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And those who were seen dancing were thought to be insane by those who
could not hear the music.

Friedrich Nietzsche



Abstract

Egocentric actions generate distinctive and varied sounds from the interactions
between hands and objects. Yet, egocentric vision methods had dismissed the
auditory signal and were focused on understanding object manipulations through
visual reasoning solely. This thesis enhances egocentric action understanding with
audio recognition capabilities by capitalising on the close proximity of the wear-
able sensor to the ongoing action that enables capturing crisp audio recordings.

This thesis leverages the natural synergy of vision and audio and focuses on audio-
visual integration for egocentric action recognition. As actions progress at differ-
ent speeds for each modality, traditional synchronous fusion approaches cannot
associate misaligned discriminative moments of each modality. To unlock this po-
tential, this thesis proposes an asynchronous fusion approach by randomly binding
appearance, motion and auditory inputs within temporal windows.

The next endeavour of this thesis is to improve the audio understanding capacity
of visually impaired action recognition models. Inspired by the two-stream hy-
pothesis of the human auditory system, this thesis introduces a novel two-stream
auditory architecture, where a slow stream focuses on harmonic sounds and a
fast stream captures percussive sounds. This thesis also offers an investigation on
four-stream architectures that fuse slow and fast visual and auditory streams and
showcases the vital importance of audio-visual regularisation for training such ar-
chitectures.

Finally, this thesis brings a new perspective to action recognition from untrimmed
videos by showing that the current paradigm of treating each action in isolation
is inefficient. Using the key insight that untrimmed videos offer well-defined se-
quences of actions, this thesis proposes to strengthen the understanding of ac-
tions by exploiting the temporal progression of the activity that takes place within
their temporal context. To this end, this thesis introduces the notion of multi-
modal temporal context and proposes a model to capture the inductive biases of
untrimmed videos using vision, audio and language.
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CHAPTER

ONE

INTRODUCTION

With the availability of multi-sensor wearable devices (e.g. GoPro, Vuzix Blade, Pupil Labs,
Google Glass, Microsoft Hololens), egocentric audio-video recordings have become popular
in many areas such as extreme sports, health monitoring, life logging, home automation and
augmented reality. As a result, there has been a renewed interest from the computer vision
community on collecting large-scale datasets [36, 63, 151, 167] as well as developing new or
adapting existing methods to the first-person point-of-view scenario [13, 108, 109, 120, 179].
Egocentric videos offer a unique perspective of the wearer’s hands and how these grasp and
interact with objects. Thus, at the core of egocentric perception is the ability to reason about
hand-object interactions where researchers have proposed various approaches including hand
and object detection [13, 120], attention-based mechanisms to focus on salient regions around
the hands [108, 179] as well as distilling egocentric signals (hand-object interaction maps and
interactive object scores) from third-person datasets into first-person action recognition mod-
els [109]. Unreasonably, there has been no works exploring the role of audio in understanding
object interactions despite being available at no extra cost in egocentric footage.

One reason might be that the tale of audio for third-person actions was not compelling. While
audio has been successfully used for video representation learning [4, 5, 6, 7, 94, 137, 142], in
third-person action recognition with datasets like Kinetics [90] the contribution of audio has
been limited [115, 116, 133, 196, 207]. One cause is that these datasets are downloaded from
YouTube and the visual action cannot always be heard due to irrelevant audio, such as speech
from a narrator or background music. Moreover, the camera is often far from the performer
and sounds relevant to the action might not be captured.
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Nevertheless, the egocentric domain is vastly different as it offers rich sounds resulting from
the interactions between hands and objects, as well as the close proximity of the wearable
microphone to the undergoing action. Audio is a prime discriminator for some actions (e.g.
‘wash’, ‘fry’) as well as objects within actions (e.g. ‘put plate’ vs ‘put bag’). Moreover, there
are sound-emitting objects with distinct sound signatures (e.g. ‘coffee machine’ vs ‘microwave
oven’). At times, the temporal progression (or change) of sounds can separate visually am-
biguous actions (e.g. ‘open tap’ vs ‘close tap’). Audio can also capture actions that are out of
the wearable camera’s field of view, but audible (e.g. ‘eat’ can be heard but not seen). Con-
versely, other actions are sound-less (e.g. ‘wipe hands’) but can be seen. One challenge is
that the wearable sensor might capture irrelevant sounds, such as talking or music playing in
the background. The opportunities and challenges of incorporating audio in egocentric ac-
tion recognition allow the exploration of novel multi-sensory fusion approaches but also pave
the path towards enabling action recognition solely from the audio stream. Using these key
insights, this thesis unlocks the potential of models that can both listen and look to objects, ac-
tions, and interactions. Towards this goal, the thesis proposes novel solutions to four problems
that concern egocentric vision and hearing.

Problem 1: Audio-visual fusion
The central importance of appearance and motion for understanding actions has made two-
stream architectures with spatial and temporal streams the prominent approach in third-person
action recognition [24, 46, 110, 168, 187, 194, 217]. Research in egocentric action recogni-
tion has adapted the two-stream paradigm to encode hand-object interactions by introducing
specialised appearance and motion streams [13, 120, 178, 179]. Other works extended the
two-stream architecture to multiple streams with additional ego-specific inputs [170, 172].
Uniquely, this thesis explores audio as a prime modality to provide complementary informa-
tion to visual modalities (appearance and motion) in egocentric action recognition.

However, fusing multi-modal data streams is not trivial and there are certain caveats that re-
quire consideration when combining inputs as a function of time. Works on multi-modal fusion
within convolutional networks for action recognition commonly take either a holistic approach
of combining temporally aggregated representations of each modality [115, 116, 194] or com-
bine multi-modal temporal inputs using synchronised samples across modalities [46]. Each of
these approaches are problematic in different ways. Fusing global representations disregards
the importance of time for multi-modal integration whereas associating the most salient mo-
ments from each modality can bolster the learning of stronger representations and enable mod-
elling the temporal progression of actions in a cross-modal rather than within-modal setting.
Importantly, actions unfold at a different pace for each modality and at times modalities are
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temporally misaligned in the semantic level, i.e. the discriminative moments of each modality
might occur at different temporal positions. Therefore, a synchronous fusion approach cannot
account for such modality misalignments. Moreover, the large disparities of sampling rates of
different modalities make synchronous fusion further laborious and the effect becomes more
pronounced with more modalities.

To address these challenges, this thesis draws inspiration from neuroscience where there is
evidence about the existence of a Temporal Binding Window in humans that allows individuals
to perceptually link multi-sensory inputs within a range of temporal offsets. Accordingly, the
first milestone of the thesis is an asynchronous fusion approach that associates appearance,
motion, and auditory samples using random modality offsets within temporal windows before

temporal aggregation. Random offsets allow scaling up to many modalities with different
sampling rates and also act as a regulariser during training.

Problem 2: Visually impaired action recognition
A visually impaired action recognition model should be able to resort to audio to comprehend
egocentric actions. Yet, such a model needs enhanced audio recognition capabilities to com-
pensate for the loss of visual information. To this end, the next endeavour of this thesis is
to tackle auditory activity recognition – classifying objects, interactions and activities solely
from the audio stream of videos depicting activities. This is a novel area of research as work
on action recognition considers audio along with vision but not on its own right. Furthermore,
the need for perceiving the sounds produced upon interacting with objects makes the prob-
lem unique from any prior work in audio recognition and particularly challenging. Differently
from acoustic scene classification [124] that focuses on environmental background sounds, in
auditory activity recognition there is the need for recognising sound-emitting and interactive
objects. Compared to datasets for environmental sound classification [146] that do contain
acoustic objects with distinct sound characteristics (e.g. ‘washing machine’ vs ‘mouse click’),
the fine-grained nature of egocentric actions entails intra-class variations (e.g. ‘close cupboard’
vs ‘close fridge’) necessitating more sophisticated approaches for discriminating between such
subtle differences.

Inspired by Harmonic/Percussive Source Separation, this thesis considers two types of sounds
in activity-based datasets, harmonic sounds that span in time at different frequencies (e.g.
‘wash hands’, ‘mosquito buzzing’) and percussive sounds that are momentary or temporally
repetitive (e.g. ‘put glass’, ‘playing tympani’). To model harmonic and percussive sounds, the
thesis capitalises on evidence from neuroscience that points to the existence of two streams in
the human auditory system, a ventral stream for acoustic object recognition and a dorsal stream
for object localisation. Accordingly, the thesis proposes a two-stream architecture for audio
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with a Slow stream that focuses on learning frequency semantics using a low sampling rate
and increased channel capacity and a Fast stream that models temporal patterns with a high
sampling rate and less channels. The architecture learns corresponding Slow-Fast concepts at
multiple representation levels through multi-level fusion.

Problem 3: Multi-stream audio-visual fusion
The proposed auditory Slow-Fast network is in fact inspired from a similar vision-based ar-
chitecture with a Slow stream for capturing appearance and a Fast stream for motion mod-
elling [47]. This opens the opportunity of exploring the integration of corresponding streams
across modalities, forming audio-visual Slow and audio-visual Fast pathways, a previously
unexplored topic in multi-modal fusion for action recognition. The intuition behind this de-
sign is that it is advantageous to associate the appearance of an object with its spectral auditory
properties (audio-visual Slow), as well as the motions that constitute an action with its auditory
temporal patterns (audio-visual Fast).

This thesis proposes a cross-attention fusion approach for audio-visual Slow-Fast fusion, aim-
ing to attend to the visual object that produces the sound and vice versa to select the acoustic
components of the sounding object depicted in the video. However, training such architec-
tures is challenging for two reasons. First and foremost, the network can memorise the noise
in egocentric audio recordings due to irrelevant background sounds or silent actions, causing
overfitting. This is more pronounced for the proposed architecture due to its increased capac-
ity. Second, it has been shown that audio-visual networks overfit due to the discrepancy of
learning dynamics between the two modalities – audio overfits faster causing joint optimisa-
tion schemes to underperform [196, 207]. This thesis shows that an integral component for
improving the training of the proposed architecture is an audio-visual regularisation scheme
that randomly drops the audio stream in training, inspired by [207]. Randomly dropping audio
in training has two advantages: i) the network learns to rely less on audio, accounting for the
noise in the audio recordings, and ii) the learning pace of the audio stream is adapted to that
of its visual analogue.

Problem 4: Going beyond single actions
Most action recognition approaches take as input a single clip to predict an action. While this is
reasonable for action recognition with trimmed videos, it is incompetent for capturing the prior
structure of untrimmed videos that contain activities organised into well-defined sequences of
actions. Actions are visually correlated within neighbourhoods of a given extent. For example
consider the following sequence: take knife → cut pizza → put knife → take pizza slice →
put pizza slice. It becomes easier to predict that the pizza is being cut if you watched the knife
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being taken before and put down afterwards. Yet, approaches that treat actions in isolation
cannot exploit this information and are prone to errors due to object occlusions (e.g. the knife
being covered by the other hand), a problem that can be mitigated by looking at neighbouring
action clips.

Based on this motivation, this thesis proposes a model that can capture the inductive biases of
untrimmed videos by leveraging the action’s temporal context. Interestingly, audio carries also
important information about the temporal progression of the activity that takes place within the
temporal context; in the example above, the sound of cutting the pizza may be followed by the
sound of putting the knife down. Moreover, in addition to the temporal context in the data
stream, the semantic temporal context from the labels of neighbouring actions is predictive for
the activity too, i.e. an action can be predicted solely based on language. Taking these into
consideration, this thesis proposes an attention-based architecture for capturing multi-modal
temporal context by attending to neighbouring actions using vision and audio as input modality
context and a language model acting as a prior to filter out improbable action sequences.

Contributions
The main contributions of this thesis are summarised as follows:

• The thesis offers an empirical study of the importance of audio for understanding object
interactions.

• The thesis proposes a novel end-to-end trainable three-stream convolutional network that
combines appearance, motion and audio with mid-level fusion within temporal windows
along with an analysis of the length of the window. The ability of the proposed network
to handle videos that contain audio with irrelevant sounds is also studied.

• The thesis introduces the problem of activity recognition using only audio. To address
the problem, a novel bio-inspired two-stream network with multi-level fusion and con-
volutional separation over frequency and time is proposed.

• A four-stream architecture that combines two-stream auditory and visual networks with
cross-modal attention is proposed, and the significance of audio-visual regularisation for
training efficiently the proposed architecture is investigated.

• The thesis defines the temporal context of an action as the sequence of past and future
actions from the untrimmed video. The thesis proposes a multi-modal transformer-based
architecture to attend to multi-modal temporal context using vision, audio and language.
The effect of the temporal context extent is analysed along with the significance of using
multi-modal context. The upper bound performance of the incorporated language model
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is also analysed to stress the potential of language models for action recognition.

Thesis structure
The thesis is organised as follows. Ch. 2 reviews a broad scope of works relevant to the re-
search presented in this thesis. Ch. 3 offers a study on the significance of audio in comprehend-
ing object manipulations and recognising egocentric actions, and proposes a novel approach
for asynchronous fusion of appearance, motion and audio. Ch. 4 delves into recognising ego-
centric actions using only audio and introduces a two-stream architecture that captures the
harmonic and percussive structure of audio. Then, it investigates techniques for fusing and
regularising visual and auditory two-stream architectures. Ch. 5 introduces temporal context
from action sequences in untrimmed videos and proposes a model that attends to multi-modal
temporal context using vision and audio as input modality context and a language model to
capture prior temporal context from sequences of action labels. Finally, conclusions are pro-
vided in Ch. 6 which also discusses directions for future work.
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CHAPTER

TWO

RELATED WORK

This chapter offers a review of a wide spectrum of the literature that is relevant to the work
presented in this thesis. The structure of the chapter can be conceptually divided in three
parts. The first part is concerned with action recognition, starting with Sec. 2.1 that analyses
the field of visual action recognition from third-person videos, from convolutional methods
to the more recent Transformer-based architectures. Then, Sec. 2.2 sets the grounds of audio
processing and recognition of auditory scenes and events. Sec. 2.3 delves into audio-visual
action recognition discussing three major aspects: architecture design, audio-visual regulari-
sation and self-supervised audio-visual learning. Sec. 2.4 reviews the most dominant fields of
studies that have arised in egocentric action recognition.

