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Abstract

Recently the strings and the string number of self-maps were used in the computation of the algebraic
entropy of special group endomorphisms. We introduce two special kinds of strings, and their relative string
numbers. We show that a dichotomy holds for all these three string numbers; in fact, they admit only zero and
infinity as values on group endomorphisms.

1 Introduction

The left Bernoulli shift and the two-sided Bernoulli shift are relevant examples for both ergodic theory and
topological dynamics, while the right Bernoulli shift is fundamental for the theory of algebraic entropy (see
Section 1.2, and for more details and properties see [5]). We start giving their definitions. Let K be an abelian
group.

(a) The two-sided Bernoulli shift tβK of the group KZ is defined by

tβK((xn)n∈Z) = (xn−1)n∈Z, for (xn)n∈Z ∈ KZ.

(b) The right Bernoulli shift βK and the left Bernoulli shift Kβ of the group KN are defined respectively by

βK(x1, x2, x3, . . .) = (0, x1, x2, . . .) and Kβ(x0, x1, x2, . . .) = (x1, x2, x3, . . .).

Moreover, let tβ⊕K = tβK �K(Z) , β
⊕
K = βk �K(N) and Kβ

⊕ = Kβ �K(N) be the respective restrictions on the direct
sums.

The next definition given in [3] is inspired by these classical notions of shift. For every set Γ, every self-map
λ : Γ→ Γ and for every abelian group K, the generalized shift σλ of the direct product KΓ is the endomorphism

σλ : KΓ → KΓ, defined by (xi)i∈Γ 7→ (xλ(i))i∈Γ.

The name of the generalized shifts comes from the fact that they generalize in an obvious sense the Bernoulli
shifts; indeed, the left and the two-sided Bernoulli shifts are generalized shifts, while the right Bernoulli shift
can be well approximated by a generalized shift of the same algebraic entropy (see [2]). In [2] the restriction
σ⊕λ := σλ �K(Γ) : K(Γ) → K(Γ) of σλ to the direct sum K(Γ) was considered. Since K(Γ) is a σλ-invariant
subgroup of KΓ if and only if λ is a finite-to-one self-map of Γ (that is, λ−1(x) is finite for every x ∈ Γ), one
has to add this hypothesis in order to study σ⊕λ as an endomorphism of K(Γ).

Other basic concepts related to dynamical arguments are the following. For a set Γ, a self-map λ : Γ → Γ
and x ∈ Γ the orbit of x for λ is O(x) = {λn(x) : n ∈ N}.
Definition 1.1. Let Γ be a set and λ : Γ→ Γ a self-map.
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(a) An element x ∈ Γ is a periodic point of λ if there exists an integer n ∈ N+ such that λn(x) = x. We
will denote by Per(λ) the set of all periodic points of λ. Moreover, λ is said to be locally periodic if every
x ∈ Γ is a periodic point of λ (i.e., Per(λ) = Γ). Finally, λ is said to be periodic if there exists n ∈ N+

such that λn(x) = x for every x ∈ Γ.

(b) An element x ∈ Γ is a quasi-periodic point of λ if there exist n < m in N such that λn(x) = λm(x). We will
denote by QPer(λ) the set of all quasi-periodic points of λ. Moreover, λ is said to be locally quasi-periodic
if every x ∈ Γ is a quasi-periodic point of λ (i.e., Γ = QPer(λ)). Finally, λ is said to be quasi-periodic if
there exist n < m in N such that λn = λm.

1.1 The string numbers

The notion of string given in item (b) of the following definition was introduced in [2] in order to compute the
algebraic entropy of the generalized shifts. We give first in item (a) a weaker concept, that will be used in the
paper, and in item (c) we define a special class of strings which, after iterations of the map, “form a loop”.

Definition 1.2. Let Γ be a set and λ : Γ→ Γ a self-map. A sequence S = {xn}n∈N ⊆ Γ is

(a) a pseudostring of λ if λ(xn) = xn−1 for every n ∈ N+ (x0 is called first term);

(b) a string of λ if S is a pseudostring such that the xn’s are pairwise distinct elements;

(c) a singular string of λ if S is a string of λ such that x0 ∈ QPer(λ).

Note that a string S such that there exists k ∈ N+ with λk(x0) ∈ S is a singular string. Clearly, a string S
of λ in Γ is singular if and only if S ⊆ QPer(λ).

Considering an endomorphism of an abelian group, instead of a self-map of a set, it is possibile to introduce
also the following special kind of singular strings.

Definition 1.3. If Γ is an abelian group and λ : Γ→ Γ is an endomorphism, a string S = {xn}n∈N is

(d) a null string, if x0 6= 0 and λk(x0) = 0 for some k ∈ N+.

In [2] a cardinal function was defined to measure the number of pairwise disjoint strings of a self-map; indeed,
a precise formula for the algebraic entropy of a generalized shift σ⊕λ was found, making use of the string number
of λ and its properties (see Section 1.2 for the precise formula). We recall the definition of string number in
(b′), while in (c′) and (d′) we introduce similar cardinal functions that measure the number of pairwise disjoint
non-singular strings of a self-map and the number of pairwise disjoint null strings of a group endomorphism
respectively. In general we call these three cardinal functions “string numbers”.

Definition 1.4. Let Γ be a set and λ : Γ→ Γ a self-map. Let

(b′) s(λ) = sup {|F| : F is a family of pairwise disjoint strings of λ in Γ}, the string number of λ;

(c′) ns(λ) = sup {|F| : F is a family of pairwise disjoint non-singular strings of λ in Γ}, the non-singular string
number of λ;

(d′) s0(λ) = sup {|F| : F is a family of pairwise disjoint null strings of λ in Γ}, the null string number of λ, if
Γ is an abelian group and λ an endomorphism of Γ.

As for the algebraic entropy, we want these string numbers to have values in N∪{∞}; so, when the suprema
in these definitions are infinite, we impose that they equal ∞, with the usual convention that a +∞ = ∞ for
every a ∈ N ∪ {∞}.

The aim of this paper is to study the properties of these three cardinal functions, the relations among them,
and to measure their values for endomorphisms of abelian groups.

It is easy to observe that s(λ) ≥ max{ns(λ), s0(λ)}, for a group endomorphism λ. More precisely, Theorem
3.15 shows the following relation among the three string numbers:

s(λ) = ns(λ) + s0(λ). (1.1)

The following Theorem A characterizes the group endomorphisms admitting some string. It gives an affir-
mative answer to [2, Problem 6.6(a)], which asked whether s(λ) > 0 implies s(λ) = ∞ for any endomorphism
λ of abelian groups.

It will be shown in Section 2.1 that surjectivity is not a relevant restriction in the study of the string
numbers. Indeed, for a set Γ and a self-map λ : Γ→ Γ we construct the maximum subset sc(λ) of Γ on which
the restriction of λ is surjective, namely, the surjective core of λ; moreover, all the strings of λ are contained in
the surjective core of λ (see Proposition 2.3).

Theorem A. Let G be an abelian group and ϕ ∈ End(G). The following conditions are equivalent:
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(i) s(ϕ) > 0;

(ii) s(ϕ) =∞;

(iii) sc(ϕ) 6⊆ Per(ϕ).

The following corollary characterizes the surjective group endomorphisms of finite string number, showing
that these are exactly the locally periodic ones.

Corollary. Let G be an abelian group and ϕ ∈ End(G) surjective. The following conditions are equivalent:

(i) s(ϕ) = 0;

(ii) s(ϕ) <∞;

(iii) G = Per(ϕ).

Since a locally periodic endomorphism of a finitely generated abelian group is periodic, we obtain the
following nice characterization of periodic endomorphisms of finitely generated abelian groups, which answers
a question of Zanolin and Corvaja.

Let G be a finitely generated abelian group and ϕ ∈ End(G) surjective. Then s(ϕ) = 0 if and only if
ϕ is periodic.

In other words, if ϕ is not periodic, then ϕ admits infinitely many strings.

Theorems A∗ and A∗∗ in the sequel are the counterpart of Theorem A for the non-singular string number
and the null string number respectively.

Theorem A∗. Let G be an abelian group and ϕ ∈ End(G). The following conditions are equivalent:

(i) ns(ϕ) > 0;

(ii) ns(ϕ) =∞;

(iii) sc(ϕ) 6⊆ QPer(ϕ).

Analogously to the Corollary of Theorem A, we give the following consequence of Theorem A∗ for surjective
group endomorphisms ϕ, showing that ns(ϕ) = 0 if and only if ϕ is locally quasi-periodic.

Corollary. Let G be an abelian group and ϕ ∈ End(G) surjective. The following conditions are equivalent:

(i) ns(ϕ) = 0;

(ii) ns(ϕ) <∞;

(iii) G = QPer(ϕ).

