation of (10):{
(p+
N )′(θ+i ) = (GpN )(θ+i ), i = 1, . . . , N,

p+
N (0) = ϕN (0).

(13)

It is not conceptually difficult (although rather technical)
to check that the above matrices have entries, respectively,

[U+
N ]ij :=


`+j (0), i = 0
((`+j )′ − a`+j )(θ+i ), i = 1, . . . , N+

((`+j )′ − a`+j )(θ+i ) −b`+j (θ+i − τ),
i = N+ + 1, . . . , N

and

[U−N ]ij :=


`−j (0), i = 0
b`−j (θ+i − τ), i = 1, . . . , N+

0, i = N+ + 1, . . . , N
for all j = 0, . . . , N , where

N+ = N+(r, τ) := max
j=1,...,N

{θ+j − τ ≤ 0}.

Second, and independently of the model coefficients a and
b, we construct matrices V +

N : C+N → CN and V −N : C−N →
CN such that

x̂N (r) = V +
Np+

N + V −Nϕ−N (14)
by restriction of pN to [r − τ, r] when r ≥ τ , respec-
tively prolongation by ϕN when r < τ . In particular,
it is sufficient to define the above matrices with entries,
respectively,

[V +
N ]ij :=

{
`+j (r + θ−i ), i = 0, . . . , N−

0, i = N− + 1, . . . , N
and

[V −N ]ij :=
{

0, i = 0, . . . , N−

`−j (r + θ−i ), i = N− + 1, . . . , N
for all j = 0, . . . , N , where

N− = N−(r, τ) := max
j=0,...,N

{r + θ−j ≥ 0},

with the convention that V +
N is full and V −N is empty when

N− = N , i.e. for r ≥ τ .

Eventually, by setting x̂N (0) = ϕ−N , it follows from (12)
and (14) that

x̂N (r) = TN (r)x̂N (0) (15)
is the sought discrete approximation of (4) with TN (r) :
CN → CN given by

TN (r) = V +
N (U+

N )−1U−N + V −N
(standard approximation arguments ensure that U+

N is
invertible for sufficiently large N).

5. PRELIMINARIES AND NOTATION IN X

Similarly to what done in Section 3, rewrite the IVP (2)
as x

′(t) = (Gx)(t), for a.a. t ∈ [0, r],
x(0) = u
x(θ) = ϕ(θ), for a.a. θ ∈ [−τ, 0)

(16)

where the operator G : L± → L+ is defined formally as
in (11) for a.a. t ∈ [0, r] and the spaces L−, L+ and L±

intended as for the continuous but case from L := L2.

For a given positive integer N , let {φ−i }∞i=0 be a system
of orthogonal algebraic polynomials spanning L− such



that φ−N ∈ Π−N has zeros −τ < θ−N < · · · < θ−1 < 0
and set L−N := CN+1 as the discrete counterpart of
L−, i.e. a function f− ∈ L− with Fourier coefficients
{f−i }∞i=0 is discretized by the vector f−N = R−Nf− =
(f−0 , . . . , f

−
N )T ∈ L−N , R−N : L → L−N the restriction

operator. Correspondingly, let f−N = P−Nf−N ∈ Π−N be the
projection polynomial of degree at most N for f−, i.e.

f−N :=
N∑
j=0

f−j φ
−
j ,

P−N : L−N → Π−N ⊂ L− the prolongation operator. Observe
that R−NP

−
N = I−N : L−N → L−N , the identity in L−N , while

P−NR
−
N = L−N : L− → Π−N ⊂ L−, the Fourier projection

operator on Ω−N .

Similarly, let {φ+
i }∞i=0 be a system of orthogonal algebraic

polynomials spanning L+ such that φ+
N ∈ Π+

N has zeros
0 < θ+0 < · · · < θ+N < r. Then, for a function f+ ∈ L+, set
f+
N = R+

Nf
+ = (f+

1 , . . . , f
+
N )T ∈ L+

N denotes the vector of
its first N + 1 Fourier coefficients and f+

N = P+
Nf+

N ∈ Π+
N

the relevant projection polynomial, with the analogous
meaning for R+

N : L → L+
N and P+

N : L+
N → Π+

N ⊂ L+,
and also for I+

N and L+
N .