At the second part, Sec. 2.5 examines methods that leverage temporal context for video recog-
nition. This is followed by Sec. 2.6 that delineates common paradigms in multi-modal Trans-
former architecture design and Sec. 2.7 that provides an introduction to language modelling
and its use for capturing action context, as these can be used for modelling multi-modal tem-
poral context as will be shown in Ch. 5.

Finally, Sec. 2.8 and Sec. 2.9 present audio-visual datasets for third-person and egocentric
action recognition, respectively, and Sec. 2.10 reviews large-scale audio-visual datasets for
scene and event recognition.

It should be noted that in its majority, this chapter focuses on modern deep learning approaches
and does not survey traditional methods of the pre-deep learning era. For action recognition,
two seminal works of that period include dense trajectories [193] and its follow up, Improved
Dense Trajectories (IDT) [192]. While these works have pointed out the importance of mo-
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2.1 Third-Person Action Recognition using only Vision

tion for action recognition, they have some common characteristics that make them inferior
compared to deep learning approaches. Firstly, they focus on extracting hand-crafted features
from videos as opposed to learnable ones. Consequently, the extracted features do not adapt
to the distribution of the dataset of interest, potentially missing important domain information.
Secondly, the extracted features are shallow in that they encode low-level statistics of the video
such as motion cues and cannot capture higher-level semantic information about the actors and
the actions they perform. On the contrary, deep learning methods learn semantic information
on the higher layers of the feature hierarchy.

2.1 Third-Person Action Recognition using only Vision

Action recognition is the problem of training a model to predict what a person (or several) is
doing in a video using pairs of videos and action labels. A visual model should learn a func-
tion that maps sequences of video frames to a predefined set of semantic classes. Third-person
videos are recorded from a camera that is placed somewhere in the scene and ‘observes’ the
human from a third-person viewpoint, and thus capturing the body of the actor. Therefore,
a third-person action recognition model should focus on the human body to comprehend the
action being performed. While at time actions can be recognised from still images, for ex-
ample when the posture of the actor has low variance across frames, e.g. ‘drinking’, motion
is imperative for disambiguating between actions such as ‘open’ and ‘close’. Moreover, for
complex actions that are composed of multiple steps, like ‘assembling furniture’, utilising a
sequence of frames is a necessity for modelling the progression of the action. Nevertheless,
visual appearance is important too and complementary to motion. The background of a scene
can provide contextual information for recognising an action, for example videos of the action
‘swimming’ can only be observed around the sea or water surroundings. In addition, visual
attributes of the objects that are part of the action entail semantic information as well, e.g. for
discriminating ‘playing basketball’ from ‘playing football’ the colour of the ball is a useful
hint. Thus, action recognition models need to be able to perform both temporal and spatial
reasoning.

The efforts of the action recognition community to address these challenges have resulted
in a rich literature of seminal works innovating temporal modelling [110, 194, 217], spatio-
temporal modelling with convolutional networks [24, 56, 187] and transformers [10, 18, 22,
57, 134, 143] as well as two-stream fusion [46, 47, 112, 168]. These are expanded below.
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2.1 Third-Person Action Recognition using only Vision
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Figure 2.1: Temporal Segment Networks (TSN) [194]. A video is split in three seg-
ments of equal length and a snippet is randomly sampled within each segment. A
convolutional network, shared across snippets, makes snippet-level action predictions
which are aggregated with a consensus function to provide a video-level prediction.
Per-class averaging is used as the consensus function. An appearance TSN and a
motion TSN are trained independently and fused in inference with averaging after
temporal aggregation within each modality. The figure is from [194].

2.1.1 Temporal modelling with 2D ConvNets

Wang et al. [194] tackled the problem of long-range temporal modelling, i.e. capturing tem-
poral relationships in videos that span over long periods, effectively utilising the whole video
clip. They indicated that prior attempts to long-range temporal modelling [41, 189, 212] fail as
they employ dense temporal sampling making it computationally infeasible to cover more than
only a handful of seconds of the video clip. To address this issue, they introduced Temporal
Segment Networks (TSN), depicted in Fig. 2.1. The main novelty of TSN is a sparse temporal
sampling strategy that allows to obtain video-level predictions (as opposed to frame-level or
clip-level predictions) at a low computational budget. In particular, the video is divided in K

segments of equal length, and within each segment a snippet is sampled randomly, formulating
a sequence of snippets. Then, a 2D ConvNet operating on frames produces K snippet-level
action predictions. A segmental consensus function G aggregates the snippet-level predictions
into predictions over the entire video, where the authors applied per-class averaging as the con-
sensus function. TSN maintains a low computational complexity as K is set to 3, significantly
lower than the number of frames in videos. Importantly, the loss function operates on G, and
thus video-level dynamics are baked into the parameter gradients:

∇L(y,G)
∇W

=
∇L
∇G

K∑
k=1

∇G
∇F(Tk)

∇F(Tk)

∇W
, (2.1)
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2.1 Third-Person Action Recognition using only Vision

where L is the loss function, y is the ground-truth, W are the model’s parameters and F(Tk)

are the predictions for each snippet. Interestingly, by performing class visualisations of the
learnt models, the authors showed that a model trained on single frames tends to focus on
background contextual information, such as the scenery, while TSN successfully attends to
the actor performing the action, showcasing the benefits of backpropagating the error of the
consensus.

The success of TSN triggered the interest of researchers in action recognition and some follow-
up works adopted the sparse temporal sampling paradigm and proposed improvements for
enhanced temporal modelling capabilities. Zhou et al. [217] argue that temporal relational
reasoning, that is the ability to reason about temporal relations and transformations of entities
over time is critical for action recognition and central for describing the progression of events.
Accordingly they propose Temporal Relational Networks (TRN) to model temporal relations
between frames at multiple temporal scales for capturing both short-term and long-term depen-
dencies. A 2D ConvNet initially extracts N features sparsely sampled. The relational module
then models d-frame relations, ∀d = 2, .., N , using two MLPs for each temporal scale. The
first MLP associates d ordered frames for each respective d. As k ordered sets of d frames are
sampled for each relation d, the second MLP links the k different associated sets of frames.
TRN is end-to-end trainable allowing the features of the ConvNet to encode the relations learnt
from the relational module. Differently from TSN that simply averages the predictions of the
sparsely sampled frames, ignoring the temporal ordering of frames, TRN is aware of their
order as the MLPs in the relational module operate on ordered frames, and thus the order is
encoded in their weights.

Lin et al. introduced the Temporal Shift Module (TSM) [110], that is able to enhance 2D
ConvNets with temporal modelling capabilities at no additional computational cost by simply
shifting part of the channels of the spatial features maps over the temporal dimension. More
particularly, a 2D ConvNet extracts features of size C×H×W for T sparsely sampled frames,
effectively forming features of size C × T ×H ×W . Part of the C channels is shifted by +1

and others by −1 in the temporal dimension T , i.e. channels are shifted both to the future and
past timesteps, respectively. This allows temporal convolutions to be approximated within the
spatial convolutions, as parts of features from different timesteps are associated and jointly
modelled in the subsequent 2D convolutions. The authors propose an online shift operation
for online recognition too, by shifting channels only from the past. Two important finds are
that, firstly the amount of channels is critical as a small number would not enable sufficient
temporal modelling and a large number would degrade the spatial modelling capacity of the
network. Secondly, to further allow for both spatial and temporal learning capacity, the authors
introduce a residual shift operation, where the shift module is inserted within a residual branch.
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2.1 Third-Person Action Recognition using only Vision

Therefore, even after temporal shifting particularly a larger amount of channels, the original
spatial features are preserved through identity mapping.

Acknowledging the advantages of sparse temporal sampling, Ch. 3 delves into effective ways
of temporally associating multiple modalities and proposes multi-modal temporal binding.

2.1.2 Spatio-temporal modelling with 3D ConvNets

The recognition of the significance of time for understanding actions has spurred researchers
to naturally extend 2D convolutional networks into 3D ones by convolving over the temporal
dimension too using three dimensional kernels. Early efforts include [87, 186] which under-
performed due to the lack of large-scale datasets. Here, the discussion is focused on more
modern approaches that had access to large (pre) training data volumes and trained with more
effective optimisation strategies as well as more carefully crafted architectures.

Inflated 3D ConvNets (I3D) were introduced in [24] with main motivation to leverage pre-
trained well-designed architectures from image classification for action recognition, instead of
designing architectures from scratch. To this end, the authors introduced inflating 2D Con-
vNets and their parameters into 3D ones. A 2D ConvNet is inflated by simply adding an extra
dimension representing time in both the filters and the pooling kernels of an existing network
design, where the authors inflated the Inception-V1 architecture [183]. Moreover, the convo-
lutional filters / pooling kernels are symmetric in the spatial and temporal dimensions after
inflation. The parameters of the 2D pre-trained model are inflated by simply replicating the
2D weights along the temporal dimension, and rescaling them by dividing by the size of the
temporal dimension, such that the response of the filters remain the same.

[187] examines various 3D residual architectures showcasing their benefits over their 2D coun-
terparts. Eventually, an R(2+1)D architecture is proposed that factorises spatio-temporal con-
volutions into a spatial convolution followed by a temporal convolution, yet keeping the num-
ber of parameters approximately equal to the full 3D network (R3D) to assess the importance
of the factorisation and disentangle it from the effect of increasing/decreasing the number of
parameters in the network. It is demonstrated that R(2+1)D outperforms R3D, where the au-
thors attribute it to two factors: i) R(2+1)D has effectively double the number of nonlinearities
comparing to R3D as there is an additional activation function between the factorised spatial
and temporal convolutions, and thus R(2+1)D is more expressive, ii) the factorisation eases
the optimisation of the network as the authors observed a lower training loss in addition to a
lower validation loss.

In a similar spirit, and motivated by the good performance of depthwise separable convolu-
tions for image classification (e.g. [32]), [188] introduced Channel-Separated Convolutional
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2.1 Third-Person Action Recognition using only Vision

Networks that provide a good trade-off between accuracy gains and computational complex-
ity. Channel-Separated Convolutional Networks employ 3D residual networks with depthwise
convolutions, i.e. spatio-temporal convolutions where each channel receives input only from
the corresponding channel of the previous layer rather than from all channels as in vanilla con-
volutions. This allows for significant reduction in memory requirements and computational
cost while maintaining the accuracy of the network. Importantly, the authors have shown that
preserving the channel interactions in the convolutions is beneficial and propose factorised 3D
convolutions by disentangling channel interactions from spatio-temporal interactions using a
1× 1× 1 convolutional layer that allows for communication between channels followed by a
3× 3× 3 depthwise convolutional layer solely for spatio-temporal modelling within channels.
This strategy enables channel interactions while at the same time maintains a lower computa-
tional cost than original 3D convolutions.

2.1.3 Spatio-temporal modelling with Transformers

Over the last couple of years, Transformers [190] overwhelmed the domain of Nature Lan-
guage Processing (NLP), which was until then grounded on recurrent and convolutional archi-
tectures, by showcasing that attention-only architectures have strong modelling capabilities in
NLP tasks. The central idea is that sentences can be modelled by relating a word to all other
words in the sequence of words. This is achieved with a dot-product self-attention mechanism
where the input sequence X ∈ RN×D is mapped into queries Q, keys K and values V , and
attention weights are calculated based on the dot-product similarity of queries with all keys.
The attention is then computed as a weighted sum of the values using the attention weights:

SA(X) = Softmax
(
QKT

√
Dh

)
V , (2.2)

where Q = WQX , K = WKX , V = WVX and WQ, WK , WV ∈ RD×Dh . Multi-head Self-
Attention (MSA) extends self-attention by performing k self-attention operations in parallel,
which are concatenated and projected:

MSA(X) = [SA1(X);SA2(X); ...;SAk(X)]WMSA, (2.3)

where for each self-attention operation Dh = D/k and WMSA ∈ RkDh×D. A Transformer
encoder layer, l, then consists of Multi-head Self-Attention and an MLP block, with Layer
Normalisation (LN) [12] being applied before each block and residual connections [71] after
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Figure 2.2: Vision Transformer (ViT) [43]. An image is tokenised into patches of size
16 × 16, each. Each patch is embedded with a linear projection layer and augmented
with positional information. A special learnable classification token is added at the
beginning of the sequence. The sequence is encoded with a Transformer encoder, and
a classification head is applied in the summary embedding, i.e. the encoded classifica-
tion token. The figure is from [43].

each block:

yℓ = MSA(LN(zℓ−1)) + zℓ−1 (2.4)

zℓ = MLP(LN(yℓ)) + yℓ, (2.5)

where MLP comprises of two linear layers with a GELU activation function [74] interleaved.
Importantly, dot-product self-attention is permutation invariant and therefore disregards the
position of elements in the sequence. To address this, positional encodings, fixed or learnt,
are added to the inputs to enhance them with positional information which is fundamental for
tasks that operate on sequences.

It was not long before Transformers made their appearance in computer vision where the con-
cept from text can naturally adapt to the image domain: images can be modelled by relating a
spatial location to all other spatial locations in the image. The Vision Transformer (ViT) [43]
was of definitive importance. The idea in ViT is simple: the image is split into a grid of non-
overlapping patches (visual words), each of size 16×16, a projection layer embeds each patch
which are subsequently tagged with positional encodings. A special learnable clasification
token is appended in the sequence which is fed to a transformer encoder. Finally, a classifier
makes predictions using the summary embedding, i.e. the output from the classification token.
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2.1 Third-Person Action Recognition using only Vision

ViT is trained end-to-end from raw pixels. An overview of ViT is depicted in Fig. 2.2. Some
benefits of Transformers over ConvNets are: i) Transformers perform attention with dynamic

weights that depend on the data vs ConvNets performing convolutions with learnt but fixed

weights, ii) Transformers are more flexible architectures as they impose less restrictive induc-
tive biases than ConvNets, and iii) they are better at capturing long-range dependencies by
means of global attention in the input sequence whereas ConvNets have a restricted receptive
field and its enlargement is upper-bounded by the depth of the network.