To a certain extent, the next theorem goes in the opposite direction with respect to Theorem A∗, since the
null strings are necessarily singular. For an abelian group G and ϕ ∈ End(G), let ker∞ ϕ =

⋃
n∈N ker(ϕn) be

the hyperkernel of ϕ. The null strings S of ϕ are precisely the strings of ϕ contained in ker∞ ϕ (see Lemma
3.5).

Theorem A∗∗. Let G be an abelian group and ϕ ∈ End(G). The following conditions are equivalent:

(i) s0(ϕ) > 0;

(ii) s0(ϕ) =∞;

(iii) sc(ϕ) ∩ ker∞ ϕ 6= 0.

If ϕ is surjective, then sc(ϕ) = G, hence sc(ϕ) ∩ ker∞ ϕ = G ∩ ker∞ ϕ = ker∞ ϕ. This gives the following
corollary of Theorem A∗∗.

Corollary. Let G be an abelian group and ϕ ∈ End(G) surjective. The following conditions are equivalent:

(i) s0(ϕ) = 0;

(ii) s0(ϕ) <∞;

(iii) ϕ is injective.
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1.2 Algebraic entropy and string numbers

The strings and the string number arose in [2] in the computation of the algebraic entropy of generalized shifts.
Here we recall the definition of algebraic entropy, given by Adler, Konheim and McAndrew [1] and Weiss [9],
and compare the basic properties of the algebraic entropy with the properties of the string numbers.

Let G be an abelian group and F a finite subgroup of G; for an endomorphism ϕ : G → G and a positive
integer n, let Tn(ϕ, F ) = F + ϕ(F ) + . . . + ϕn−1(F ) be the n-th ϕ-trajectory of F with respect to ϕ. The
algebraic entropy of ϕ with respect to F is

H(ϕ, F ) = lim
n→∞

log |Tn(ϕ, F )|
n

,

and the algebraic entropy of ϕ is

ent(ϕ) = sup{H(ϕ, F ) : F is a finite subgroup of G}.

First we recall the precise formula found in [2] for the algebraic entropy of a generalized shift σ⊕λ : K(Γ) →
K(Γ), with λ : Γ→ Γ a finite-to-one self-map of Γ, that is,

ent(σ⊕λ ) = s(λ) · log |K|.

Moreover, in [8] the algebraic entropy of a generalized shift σλ of the direct product KΓ was computed, and
also in this case the string number played a central role.

The following are the basic properties of the algebraic entropy.

Fact 1.5. [5, 9] Let G be an abelian group and ϕ ∈ End(G).

(A) (Conjugation by isomorphism) If ϕ is conjugated to an endomorphism ψ : H → H, of another abelian
group H, by an isomorphism, then ent(ϕ) = ent(ψ).

(B) (Logarithmic law) For every non-negative integer k, ent(ϕk) = k · ent(ϕ). If ϕ is an automorphism, then
ent(ϕk) = |k| · ent(ϕ) for every integer k.

(C) (Addition Theorem) If G is torsion and H is a ϕ-invariant subgroup of G, then ent(ϕ) = ent(ϕ �H)+ent(ϕ),
where ϕ : G/H → G/H is the endomorphism induced by ϕ.

(D) (Continuity for direct limits) If G is direct limit of ϕ-invariant subgroups {Gi : i ∈ I}, then ent(ϕ) =
supi∈I ent(ϕ �Gi).

(E) (Uniqueness) The algebraic entropy of the endomorphisms of the torsion abelian groups is characterized
as the unique collection h = {hG : G torsion abelian group} of functions hG : End(G) → R+ that satisfy
(A), (B), (C), (D) and hZ(p)(N)(β

⊕
Z(p)) = log |Z(p)| for every prime p.

Some of these basic properties of the algebraic entropy have counterparts for the string numbers; indeed,
the string numbers are stable under taking conjugation by group isomorphisms (see Lemma 2.8), and also a
logarithmic law holds for the string numbers (see Corollary 4.6).

Note that the validity of the Addition Theorem for a cardinal function implies monotonicity of the cardinal
function for endomorphisms ϕ of abelian groups G under taking restrictions ϕ �H to ϕ-invariant subgroups
H and under taking induced maps ϕ on quotients G/H. The string numbers are monotone under taking
restrictions to invariant subgroups (see Lemma 2.9). Moreover, the string number and the non-singular string
number are monotone under taking the induced map ϕ on the quotient G/H if ϕ is surjective (see Theorem
4.9), while the null string number fails to have this property (see Example 3.25). In general, all the three string
numbers do not obey this monotonicity law (see Example 4.10 for the string number and the non-singular string
number), and so the Addition Theorem holds for none of the string numbers (see also Example 3.17).

Furthermore, it is proved in [5] that for torsion abelian groups the condition of local quasi-periodicity
in item (iii) of the Corollary of Theorem A∗ is equivalent to ent(ϕ) = 0, and so we have the following new
characterization of surjective group endomorphisms of algebraic entropy zero in terms of the non-singular string
number.

Corollary. Let G be a torsion abelian group and ϕ ∈ End(G) surjective. The following conditions are equiva-
lent:

(i) ns(ϕ) = 0;

(ii) ns(ϕ) <∞;

(iii) ent(ϕ) = 0.
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Note that this corollary does not imply ns(ϕ) = ent(ϕ) for surjective endomorphisms of torsion abelian
groups — see the last row of Table 1.1 below. Nevertheless, if G is a torsion abelian group and ϕ ∈ End(G) is
surjective, then

s(ϕ) ≥ ns(ϕ) ≥ ent(ϕ).

Finally, the string numbers of the Bernoulli shifts are quite different from the algebraic entropy of the
Bernoulli shifts; we calculate the values of the string numbers of the Bernoulli shifts in Example 3.26, while for
the values of the algebraic entropy we refer to [5]. We collect this information in Table 1.1, where we add also
the values of the adjoint algebraic entropy on the Bernoulli shifts. The adjoint algebraic entropy was defined
in [4] substituting in the definition of the algebraic entropy the family of all finite subgroups with the family of
finite-index subgroups. We give the precise definition: if N is a finite-index subgroup of an abelian group G,
ϕ ∈ End(G), and n is a positive integer, the n-th ϕ-cotrajectory of N is Cn(ϕ,N) = G

N∩ϕ−1N∩...∩ϕ−n+1N
. The

adjoint algebraic entropy of ϕ with respect to N is

H?(ϕ,N) = lim
n→∞

log |Cn(ϕ,N)|
n

,

and the adjoint algebraic entropy of ϕ is

ent?(ϕ) = sup{H?(ϕ,N) : N ≤ G, G/N finite}.

Theorems A, A∗ and A∗∗ show that there is a dichotomy for the values of the three string numbers, which
can be either zero or infinity. Since the same dichotomy holds for the values of the adjoint algebraic entropy,
it is worthwhile to compare each of the string numbers also with the adjoint algebraic entropy.

s(−) ns(−) s0(−) ent(−) ent?(−)

β⊕K 0 0 0 log |K| ∞
Kβ
⊕ ∞ 0 ∞ 0 ∞

β
⊕
K ∞ ∞ 0 log |K| ∞

Table 1.1: values on Bernoulli shifts

In analogy with what is done for the algebraic entropy in [5] and for the adjoint algebraic entropy in [4], we
introduce the following notions of string numbers of an abelian group, noting that in this case it is sufficient to
distinguish between value zero and value infinity, in view of Theorems A, A∗ and A∗∗.

Definition 1.6. Let G be an abelian group.

(b′′) The string number of G is s(G) = sup{s(ϕ) : ϕ ∈ End(G)}.
(c′′) The non-singular string number of G is ns(G) = sup{ns(ϕ) : ϕ ∈ End(G)}.
(d′′) The null string number of G is s0(G) = sup{s0(ϕ) : ϕ ∈ End(G)}.

We leave open the following problem, which will be discussed in [6].

Problem 1.7. Describe the abelian groups G that have s(G) = 0 (respectively, ns(G) = 0, s0(G) = 0).

Acknowledgements

It is a pleasure to thank the referee for her/his constructive criticism.

2 General properties

2.1 The surjective core of a self-map

For every self-map λ : Γ → Γ of a set Γ one can be interested in those restrictions of λ that are surjective. In
other words, one can consider λ-invariant subsets Λ of Γ such that the restriction λ �Λ: Λ → Λ is surjective.
Such non-empty subsets Λ need not exist, as the following example shows. This example motivates also the
second part of Lemma 2.2.

Example 2.1. Let λ : N→ N be defined by λ(n) = n+ 1 for every n ∈ N. Then λ �Λ: Λ→ Λ is not surjective
for every non-empty λ-invariant subset Λ of N.
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Nevertheless, something is easy to prove right away: there exists a biggest such Λ (that can be empty), that
we denote by sc(λ) and call surjective core of λ. We denote by λsc the restriction of λ to sc(λ). In the following
lemma we give a constructive proof of the existence of the surjective core of a self-map.