Finally, for a given state (v, f) =: x̂ ∈ X , we consider
x̂N = R̂N x̂ = (v, f−0 , . . . , f

−
N )T ∈ XN := C× LN = CN+2,

R̂N : X → XN the restriction operator, and x̂N =
P̂N x̂N = (v, f−N ) ∈ X as the relevant projected state,
P̂N : XN → X the prolongation operator. We will consider
also X+

N := C× L+
N and X−N := C× L−N , all isomorphic to

CN+2 since LN , L−N and L+
N are all isomorphic to CN+1

but, again, we reserve to distinguish the notation for the
relevant meaning. Moreover, the indexing of a vector in
CN+2 will be −1, 0, . . . , N to take into account for the
presence of the scalar element (index −1) and the discrete
functional element (indices 0, . . . , N).

6. SEMIGROUP DISCRETIZATION IN X

We aim at finding a finite dimensional approximation
TN (r) of the solution operator T (r) in (4) for S = X .
We basically use collocation again together with general-
ized Fourier projection as introduced in Section 5. The
following approach is new.

According to the notation set in Section 5, we construct
matrices U−N : X−N → XN and U+

N : X+
N → XN such that

U+
N (p+

N (r),p+
N ) = U−N (u,ϕ−N ) (17)

where pN ∈ Π±N is divided into p−N = ϕN and p+
N

determined by collocation of (16):{
(p+
N )′(θ+i ) = (GpN )(θ+i ), i = 1, . . . , N,

p+
N (0) = u.

(18)

Again, it is not conceptually difficult (although rather
technical) to check that the above matrices have entries,
respectively,

[U+
N ]ij :=


−φ+

j (r), i = −1
φ+
j (0), i = 0

((φ+
j )′ − aφ+

j )(θ+i ), i = 1, . . . , N+

((φ+
j )′ − aφ+

j )(θ+i ) −bφ+
j (θ+i − τ),

i = N+ + 1, . . . , N

for all j = 0, . . . , N plus the first column (j = −1) as
(1, 0, . . . , 0) ∈ CN+2, and

[U−N ]ij :=
{

0, i = −1, 0, N+ + 1, . . . , N
bφ−j (θ+i − τ), i = 1, . . . , N+

for all j = 0, . . . , N , plus the first column (j = −1) as
(0, 1, 0, . . . , 0) ∈ CN+2, where

N+ = N+(r, τ) := max
j=1,...,N

{θ+j − τ ≤ 0}.

Second, and independently of the model coefficients a
and b, we construct matrices V N ,V

−
N : X−N → XN and

V +
N : X+

N → XN such that

V N x̂N (r) = V +
N (p+

N (r),p+
N ) + V −N (u,ϕ−N ) (19)

by restriction of pN to [r − τ, r] when r ≥ τ , respec-
tively prolongation by ϕN when r < τ . In particular,
it is sufficient to define the above matrices with entries,
respectively,

[V N ]ij :=
{
φ−j (0), i = 0
φ−j (θ−i ), i = 1, . . . , N

for all j = 0, . . . , N , plus [V N ]−1,−1 = 1 and 0 elsewhere,

[V +
N ]ij :=


φ+
j (r), i = 0
φ+
j (r + θ−i ), i = 1, . . . , N−

0, i = N− + 1, . . . , N

for all j = 0, . . . , N , plus [V +
N ]−1,−1 = 1 and 0 elsewhere,

and

[V −N ]ij :=
{

0, i = 0, . . . , N−

φ−j (r + θ−i ), i = N− + 1, . . . , N
for all j = 0, . . . , N and 0 elsewhere, where

N− = N−(r, τ) := max
j=0,...,N

{r + θ−j ≥ 0},

with the convention that V +
N is full and V −N is empty when

N− = N , i.e. for r ≥ τ .