While ViT can flexibly learn effective image representations with good downstream perfor-
mance, it requires vast amounts of data to achieve this. Particularly, the authors of [43] pre-
train ViT on ImageNet-21k [39] with 14M images and 21k classes as well as on JFT [181]
with 300M images and 18k classes. Moreover, despite the ability to model long-term in-
formation, Transformers have quadratic complexity to the number of inputs as dot-product
attention requires comparing each element with all other elements in the sequence. Based on
these observations, several follow-up works proposed hybrid approaches that bake convolu-
tions into ViT [204, 211] and preserve the benefits of Transformers while at the same time re-
duce their computational complexity and do not require large-scale pre-training by leveraging
the inductive biases of convolutional networks, i.e. grid structure and translation invariance.
Furthermore, other works proposed multi-scale ViT variants [114, 198] to learn hierarchical
representations in Vision Transformers similar to ConvNets, with main motivation to enhance
the performance of dense prediction tasks such as object detection and semantic segmenta-
tion. For a detailed review of Transformers in computer vision, please refer to the survey of
[91].

As expected, the transition happened in action recognition too [10, 18, 22, 45, 57, 134, 143].
Girdhar et al. [57] were the first to employ transformers for action recognition and detection.
They argue that one of the abilities required to understand human actions is to be able to reason
about other humans and objects in the proximity of the person of interest. To this end, they
introduce the Action Transformer, an end-to-end trainable architecture that employs an I3D
network [24] to extract features, a Region Proposal Network [153] to generate bounding box
proposals of detected people which are then used as queries to a Transformer to aggregate
relevant context from other people and objects around each detected person.

Driven by the motivation to model long-term information in videos, [134] proposes to perform
temporal attention over the entire sequence of frames from a video. To accomplish that, the
authors employ ViT for per-frame spatial modelling, and a Transformer-based architecture
that attends temporally to the sequence of frame-level features where the Longformer [15]
was chosen for this purpose due to its ability to model longer sequences more effectively than
the vanilla Transformer. Similarly to ViT, the 2D pooled features are tagged with temporal
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2.1 Third-Person Action Recognition using only Vision

positional information and a classification token is concatenated in the sequence as well, prior
to self-attention from the Longformer. Finally, a classification head operating on the encoded
classification token is used to predict actions.

[18] introduces TimeSFormer that extends ViT for video modelling by performing spatio-
temporal attention over 3D volumes. TimeSFormer parses a video as a sequence of patches
extracted from each individual frame, and similarly to ViT embeds each patch and enhances
it with spatio-temporal positional information. Then, a classification token is appended to
the sequence. This strategy of tokenising 3D volumes → embedding → positional encoding
→ adding classification token, is adopted by all the video transformer architectures described
next. As the quadratic complexity of Transformers renders them computationally prohibitive
particularly for videos where the number of spatio-temporal patches can be extremely large,
the authors investigated efficient spatio-temporal attention schemes to alleviate the computa-
tional burden. They found out that a ‘Divided Space-Time Attention’ where temporal and
spatial attention are applied independently performed the best while at the same time being
computationally cheaper than joint space-time attention. More concretely, ‘Divided Space-
Time Attention’ first performs temporal attention over all patches of the same spatial location
across frames followed by spatial attention within each frame.

In a similar fashion, the work of [10] focused on different variants of factorising spatial and
temporal attention and proposed the ViViT architecture. The authors found that while for
larger datasets such as Kinetics [90] an unfactorised spatio-temporal transformer performed
the best, for smaller datasets, including for egocentric ones likes EPIC-KITCHENS [36],
a ‘Factorised Encoder’ outperformed all other variants while requiring fewer floating point
operations (FLOPs). The Factorised Encoder consists of a spatial transformer encoder fol-
lowed by a temporal transformer encoder. The spatial encoder is essentially a ViT applied
on a per-frame basis. The encoded classification tokens of each temporal index then form
the inputs to the temporal encoder. Interestingly, this strategy resembles the convolutional
approaches [194, 217] where first a 2D convolutional network extracts frame-level features
which are then fed to a temporal modelling module. It is also almost identical to the architec-
ture of [134]. Other contributions of [10] include a tubelet embedding for videos as opposed to
embedding each frame independently, good practices for leveraging the pre-trained ViT image
model, and an ablation analysis of augmentation techniques / regularisers showcasing their
importance in a small-scale data regime.

Bulat et al. [22] approach the problem of reducing the computational complexity of the full
space-time attention, which is O(T 2S2) for T frames and S tokens per frame, from a different
perspective. Different from [10, 18] that investigate spatio-temporal attention factorisation,
[22] proposes full spatio-temporal attention within a temporal window. To further reduce the
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2.1 Third-Person Action Recognition using only Vision

Figure 2.3: Trajectory attention [143]. A query from Q is compared with keys K
from each frame, and the learnt attention A is used to pool values V independently
within each frame, producing trajectory tokens for each spatio-temporal location that
span over the length of the video, T . This can be seen as locating the trajectory at
a given timestep by comparing the the trajectory query to the keys at that timestep.
Then, temporal attention operating on the trajectory tokens aggregates information
across trajectories. The figure is from [143].

computational complexity, channel shifting from neighbouring timesteps within the window
is employed, similar to TSM [110]. Concretely, while the query representation remains intact,
key and value representations of a given patch are mixed with temporal information from
patches at the same spatial location within the window; part of the channels from neighbouring
patches are shifted to the current patch resulting in spatio-temporal information encoded in
the patches of a single frame. Then, full spatio-temporal attention within the window can
be approximated by simply performing spatial attention within the frame, which recuces the
computational complexity to O(TS2) compared to O(T 2S + TS2) in [10, 18].

Patrick et al. [143] claim that pooling temporally over motion trajectories is a fruitful induc-
tive bias for videos, where objects move and may appear in different positions across different
frames. Approaches that pool axially [18] or over the entire space-time volume [10] overlook
these trajectories. Accordingly, the authors introduce a self-attention mechanism that enables
attention along trajectories in two steps. Similarly to the other approaches [10, 18, 22] the
video is parsed into spatio-temporal tokens and each token, st, represents the trajectory ‘ref-
erence point’. The goal of the first step then is to locate the trajectory at a given timestep by
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comparing the trajectory query to the keys at that timestep, which is implemented as:

ỹstt′ =
∑
s′

vs′t′
exp(qst · ks′t′)∑
s̄ exp(qst · ks̄t′)

, (2.6)

where ỹstt′ represent the trajectory tokens at different times t′, and qst, kst, vst are the query,
key and value respectively. Thus, there is a trajectory per spatio-temporal token with temporal
extent same as the number of frames in the video. Note that, trajectory attention is different
than both spatial-only attention and joint space-time attention in that, in trajectory attention a
query is compared with keys from every frame but information is pooled independently within
each frame, whereas in spatial-only attention queries and keys from the same frame only are
compared, and in joint space-time attention a query is compared with keys from every frame
and information is pooled across all frames. In the second step, information is aggregated
along trajectories using temporal attention over the trajectory tokens. Although, this approach
has the same computational complexity as joint space-time attention, it outperforms both joint
space-time attention and divided space-time attention [18]. The proposed model is called
Motionformer. An overview of the proposed attention is depicted in Fig. 2.3. Ch. 5 employs
visual features extracted from Motionformer and demonstrates that they provide enhanced
object recognition capabilities compared to convolutional features.

Finally, the concurrent work of [45] introduced Multiscale Vision Transformers (MViT), a
multi-scale transformer architecture for videos that shares an analogous objective as the works
of [114, 198] for images, i.e. to employ hierarchical representations in video Transformers.
The paradigm of multi-scale feature hierarchies in computer vision and convolutional networks
dictates that lower levels in the pyramid of features operate at high spatial resolution and a
small number of channels to model low-level features and progressively the channel dimension
is increased while decreasing the spatial resolution where higher levels in the hierarchy model
semantics. In MViT, this is realised with a Multi Head Pooling Attention (MHPA). MHPA
employs a pooling kernel and a stride, applied on the query of a self-attention operation to
reduce the sequence length, effectively reducing the spatial dimension of the underlying visual
representation. MViT has multiple scales and each scale reduces the spatial resolution of the
previous scale using MHPA while increasing the channel capacity with an MLP. Interestingly,
the authors show that by leveraging such prior for videos, MViT can reach or outperform other
video transformers described above [10, 18, 134], without resorting to large-scale pre-training
in contrast to the rest ViT-based video architectures [10, 18, 22, 134, 143].

Concluding remarks

The landscape of (single-stream) neural architectures for action recognition has undergone
significant changes over the last years; starting from ConvNet approaches that pursued sparse
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temporal sampling to model long-term dependencies and 3D convolutions for spatio-temporal
modelling till the more recent Transformer-based methods that can tackle both problems more
efficiently. Yet, the price to be paid is the enormous size of datasets required to allow Trans-
formers to generalise well. When there is ample availability of data, the inductive priors of
ConvNets limit the scope of functions they can model. Transformers are more suitable for
big data regimes as they can more flexibly learn spatio-temporal relationships from scratch
without any encoded structure in their architecture. On the other hand, the inductive biases
integrated in ConvNets are particularly useful for labs and researchers with limited resources.
Combining the benefits of both worlds by building some of the priors of ConvNets in Trans-
formers is a promising direction for action recognition amongst other computer vision areas.
Ch. 5 reasserts the usefulness of priors in Transformers for action recognition, by means of
modelling the prior temporal context of actions using a language model.

2.1.4 Two-stream fusion

By observing the importance of spatial and temporal features for action recognition, fusion
of appearance and motion has become a standard technique [24, 46, 47, 56, 88, 110, 112,
168, 187, 194, 217]. The objective is to harness the complementary information in the two
modalities, where appearance can reason about scenes and objects while motion can model the
movements of the actor. Typically, fusion is realised with two-stream architectures that consist
of a convolutional network for spatial modelling and a second for temporal modelling, coupled
with a mechanism for integrating the two streams. Different works suggested approaches of
fusing the modalities at different levels of the architecture, namely late fusion, mid-level fusion

and multi-level fusion, which are analysed next.

Late fusion. The pioneering work of Simonyan and Zisserman [168] was the first to propose
the integration of appearance and motion streams for action recognition, inspired by the two
stream hypothesis of the human visual cortex, where the ventral stream (also known as the
‘what’ stream) is responsible for object recognition and the dorsal stream (also known as the
‘where’ stream) models motion and is involved with spatio-temporal localisation. In the pro-
posed architecture, the spatial ConvNet takes as input single RGB images and the temporal
ConvNet takes as input a stack of horizontal and vertical optical flow components to model the
motion across consecutive video frames. The authors explored different optical flow represen-
tations including i) simply stacking optical flow components of consecutive frames where at
each point a vector represents its displacement to the corresponding point in the next frame,
ii) stacking trajectories of optical flow where at each point a vector represents the displace-
ment of the trajectory of the point and iii) a bi-directional optical flow representation that
accounts for the motion in both directions. Interestingly, simple optical flow stacking outper-
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Figure 2.4: Two-stream architecture with late fusion [168]. The architecture is com-
prised of a spatial stream that operates on single RGB frames for modelling appear-
ance and a temporal stream operating on stacks of vertical and horizontal optical flow
components of consecutive frames for modelling motion. The streams are trained
independently and combined by late fusion of their softmax predictions where both
averaging and a multi-class SVM that operates on the concatenation of the softmax
predictions from each stream were considered. The figure is from [168].

formed trajectory stacking and the bi-directional flow provided only negligible performance
improvements. [168] proposed a late fusion approach by combining the predictions of both
streams, where two strategies were considered: averaging the softmax scores of each stream
as well as a multi-class SVM that operates on the concatenation of the scores. Each stream
was trained independently, where the RGB stream was pre-trained on ImageNet while optical
flow was randomly initialised, and the streams were only fused in test time. The architecture
is depicted in Fig. 2.4. Furthermore, to alleviate overfitting caused by the small-scale video
datasets that where available at that time (UCF-101 [173] and HMDB-51 [97]) the authors
employed a multi-task learning scheme by training on both datasets simultaneously with a
separate classification head for each dataset. Their results demonstrated the significance of
ImageNet pre-training, the benefits of stacking optical flow (as opposed to using only one be-
tween two frames) that allows the network to model long-term information to an extent, and
last but not least that, although optical flow was sufficient to recognise most actions, fusion
provided notable boosts in performance capitalising on the complementarity of appearance
and motion.

Following [168], all the temporal modelling approaches described above [110, 194, 217] as
well as the spatio-temporal works of [24] and [187], adopted the two-stream paradigm with late
fusion of appearance and motion streams. Moreover, late fusion of appearance and motion has
been adopted by [212] that explored temporal modelling through different pooling strategies in
convolutional networks as well as with LSTMs and also by [56] that introduced an extension
of NetVLAD [8] for spatio-temporal aggregation of video representations.
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Mid-level fusion. Feichtenhofer et al. [46] observed that the late fusion approach of [168] is
not capable of modelling pixel-wise correspondences between appearance and motion features
as each stream is trained independently and fused at the prediction level. Accordingly, they
pose the questions of: i) what is the optimal way of fusing the streams, and ii) where to fuse
the streams. To answer the first question, the authors explored different functions of fusing
the appearance and motion convolutional feature maps to learn pixel-wise correspondences
across the channels of each modality. Namely, they considered a) sum fusion which computes
a summation of the feature maps of each modality at the same spatial locations and channels,
b) max fusion that calculates the maximum of the feature maps position-wise and within each
channel, c) concatenation fusion that simply stacks the feature maps in the channel dimension,
d) convolutional fusion that first concatenates the feature maps and then inserts a convolutional
layer to fuse them which also performs dimensionality reduction, and e) bilinear fusion that
computes the outer product of the feature maps at each spatial location followed by summing
over all locations. As discussed in the paper, convolutional, max and sum fusion reduce the
number of parameters significantly as the network continues as a single stream after fusion,
whereas concatenation fusion involves significantly more parameters as the dimensionality of
the fused features is not decreased. While bilinear fusion enables interactions between all
channels of each stream at each spatial location, its disadvantages are that it marginalises the
spatial information and induces high dimensional fused features.