Lemma 2.2. Let Γ be a set and λ : Γ→ Γ a self-map. The surjective core sc(λ) of λ exists.
If Γ is a group and λ ∈ End(Γ), then sc(λ) is a subgroup of Γ, hence it is not empty.

Proof. We define by transfinite induction a transfinite decreasing chain. Let λ0(Γ) = Γ. If α = β + 1 is a
successor ordinal, then λα(Γ) = λ(λβ(Γ)), if α is a limit ordinal, then λα(Γ) =

⋂
β<α λ

β(Γ). Since this is a

decreasing chain of subsets, it stabilizes, that is, there exists α0 such that λβ(Γ) = λα0(Γ) for every β ≥ α0.
We define sc(λ) = λα0(Γ); it is easy to check that this works. Obviously, if Γ is a group and λ ∈ End(Γ), then
sc(λ) is a subgroup of Γ, so it cannot be empty.

The next result permits to reduce the study of the string numbers to the case of surjective endomorphisms.

Proposition 2.3. Let Γ be a set and λ : Γ→ Γ a self-map. Then s(λ) = s(λsc) and ns(λ) = ns(λsc); moreover,
if Γ is an abelian group and λ ∈ End(Γ), then s0(λ) = s0(λsc).

Proof. We show by transfinite induction that if S is a string of λ, then S is contained in λα(Γ) for every cardinal
α, and this implies that S is contained in sc(λ). If α = 0, clearly S ⊆ Γ. Assume that α = β + 1 is a successor
ordinal and that S ⊆ λβ(Γ); since S ⊆ λ(S), it follows that S ⊆ λ(λβ(Γ)) = λα(Γ). If α is a limit cardinal and
S ⊆ λβ(Γ) for every β < α, then S ⊆ λα(Γ). Hence S ⊆ sc(λ).

We give now an example of calculation of the surjective core of a specific group endomorphism.

Example 2.4. Let p be a prime, let G be an abelian group, and let µp ∈ End(G) be the multiplication by p,
that is, the endomorphism of G defined by µp(x) = px for every x ∈ G.

(a) The surjective core of µp is dp(G), the maximum p-divisible subgroup of G. By Proposition 2.3, if
dp(G) = 0 (i.e., G is p-reduced), then s(µp) = 0.

(b) By (a), if G is an abelian p-group, then the surjective core of µp is exactly d(G), the maximum divisible
subgroup of G; so, if G is reduced, then s(µp) = 0.

(c) By (a), if G is a torsion-free abelian group, then the surjective core of µp is precisely pωG; so, if pωG = 0,
then s(µp) = 0.

The left Bernoulli shift is surjective and the two-sided Bernoulli shift is an automorphism, so their surjective
cores coincide with their domains. In the following example we consider the right Bernoulli shift, which is not
surjective, and which turns out to have trivial surjective core.

Example 2.5. Let K = Z(p) for some prime p, and consider the right Bernoulli shift β⊕K : K(N) → K(N).

(a) Then sc(β⊕K) = 0.

(b) Consider the subgroup H = {x = (xn)n∈N :
∑
n∈N xn = 0} of K(N). Then the endomorphism β

⊕
K :

K(N)/H → K(N)/H induced by β⊕K is the identity. Therefore sc(β
⊕
K) = K(N)/H.

Item (b) of this example shows that the projection on the quotient of the surjective core of a group endo-
morphism can be strictly contained in the surjective core of the endomorphism induced on the quotient.

2.2 Basic properties of strings and of string numbers

The following lemma is a useful criterion in order to verify whether two (pseudo)strings are disjoint.

Lemma 2.6. Let G be an abelian group, ϕ ∈ End(G), S = {xn}n∈N and S′ = {yn}n∈N two pseudostrings of ϕ
in G. Then S and S′ are disjoint if and only if x0 /∈ S′ and y0 /∈ S.

Proof. If the pseudostrings S and S′ are disjoint, it follows immediately that x0 /∈ S′ and y0 /∈ S. Viceversa,
suppose that S and S′ meet non trivially. So xn = yk for some n, k ∈ N. If n ≤ k, then x0 = ϕn(xn) =
ϕn(yk) = yk−n ∈ S′. If k ≤ n, then y0 = ϕk(yk) = ϕk(xn) = xn−k ∈ S.

Let G be an abelian group, ϕ ∈ End(G), H a ϕ-invariant subgroup of G, S = {xn}n∈N a pseudostring
of ϕ and π : G → G/H the canonical projection. Then π(S) = {π(xn)}n∈N is a pseudostring of ϕ, where
ϕ : G/H → G/H is the endomorphism induced by ϕ.

Lemma 2.7. Let G be an abelian group, ϕ ∈ End(G), H a ϕ-invariant subgroup of G, π : G → G/H the
canonical projection and ϕ : G/H → G/H the endomorphism induced by ϕ. Let S = {xn}n∈N and S′ = {yn}n∈N
be two pseudostrings of ϕ.
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(a) If π(S) = {π(xn)}n∈N is a string of ϕ, then S is a string of ϕ.

(b) If π(S) ∩ π(S′) = ∅, then S ∩ S′ = ∅.
Lemma 2.8. Let Γ and Λ be two sets, and ξ : Γ → Λ a bijection. Let λ : Γ → Γ and η : Λ → Λ be self-maps
such that λ = ξ−1ηξ. Then s(λ) = s(η) and ns(λ) = ns(η); if Γ and Λ are abelian groups, ξ is an isomorphism,
and λ and η are endomorphisms, then s0(λ) = s0(η).

Lemma 2.9. Let Γ be a set, λ : Γ→ Γ a self-map and Λ a λ-invariant subset of Γ. Then s(λ) ≥ s(λ �Λ) and
ns(λ) ≥ ns(λ �Λ); if Γ is an abelian group, λ ∈ End(Γ) and Λ a subgroup of Γ, also s0(λ) ≥ s0(λ �Λ).

The following lemma gives an easy criterion in order to verify whether a pseudostring contains a string,
namely, it suffices to see that it is infinite.

Lemma 2.10. Let Γ be a set, λ : Γ → Γ a self-map and S = {xn}n∈N a pseudostring of λ. If S is infinite,
then S contains a string, and is itself a string when λ is injective.

Proof. If S itself is not a string, there exist n < m in N such that xn = xm. Therefore xm is a periodic point
of λ of order m − n. Since S is infinite, there exists a maximal m ∈ N such that xm is a periodic point of λ.
Then xm+1 6∈ O(xm), and so S′ = {xn}n>m is a string contained in S.

Lemma 2.11. Let Λ1,Λ2 be sets, λi : Λi → Λi self-maps for i = 1, 2, Γ = Λ1 × Λ2 and λ = λ1 × λ2. Then:

(a) s(λ) = 0 if and only if s(λ1) = s(λ2) = 0;

(b) ns(λ) = 0 if and only if ns(λ1) = ns(λ2) = 0.

If Γ is an abelian group, Λ1,Λ2 subgroups of Γ and λ ∈ End(Γ), then

(c) s0(λ) = 0 if and only if s0(λ1) = s0(λ2) = 0.

Proof. (a) If s(λ) = 0, then s(λ1) = s(λ2) = 0 by Lemma 2.9.
Assume that s(λ) > 0. Let S = {xn}n∈N be a string of λ. For every n ∈ N let xn = (x1

n, x
2
n), where x1

n ∈ Λ1

and x2
n ∈ Λ2. Then S1 := {x1

n}n∈N and S2 := {x2
n}n∈N are pseudostrings of λ1 and λ2 respectively. Assume

that S1 and S2 contains no string. Then S1 and S2 are finite by Lemma 2.10. It follows that S ⊆ S1 × S2 is
finite, and hence S cannot be a string, which is a contradiction. Consequently either S1 or S2 contains a string,
that is either s(λ1) > 0 or s(λ2) > 0.

(b) If ns(λ) = 0, then ns(λ1) = ns(λ2) = 0 by Lemma 2.9.
Assume that ns(λ) > 0. Let S = {xn}n∈N be a non-singular string of λ. For every n ∈ N let xn = (x1

n, x
2
n),

where x1
n ∈ Λ1 and x2

n ∈ Λ2. Then S1 := {x1
n}n∈N and S2 := {x2

n}n∈N are pseudostrings of λ1 and λ2

respectively. We show that either S1 or S2 is a non-singular string. To this aim, let x1
−n = λn(x1

0) and
x2
−n = λn(x2

0) for every n ∈ N and xn = (x1
n, x

2
n) for every n ∈ Z; moreover, assume by contradiction that

x1
a = x1

b and x2
c = x2

d for some non-positive integers a < b and c < d. Assume without loss of generality
that a ≤ c and let m = (b − a)(d − c), which is positive; then xa = xa−m, against the hypothesis that S is
a non-singular string. This proves that either S1 or S2 is a non-singular string, that is, either ns(λ1) > 0 or
ns(λ2) > 0.