Eventually, by setting x̂N (0) = (u,ϕ−N ), it follows from
(17) and (19), that

x̂N (r) = TN (r)x̂N (0) (20)
is the sought discrete approximation of (4) with TN (r) :
XN → XN given by

TN (r) = (V N )−1[V +
N (U+

N )−1U−N + V −N ]

(standard approximation arguments ensure that V +
N and

U+
N are invertible for sufficiently large N).

7. CONVERGENCE ANALYSIS

The solution operator T (r) in (4) is an infinite dimensional
map, say T (r) : S → S with either S = C or S = X ,
contrary to its matrix discretization TN (r) : SN → SN
with either SN = CN in (15) or SN = XN in (20).
For comparison, it is therefore necessary to introduce
an intermediate infinite dimensional, but finite-rank, map
TN (r) : S → S as detailed later on.

This Section is then devoted to provide suitable error
bounds for the remainder T (r)− TN (r) in the state space
S. Such errors will be measured in a pointwise sense in
general (i.e. as applied to a given function in S), reserving
to comment on the convergence in norm when possible (i.e.
as applied to all functions in S). It is worthy to warn the
reader that it is out of the scope of the present manuscript



to develop a systematic and complete error analysis for the
exact stability indicators (roots, multipliers, exponents,
etc.), i.e. spectral elements of T (r) as approximated by
the eigenvalues of TN (r). However, let us stress that,
according to the theory developed in Chatelin (1983), the
pointwise convergence, i.e. ‖(T (r) − TN (r))x̂‖S → 0 as
N → ∞ for all x̂ ∈ S, is a mandatory requirement to
the goal, with all the consequences that the forthcoming
analyses bring. This (and other) aspect(s) are planned to
be fully addressed by the authors in a forthcoming work,
Breda et al. (2010).

7.1 Convergence TN (r)→ T (r) in C

Set
TN (r)ϕ = (qN )r (21)

where qN is the collocation solution for the exact problem
(10), i.e. given by (13) with ϕ instead of ϕN : note that in
general pN and qN are different. It is not difficult to see
that

TN (r) = R̂−NTN (r)P̂−N (22)
holds, giving a link for the spectral properties of TN (r)
and TN (r) as detailed at the end.
Assumption 2. Assume the nodes in Ω−N to be Chebyshev
extrema in [−τ, 0], i.e. θ−i = τ(cos (iπ/N)− 1)/2, i =
0, . . . , N , and the nodes in Ω+

N to be Chebyshev zeros in
(0, r), i.e. θ+i = r(1− cos ((2i− 1)π/2N))/2, i = 1, . . . , N .
Theorem 3. Let x solve (10) with r ≥ 0 and ϕ ∈ C and
set T (r) as in (4). Then, under Assumption 2 and for
sufficiently large N , TN (r) in (21) is uniquely defined and

‖(T (r)− TN (r))ϕ‖C ≤ K‖(I − L∗N )Gx‖C+
holds with K = K(r, τ, |a|, |b|) constant independent of N
and ϕ.

Sketch of proof. The proof is based on considering the two
functional equations in C±{

x = uϕ + V Gx
qN = uϕ + V L∗NGqN

respectively for (10) and its collocation problem, both with
initial function ϕ, with uϕ ∈ C± as uϕ(t) = ϕ(t) for
t ∈ [−τ, 0] and uϕ(t) = ϕ(0) elsewhere and V : C+ → C±

as the integral operator (V x)(t) :=
t∫
0

x(σ)dσ for t ∈ [0, r]

and 0 elsewhere. The thesis follows by applying to the
error function eN := x− qN = V (Gx−L∗NGqN ) standard
approximation results such as those used in the proofs of
Breda et al. (2005), e.g. Natanson and Jackson Theorems,
Natanson (1965); Davis (1975), but also Krylov (1956).