The authors have shown that convolutional fusion provided the best recognition accuracy,
where the performance was comparable with late fusion [168] but with nearly half parame-
ters. Another fundamental difference with [168] is that streams are trained simultaneously
end-to-end to learn the correspondences between appearance and motion features. Impor-
tantly, regarding the second question, optimal results were achieved by combining the streams
after the last convolutional layer, and accordingly mid-level fusion of the spatial and temporal
streams was proposed. Mid-level fusion was also combined with late fusion but this option
didn’t provide any additional benefits. The proposed architecture is demonstrated in Fig. 2.5.
An extension of the architecture to fuse the streams spatio-temporally with 3D convolutions
was also proposed but this is not analysed here as the advantages of 3D convolutions have
already been discussed in Subsec. 2.1.2.

An intriguing problem of fusing streams of data from different modalities concerns potential
asynchronies between the modalities. Such asynchronies arise when the discriminative pat-
terns of each modality occur at different timesteps. For example, in the action ‘open cupboard’
the discriminative motion of pulling the cupboard’s handle takes place before the distinctive
appearance of the cupboard being open. Approaches that can leverage such asynchronies by
associating the most discriminative timesteps of each modality could learn stronger representa-
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Figure 2.5: Mid-level fusion of spatial and temporal streams [46]. (Left) The streams
are combined at the fourth convolutional layer after which the architecture continues
as a single ConvNet tower. (Right) The streams are combined with mid-level fusion
at the fifth convolutional layer, the spatial stream is not truncated and the streams
are fused with late fusion of predictions too. While [46] proposes fusion at the fifth
convolutional layer, the combination of mid-level and late fusion did not advance the
model’s performance. The streams are trained simultaneously end-to-end. The figure
is from [46].

tions for those actions. The works described so far that employ late fusion or mid-level fusion
along with temporal aggregation are not capable of capturing potential asynchronies between
the appearance and motion streams. The sparse temporal sampling approaches [110, 194, 217]
perform temporal aggregation / temporal modelling of each modality independently prior to
late fusion of modalities. Similarly for the spatio-temporal convolutional approaches of [24]
and [187]. Thus, any asynchronies are marginalised by temporal aggregation and the fu-
sion can only combine global representations as opposed to individual timesteps. Conversely,
[46] fused modalities first followed by temporal pooling of the fused representations, yet the
streams were fused at corresponding temporal locations rather than asynchronously. Asyn-
chronous modality fusion before temporal aggregation was proposed in [112], where the ap-
pearance of the current frame is fused with 5 uniformly sampled motion frames, and vice
versa, using two LSTMs [77]. Therefore, the approach of [112] focused on using predefined
asynchrony offsets between two modalities.
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Figure 2.6: SlowFast networks [47]. The architecture consists of a Slow and a Fast
pathway. The Slow pathway operates on a low sampling rate with a high number of
channels to focus on learning appearance semantics, while the Fast pathway has a high
sampling rate and less channels to focus on modelling motion. The streams are fused
at multiple representation levels with lateral connections from the Fast to the Slow
stream. Finally, the pooled features of each stream are concatenated and fed to the
classification layer. The figure is from [47].

Multi-level fusion. Appearance and motion streams can also be combined at multiple rep-
resentations levels [47, 88] to form hierarchically fused features where the earlier layers are
responsible for integrating low-level information across modalities, e.g. edges with short-term
movements, while the role of the upper layers is to associate semantics across modalities,
e.g. an object with its motion signature. A preeminent architecture of this line of work is the
SlowFast Networks [47]. The authors of [47] point out that the spatial semantics of videos are
characterised by slow temporal changes whereas the motion of the actors progresses faster, and
thus a low sampling rate should be sufficient to model appearance, although a higher temporal
resolution is a necessity for capturing fine-grained movements. Based on this motivation, a
two-stream architecture is proposed with a Slow pathway that operates on a low sampling rate
to capture appearance and Fast pathway with a higher sampling rate to model motion. A break-
through of [47] is that differently than all the two-stream approaches described until now, both
streams operate on the raw video and the Fast stream does not depend on optical flow which is
computationally expensive, and as a result a bottleneck for employment in real-world settings.
In contrast, appearance and motion are modelled through the different design of the Slow and
Fast streams while both digest RGB video frames. An overview of the SlowFast architecture
is demonstrated in Fig. 2.6. The Slow stream operates on a low frame rate with a large channel
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Figure 2.7: Multimodal Transfer Module (MMTM) [88]. The squeeze operations, SA

and SB, aggregate the feature maps of modalities A and B respectively, with global
average pooling producing a channel descriptor per modality. These are concatenated
and passed to a linear layer that generates a multi-modal feature, Z. Then an excitation
operation per modality, EA and EB, that is composed of a linear layer and a sigmoid
activation are employed to rescale the feature maps of each modality channel-wise.
The figure is from [88].

capacity to focus on modelling appearance. The architecture employs separable convolutions
over space and time and the Slow stream has temporal convolutions only from intermediate
layers while the earlier layers convolve only spatially to compensate for the low temporal res-
olution. The Fast stream has a higher frame rate and fewer channels while utilising temporal
convolutions throughout to focus on learning temporal patterns. The frame rate and channel
ratio between the two streams are controlled by α and β, respectively, which are set to α = 8

and β = 1/8 in the Fast stream. The streams are fused with lateral connections from the Fast to
the Slow stream at multiple levels of the network, which are realised as strided temporal con-
volutions such that the frame rate of Fast matches that of Slow, and the Slow and Fast features
are concatenated in the Slow pathway. Finally, the pooled representations of the two pathways
are concatenated and fed to the classification layer. Results demonstrate that the two streams
learn complementary information which benefits action recognition when these are fused with
lateral connections which is shown by ablating the lateral connections.

Joze et al. [88] expose the main impediments of fusing modalities at intermediate convolu-
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tional layers: i) the feature maps of each stream at a given layer might be of different dimen-
sionality and therefore combining them is not straightforward, and ii) fusion layers typically
induce significant changes in the backbone architecture complicating the use of pre-trained
models for each modality. The latter is one of the reasons that late fusion has become so
popular. To address these, they propose the Multimodal Transfer Module (MMTM) that in-
corporates a multi-modal Squeeze and Excitation mechanism. Squeeze and Excitation net-
works [79] enhance the representations of uni-modal convolutional networks by recalibrat-
ing their feature map activations channel-wise through modelling interdependencies between
channels with a gating mechanism. Correspondingly, an MMTM block recalibrates the fea-
tures of each modality with multi-modal gating, in two steps. First, a squeeze operation ag-
gregates the features maps of each modality with global average pooling producing a global
representation per modality. These are concatenated and projected with a linear layer that gen-
erates a multi-modal descriptor. Then, an excitation operation per modality that is composed
of a linear layer and a sigmoid activation rescales the feature maps of each modality channel-
wise, emphasising important features and suppressing less important ones. A summary of
an MMTM block can be seen in Fig. 2.7. It becomes clear that the squeeze operation facili-
tates integration of modalities with inconsistent number and size of dimensions. For example,
it is suitable for fusing visual streams with spatio-temporal (3D) representations and auditory
streams with frequency-temporal (2D) representations, where additionally their sampling rates
differ substantially. The authors employ MMTM blocks in different domains including gesture
recognition, audio-visual speech enhancement and action recognition. The action recognition
architecture is comprised of an RGB stream that employs an I3D network [24] and a skele-
ton based network [100] modelling skeletal data and their motion. A noteworthy finding is
that multi-level fusion with MMTM blocks is advantageous when applied at intermediate and
higher levels of the architecture to learn corresponding semantics across modalities, while
there are no benefits of fusing earlier layers as the inter-modality low-level features are less
correlated.

2.2 Auditory Scene and Event Recognition

Audio is an important modality in its own right. We perform various tasks daily using audio
alone. The predominant one is communicating with others through speech. Nevertheless, it
extends beyond that; when visual scenes or events are out of sight, we resort to the sounds
they produce to comprehend them. This inspiration has led researchers in developing methods
for auditory scene and event recognition which are reviewed in this section. First, approaches
that employ single-stream architectures are presented along with data augmentation and pre-
training techniques, followed by a discussion on the importance of non-symmetric filtering of
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time and frequency. Lastly, the section reviews works that introduced multi-stream auditory
architectures.

The prevailing paradigm in audio recognition of scenes and events is to convert the raw audio
waveform into a 2D representation, typically a spectrogram, and use it to train 2D convo-
lutional networks, which is the main focus of this section. Before delving in the relevant
literature, it is important defining what is a spectrogram and what is the motivation of using it
for training 2D ConvNets.

An audio signal consists of samples of air pressure over time, each representing the ampli-
tude of the signal at a given temporal location. Audio signals are composed of multiple waves
representing different frequencies. To capture those frequencies, one can apply the Discrete
Fourier Transform (DFT) that converts a signal from the time domain into the frequency do-
main, resulting in an energy distribution of the signal over different frequencies, i.e. a vector
representing the amplitude of different frequencies. In practice, the Fast Fourier Transform
(FFT) is used which is more computationally efficient. However, commonly audio signals
are non-stationary necessitating a representation that varies over time. This can be computed
using the Short-Time Fourier Transform (STFT) that applies a series of FFTs over successive
short time intervals. It requires as input the length of the window over which FFT will be
applied and the length of the hop between successive FFTs. Typically, overlapping windows
are used to account for correlations between neighbouring windows. This results in a 2D ma-
trix representing the energy distribution of the signal over both frequency and time, the so
called spectrogram. In spectrograms, time is represented in the x-axis while frequencies in the
y-axis, resulting in a matrix S ∈ RT×F where S(t, f) represents the magnitude of the f -th
frequency at the t-th time. As humans perceive amplitudes in a logarithmic scale, i.e. we are
more sensitive to small changes in amplitude for high amplitudes than low ones, usually log-
spectrograms are calculated by taking the log of the spectrogram, amplifying low amplitudes
while compressing higher ones.

But, apart from amplitudes, humans perceive frequencies in a logarithmic scale too, i.e. we
are more sensitive to low than high frequencies. This can be addressed by transforming the
frequency scale to a Mel Scale. A Mel is a unit of pitch such that a pair of sounds equally
distant to each other on the Mel Scale are also perceptually equally distant. The transforma-
tion takes the number of Mel bins as input and partitions the frequency range in equidistant
bins expressed in Mels and corresponding logarithmically spaced bins expressed in Hz. Then,
it creates a Mel filter bank using overlapping triangular filters that map frequency bins in Hz
to Mel bins. Finally, the frequency scale is transformed through a matrix multiplication be-
tween the Mel filter bank and the log-spectrogam, resulting in a log-mel-spectrogram. Fig. 2.8
displays the extraction of a log-spectrogram and log-mel-spectrogram from an audio signal.
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(a) Raw waveform

(b) Log-spectrogram

(c) Log-Mel-spectrogram

Figure 2.8: Audio feature extraction. The example represents the class ‘frog croak-
ing’ and is taken from the VGGSound [30] dataset. To compute the log-spectrogram
in (b) using the audio signal in (a), a window of length 20ms and a hop of 10ms were
used. The log-mel-spectrogram in (c) is calculated from (b) using 128 mel bins. The
x-axis in all three figures represents time. The y-axis in (a) represents amplitude in the
time domain while in (b) and (c) it represents frequencies in linear scale and mel scale,
respectively, where the intensity of each pixel represents amplitude in the frequency
domain. Note that in (c) the signal is more spread out than (b) in the frequency axis as
the frequencies have been transformed from a linear scale to a logarithmic (mel) scale.

Note that the log-mel-sprectrogram in Fig. 2.8c is more spread out in the frequency axis than
the log-spectrogram in Fig. 2.8b as the frequency scale has been transformed from linear to
logarithmic (mel). Both log-spectrograms and log-mel-spectrograms have been used widely
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for audio recognition.

An incentive of training neural networks with spectrograms instead of the raw audio waveform
is to facilitate training by providing an easier representation to the model; a model trained with
raw waveforms would have to infer frequencies itself in the earlier layers of the architecture.
This argument is supported by the findings of [93] which showed that 2D ConvNets operating
on spectrograms outperformed 1D ConvNets operating on the raw waveform with a similar
number of parameters. Furthermore, [93] proposed a 1D ConvNet for learning a spectrogram-
like representation termed as a wavegram which was subsequently fed to a 2D network, further
backing the argument that the earlier layers of an 1D network operating on raw waveforms
would waste capacity in learning frequency representations. Based on this, in what follows we
focus on 2D convolutional networks with spectrogram inputs for audio recognition.

2.2.1 Single-stream architectures

A common approach in auditory scene and event recognition is to use single-stream 2D convo-
lutional architectures [2, 67, 75, 93, 138, 145, 156]. [145] and [156] proposed shallow archi-
tectures consisting of 2 and 3 convolutional layers respectively, for environmental sound clas-
sification using small-scale datasets. Hershey et al. [75] were one of the first to evaluate deep
convolutional networks for large-scale audio classification using their own YouTube-100M
dataset that consists of 100 million videos, while [75] utilised only the audio stream. They
investigated slightly modified versions of AlexNet [96], VGG [169], InceptionV3 [184] and
ResNet50 [71] with Inception and ResNet providing the best performance. They also offered
a study on the effect of training set size in test performance, with boosts in performance by in-
corporating more data, although the benefits after 700K audio clips were negligible. A similar
investigation with comparable findings was presented in [93], where the authors trained various
deep architectures on AudioSet [55] and found that ResNets were the best performing models
and that although utilising the full dataset improves the performance, the accuracy degraded
only slightly with 50% of the training data. Single-stream 2D ConvNets have been extensively
used by high-ranked entries of DCASE audio recognition challenges [29, 42, 78, 95, 113, 180]
too, for acoustic scene classification.