(c) If s0(λ) = 0, then s0(λ1) = s0(λ2) = 0 by Lemma 2.9.
Assume that s0(λ) > 0. Let S = {xn}n∈N be a null string of λ. For every n ∈ N let xn = (x1

n, x
2
n), where

x1
n ∈ Λ1 and x2

n ∈ Λ2. Then S1 := {x1
n}n∈N and S2 := {x2

n}n∈N are pseudostrings of λ1 and λ2 respectively.
By the argument in the proof of (a) either S1 or S2 contains a string. Suppose that S1 contains a string. Since
λm(x1

0) = 0 for some m ∈ N+, S1 is a null string and so s0(λ1) > 0. Analogously, if S2 contains a string, then
s0(λ2) > 0.

The next result shows that for an injective self-map every string is non-singular, so its string number
coincides with its non-singular string number.

Proposition 2.12. Let Γ be a set and λ : Γ→ Γ a self-map. If λ is injective and S is a string of λ, then S is
non-singular. In particular, s(λ) = ns(λ).
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2.3 Periodicity and string numbers

In the next result we see that a quasi-periodic self-map has no strings.

Lemma 2.13. Let Γ be a set and λ : Γ→ Γ a self-map. If λ is quasi-periodic, then s(λ) = 0.

Since a periodic map is quasi-periodic, it follows that a periodic map has no strings. So first examples
of group endomorphisms of string number zero are the endomorphism 0G and the identity idG of an abelian
group G. Note that in Lemma 2.13 the quasi-periodicity of λ cannot be replaced by local quasi-periodicity (see
Remark 2.15).

In item (a) of the following result we show that the string number of a self-map λ is zero in case λ is locally
periodic; then also the non-singular string number is zero. But in item (b) we see that the non-singular string
number of λ is zero also under the weaker hypothesis that λ is locally quasi-periodic.

Proposition 2.14. Let Γ be a set and λ : Γ→ Γ a self-map.

(a) If λ is locally periodic, then s(λ) = 0.

(b) If λ is locally quasi-periodic, then ns(λ) = 0.

Proof. (a) For every x ∈ Γ let mx ∈ N+ be the minimum natural number such that λmx(x) = x. If λ(x) = λ(y)
for some x, y ∈ Γ, then x = λmxmy (x) = λmxmy (y) = y and this proves that λ is injective. Moreover,
λ(λmx−1(x)) = x, that shows that λ is surjective. Then O(x) = {x, λ(x), . . . , λmx−1(x)} and λ−n(x) ∈ O(x)
for every n ∈ N. Since λ is injective, each pseudostring of λ has to be contained in a single O(x) for some x ∈ Γ.
We have seen that O(x) is finite, hence all the pseudostrings are finite and they cannot be strings.

(b) is clear.

Remark 2.15. If ϕ is a locally quasi-periodic group endomorphism, it may happen that ϕ has strings (see
Example 3.19). These strings are necessarily singular, since ϕ cannot admit any non-singular string in view of
Proposition 2.14(b).

The next corollary of Proposition 2.14 gives a sufficient condition for µp to have no strings.

Corollary 2.16. If G is a torsion abelian group and dp(tp(G)) = 0 for some prime p, then s(µp) = 0.

Proof. Since G is torsion, G =
⊕

p tp(G). By Proposition 2.3 and Example 2.4(a), s(µp) = s(µp �dp(G)). Since
dp(tp(G)) = 0 by hypothesis,

dp(G) = dp(tp(G))⊕
⊕
q 6=p

tq(G) =
⊕
q 6=p

tq(G).

Therefore, it suffices to prove that µp is locally periodic in order to apply Proposition 2.14(a) to µp �dp(G). Let
x ∈ dp(G), and consider the finite subgroup F = 〈x〉 of G of size m ∈ N+. Since F is µp-invariant and it is
finite, µp �F : F → F is quasi-periodic. Since m is coprime with p, µp �F : F → F is an automorphism, and so
it is locally periodic. Then µp : dp(G) → dp(G) is locally periodic. Hence apply Propositions 2.3 and 2.14(a)
to conclude that s(µp) = s(µp �dp(G)) = 0.

Example 2.4(a) shows that dp(G) = 0 implies s(µp) = 0 for an abelian group G and a prime p. This
implication cannot be reverted; consider for example, for a prime q different from p, the group G = Z(q)(N)

(or G = Z(q∞)), which is a torsion abelian group with dp(G) = G, while dp(tp(G)) = 0 implies s(µp) = 0 by
Corollary 2.16.

In the following theorem item (a) is the equivalence between (i) and (iii) in Theorem A, and item (b) is the
equivalence between (i) and (iii) in Theorem A∗.

Theorem 2.17. Let G be an abelian group and ϕ ∈ End(G) surjective. Then every element x of G is contained
as the first term in a pseudostring of ϕ. Furthermore, if x is not periodic, then every pseudostring S = {xn}n∈N
with x0 = x is a string. Consequently:

(a) s(ϕ) = 0 if and only if sc(ϕ) = Per(ϕ);

(b) ns(ϕ) = 0 if and only if sc(ϕ) ⊆ QPer(ϕ).

Proof. Since ϕ is surjective, there exists a pseudostring S = {xn}n∈N with x0 = x . Assume that xn = xm for
some n < m in N. Then xm−n = x. This means that x is a periodic point of ϕ.

(a) By Proposition 2.3 s(ϕ) = s(ϕsc). Assume that sc(ϕ) ) Per(ϕ). Then there exists a non-periodic
x ∈ sc(ϕ). By the first part of the theorem there exists a string of ϕsc with x as first term. In particular
s(ϕsc) > 0. Suppose now that sc(ϕ) = Per(ϕ). Then ϕsc is locally periodic and so s(ϕsc) = 0 by Proposition
2.14(a).
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(b) By Proposition 2.3 ns(ϕ) = ns(ϕsc). Assume that sc(ϕ) 6⊆ QPer(ϕ). Then there exists x ∈ sc(ϕ)
non-quasi-periodic; in particular x is non-periodic. By the first part of the theorem there exists a string S of
ϕsc with x as first element. Since x is non-quasi-periodic, S is non-singular, and hence ns(ϕsc) > 0. Suppose
now that sc(ϕ) ⊆ Per(ϕ). Then ϕsc is locally quasi-periodic and so ns(ϕsc) = 0 by Proposition 2.14(b).

Going in the opposite direction with respect to Corollary 2.16, the following consequence of Theorem 2.17
produces strings of µp.

Corollary 2.18. Let G be an abelian group and p a prime. If dp(G) 6⊆ t(G), then s(µp) > 0.

Proof. The restriction µp �dp(G): dp(G) → dp(G) is surjective by Example 2.4(a). Since dp(G) 6⊆ t(G), there
exists x ∈ dp(G) with x 6∈ t(G). Since Per(µp) ⊆ t(G), Theorem 2.17(a) yields s(µp) > 0.

3 From one to infinitely many strings

3.1 Garlands and fans

Our aim in this section is, starting from a string of a group endomorphisms ϕ, to construct infinitely many
strings of ϕ. We propose two constructions.

We leave without proof the following easy lemma.

Lemma 3.1. Let G be an abelian group, ϕ ∈ End(G) and let S = {xn}n∈N be a pseudostring of ϕ in G. For
every k ∈ N+,

Sk := {xn + xn+k}n∈N and S∗k := {xn + . . .+ xn+k}n∈N
are pseudostrings of ϕ. Furthermore, for every a ∈ N

aS := {axn}n∈N

is a pseudostring of ϕ.

Definition 3.2. Let G be an abelian group, ϕ ∈ End(G) and let S = {xn}n∈N be a pseudostring of ϕ in G.

(a) The garland of S is G(S) = {Sk}k∈N+ .

(b) The convex garland of S is G∗(S) = {S∗k}k∈N.

(c) The (ak)-fan of S, with {ak}k∈N an infinite sequence of pairwise distinct integers, is F(ak)(S) = {akS}k∈N.

If the elements of G(S) (respectively, G∗(S), F(ak)(S)) are pairwise disjoint strings we say that the garland
(respectively, the convex garland, the fan) is proper. If the elements of G(S) are non-singular strings (respec-
tively, null strings), we say that G(S) is a non-singular garland (respectively, a null garland); and analogously
for G∗(S) and F(ak)(S).

Let S = {xn}n∈N be a pseudostring of an endomorphism ϕ of an abelian group G; moreover, consider
G(S) = {Sk}k∈N+ , G∗(S) = {S∗k}k∈N+ and F(ak)(S) = {akS}k∈N for an infinite sequence of pairwise distinct
integers {ak}k∈N. If H ≤ G and π : G → G/H is the canonical projection, let π(G(S)) = {π(Sk)}k∈N+ ,
π(G∗(S)) = {π(S∗k)}k∈N+ and π(F(ak)(S)) = {π(akS)}k∈N.