Let us observe that the above result does not ensure
neither convergence in norm, i.e. for ‖T (r) − TN (r)‖C
nor pointwise, i.e. for ‖(T (r) − TN (r))ϕ‖C for all ϕ ∈ C,
basically because there is no choice of nodes making classic
polynomial interpolation converge in all C (Faber’s Theo-
rem, Davis (1975); Faber (1914)). Indeed, for pointwise
convergence, more regularity of the initial function ϕ is
required as stated in the following.
Corollary 4. If ϕ in Theorem 3 is absolutely continuous,
then

lim
N→∞

‖(T (r)− TN (r))ϕ‖C = 0.

This explains why the collocation approach is not used,
in general, for approximating the solution (continuity
of ϕ is not enough), while being extremely efficient for
approximating the characteristic values: in this latter case
the underlying solution (= eigenfunction) is analytic Hale
(1977), leading to spectral convergence (see Breda et al.
(2005); Breda (2006); Trefethen (2000)) since the error
is controlled by the interpolation error over Ω+

N for the
derivative x′ = Gx of the exact solution, analytic as well.

Finally, for a fixed N it can be proven that the matrix
TN (r) and the operator P−NTN (r)R−N = L−NTN (r)L−N
have the same nonzero eigenvalues (and relevant multi-
plicities). Moreover, when r ≥ τ we have L−NTN (r)L−N =
TN (r)L−N and ‖(TN (r)L−N − TN (r))ϕ‖C → 0 as N → ∞
whenever ϕ is absolutely continuous. This latter is a conse-
quence of Corollary 4 together with the Banach-Steinhaus
Theorem. By resuming the backbone of the procedure,
asymptotically with N , the spectrum of T (r) is approxi-
mated by that of TN (r) which can be effectively computed
by that of the matrix TN (r) in (15) for any fixed N .

7.2 Convergence TN (r)→ T (r) in X

The analysis is much similar to that for S = C, but some
subtle details must be clarified. First of all and following
(21), an operator

TN (r)(u, ϕ) = (pN (r), (pN )r) (23)
cannot be defined, precisely it is not defined in all the
state space X since a collocation scheme requires ϕ to
be continuous. Nevertheless, (23) holds in D(A), which
is dense in X , Breda (2010) and here (22) is valid. Now,
functions in D(A) are actually absolutely continuous by
the Sobolev Embedding Theorem and so Theorem 3 holds
applied with the necessary modifications as follows.
Assumption 5. Assume the orthogonal systems {φ−i }∞i=0

and {φ+
i }∞i=0 to be of Gauss-Legendre type.

Theorem 6. Let x solve (16) with r ≥ 0 and (u, ϕ) ∈ D(A)
and set T (r) as in (4). Then, under Assumption 5 and
for sufficiently large N , TN (r) in (23) is uniquely defined.
Moreover,

lim
N→∞

‖(T (r)− TN (r))(u, ϕ)‖X = 0.

Sketch of proof. It follows exactly the same line of the
proof sketched for Theorem 3, completed by Corollary 4.

Now, a similar comment about norm-convergence done in
Section 7.1 holds, as well as about spectral convergence for
the characteristic values and their computation through
the matrix TN (r) in (20).

8. CONCLUSIONS

We presented two discretization schemes for the semigroup
of solution operators of LTI-TDS, namely pseudospectral
in S = C and spectral in S = X . The aim, beyond
construction, was to stress some critical facts about the
theoretical (i.e. not experimental) convergence of the ap-
proximations, mostly concerned with the final target of
using these methods (in either one state space or the
other) for stability purposes through the determination of



suitable spectral bounds via standard matrix eigenvalue
problems. Future works of the authors will be aimed at
addressing all the relevant (and numerous) mathematical
details, out of the scope of the present manuscript.
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