Similarly to works on video recognition, attention modelling has been explored for audio clas-
sification as well [59, 60]. [59] enhanced the output feature maps of a ConvNet backbone
with a simple temporal gating mechanism composed of parallel gating attention heads where
each head performs temporal aggregation on the gated feature map, and the output of all heads
are combined with learnable weighted averaging. The same authors introduced the Audio
Spectrogram Transformer (AST) [60] that is essentially the ViT architecture [43] operating
on spectrograms, i.e. a spectrogram is split into patches of size 16 × 16 which are embedded
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and enhanced with positional encodings, and a learnable classification token is attached to
the sequence which is fed to a transformer encoder. AST demonstrated the benefits of ViT-
based architectures on the audio domain by establishing state-of-the-art performance against a
top-performing convolutional approach.

Data augmentation. The small-sized audio datasets necessitate the utilisation of data aug-
mentation techniques for combating overfiting while training high-capacity audio recognition
architectures. Some works considered time stretching and pitch shifting [78, 138, 145, 156]
as well as dynamic range compression [78, 156] and adding background noise from other au-
dio samples [156]. [156] offered an analysis of the impact of each individual augmentation
per class as well as for all classes and by combining all augmentations and showed that pitch
shifting was the most beneficial augmentation and that combining augmentations provides ad-
ditional boosts. [78] also showcased that combining augmentations has a positive impact in
performance. Moreover, a popular temporal augmentation technique is to randomly crop an
audio segment out of the full audio clip [42, 78, 156, 180].

Many works [42, 59, 60, 78, 93, 95, 180] have utilised mixup [214] for audio augmentation.
Mixup [214] generates new training samples by randomly selecting two examples from the
training set and computing a linear combination of both their data and labels using coefficients
sampled from a Beta distribution. Although it was originally tested on image classification, it
has proven a strong method for preventing overfitting in audio recognition. Note, that mixup
can be applied either in the audio signal before extracting the spectrogram or on the spectro-
gram itself.

A simple but powerful data augmentation technique is SpecAugment [140] which has also
been adopted by various works [59, 60, 78, 93]. As the name reveals, SpecAugment is applied
directly on the spectrogram treating it as an image. It is composed of three deformations: (1)
time warping, where a point sampled along the horizontal line that passes through the centre
of the image is warped either to the left or right, using a warping parameter that defines the
range for sampling the point and the distance that it is warped, (2) time masking that masks a
block of consecutive timesteps using a time mask parameter to sample the size and the loca-
tion of the mask, and (3) frequency masking that masks a block of frequency channels using a
frequency mask parameter to sample the size and the location of the mask. Furthermore, two
additional parameters are used to define the number of frequency and time masks. An illus-
tration of SpecAugment can be seen in Fig. 2.9. Although SpecAugment has been proposed
for Automatic Speech Recognition, it has provided solid performance improvements in other
audio recognition areas too, including scene and event recognition.

Pre-training. Just as with image and video recognition, pre-training a model using a large-
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Figure 2.9: SpecAugment [140]. (Top) Log-mel-spectrogram. (Bottom) Log-mel-
spectrogram augmented with SpecAugment using two time and frequency masks.
Also note how the spectrogram has been temporally warped to the right. The im-
ages are from [140].

scale database and fine-tuning it for downstream tasks has been explored in audio recognition
as well for transferring knowledge from large training sets to smaller ones [2, 59, 60, 67,
68, 93, 138]. Two methodologies have emerged: i) transferring within domain knowledge
from large-scale audio databases [93] and ii) transferring knowledge from large-scale image
databases, namely ImageNet [39], to the audio domain [2, 59, 60, 67, 68, 138].

Kong et al. [93] transferred a model pre-trained on AudioSet to 6 different downstream tasks
including environmental sound classification using the ESC-50 dataset [146] and acoustic
scene classification and audio tagging tasks from the DCASE challenge. For transferring,
they explored two popular approaches: i) extracting features from the pre-trained model and
training a linear classifier on top, aka linear probing, and ii) initialising the model with the
pre-trained weights and fine-tuning it for the task of interest. Overall, they demonstrated that
utilising the pre-trained model enhanced the performance of all downstream tasks and that
fine-tuning outperforms linear probing. Nevertheless, two useful findings are that, first, in
some cases (e.g. the DCASE tasks) linear probing is even harmful compared to training from
scratch attributing it to the distributional shift between AudioSet and the task of interest, and
secondly, that in some few-shot settings (i.e. using only a few samples per class for the down-
stream task) linear probing provides better results than fine-tuning.

While at a first glance exploiting image pre-trained models for audio recognition may seems
counter-intuitive, it is advantageous as shown by [2, 59, 60, 67, 68, 138]. [68] was one of the
first works that utilised a pre-trained ImageNet model for music genre classification while later
[2] and [67] fine-tuned ImageNet pre-trained models for urban sound classification and envi-
ronmental sound classification respectively, where in [67] pre-training provided considerable
performance improvements.
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Palanisamy et al. [138] also showed that ImageNet pre-training results in significant perfor-
mance boosts in different audio classification benchmarks. More importantly, they studied
systematically the impact of ImageNet pre-training in training auditory networks by posing
the question of how much of the pre-trained ImageNet weights are useful for the considered
audio recognition tasks. To answer this question they performed a number of different ex-
periments. First, they measured how much the pre-trained weights had changed at different
layers of the network after fine-tuning, where smaller changes were observed in initial layers
while the changes in later layers were more significant. Secondly, they evaluated the impact
on performance by progressively initialising more layers of the network with the pre-trained
weights while keeping the rest randomly initialised and observed that pre-trained weights had
a big positive impact up to intermediate layers of the network while after that pre-trained
weights offered smaller benefits. Lastly, they’ve shown that freezing the early layers had a
minor impact on the performance, while by freezing the upper layers the accuracy dropped
significantly. From these experiments, the authors concluded that prior knowledge from the
pre-trained model is particularly helpful for the earlier layers of the network as it is maintained
after fine-tuning, and that the weights of the early layers are more transferable between be-
tween the vision and audio domains. Through feature map visualisation, they noted that the
model learnt to perform event boundary detection by detecting edges in the spectrogram, fur-
ther emphasising the importance of the early layers and the corresponding pre-trained weights
for the auditory tasks. Interestingly, this confirms the hypothesis of [59] that ImageNet pre-
training is beneficial because the pre-trained model learnt to detect edges which may assist the
auditory model to detect ‘acoustic edges’, i.e. event boundaries. More interestingly, these find-
ings are in contrast with works on audio-visual action recognition [207] as well as two-stream
visual action recognition [88] that fuse the modalities after intermediate layers explicitly based
on the intuition that earlier layers are modality specific and do not generalise across modali-
ties.

2.2.2 Non-symmetric filtering of time and frequency

So far, we have seen approaches that utilise vanilla 2D convolutional networks for audio mod-
elling. This has certain benefits. First, it enables training the networks with spectrograms
that has shown to be more powerful than training with the raw audio [93]. Second, it allows
leveraging ImageNet pre-trained models [2, 59, 60, 67, 68, 138]. Third, the increased recep-
tive field of deep networks equips the models with long-term temporal modelling capabilities.
Nevertheless, employing vanilla 2D convolutional networks entails the danger of not capturing
adequately the prior structure of audio signals as spectrograms have some fundamental differ-
ences from natural images, stemming from the fact that both axes of natural images contain
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spatial information whereas the time and frequency axes of spectrograms have different prop-
erties. The translation invariance of ConvNets is beneficial for the time dimension as a model
should be able to recognise a sounding object independently of the temporal moment that it
sounds, while it may be harmful for the frequency dimension where nearby frequency chan-
nels might encode entirely different entities. Moreover, the locality of convolutions is suitable
for modelling the sequential nature of time but not for frequencies which can be non-local
due to harmonics. Empirical evidence to support these claims is drawn from [215], where by
looking at the frequency statistics of natural images and spectrograms, a heuristic analysis has
shown that that the energy distribution of natural images is homogeneous across both spatial
dimensions, while for spectrograms the energy is distributed differently across frequency and
time.

These necessitate non-symmetric filtering over the time and frequency dimensions of spectro-
grams, which can be achieved by various means [78, 81, 122, 180, 207]. A common approach
is to design architectures with different receptive fields in the temporal and frequency dimen-
sions which is affected by different factors including the convolutional filter size, dilation and
downsampling factors, i.e. convolutional stride and pooling layers. [81] employed rectangular
k × m convolutional kernels as opposed to square k × k ones which are typically used in
the image domain. [122] applied downsampling only in time and not in frequencies using a
convolutional stride of 2 in time and a stride of 1 in the frequency dimension, resulting in a
convolutional network that has a larger receptive field in frequencies. Similarly, [78] main-
tained the temporal downsampling while reducing the frequency downsampling, yet via the
max-pooling layers instead of the stride. [180] designed a network with a larger receptive field
over the frequency axis too, by combining convolutional layers with temporal-wise striding
followed by frequency-wise dilated convolutional layers. A more principled way of modelling
the structure of harmonic series was proposed in [215] that introduced harmonic convolutions
but the model was applied only in audio restoration and musical source separation tasks but
not in audio recognition. Lastly, [207] explored a different approach. To treat frequency and
time independently, the authors used separable convolutions layers in parallel with 1 × k and
k × 1 filters for the early layers of the network while they employed k × k filters for the later
layers. However, the receptive field was kept identical over both frequency and time.

Each of these methods tackle the shortcomings of vanilla 2D architectures from different per-
spectives. While [81] and [207] allow modelling the non-homogeneous energy distribution of
spectrograms via using non-square kernels and separable convolutions, respectively, they do
not explicitly tackle the translation invariance and the locality of convolutions in the frequency
axis. On the other hand, [122] and [78] explicitly address the translation invariance in the fre-
quency axis by reducing the pooling over frequencies. [180] is the only work that in addition
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to reducing the translation invariance over the frequency axis via reducing frequency-pooling,
it also employs dilated convolutions over the frequency axis which can account for the non-
local structure of harmonics. Finally, while the approach of [215] for modelling the harmonic
structure of frequencies is more sophisticated, its effectiveness in audio classification has not
yet been evaluated.

2.2.3 Multi-stream architectures

Leveraging complementary information from multiple information streams has not been ex-
plored only for videos, but it is a viable learning paradigm for audio too where multi-stream
architectures have been proposed for environmental sound classification [106] and acoustic
scene classification [19, 122, 205]. These can be divided in two categories: i) approaches
that utilise modality-specific streams [19, 106] and ii) approaches where all streams digest the
same input [122, 205].

[106] introduced a three-stream architecture operating on the raw audio, concatenated spectro-
grams of different frequency resolutions, and delta features for each spectrogram, respectively.
The raw audio stream was composed by 1D convolutional layers followed by 2D convolutions
whereas the spectrogram/delta streams incorporated 2D convolutions throughout. The streams
were fused with late fusion of their output feature maps and further integrated with multi-level
fusion in the form of attention using a temporal gating mechanism. [19] considered different
input representations including mel-spectrograms, log-mel-spectrograms, and Mel Frequency
Cepstral Coefficients (MFCC) and combined them in a multi-stream architecture by sharing
the weights across streams. Similarly to [106], the streams were integrated with both multi-
level attentional fusion and late fusion.

The second line of works investigate capturing complementary auditory information from a
different standpoint; instead of incorporating different modalities, the streams observe dif-
ferent ‘views’ of the same input. In [122], the inputs were split in half along the frequency
axis and the first half was fed to one stream while the second half to another, aiming to learn
frequency-specific streams that can learn to reason independently about low frequency and
high frequency scenes/entities. The output feature maps of each stream were concatenated on
the frequency axis and their correspondences were learnt with two additional convolutional
layers with 1 × 1 kernels. [205] incorporated three streams and applied median filtering with
different kernels at the input of each stream to model long duration sound events, medium, and
short duration impulses separately. The streams were fused by concatenating their outputs and
feeding them to fully-connected layers akin to [122].

While in [122, 205] each stream acts on complementary views of the same input, the architec-
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ture of each stream remains identical. In other works, complementary information is sought
through stream-specific network designs and streams operate on identical inputs. One example
is that of [69], where 1D convolutions were used with different dilation rates at each stream to
model convolutional streams that operate on different temporal resolutions, and the approach
was tested on speech recognition. Ch. 4 proposes a two-stream auditory architecture that com-
bines both of these approaches. That is, the streams consider different views of the same input
where one of them uses a subsampled version of the original spectrogram, while at the same
time the architecture adopts a stream-specific design with varying number of channels and
temporal resolution at each stream to facilitate one stream at focusing in frequency while the
other in temporal patterns. Moreover, based on the observations of the previous subsection
the architecture employs convolutional separation for non-symmetric filtering in the frequency
and temporal axes.

2.3 Audio-Visual Action Recognition

While most action recognition approaches focus on spatio-temporal modelling with visual
modalities, audio is a commodity that needs to be leveraged for alleviating the complexity of
understanding human actions. Audio can be helpful for recognising visually occluded actions
but audible, complementing the visual stream. Moreover, the simultaneity of vision and au-
dio can advance action understanding by learning corresponding patterns across modalities,
e.g. for the action ‘clap hands’ it would be useful to associate the movement of the hands
with the sound of clapping. This necessitates models able to correlate visual and auditory
signals to capture both the redundant and complementary information in the two modalities.
Typically, these models take the form of multi-stream architectures with one or more visual
streams and an audio stream operating on spectrograms. One question that naturally arises
is, how to encode each modality, and what is the optimal fusion and training strategy for
audio-visual integration? In the attempt to answer these questions, three subfields of research
have emerged. The first focuses on the design of audio-visual action recognition architec-
tures, with relevant approaches being reviewed in Subsec. 2.3.1. The second is concerned with
the development of audio-visual regularisation techniques, presented in Subsec. 2.3.2. Lastly,
Subsec. 2.3.3 discusses the third area that consists of methods aimed at learning audio-visual
representations without human annotations and fine-tuning them with action recognition train-
ing objectives.
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2.3.1 Audio-visual architectures

Inspired by the two-stream fusion paradigm of [168], and also acknowledging the limitation of
existing deep learning architectures in employing audio for action recognition, [206] proposed
an audio-visual fusion approach using three modalities, appearance, motion and audio. Three
independent convolutional networks were used for modelling short-term information within
each modality, and two LSTMs for capturing long-term temporal information by aggregat-
ing the outputs of the frame-level appearance and motion ConvNets, yielding a total of five
streams. For combining all five streams, the authors proposed a late fusion scheme acting on
the streams’ predictions. They noted that the traditional late fusion with averaging assumes
that each stream contributes equally to each class, and thus does not consider the relation-
ships between modalities and actions, where the appearance stream might be more efficient
in describing classes associated with objects whereas the motion stream can reason better for
classes that entail the movement of the actor. To tackle this, a fusion scheme was devised
to learn the contributions of each stream to the final action scores where at a first stage each
stream was trained independently, and at the second stage the predictions of each stream were
concatenated and a fusion weight matrix mapping from the stacked multi-modal predictions to
the final action predictions was trained with logistic regression.