Lemma 3.3. Let G be an abelian group, ϕ ∈ End(G), H a ϕ-invariant subgroup of G and π : G → G/H
the canonical projection. If S = {xn}n∈N is a pseudostring of ϕ in G, and {ak}k∈N is a sequence of pairwise
distinct integers, then:

(a) π(G(S)) = G(π(S)),

(b) π(G∗(S)) = G∗(π(S)), and

(c) π(F(ak)(S)) = F(ak)(π(S)).

Assume that S is a string;

(a) if G(π(S)) is proper, then G(S) is proper;

(b) if G∗(π(S)) is proper, then G∗(S) is proper;

(c) if F(ak)(π(S)) is proper, then F(ak)(S) is proper.

Proof. The first part is clear, while the second part follows from Lemma 2.7.
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3.2 Relations among the string numbers, and proof of Theorem A∗∗

The hyperkernel of a group endomorphism has the following easy to prove property, which in some sense permits
to reduce the computation of the null string number to injective group endomorphisms.

Lemma 3.4. Let G be an abelian group and ϕ ∈ End(G). Then the endomorphism ϕ : G/ ker∞ ϕ→ G/ ker∞ ϕ
induced by ϕ is injective.

Moreover, one can easily prove that ker∞ ϕ ≤ QPer(ϕ), and more precisely that QPer(ϕ) = Per(ϕ)+ker∞ ϕ.

The next lemma characterizes the null strings of a group endomorphism. The proof is clear.

Lemma 3.5. Let G be a an abelian group, ϕ ∈ End(G) and S a string of ϕ. Then S is a null string of ϕ if
and only if S ⊆ ker∞ ϕ. In particular, s0(ϕ) = s(ϕ �ker∞ ϕ) = s0(ϕ �ker∞ ϕ).

This lemma has an obvious consequence on the null string number of injective group endomorphisms:

Corollary 3.6. Let G be an abelian group and ϕ ∈ End(G). If ϕ is injective, then s0(ϕ) = 0.

The following lemma is easy to prove and gives a useful characterization of non-singular strings.

Lemma 3.7. Let Γ be a set, λ : Γ→ Γ a self-map and S a string of λ. Then S is non-singular if and only if
S ∩QPer(λ) = ∅.

This lemma has the following immediate consequence for group endomorphisms, since every null string is
singular.

Corollary 3.8. Let G be an abelian group and ϕ ∈ End(G). A non-singular string of ϕ and a null string of ϕ
are always disjoint.

Using only Corollary 3.8 it is possible to prove the following inequality involving the three string numbers.
By making use of Proposition 3.10, Theorem 3.15 will show that in fact the equality holds.

Theorem 3.9. Let G be an abelian group and ϕ ∈ End(G). Then s(ϕ) ≥ ns(ϕ) + s0(ϕ).

Proof. If s(ϕ) = 0 there is nothing to prove. The obvious inequalities s(ϕ) ≥ ns(ϕ) and s(ϕ) ≥ s0(ϕ) settle the
case when at least one of ns(ϕ) and s0(ϕ) is either 0 or ∞. Suppose that 0 < ns(ϕ) <∞ and 0 < s0(ϕ) <∞;
let S = {Si}i∈I and S ′ = {S′j}j∈J be respectively the families of pairwise disjoint non-singular strings and null
strings witnessing this. By Corollary 3.8, Si ∩ S′j = ∅ for every i ∈ I and j ∈ J . Therefore S ∪ S ′ is a family of
pairwise disjoint strings witnessing s(ϕ) ≥ ns(ϕ) + s0(ϕ).

Proposition 3.10. Let G be an abelian group and ϕ ∈ End(G). If ϕ admits a singular string, then ϕ admits
a null string. In particular, if s(ϕ) > 0 and ns(ϕ) = 0, then s0(ϕ) > 0.

Proof. Let S = {xn}n∈N be a singular string of ϕ in G. Define x−n = ϕn(x0) for every n ∈ N. There exists a
greatest b ∈ Z such that xb = xa for some a < b in Z. Then S′ = {yn}n∈N, where yn = xa+n+1 − xb+n+1 for
every n ∈ N, is a null string. Indeed, ϕ(yn) = ϕ(xa+n+1)−ϕ(xb+n+1) = xa+n−xb+n = yn−1 for every n ∈ N+;
moreover, if there exist l < m in N such that yl = ym, then xa+l+1 − xb+l+1 = xa+m+1 − xb+m+1. Applying
ϕl+1 we have that xa+m−l = xb+m−l, in contradiction with the choice of b, since m− l > 0. This shows that S′

is a string of ϕ. To conclude that S′ is a null string note that y0 = xa+1 − xb+1 and ϕ(y0) = ϕ(xa+1 − xb+1) =
xa − xb = 0.

Example 3.19 will show that the conjunction of s(ϕ) =∞ and ns(ϕ) = 0 may occur (in this case, s0(ϕ) =
s(ϕ) =∞). In fact, in the hypothesis of the example, if S = {xn}n∈N is a string, then there exists n ∈ N+ such
that ϕn(x0) = 0. Such a string is a null string, so in particular singular.

The following proposition gives a sufficient condition for the existence of a null string.

Proposition 3.11. Let G be an abelian group and ϕ ∈ End(G). If ϕ is non-injective and surjective, then
s0(ϕ) > 0.

Proof. As ϕ is non-injective, there exists x0 6= 0 in G such that ϕ(x0) = 0. Now define S = {xn}n∈N by
induction, using the fact that ϕ is surjective. To show that S is a null string, it remains to prove that S is a
string. If xn = xm for some n ≤ m in N, then x0 = xm−n and so ϕ(xm−n) = 0 implies m = n.

Recall that a Hopfian group is a group for which every surjective endomorphism is an isomorphism. (Equiv-
alently, a group is Hopfian if and only if it is not isomorphic to any of its proper quotients.) Since Proposition
3.11 implies that having null string number zero is a sufficient condition for a surjective group endomorphism
to be an automorphism, we get the following

Corollary 3.12. Let G be an abelian group. If s0(ϕ) = 0 for every ϕ ∈ End(G), then G is Hopfian.
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It is worth asking whether the converse implication of this corollary holds. So we leave open the following
problem.

Question 3.13. If G is a Hopfian abelian group, is it true that every ϕ ∈ End(G) has s0(ϕ) = 0?

The next proposition shows in particular that s0(ϕ) > 0 implies s0(ϕ) =∞ for any endomorphism ϕ of an
abelian group G. This allows us to prove Theorem A∗∗.

Proposition 3.14. Let G be an abelian group and ϕ ∈ End(G). If ϕ admits a null string S = {xn}n∈N, then
G(S) is proper and null.

Proof. Suppose without loss of generality that ϕ(x0) = 0. Consider the garland G(S) = {Sk}k∈N+ of S. We
show first that Sk is a string for every k ∈ N+. To this end let k ∈ N+ and by contradiction suppose that
there exist n < m in N such that xn + xn+k = xm + xm+k. From this relation we obtain, applying ϕm+k, that
x0 = 0, a contradiction. We verify now that the Sk are pairwise disjoint strings. By Lemma 2.6, it suffices to
fix k ∈ N+ and to prove that x0 + xk 6∈ Sj for every i 6= k in N+. By contradiction suppose that there exists
n ∈ N+ such that x0 + xk = xn + xn+j . Since x0 6= xn as n > 0, we have k 6= n + j. Let i = max{k, n + j};
applying ϕi, we obtain x0 = 0, a contradiction.

We can now prove the equality in Equation (1.1).

Theorem 3.15. Let G be an abelian group and let ϕ ∈ End(G). Then s(ϕ) = ns(ϕ) + s0(ϕ).

Proof. By Theorem 3.9, s(ϕ) ≥ ns(ϕ) + s0(ϕ). We have to prove that equality holds. If s(ϕ) = 0 we are done.
Assume that s(ϕ) > 0. By Proposition 3.10, either ns(ϕ) > 0 or s0(ϕ) > 0. If s0(ϕ) > 0, then s0(ϕ) = ∞ by
Proposition 3.14 and so we get the desired equality. So suppose that s0(ϕ) = 0. Let S be a string of ϕ. If S is
singular, then Proposition 3.10 implies the existence of a null string, against our assumption. Then S has to
be non-singular. This shows that s(ϕ) = ns(ϕ).

Now we can prove Theorem A∗∗.

Proof of Theorem A∗∗. (i)⇒(ii) follows Proposition 3.14, and (ii)⇒(i) is trivial.

(i)⇒(iii) For each null string S of ϕ in G the ϕ-invariant subgroup H generated by S (i.e., the subgroup of
G generated by

⋃
n∈N ϕ

n(S)) satisfies ϕ(H) = H, so H ≤ sc(ϕ), and H ≤ ker∞ ϕ. Then sc(ϕ) ∩ ker∞ ϕ 6= 0.