[116] and [115] also considered the integration of appearance, motion and audio using attention-
based mechanisms and operating on pre-extracted features for each modality. In [116], a ‘Key-
less Attention’ mechanism was proposed to aggregate the temporal features from the output
of an LSTM into a global representation by attending on salient video parts. ‘Keyless At-
tention’ simply projects the temporal inputs followed by a softmax that produces temporal
attention weights which are used to pool the features through a weighted linear combination.
The authors adopted one LSTM per modality and investigated fusion at different levels of the
architecture, where they found that best results were achieved with mid-level fusion after tem-
poral aggregation within each modality, i.e. by concatenating the pooled LSTM features of
each modality. They attributed this to the ability of the model to attend to different parts of
the video for each modality, in contrast to fusing before the attention layer where the model is
restrained to attend to the same temporal moments for all modalities. Nevertheless, the gains
of one fusion technique over the other were negligible.

[115] adopted a mid-level fusion approach as well and applied attention directly on the out-
puts of RGB, Flow and Audio convolutional networks, based on the observation that long-
term information (i.e. utilising an LSTM like [116]) is superfluous for short trimmed videos.
The proposed architecture is similar to [116], in that there is an attention-module within each
modality exploiting simple temporal attention functions that learn attention weights using a
softmax over projected temporal features. Moreover, the aggregated multi-modal representa-
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tions were concatenated and fed to a linear classifier. The novelty in [115] is the introduction
of Attention Clusters that consist of multiple attention units with independent parameters that
attend to the video in parallel to enable more diverse attention signals by allowing each atten-
tion unit to focus at different parts of the video (similar in motivation to multi-head attention
in Transformers). The output of an Attention Cluster is the concatenation of the pooled rep-
resentation from each attention unit. To encourage diversity amongst attention units, [115]
introduced a shifting operation that scales and shifts the output of each attention unit with
learnable parameters.

Xiao et al. [207] considered the problem of fusing vision with audio at multiple representation
levels to form hierarchical audio-visual concepts. To this end, the SlowFast architecture [47]
for visual action recognition was enhanced with an additional ResNet-based audio stream tai-
lored to perform audio processing. That is to say, the audio stream incorporates parallel sepa-
rable convolutions up to intermediate layers for non-symmetric filtering in frequency and time
while using square filters for the rest of the architecure. In addition, the first convolutional
layer does not subsample the auditory features and there is no pooling layer afterwards to
maintain high-resolution time-frequency representations at the beginning of the architecture.
Symmetric pooling over frequency and time is applied progressively, once at each residual
stage with strided convolutions. The concept of lateral connections was adopted from [47] to
integrate audio features to the Slow and Fast streams at different layers of the architecture. An
overview of the architecture can be seen in Fig. 2.10. The authors found that is more bene-
ficial to incorporate lateral connections from audio to vision only from intermediate layers of
the architecture and above, attributing it to the fact that low-level features are not transferable
between modalities, e.g. edges do not have a distinctive sound pattern. Three different types of
audio-visual lateral connections were investigated which are illustrated in Fig. 2.11: i) first au-
dio is integrated with Fast followed by temporal downsampling and concatenation with Slow
(A→F→S) imposing a strict temporal alignment of the modalities as audio and Fast are fused
with a high temporal precision, ii) SlowFast fusion precedes audio-visual integration (A→FS),
relaxing the temporal alignment requirement between the two modalities, as audio is down-
sampled to match the coarse temporal resolution of the fused SlowFast representation, and iii)
audio-visual Non-Local blocks [199] to attend spatio-temporally to the event using audio as
a query. The authors concluded that the fusion technique that allows loose temporal align-
ment of modalities is beneficial as it can account for temporally displaced semantics in the two
modalities, e.g. the sound of a door closing is heard after the motion generated by pushing the
door.

[53] leveraged the congruence of audio and video from a novel point of view, where the goal
was to reduce the clip-level and video-level visual redundancies in untrimmed videos for ef-
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ficient action recognition, by exploiting audio as an efficient preview of video. Short-term
redundancies arise from temporally adjacent frames being visually similar, while long-term
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redundancies can occur by events that are repetitive or temporally localised within a video,
making the utilisation of the full video unnecessary. For clip-level redundancies, the expensive
processing of all frames within a clip was replaced with a cheaper module that processes a sin-
gle frame and the accompanying audio, based on the observation that a single frame contains
sufficient appearance semantics while audio captures the temporal dynamics of the clip. Con-
cretely, a teacher-student distillation was proposed, where the student is a two-stream network
that takes the first frame of a clip and the corresponding audio and learns to approximate the
distribution of a 3D teacher ConvNet that operates on clips. Then, an attention-based LSTM
was introduced to iteratively attend to informative moments in the video, reducing video-level
redundancies by skipping irrelevant video parts. Using the learnt two-stream student model as
the backbone, the LSTM makes predictions for a significantly smaller number of steps than the
total number of frame-audio pairs, where at each step two independent attention mechanisms
softly select the relevant frames and audio, respectively, to form the inputs for the next LSTM
step. The overall method offers a good trade-off between accuracy and speed at a significant
lower computational cost than using a clip-based model, while audio provides considerable
accuracy gains, particularly for dynamic scenes. Interestingly, similarly to [116], in this paper
there is also one attention module per modality rather than a single attention module operating
on concatenated audio-visual features to allow the model to attend to different moments within
each modality.

After the wide adoption of Transformers in action recognition, a natural question that arises is
how could these models be extended to the audio-visual setting and what are the best practices
considering the idiosyncrasy of visual and auditory information. Nagrani et al. [133] offered an
attempt to answer these questions and proposed an audio-visual transformer-based architecture
for action and event recognition. The authors explored end-to-end trainable architectures from
raw videos and spectrograms which are tokenised, adopting the paradigm of ViT and AST [60]
(discussed in Sec. 2.2), respectively. They argue that attention across all visual and auditory
tokens and at all layers of the model is unnecessary due to the redundancies in visual and au-
ditory inputs. Furthermore, the quadratic complexity of self-attention would make infeasible
the applicability of such model in long videos. To tackle these, they introduced two strate-
gies for restricting the attention flow across modalities while allowing full attention within
modalities. The first follows the standard approach in multi-modal fusion, where modalities
are fused at a mid-level with uni-modal blocks at the earlier layers of the architecture that
focus on learning modality specific representations. Accordingly, [133] adapted this strategy
by employing uni-modal Transformers in the earlier layers, namely a ViT-based architecture
for video frames and an AST-based architecture for spectrograms, after which cross-modal
attention layers are added to restrict audio-visual attention to later layers of the architecture.
The second strategy, the key insight of [133], is to restrict cross-modal communication within
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a layer by introducing a set of latent units, the fusion bottleneck tokens, that form an atten-
tion bottleneck through which cross-modal attention must flow. A fusion bottleneck layer is
composed of two transformer layers, one per modality, that operate on the concatenation of
the modality’s tokens and a small set of learnable bottleneck tokens shared across modalities.
Each transformer layer is producing intermediate bottleneck tokens per modality which are av-
eraged to form the final fusion tokens fed to the next layer. Thus, the bottleneck tokens encode
audio-visual information and cross-modal attention is achieved by comparing one modality’s
tokens to the bottleneck tokens rather than to all tokens of the other modality. Intuitively, by
incorporating a smaller number of fusion tokens than the number of per-modality tokens, the
model is forced to compress and distribute the most discriminant information through the bot-
tleneck tokens while at the same time reducing the computational complexity comparing to
full cross-attention between modalities. The proposed model is called Multimodal Bottleneck
Transformer (MBT). The authors compared MBT with vanilla cross-attention that employs
unique cross-attention blocks per modality yet without fusion bottleneck tokens. It was shown
that for both strategies mid-level fusion outperformed early or late fusion, with MBT providing
a better performance overall comparing to vanilla cross-attention. Nonetheless, the benefits of
MBT over vanilla cross-attention were preeminent particularly when fusion was applied at
earlier layers of the architecture, where the gap in both the accuracy and the computational
cost was larger. Finally, it is worth noting that only four bottleneck tokens were sufficient to
achieve good performance.

2.3.2 How to regularise audio-visual networks?

The ever larger and data-hungry deep learning architectures come at the price of overfitting,
where researchers strived to propose solutions, such as Dropout [174], to regularise training.
A reason for overfitting in neural nets is that there are complex co-adaptations between units
in hidden layers of a network, i.e. a unit learns to correct the mistakes made by other hidden
units which results in complex relationships between hidden units by memorising the noise in
the training set.

The multi-modal regime is more convoluted, with additional sources of overfitting:

1. In addition to co-adaptations of units within modalities, cross-modal co-adaptations oc-
cur as well, resulting in networks that do not perform well in the absence of one or more
modalities [135]

2. The training dynamics of different modalities are not compatible, where different modal-
ities train and overfit at different rates hurting performance [196, 207]

3. Higher uncertainty in the predictions of one of the modalities [177]
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From the works presented in this subsection only [177, 196, 207] are on regularisation for
audio-visual activity recognition. Although [135] proposes a method for gesture recognition,
it is reviewed in this subsection for a comparison with [207] as they both propose an approach
for multi-modal regularisation that belongs to the same family of methods.

[177] highlights that existing audio-visual action recognition frameworks are prone to errors in
the presence of noise in individual modalities as they do not consider uncertainty in the modali-
ties’ parameters which leads to higher uncertainty in the predictions of the noisier/less informa-
tive modality. To tackle this issue, the authors propose a hybrid Bayesian audio-visual ConvNet
with stochastic variational inference for action recognition, that combines well-established de-
terministic layers with variational layers. Namely, the backbones of both the visual and au-
dio networks are deterministic convolutional layers, while the final fully-connected layers are
variational layers. Variational layers are parameterised with a mean µ and a variance σ2 to
approximate the complex posterior over the parameters p(w|D) (D is the training set) with a
simpler distribution qθ(w) = N (w|µ, σ2). This procedure allows to measure the uncertainty
in the predictions, and the authors propose to average the predictions of audio and vision if
the uncertainty measures are below a threshold, otherwise only the predictions of the modal-
ity with lower uncertainty are considered. Furthermore, Bayesian neural networks regularise
training by capturing uncertainty in the network’s parameters, and therefore in [177] the more
uncertain modalities are more heavily regularised. Although the method has appealing at-
tributes regarding its ability to regularise audio-visual networks as well as to omit uncertain
modalities from the final predictions, it has a basic drawback: it is computationally costly as
it requires multiple Monte Carlo passes through the variational layers by sampling from qθ(w)

to obtain the final predictions.

The authors of [196] recognise two main reasons of overfitting in multi-modal networks. First,
different modalities have different generalisation/overfitting rates and such discrepancies can
cause joint optimisation schemes to underperform. Second, the increased capacity of multi-
modal architectures make them further prone to overfitting. Demonstrated by the experiments
that compare an audio-visual action recognition model with the video-only and audio-only
models, there is indeed a discrepancy in the overfitting rates between the two modalities where
the audio model overfits more than video. Importantly, the audio-visual network, trained with-
out multi-modal regularisation, has lower training error and higher validation error than the
video stream alone, causing even a drop in the accuracy of the audio-visual fusion model
compared to using only video.

To tackle these training difficulties, the authors first propose a measure, namely the overfitting-
to-generalisation ratio (OGR), to quantify the quality of training between model checkpoints.
More precisely, between two versions of a model (at epoch N and N + n, respectively) OGR
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is calculated as the change in overfitting divided by the change in generalisation, where over-
fitting is defined as the gap between the training loss and a held-out validation loss, while
generalisation is simply measured by the validation loss. Low OGR means that overfitting
has dropped while generalisation has increased, comparing two checkpoints of the model,
and as a result training has arrived at a better solution. Having defined OGR, the authors
then set the objective to minimise it, by blending the gradients of different modalities such
that each optimisation step performs at least as good as the best individual modality. To this
end, a closed-form solution of the optimal blending weights is provided which incorporates
OGR. These weights are then used to blend the losses of individual modalities (and thus their
gradients) as a weighted sum. This strategy essentially adjusts the generalisation/overfitting
rates of different modalities by making each modality aware of the total OGR of all modal-
ities, through a normalisation term in the weight computation. Practically, to calculate one
loss per modality, classifiers are attached at each modality. The authors propose both an of-
fline version of Gradient-Blending where the optimal weights are calculated only once, and an
online version where the weights are periodically updated. Both versions improve the perfor-
mance of the audio-visual network with online gradient blending providing some extra boosts
over the offline version. The method is tested in various benchmarks including egocentric ac-
tion recognition in EPIC-KITCHENS improving over the visual-only networks as well as the
audio-visual networks trained without Gradient-Blending. One drawback of the approach sim-
ilarly to the Bayesian DNN in [177] is its increased computational overhead resulting from the
computation of the weights particularly in the online version. Below, more computationally
efficient audio-visual regularisation schemes are presented.