(iii)⇒(i) Let H = sc(ϕ) ∩ ker∞ ϕ 6= 0. Then ϕ(H) = H, because x ∈ H implies that x = ϕ(y) for some
y ∈ sc(ϕ), and y ∈ ker∞ ϕ since x ∈ ker∞ ϕ, so that y ∈ H. Take now any x ∈ H \{0} and build a pseudostring
S = {xn}n∈N of ϕ in H with x0 = x, using the fact that ϕ(H) = H. Then S is a string since x0 = xn for some
n ∈ N would imply ϕk(x0) 6= 0 for every k ∈ N+, against the hypothesis that x0 ∈ ker∞ ϕ. Moreover, S is a
null string as ϕk(x0) = 0 for some k ∈ N+, since x0 ∈ ker∞ ϕ.

3.3 Examples

One can see that no endomorphism of Z has strings:

Example 3.16. Let ϕ ∈ End(Z). Then ϕ = µa for some a ∈ Z. Since for every x ∈ Z, x is not divisible by a
infinitely many times, every pseudostring of ϕ is finite, so that it cannot be a string; hence s(ϕ) = 0.

The situation is quite different if we consider non-cyclic free abelian groups:

Example 3.17. Let G = Z ⊕ Z, and let ϕ ∈ End(G) be defined by ϕ(e1) = (e1) and ϕ(e2) = e1 + e2, where
e1 = (1, 0) and e2 = (0, 1).

(a) Then ns(ϕ) =∞ (so also s(ϕ) =∞).

Indeed, let S = {(1, 1), (0, 1), (−1, 1), . . . , (−n, 1), . . .}. It is easy to see that S is a non-singular string and
that the fan F(k)(S), for the sequence {k}k∈N = N, is proper and non-singular.

(b) Moreover, the ϕ-invariant subgroup H = Per(ϕ) of G satisfies s(ϕ �H) = 0 = s(ϕ) (so also ns(ϕ �H) =
0 = ns(ϕ)).

Indeed, s(ϕ �H) = 0 by Proposition 2.14(a). Moreover, Per(ϕ) = 〈e1〉 = Z⊕ {0} and G/Per(ϕ) ∼= Z. The
endomorphism ϕ : G/Per(ϕ)→ G/Per(ϕ) induced by ϕ is exactly idG/Per(ϕ), because ϕ(e2) ∈ e2 +Per(ϕ);
hence also s(ϕ) = 0.

(c) Finally, since ϕ is injective, s0(ϕ) = 0 by Corollary 3.6.
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Observe that (a) and (b) of Example 3.17 imply that the counterpart of the Addition Theorem (see Fact
1.5(C)) for s(−) and ns(−) fails spectacularly.

In the next example we see that every non-periodic endomorphism of Q has infinitely many (non-singular)
strings.

Example 3.18. Let G = Q and ϕ ∈ End(G) ∼= Q. Note that the only periodic endomorphisms of Q are 0Q
and ±idQ, which have no strings by Lemma 2.13. Assume that ϕ 6= 0Q, idQ. Then s(ϕ) = ns(ϕ) = ∞, while
s0(ϕ) = 0 by Corollary 3.6.

Indeed, ϕ is the multiplication by some r ∈ Q \ {0,±1}. Consider the string S =
{

1
rn

}
n∈N and let {pk}k∈N

be a sequence of distinct primes coprime with the numerator and with the denominator of r. Then F(pk)(S) is
proper and non-singular.

In the following example we see that a locally quasi-periodic endomorphism ϕ may have strings, even if they
have to be singular strings in view of Proposition 2.14(b).

Example 3.19. Let p be a fixed prime and Z(p∞) the Prüfer group, with generators cn = 1
pn

+Z, for n ∈ N+.
Consider µp ∈ End(Z(p∞)).

(a) Then µp is locally quasi-periodic.

Indeed, for x ∈ Z(p∞), there exists n ∈ N+ such that o(x) = pn, and so µnp (x) = 0.

(b) Moreover, s0(µp) =∞, and so in particular s(µp) =∞.

Indeed, it is easy to see that S = {cn}n∈N+ is a null string of µp. By Proposition 3.14 the garland
G(S) = {Sk}k∈N+ is proper and null.

(c) It is possible to verify that also G∗(S) is proper. On the other hand, for any sequence {ak}k∈N of pairwise
distinct natural numbers, F(ak)(S) is not proper.

Actually, mS is a string only if p2 6 |m, while mS and kS are disjoint for m, k ∈ Z coprime to p and such
that m 6≡ k mod p.

Now one can prove the following result, which gives a condition equivalent to s(µp) = 0. It was inspired by
Example 2.4(a), and a consequence is that the implications in Example 2.4(b,c) can be reverted, as shown by
Corollary 3.21.

Theorem 3.20. Let G be an abelian group and p a prime. Then s(µp) = 0 if and only if dp(G) ⊆ t(G) and
dp(tp(G)) = 0.

Proof. If dp(G) 6⊆ t(G), then s(µp) > 0 by Corollary 2.18. If dp(tp(G)) 6= 0, then tp(G) contains a subgroup H
isomorphic to Z(p∞), and s(µp �H) > 0 by Example 3.19. By Lemma 2.9, s(µp) > 0 as well. If dp(G) ⊆ t(G),
and dp(tp(G)) = 0, by Example 2.4(a), Lemma 2.9 and Corollary 2.16, s(µp) = s(µp �dp(G)) = s(µp �t(G)) =
0.

Corollary 3.21. (a) If G is an abelian p-group, then s(µp) = 0 if and only if G is reduced.

(b) If G is a torsion-free abelian group, then s(µp) = 0 if and only if pωG = 0.

Corollary 3.22. Let p be a prime, and let G be a p-divisible abelian group. Then s(µp) = 0 if and only if G
is torsion and tp(G) = 0.

Proof. Assume that s(µp) = 0. By Theorem 3.20, this implies dp(G) ⊆ t(G) and dp(tp(G)) = 0. Since
dp(G) = G, it follows that G = t(G) =

⊕
p tp(G), and also G = dp(G) = dp(tp(G)) ⊕

⊕
q 6=p tq(G). So

tp(G) = dp(tp(G)) = 0. Suppose now that G = t(G) and tp(G) = 0. By Theorem 3.20, s(µp) = 0.

To complete the description of the values of the string numbers on µp, the following lemma concerns torsion-
free abelian groups.

Lemma 3.23. If G is a torsion-free abelian group, then s0(µp) = 0 and s(µp) = ns(µp).

Proof. If µp admits a null string S = {xn}n∈N, then S ⊆ t(G) = 0. This shows that s0(µp) = 0. By Theorem
3.15, s(µp) = ns(µp).

Example 3.24. Let p and q be distinct primes. Corollary 3.21(b) implies s(µp) = 0 on Jp. Moreover,
ns(µp) = s(µp) = ∞ and s0(µp) = 0 for Jq in view of Lemma 3.23, Corollary 3.22 and Corollary 3.6. Finally,
s(µp) = 0 for Z(q∞) by Corollary 3.22.

The first part of the next example shows that the monotonicity of the null string number under taking
induced endomorphisms on quotients does not hold. So in particular the Addition Theorem fails for the null
string number.
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Example 3.25. Let p be a prime and consider µp : Q → Q. Then s0(µp) = 0 by Example 3.18. Consider
now µp : Q/Z → Q/Z induced by µp, which is still the multiplication by p. Since Q/Z ≥ Z(p∞), and
s0(µp �Z(p∞)) =∞ by Example 3.19, it follows that s0(µp) =∞ by Lemma 2.9.

Moreover, for Q/Z, s(µp) = ∞ for the same reason as above. Furthermore, ns(µp) = 0, because Q/Z =⊕
p Z(p∞), and ns(µp) = 0 for Z(p∞) by Example 3.19, while ns(µp) = 0 on Z(q∞) for every prime q different

from p in view of Example 3.24.

We summarize in the following table the values, calculated in this section, of the string numbers of µp, for
different abelian groups and p a prime. To have ∞ in all three columns, it suffices to take Q⊕ Z(p∞), for p a
prime, and apply Lemma 2.9.

µp s(−) ns(−) s0(−)

Z 0 0 0
Q ∞ ∞ 0

Z(p∞) ∞ 0 ∞
Z(q∞) 0 0 0
Q/Z ∞ 0 ∞
Jp 0 0 0
Jq ∞ ∞ 0

Table 3.1: values on the multiplication by a prime p

In the following example we calculate the string number of the Bernoulli shifts, since they are fundamental
examples in algebraic, but also topological and ergodic entropy theory.

Example 3.26. Let K be a non-trivial abelian group.

(a) First we prove that s(β⊕K) = 0 (and so ns(β⊕K) = s0(β⊕K) = 0).

In fact, for every x ∈ K(N), x 6= 0, there exists m ∈ N+ such that (β⊕K)−m(x) is empty and so β⊕K cannot
have any string in K(N).

For an alternative proof, note that sc(β⊕K) = 0 by Example 2.5, and hence s(β⊕K) = 0 by Proposition 2.3.