Dropout can be applied at any layer of a neural network, and during training it randomly re-
moves subsets of units of a layer by masking them out. Multi-modal networks and their input
samples are grouped in modalities, and there are high correlations within modalities. By ap-
plying vanilla dropout at each modality, such correlations are overlooked [101, 135]. The
works of [135] and [207] capitalise on the prior information of modality groupings and the
within-modal correlations proposing dropout-variants compliant with the multi-modal setting.
Differently than classical dropout, these approaches either drop or retain the entire set of fea-
tures within a modality simultaneously, at a given part of the architecture. These approaches
differentiate according to whether a modality is dropped and at which part, from which differ-
ent regularisation properties emerge. Similar ideas of leveraging the structuring of inputs have
also been explored for object localisation [185], where contiguous units in feature maps are
either all dropped or retained.

The basic motivation of [135] is to hinder co-adaptations between modality representations,
i.e. learn robust representations in one modality that do not depend on the features of other
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modalities with the aim to handle missing or noisy modalities in testing. While vanilla dropout
can be viewed as training an exponential number of neural networks, where each network is
sampled from the original neural network by dropping out units, the authors exploit the group-
ing of modalities, casting the problem as training all the possible combinations of modalities,
where each combination is sampled by dropping out modalities. Accordingly, the proposed
objective function constitutes of the losses of all possible modality combinations. As it is
computationally expensive to train the network with this objective function, it is approximated
by randomly training one term per iteration. This is realised by randomly dropping the modal-
ities inputs. That is, given multi-modal inputs xm, ∀m ∈ [1, ..,M ], where M is the number of
modalities, each modality input is masked as δmxm, where δm is a Bernoulli random variable,
and dropped with probability qm = 1−pm (δm = 0). This method is termed as ModDrop. The
regularisation properties of ModDrop are studied using a single-layer fully-connected network
with binary cross-entropy loss. It is shown that the error of the network trained with Mod-
Drop is proportional to the error of the full network (i.e. no dropping of modalities) minus
a term that expresses cross-modality correlations. Consequently, when modalities inputs are
uncorrelated the second term tends to vanish and ModDrop does not have a significant impact
in training. As analysed by the authors, when modalities are correlated this second term in
the error performs cross-modality regularisation by adjusting the network’s weights to align
the multi-modal signals. Aligning modalities can make the model robust to missing signals
as multi-modal inputs are embedded in the same space, and the model can infer redundant
information from all modalities, even in the absence of some of them. As the sole purpose
of ModDrop is to align modalities, it might not be able to tackle other important sources of
overfitting, discussed earlier. This is manifested in the experiments, where although ModDrop
successfully alleviates the effect of missing modalities fulfilling the authors’ motivation, it
does not improve the performance when all input signals are present.

AVSlowFast exploits additional prior information to perform audio-visual regularisation. As
shown in Fig. 2.12, the audio stream converges/starts overfitting significantly faster than the
visual network. The authors claim that this incompatibility in training speed leads to over-
fitting in the audio-visual network. Note that, this is very similar with the observation made
by [196] but with a focus on the momentum of overfitting, while [196] is more concerned with
the amount of overfitting in each modality. The overfitting induced by such discrepancy is
showcased in the experiments where similar to [196] the audio-visual network performs worse
than the visual-only model when audio-visual regularisation is not applied. Accordingly, in
addition to the prior knowledge of grouping of modalities, the authors take it to the next step
by also leveraging the observation that audio overfits earlier, and introduce the idea of dropping
only audio to adapt its learning pace to that of its visual analogue, calling this strategy as Drop-
Pathway. In other words, the main goal of DropPathway is to slow down the training of the
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Figure 2.12: Training/validation curves on Kinetics comparing SlowFast with an
Audio-only network. Top-1 errors are demonstrated. The audio network starts to
overfit after approximately 3× fewer training iterations than the visual, demonstrating
the discrepancy in learning pace of the two modalities. The figure is from [207].

audio pathway by not updating its parameters, randomly when the audio network is dropped.
More concretely, DropPathway drops randomly the auditory lateral connections of the AVS-
lowFast architecture, altogether, by multiplying them with a Bernoulli random variable, δA.
Thus, when δA = 0 AVSlowFast does not perform multi-level audio-visual fusion and the au-
dio stream is connected with the visual streams only via late fusion in the prediction layer (see
Fig. 2.10). This has a positive impact on generalisation in two ways: 1) it decreases the train-
ing momentum of the auditory lateral connection parameters, adjusting the learning dynamics
of the two modalities to a certain degree and 2) it encourages the learning of robust visual and
auditory intermediate representations that do not rely on each other, similar to the motivation
of [135], as randomly removing their links prevents them from co-adapting. Results verify the
effectiveness of the method improving audio-visual classification compared to the visual-only
model, demonstrating that asymmetrically dropping only audio information is beneficial for
audio-visual action recognition. Nevertheless, DropPathway has some weaknesses which are
discussed in Ch. 4 where a simple solution to address them is proposed.

Comparing all the regularisation schemes presented in this subsection, DropPathway is the
most efficient in terms of both accuracy and computational cost. [177] and Gradient-Blending
are both computationally demanding, however Gradient-Blending requires increased compu-
tational budget only to compute the blending weights in training, whereas [177] requires mul-
tiple Monte Carlo runs in inference as well, and thus is the most computationally inefficient.
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Moreover, Gradient-Blending increases the accuracy adequately in popular audio-visual ac-
tion recognition benchmarks. ModDrop and DropPathway are both in the family of dropping
modalities in training, and both are cheaper than Gradient-Blending. Nevertheless, ModDrop
can only handle missing modality signals while it does not improve performance when all
modalities are present. A possible cause is that ModDrop does not address the incompati-
bility in learning dynamics of different modalities. DropPathway both increases the action
recognition accuracy and has a minimal computational budget, addressing the disadvantages
of both ModDrop and Gradient-Blending, respectively. Finally, it is interesting to compare the
online version of Gradient-Blending and DropPathway. In a similar fashion to DropPathway
that slows down the learning of the audio stream, Gradient-Blending maintains a lower weight
for the audio loss than the visual one throughout training. Interestingly, at the second half
of training, where audio starts to overfit, Gradient-Blending further increases the visual loss
weight. Hence, while DropPathway consistently trains the audio network at a slower pace, on-
line Gradient-Blending tackles the problem from the opposite direction and adaptively speeds
up the learning pace of the video network.

2.3.3 Going beyond action supervision

The advent of self-supervised learning brought the significance of learning effective represen-
tations without human-label supervision at the forefront of the machine learning and computer
vision communities. The trend was adopted in audio-visual learning too when it came to the
attention of researchers that the natural synergy between vision and audio can provide a strong
supervisory signal for learning powerful audio-visual representations useful for many down-
stream tasks including action recognition. Numerous works proposed various forms of audio-
visual self-supervision tasks building on the intuition that by leveraging the co-occurrence of
audio and vision, a model can be trained to comprehend the common underlying causal factors
that produce the auditory and visual events. Although self-supervised audio-visual representa-
tion learning is out of the scope of this thesis, below some of the most influential advances in
the field are reviewed as they paved the path for learning to recognise actions audio-visually
without human supervision.

The works of [6, 7] capitalised on the natural correspondence between audio and vision and
introduced the audio-visual correspondence task, i.e. training a network to recognise whether a
video frame and an audio clip correspond, a binary classification problem. Positive pairs were
sampled from the same moment in a video while negative pairs were sampled from different
videos. The authors argue that a model can solve this problem only by learning semantic con-
cepts in both modalities. The learnt model in [6] was tested for downstream classification tasks
including audio and image classification with competitive performance compared to previous

43



2.3 Audio-Visual Action Recognition

self-supervised approaches. The follow-up work of [7] showcased that specially designed ar-
chitectures for the tasks of intra-modal and cross-modal retrieval as well as for the task of
sound source localisation, that is to visually detect the sounding object, can be effectively
learnt simply by employing the audio-visual correspondence task as the objective function.
Although [6, 7] did not test the trained models for action classification, they sparked the in-
terest of a series of works that utilised tasks of predicting whether visual and auditory signals
coincide and evaluated the learnt representations in action recognition. These are described
next.

Owens and Efros [137] explored the task of training a neural network to predict whether visual
and auditory inputs are synchronised a problem that has been studied before as a goal in its
own right [33, 121] whereas in [137] it is utilised as a proxy task for learning audio-visual
representations. The task is formulated by sampling video clips, where in half of them the
visual and auditory streams are temporally aligned while in the rest audio is temporally shifted
by a few seconds. Note that this is a more subtle task than predicting audio-visual correspon-
dence [6, 7]. In [6, 7], negative pairs are from different videos and the visual inputs are single
frames. Hence, the problem can be solved by associating semantics in the two modalities, e.g.
the appearance of a car with the sound that it makes while distinguishing from the sound of
other objects. On the other hand, for detecting temporal misalignment, where the negative
pairs always come from the same video, the model should be able to reason about motion.
Therefore, [137] used a 3D convolutional network operating on video clips. Moreover, the au-
thors suggested that solving this task requires associating low-level features between the two
modalities and accordingly proposed an early fusion scheme.

Korbar et al. [94] proposed a curriculum learning strategy, effectively combining the tasks
of [6, 7] and [137]. At the first stage of the curriculum, the audio-visual architecture was
trained only with easy negatives where the visual and audio samples are from different videos,
i.e. solving for audio-visual correspondence. After a number of training epochs, the second
stage introduces both easy and hard negatives in training, where hard negatives are temporally
misaligned samples from the same video, i.e. predicting temporal synchrony akin to [137].
Similarly to [137], a 3D ConvNet was employed for the visual stream. Furthermore, the net-
work was trained with a contrastive loss acting on the representations of the visual and auditory
streams (ergo no fusion layer), as opposed to [6, 7, 137] that incorporated a cross-entropy loss
and fused the streams.

[4] introduced MultiModal Versatile networks (MMV) to align vision, audio and language
through self-supervised pre-trainin, where modalities were embedded in a common space with
projection heads implemented as MLPs. As text was obtained using Automatic Speech Recog-
nition (ASR), the authors avoided constructing an audio-text embedding space and did not
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enforce their alignment through the loss either, to deter the network from learning ASR and
encourage it associating words with the sounds produced from the relevant objects. Thus,
audio was implicitly associated with text through its common embedding with vision. Fur-
thermore, motivated by the observation that vision and audio have a more fine-grained struc-
ture than text, they proposed a modality embedding graph, namely Fine and coarse spaces
(FAC). In FAC, visual and auditory modalities are commonly embedded in a fine-grained
space, whereas a coarse-grained space embeds text, audio and vision using a fine-to-coarse
projection to embed vision and audio from the fine to the coarse-grained space. MMV is
trained with a contrastive loss that is composed of two components, an audio-visual contrastive
loss and a visual-text contrastive loss. Similar to [6, 7], to for the positive pairs the modalities
are sampled from the same temporal moment in the video while negative pairs are sampled
from different videos.

Patrick et al. [142] noted that proposed methods for image representation learning like [23,
31, 73] are aimed at learning representations invariant to various transformations (e.g. rota-
tion) which might not be optimal when considering video transformations, for example video
representations should be distinct rather than invariant to time reversing a video as the se-
mantics of the video might change (e.g. open vs close). To address this, they proposed a
framework for composing data transformations to form training batches using a hierarchical
sampling strategy. In the proposed framework all types of operations used for generating a
batch for training, including sampling an example from the dataset, were expressed in terms of
data transformations. For videos, five types of transformations were considered: (1) selecting
a video from the training set, (2) temporal shift, (3) modality slicing, i.e. splitting the video
in visual and audio features, (4) time reversal, (5) visual and auditory data augmentations.
This formulation allowed the authors to express invariance and distinctiveness to transforma-
tions through an additional term in the contrastive loss function. For example, a representation
should be distinctive to (1) to push representations from different videos apart (i.e. negative
sampling). Moreover, the authors assumed invariance to (3) to embed modalities in a common
space similarly to [4, 7, 94] and to (5) as is generally the case in contrastive learning. For
(2) they explored both invariance [6, 7] and distinctiveness [94, 137], as well as for (4), and
showed that a mix of distinctiveness and invariance provides optimal results for these transfor-
mations.

Alwassel et al. [5] introduced cross-modal clustering as a self-supervision task, where fea-
tures extracted from each modality were clustered independently with k-means and the cluster
assignments from one modality were used as pseudo-labels to train the other modality. The
feature encoders for each modality were initialised randomly and the training process consisted
of alternating between generating pseudo-labels with clustering and training the modality en-
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coders. Asano et al. [11] considered audio-visual clustering in a self-supervised manner too,
with the main goal being to assign semantically meaningful labels to unlabelled videos, yet
the learnt representations were also evaluated for action recognition. The training procedure
in [11] amounts to alternating between clustering and training the modality encoders using the
clusters as labels similar to [5]. Different from [5], each modality network is trained inde-
pendently with modality-invariant labels. This is implemented by adopting the formulation of
[142] that considers modality slicing as a data transformation and marginalising over the trans-
formations, i.e. averaging the visual and auditory representations. The averaged representation
is used for clustering that produces the same pseudo-labels for both modalities.

Concluding remarks

In the realm of architecture design, the early attempts of [115, 116, 206] were not end-to-end
trainable but relied on pre-extracted features which was prohibiting the errors from the multi-
modal network from backpropagating in the uni-modal backbone architectures, limiting their
representation capabilities. Nevertheless, this was addressed by the more modern approaches
of [133, 207] which were trained end-to-end. Furthermore, the problem of semantic-level
audio-visual asynchronies has been acknowledged among different works [53, 116, 207], an
issue that was also discussed in Subsec. 2.1.4 for visual modalities, where [112] introduced
asynchronous fusion with predefined asynchrony offsets between two modalities. Ch. 3 builds
on these findings and proposes an end-to-end trainable architecture with asynchronous fusion
of appearance, motion and audio streams where the constraint of [112] is relaxed and fusion is
allowed from any random offset within a temporal window, which is more suitable for scaling
up to many modalities.

The works on audio-visual regularisation and self-supervision signify that in addition to de-
signing domain-specific networks, multi-modal inductive priors can be exploited for training
the architectures too, where for instance the regularisation technique of [207] utilises the prior
knowledge that inputs are grouped in modalities and that audio overfits faster, while the audio-
visual self-supervised methods take advantage of the simultaneity of audio-visual inputs.