(b) We verify now that s(Kβ
⊕) = s0(Kβ

⊕) =∞ and ns(Kβ
⊕) = 0.

Since Kβ
⊕ is surjective and non-injective, by Proposition 3.11 it admits a null string S and by Proposition

3.14 G(S) is proper and each Sk ∈ G(S) is a null string. Then s(Kβ
⊕) = s0(Kβ

⊕) = ∞. Moreover, for
each x ∈ K(N) there exists n ∈ N+ such that (Kβ

⊕)n(x) = 0 and so every string of Kβ
⊕ is a null string.

In particular, ns(Kβ
⊕) = 0.

(c) Finally, s(tβ⊕K) = ns(tβ⊕K) =∞ and s0(tβ⊕K) = 0.

The group K(Z) can be written also as K(Z) =
⊕

i∈ZKi with Ki = K for all i ∈ Z. Let x be a non-zero
element of K and for each i ∈ Z let gi ∈

⊕
i∈NKi be such that supp(gi) = {i} and the i-eth entry of

gi is exactly x. Then β
⊕
K(gi) = gi+1 for every i ∈ Z. Then S = {g−i}i∈N is a string of tβ⊕K in

⊕
i∈ZKi.

It is clear that G∗(S) = {S∗k}k∈N+ is proper, looking at the supports of the elements of each S∗k . Hence
s(tβ⊕K) = ∞. Moreover, these strings are non-singular and so s(tβ⊕K) = ns(tβ⊕K) = ∞. By Corollary 3.6,
s0(tβ⊕K) = 0.

We conclude this series of examples with the calculation of the string number of a generalized shift.

Example 3.27. Let Γ be a set, and λ : Γ→ Γ a self-map. Following [8], an infinite orbit of λ in Γ is an infinite
sequence of distinct elements A = {an}n∈N such that λ(an) = an+1 for every n ∈ N. Moreover,

o(λ) = sup{|F| : F is a family of pairwise disjoint infinite orbits of λ in Γ}.

Assume that λ is surjective and λ−1(i) is finite for every i ∈ Γ. Let K be a non-trivial finite abelian group
and consider the generalized shift σ⊕λ : K(Γ) → K(Γ). Then

s(σ⊕λ ) =

{
0 if and only if o(λ) = 0,

∞ if and only if o(λ) > 0.

To verify this result, first assume that o(λ) > 0. Then there exists an infinite orbit A = {an}n∈N of λ in
Γ. Define B = A ∪

⋃
n∈N+

λ−n(a0); then B ⊇ λ(B) ∪ λ−1(B). By [8, Proposition 6.2] K(B) is σ⊕λ -invariant

and σ⊕λ �K(B)= σλ�B . By Lemma 2.9 s(σ⊕λ ) ≥ s(σ⊕λ �K(B)) = s(σλ�B ). So it suffices to prove that s(σλ�B ) is
infinite. To this end, let x be a non-zero element of K. For every n ∈ N let xn be the element of K(Γ) such that
supp(xn) = {an} and the an-th entry of xn is exactly x. In particular the xn’s are pairwise distinct elements of
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G. Since A is λ-invariant, it is possible to consider λ �A: A→ A, which is injective. Therefore σλ�A(xn) = xn−1

for every n ∈ N+. Consequently S = {xn}n∈N is a string of σλ�A . Then G∗(S) is proper: it suffices to look
at the supports of the elements of the Sk ∈ G∗(S). In particular, s(λ �A) = ∞, and so by Lemma 2.9 also
s(λ) =∞.

Suppose now that s(σ⊕λ ) > 0 and let S = {xn}n∈N be a string of σ⊕λ . Let F = supp(x0). By [2, Claim
4.2(a)] supp((σ⊕λ )n(xn)) = λ−n(supp(xn)) for every n ∈ N. But (σ⊕λ )n(xn) = x0 and λ is surjective; then
λn(F ) = supp(xn) for every n ∈ N. If there exists m ∈ N+ such that λm(F ) ⊆ F ∪ . . . ∪ λm−1(F ), then

xn ∈ KF∪...∪λm−1(F ) for every n ∈ N, and so S ⊆ KF∪...∪λm−1(F ) which is not possible because S is infinite

while KF∪...∪λm−1(F ) is finite. Consequently λn(F ) 6⊆ F ∪ . . . ∪ λn−1(F ) for every n ∈ N. It follows that
L =

⋃∞
n=0 λ

n(F ) is infinite. But L =
⋃
x∈F

⋃∞
n=0

{
x, σ⊕λ (x), . . . , (σ⊕λ )n(x)

}
, and F is finite, hence there exists

x ∈ F such that A =
⋃∞
n=0{x, λ(x), . . . , λn(x)} = O(x) is infinite; in particular the elements of A are all

distinct, so that A is an infinite orbit of λ, that is, o(λ) > 0.

4 Theorems A and A∗

4.1 The case of free abelian groups

We can generalize Example 3.17 in the following way:

Theorem 4.1. Let {pn}n∈N be the sequence of all primes in increasing order. Let G be a torsion-free abelian
group such that

⋂
m∈N

⋃∞
n=m pnG = 0. If ϕ ∈ End(G) admits a string S, then there exists an infinite sequence

of pairwise distinct primes {qk}k∈N such that F(qk)(S) is proper.

Proof. First we show that the hypothesis implies that

(∗) for every x ∈ G \ {0}, there exists an infinite sequence of pairwise distinct primes {qk}k∈N, such that
qlx /∈ qkG for all l 6= k in N.

Let x ∈ G \ {0}. Then x ∈ G \
⋂
m∈N

⋃∞
n=m pnG =

⋃
m∈N

⋂∞
n=m(G \ pnG), and so there exists m ∈ N such that

x 6∈ pnG for every n ≥ m. For k ∈ N let qk = pk+m. Then for l 6= k in N one has qlx /∈ qkG; indeed, since
(ql, qk) = 1, qmx ∈ qkG would imply x ∈ qkG. Then {qk}k∈N is the sequence required in (∗).

Let S = {xn}n∈N be a string of ϕ, and let {qk}k∈N be the infinite sequence of pairwise distinct primes given
by (∗) for x = x0. Consider F(qk)(S) = {qkS}k∈N. Since G is torsion-free, each qkS is a string of ϕ. Moreover,
the Sk’s are pairwise disjoint because qmx0 /∈ qkG for all m 6= k in N and hence Lemma 2.6 applies.

The following corollary is a consequence of Theorem 4.1 and it shows in particular that an endomorphism
ϕ of a free abelian group admits a string precisely when it admits infinitely many strings, i.e., s(ϕ) > 0 implies
s(ϕ) =∞.

Corollary 4.2. Let G be a free abelian group and ϕ ∈ End(G). If there exists a string S = {xn}n∈N of ϕ, then
there exists an infinite sequence of distinct primes {pk}k∈N such that F(pk)(S) is proper.

Proof. We verify that G satisfes the hypothesis of Theorem 4.1. Fix a basis B of G and x ∈ G \ {0}. Then
x =

∑
i kibi, for some bi ∈ B and ki ∈ Z \ {0}. Hence, x ∈ pG for some prime p if and only if p|ki for all i.

This proves that x ∈ pG only for finitely many primes p, and so the hypothesis of Theorem 4.1 is satisfied.

4.2 The string number of an injective endomorphism

In this section we prove Theorem A for injective group endomorphisms in Proposition 4.5. We start with two
technical results, which will be applied in its proof.

Lemma 4.3. Let G be an infinite finitely generated abelian group, ϕ ∈ End(G) injective, and S = {xn}n∈N
a string of ϕ. Then there exists an infinite sequence {ak}k∈N of pairwise distinct natural numbers such that
F(ak)(S) is proper.

Proof. Since G is finitely generated, G = F ⊕ t(G) where F is a free abelian group and t(G) is finite. One
can write in a unique way xn = tn + cn with tn ∈ t(G) and cn ∈ F . Since G is finitely generated, there
exists m ∈ N+ such that mt(G) = 0, and so mG = mF , which is a ϕ-invariant subgroup of G. Then
mS = {mxn}n∈N = {mcn}n∈N, because mtn = 0 for every n ∈ N. We verify that mS is a string. In fact,
assume that mS is not a string. By Lemma 2.10 mS is finite. Since mca = mcb implies ca = cb, because F is
free, also {cn}n∈N is finite. So we have the injection S ↪→ t(G)× {cn}n∈N of S in a finite set, a contradiction.
This proves that mS is a string of ϕ �mG in the free abelian group mG. Now apply Corollary 4.2 to find
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an infinite sequence of pairwise distinct primes {qk}k∈N such that F(qk)(kS) is a proper fan of ϕ �mG. Let
ak = qkm for every k ∈ N+. Then F(ak)(S) = F(qk)(mS), and so this is a proper fan of ϕ.

The next proposition is a powerful tool which applies in the proof of Proposition 4.5.

Proposition 4.4. Let G be an abelian group, ϕ ∈ End(G) injective, and S = {xn}n∈N a string of ϕ. If there
exist k < h in N+ such that

xh ∈ ±x0 + 〈x1, . . . , xk〉 , (4.1)

then there exists an infinite sequence of pairwise distinct integers {ak}k∈N such that F(ak)(S) is proper.

Proof. We prove that the subgroup H = 〈S〉 is ϕ-invariant and finitely generated. Since S is infinite, Lemma
4.3 can be applied to H and ϕ �H to conclude the proof.

To prove that H is ϕ-invariant it suffices to check that ϕ(x0) ∈ 〈S〉. This follows immediately from that
fact that x0 = ±xh + a1x1 + . . . + akxk for some integers a1, . . . , ak, according to our hypothesis. Now we
show that S ⊆ 〈x0, . . . , xh〉, and this implies that H = 〈S〉 is finitely generated. To this end we prove by
induction that xn ∈ 〈x0, . . . , xh〉 for every n ≥ h. For n = h this is obvious. Assume now that n > h and
ϕ(xn) = xn−1 ∈ 〈x0, . . . , xh〉. Then (4.1) yields

ϕ(xn) ∈ 〈x0, . . . , xh−1〉 = 〈ϕ(x1), . . . , ϕ(xh)〉 = ϕ(〈x1, . . . , xh〉).

By the injectivity of ϕ we conclude that xn ∈ 〈x0, . . . , xh〉.

The next proposition proves, as a byproduct, the equivalence between (i) and (ii) of Theorem A in case the
group endomorphism is injective. In more details, given a string of an injective group endomorphism, it states
that at least one between the garland or a fan is proper; in both cases, from one string it produces infinitely
many pairwise disjoint strings.

Proposition 4.5. Let G be an infinite abelian group, ϕ ∈ End(G) injective, and S = {xn}n∈N a string of ϕ.
Then

(i) either G(S) is proper, or

(ii) there exists an infinite sequence {ak}k∈N of pairwise distinct natural numbers such that F(ak)(S) is proper.

Proof. Consider the garland G(S) = {Sk}k∈N.

Case 1. Assume that Sk is not a string for some k ∈ N. Then xj + xj+k = xj+a + xj+a+k for some
j ∈ N, a ∈ N+. Applying ϕj we find x0 + xk = xa + xa+k. In particular xa+k ∈ x0 + 〈x1, . . . , xa+k−1〉 and so
Proposition 4.4 gives (ii).

Case 2. Suppose that there exist l < m in N such that Sl and Sm have non-trivial intersection. As xl 6= xm,
one has x0 + xl 6= x0 + xm. So we have two cases.

(a) If x0 + xl = xj + xj+m with j > 0, then, since m > l, we get xj+m ∈ x0 + 〈x1, . . . , xj+m−1〉, and so
Proposition 4.4 yields (ii).

(b) If x0 +xm = xj +xj+l with j > 0, then j+ l 6= m, otherwise x0 = xj , a contradiction. If j+ l > m, then
xj+l ∈ x0 + 〈x1, . . . , xj+l−1〉; if j + l < m, then xm ∈ −x0 + 〈x1, . . . , xm−1〉. In both these cases Proposition
4.4 gives again (ii).

Case 3. If neither Case 1 nor Case 2 occur, then we have (i).

Now we prove Theorem A and Theorem A∗.

Proof of Theorem A∗. (i)⇒(ii) Let S = {xn}n∈N be a non-singular string of ϕ inG. Consider ϕ : G/ ker∞ ϕ→
G/ ker∞ ϕ. By Lemma 3.4 ϕ is injective. So we can apply Proposition 4.5. If G(S + ker∞ ϕ) is proper then
G(S) is proper too by Lemma 3.3(a). Otherwise there exists an infinite sequence of pairwise distinct integers
{ak}k∈N such that F(ak)(S + ker∞ ϕ) is proper. Then F(ak)(S) is proper as well by Lemma 3.3(c).

(ii)⇒(i) is trivial and (i)⇔(iii) is Theorem 2.17(a).

Proof of Theorem A. (i)⇒(ii) Since s(ϕ) > 0, by Theorem 3.15 either ns(ϕ) > 0 or s0(ϕ) > 0. If ns(ϕ) > 0,
then ns(ϕ) =∞ by Theorem A∗. If s0(ϕ) > 0, then s0(ϕ) =∞ by Proposition 3.14.

(ii)⇒(i) is trivial and (i)⇔(iii) is Theorem 2.17(b).
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4.3 Consequences of Theorems A, A∗ and A∗∗

The following corollary of Theorems A, A∗ and A∗∗ is a logarithmic law for the string numbers. This is a
typical property of the algebraic entropy (see Fact 1.5(B)).

Corollary 4.6. Let G be an abelian group and ϕ ∈ End(G). Then s(ϕk) = ks(ϕ), ns(ϕk) = kns(ϕ) and
s0(ϕk) = ks0(ϕ) for every k ∈ N+.

The following is an immediate consequence of Lemma 2.11 and Theorems A, A∗ and A∗∗. It is a weak
version of the Addition Theorem (see Fact 1.5(C)), even if we saw that the Addition Theorem does not hold in
full generality for the three string numbers.

Corollary 4.7. Let G be an abelian group, ϕ ∈ End(G). Let G1, G2 be ϕ-invariant subgroups of G such that
G = G1 ×G2, and let ϕ1 = ϕ �G1 , ϕ2 = ϕ �G2 . Then:

(a) s(ϕ) = s(ϕ1) + s(ϕ2);

(b) ns(ϕ) = ns(ϕ1) + ns(ϕ2);

(c) s0(ϕ) = s0(ϕ1) + s0(ϕ2).

As another consequence of Theorems A and A∗ we find the following relation between the string number
and the non-singular string number.

Corollary 4.8. Let G be an abelian group and ϕ ∈ End(G) surjective. Then s(ϕ) = ns(ϕ) if and only if either
G 6= QPer(ϕ) or G = Per(ϕ).

Proof. If G = QPer(ϕ) > Per(ϕ), then s(ϕ) =∞ and ns(ϕ) = 0 by the Corollaries of Theorem A and Theorem
A∗. Assume now that s(ϕ) > ns(ϕ); by Theorem A and A∗ it follows that s(ϕ) = ∞ and ns(ϕ) = 0. By the
corollaries of Theorem A and Theorem A∗, G = QPer(ϕ) > Per(ϕ).

We have already seen that monotonicity under taking restrictions to invariant subgroups is always available
for the string numbers. Example 3.25 shows that the null string number is not monotone under taking induced
endomorphisms on quotients, even for surjective endomorphisms. The next theorem shows that instead the
string number and the non-singular string number are monotone under taking endomorphisms induced on a
quotient by a surjective endomorphism.

Theorem 4.9. Let G be an abelian group, ϕ ∈ End(G) surjective, H a ϕ-invariant subgroup of G and ϕ :
G/H → G/H the endomorphism induced by ϕ. Then s(ϕ) ≥ s(ϕ) and ns(ϕ) ≥ ns(ϕ).

Proof. By Theorems A and A∗ it suffices to prove that s(ϕ) = 0 implies s(ϕ) = 0 and that ns(ϕ) = 0 implies
ns(ϕ) = 0. Since ϕ is surjective, ϕ is surjective as well. By the Corollary of Theorem A, s(ϕ) = 0 if and only if
G = Per(ϕ). Then G/H = Per(ϕ), that is, s(ϕ) = 0 by the same corollary. By the Corollary of Theorem A∗,
ns(ϕ) = 0 if and only if G = QPer(ϕ). Then G/H = QPer(ϕ), that is, ns(ϕ) = 0 by the same corollary.

Example 4.10 shows that this monotonicity law is not satisfied by arbitrary group endomorphisms.

Example 4.10. Let p be a prime and consider Jp. Then Z is dense in Jp, and Jp/Z ∼= Q(c)⊕
⊕

q 6=p Z(q∞). By
Example 3.24 s(µp) = 0, while Theorem 3.20 yields s(µp) =∞, where µp : Jp/Z→ Jp/Z.

If now we consider the quotient Q(c) of Jp/Z (so it is also a quotient of Jp), then the endomorphism
µ′p : Q(c) → Q(c) induced by µp is still the multiplication by p. Therefore, ns(µ′p) = s(µ′p) = ∞, while
ns(µp) = s(µp) = 0 by Corollary 3.21(b). Note that s0(µp) = s0(µp) = 0 by Corollary 3.6.

Nevertheless, we leave open the following question.

Problem 4.11. Describe the endomorphisms ϕ of abelian groups G and the ϕ-invariant subgroups H of G,
such that s(ϕ) ≥ s(ϕ) (respectively, ns(ϕ) ≥ ns(ϕ)), where ϕ : G/H → G/H is the endomorphism induced by
ϕ.
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