2.4 Egocentric Action Recognition

Egocentric videos are recorded with cameras, such as GoPro, attached to the forehead of the
person that performs the action, i.e. the wearer, offering an ‘egocentric viewpoint’ that is sim-
ilar to what the person sees. Different from third-person vision, egocentric videos mostly
capture the hands of the wearer. At the core of egocentric vision is the interaction of the actor
with the world and the manipulation of objects towards achieving a goal. Concretely, egocen-
tric actions encapsulate interactions of hands with objects, and the first-person receptive field
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focuses on the vicinity of the hands which are often around the centre of the image. Egocentric
actions are commonly modelled as combinations of verbs and nouns, where the verb denotes
what the person is doing, i.e. the action, and the noun corresponds to the object that the ac-
tion is applied. Some examples are ‘chop garlic’, ‘wash plate’, ‘open fridge’ and ‘stir pasta’.
Appearance and motion information are critical for the egocentric domain too, to reason about
the action and the object, respectively.

A major challenge of egocentric actions is that they are particularly fine-grained. First and
foremost, in contrast to third-person actions that have a distinct motion signature (‘brush
teeth’ versus ‘walk’), egocentric actions consist of subtle hand movements. Second, apply-
ing the same action to different objects results in two different actions (‘cut tomato’ versus
‘cut cucumber’). Third, the same action can be performed in a completely different manner
depending on the object of interaction (‘open cupboard’ versus ‘open bag’). Thus, undoubtedly
an egocentric action recognition model should be able to focus on fine-grained hand motion
and objects as well as to model their interactions. Another challenge of egocentric action
recognition is that hands may occlude the manipulated object making arduous its prediction or
that one hand may occlude the other resulting in ambiguity about the action being performed.
Finally, abrupt head movements make the motion modelling demanding as the model has to
learn to ignore camera motion and focus on hand motion.

Accordingly, researchers have proposed specialised architectures to capture the intricacies of
the egocentric domain, by adapting the two-stream paradigm to encode hand-object interac-
tions or by enhancing it with additional egocentric streams. Another prevalent approach is
to employ attention mechanisms to focus around hands and objects using gaze supervision or
without. This section analyses these topics as well as emerging ones deemed to be promising
for pushing the frontiers of egocentric vision.

2.4.1 Hand-object interactions

The central role of hand-object interactions in understanding egocentric actions prompted re-
searchers to investigate methods capable of reasoning about hands, objects and their interac-
tions. Ma et al. [120] introduced a model in that direction that is also one of the first deep learn-
ing approaches for egocentric action recognition. A specialised network design for egocentric
vision was proposed operating on interacted objects, by first localising and then recognising
the object of interest. Based on the importance of hand pose for understanding interactions
and on the observation that objects are typically in the proximity of the hands, the authors first
trained a hand segmentation network to enable attention around the hands. Subsequently, an
object localisation network was initialised from the hand segmentation network and fine-tuned
by regressing the 2D heatmap of the location of the object of interest. Finally, objects were
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cropped from the images using the detections from the previous step, and the cropped images
were fed to an object recognition network. Feature map visualisation showed that particular
neurons were firing at hand regions and object attributes, such as shape and texture, enabling
the modelling of hand-object configurations.

In [13], the problem of modelling hand-object and object-object interactions is investigated
under the scope of object-level relational reasoning, i.e. learning relations between pairs of ob-
jects. To this end, Object Relation Network (ORN) was introduced to relate detected objects
through space and time. ORN resembles the model of [120] in that both employ object detec-
tors to infer interactions. Nevertheless, ORN utilises Mask-RCNN [72] which is more modern
and accurate than regressing for the location heatmap. In more detail, a backbone architecture
with 3D convolutions extracts spatio-temporal features. In parallel, Mask-RCNN generates
masks of predicted objects, and afterwards the spatio-temporal representation is pooled over
the object proposals with RoI pooling to provide appearance features for each detected object.
The final object representation passed to the relational module is composed of the appear-
ance features, shape features, and class distribution, where the shape features are estimated by
projecting the binary object mask. To leverage the causality of time and model causal object
relations (i.e. that past actions affect current actions but not the opposite), for a given frame a
past frame is sampled and the relational module operates on objects detected between pairs of
frames, namely a random past frame and the current frame. The architecture of the relational
module is simple; an MLP models inter-frame interactions between pairs of objects, followed
by a summation over all pairs. To model long-range interactions, a recurrent network aggre-
gates the interaction features from all frames. The output from the recurrent network is finally
used to classify activities. ORN improved the performance of baselines in both object interac-
tion classification and egocentric action recognition, and importantly the authors demonstrated
through visualisation that the learnt object interactions are correlated to the predicted activi-
ties.

The merits of modelling hand-object interactions with object detectors are also supported by
evidence from the EPIC-KITCHENS action recognition challenge, where for two consecu-
tive years (2019 and 2020) the winning entries (from the same team) utilised the active object
bounding-box annotations to enable attention on the interacted objects [200, 201]. [200] incor-
porated Faster-RCNN and ROIAlign [72] to extract top-K features from the top-K bounding
boxes with the highest scores. These were max-pooled and used to gate the spatio-temporal
CovnNet features. [201] adopted a more complicated architecture, which consists of two
branches, one for recognising objects and the other for actions. The top-K RoI features were
utilised to enhance both branches with location-aware object information via global and lo-
cal alignment respectively, providing “object-centric” features. Then, a cross-stream gating
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mechanism enables interaction across the object and action branches. Finally, an attention
mechanism predicts attention weights between the ConvNet outputs and the object-centric
features which is used to aggregate the object-centric features based on their relevance.

2.4.2 Modelling attention with gaze supervision

In egocentric vision, gaze conveys significant information about the action being carried out
as eyes need to be coordinated with the hands for grasping and manipulating objects, and thus
fixation points can serve as a proxy for attention to discriminant spatio-temporal locations
in videos. Accordingly, various works capitalised on gaze supervision to model attention by
jointly estimating gaze and predicting egocentric actions [80, 108, 118, 128].

Li et al. [108] formulated gaze as a latent variable and modelled its distribution with stochastic
units in a ConvNet. Modelling gaze as a probabilistic variable helps to account for its uncer-
tainty resulting from errors in the gaze measurements. The goal of [108] is to optimise the
conditional probability of an action class given an input video, where gaze takes the form of a
latent distribution of attention, resulting in a term that represents the posterior of gaze which
is intractable to learn. An approximation of the posterior is proposed parameterised with a 2D
feature map from the convolutional network. The proposed network is optimised with vari-
ational learning, where the loss function consists of two terms: i) the cross-entropy between
the class prediction and the ground-truth, and ii) the Kulback-Leibler divergence between the
ground-truth and the predicted gaze distributions. As the gaze distribution is discrete, it is
reparameterised with the Gumbel-Softmax distribution [85] to make the model fully differen-
tiable. Attention maps, sampled from the learnt attention distribution, are used to aggregate
visual features spatio-temporally.

Min et al. [128] adopted the framework of [108] and introduced three main modifications
to improve its performance. First, while [108] simply uses the outputs of a ConvNet as in-
puts to the gaze modelling network, [128] added 3D convolutional layers within the gaze
network to account for temporal modelling in the gaze distribution. Second, [108] directly
utilised the samples of the gaze distribution as attention maps for spatio-temporal pooling,
whereas [128] added a fully-connected layer followed by a sigmoid on top to enhance the at-
tention mechanism by suppressing uninformative attention locations. Finally, [128] replaces
the Gumble-Softmax estimator with a direct optimisation method, originally introduced for
training variational auto-encoders with discrete random variables, that introduces an unbiased
gradient estimator.

Lu et al. [118] introduced a simpler deterministic approach where I3D networks [24] were
augmented with a spatio-temporal attention module (STAM). STAM consists of a 3D Incep-
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tion module [24] followed by an additional 3D convolutional layer and operates on the visual
feature maps of I3D and outputs an attention map supervised with gaze. Ground-truth attention
maps are generated by placing a 2D Gaussian around the gaze points which also serves as a
simple way of handling the uncertainty of gaze measurements. STAM is trained by minimising
the MSE loss between its output and the ground-truth attention, and the overall architecture
is optimised jointly for attention prediction and action supervision. Attention is realised as
element-wise multiplication between the maps produced by STAM and the feature map of the
convolutional layer that it operates, and is placed only after the last convolutional layer.

Huang et al. [80] proposed the Mutual Context Network (MCN) for jointly predicting ego-
centric actions and estimating gaze with a gaze-guided action recognition module and an
action-dependent gaze prediction module. While their motivation for the gaze-guided ac-
tion recognition module is similar to other works [108, 118, 128], i.e. to visually guide the
learnt representations by focusing on the attended regions, they offer a novel perspective for
the action-dependent gaze prediction module. They capitalise on the connection between gaze
and the performed action, where they observe that different actions are associated with dif-
ferent gaze patterns, particularly because the objects involved in actions convey information
about the region of attention. Based on this motivation, they propose to condition the gaze
prediction module with the predicted action distribution from the action recognition module
to estimate gaze based on semantic information. To this end, an ‘action kernel generator’ con-
sisting of a fully-connected layer and two convolutional layers takes as input the predicted
action likelihood and generates a set of convolutional kernels that encode information about
the performed action. The generated action kernels are then convolved with the input features
(extracted from an I3D backbone) and passed to a 3D decoder that estimates a gaze probability
map per frame.

2.4.3 Modelling attention without gaze supervision

The works of [178, 179] showcased that spatial attention mechanisms can locate the manipu-
lated objects in a scene without explicit streams for learning to localise hands and objects and
without the need of hand segmentation, object bounding box or gaze supervision. To achieve
this, [178] exploited Class Activation Mapping (CAM) [216] to facilitate a ConvNet in fo-
cusing on the object of interest. CAM operates on convolutional feature maps and produces
class-specific activation maps, by learning a weighted average of the feature map across chan-
nels for each class. In [178], the outputs of the last convolutional layer of a ConvNet as well
as the predicted object class are provided to CAM for obtaining an activation map relevant to
the interacted object which is converted to an attention map by passing it through a softmax
activation. The object-specific attention map is then multiplied with the output feature map

50



2.4 Egocentric Action Recognition

of the ConvNet to attend to the object. Finally, a convolutional LSTM [163] operating on the
attended feature maps of all frames in the video, is utilised for spatio-temporal aggregation.
Ablations highlighted that attention enables more efficient learning of activities and visualisa-
tions verified that the model focuses on the relevant objects and interaction points.

The follow-up work of [179] introduces Long Short-Term Attention (LSTA) that integrates
attention into the ConvLSTM architecture, as opposed to modelling attention and spatio-
temporal aggregation in two distinct steps as its predecessor [178]. LSTA employs class-
specific mappings akin to CAM to pool the input features over the channel dimension and
generate attention maps, namely attention pooling. To enhance the attention mechanism, a sec-
ond ConvLSTM operating on the attention maps of each frame models long-range attention.
An attention map at the current frame is calculated by summing the class-specific activation
map of attention pooling and the current hidden state of the attention LSTM followed by a
softmax activation. This is then used to attend the inputs of the video LSTM at each timestep.
To further enhance the forget-update mechanism of the cell state of the video LSTM, the au-
thors introduce output pooling that similar to attention pooling is used to identify the most
discriminative features of the cell state of the LSTM.

2.4.4 Appearance and motion streams and beyond

There has been a rich stream of works in egocentric action recognition that: i) employ fusion
of vanilla appearance and motion streams [35, 36, 80, 108, 118, 128, 129], ii) adapt them to the
egocentric paradigm by introducing specialised appearance and / or motion streams capable
of capturing egocentric signals [13, 120, 178, 179, 200, 201], or iii) extend the two-stream
architecture to multiple streams with additional sensor measurements [172] or hand-crafted
egocentric features [170].

Various works integrated the original appearance and motion streams for egocentric action
recognition, as capturing spatial and temporal information is imperative for modelling ego-
centric videos too, where appearance is essential for reasoning about objects while motion for
understanding the wearer’s actions. Moltisanti et al. [129] assessed the robustness of the mid-
level fusion two-stream architecture of [46] to variations in the temporal bounds of egocentric
actions. Moreover, in both the EPIC-KITCHENS-55 [35] and EPIC-KITCHENS-100 [36]
datasets, late fusion of appearance and motion streams has been employed to obtain baseline
performance on each respective dataset. Finally, all the works in joint action recognition and
gaze estimation [80, 108, 118, 128] adopted the fusion of appearance and motion I3D streams;
[80, 108, 128] applied mid-level fusion by summing the feature maps of each stream, whereas
[118] performed late fusion.
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While plain appearance and motion streams have proven to be advantageous for first-person
action recognition, adapting them to the egocentric domain can enable harnessing of useful
egocentric priors, a topic of research that concerned the works of [13, 120, 178, 179, 200, 201].
In addition to a dedicated appearance stream for learning object interactions through hand seg-
mentation and object localisation, [120] employed a conventional motion stream as well, and
fused the two streams with late fusion. Interestingly, visualisation of the motion stream’s fea-
ture maps showed that camera motion compensation automatically emerged through traning
the network, where it learnt to ignore background motion and focus on the actor’s movements.
To complement the Object Relation Network with motion information, the authors of [13] in-
corporated an ‘activity head’ too, operating on the same backbone as ORN, followed by global
spatial pooling and an GRU for long-range temporal modelling. Furthermore, the winners of
the 2019 and 2020 EPIC-KITCHENS action recognition challenges [200, 201] enhanced both
appearance and motion streams with the proposed gating mechanisms and combined them
with late fusion. Likewise, [178] and [179] applied the attention-augmented ConvLSTM ar-
chitectures to both appearance and motion inputs; while [178] simply merged the two streams
with late fusion, [179] took a more principled cross-modal fusion approach, where the output
convolutional features of each stream where used as biases to the LSTM gates of the other
stream.

Apart from appearance and motion, egocentric-relevant information resides in other modalities
too. That was the main motivation of Song et al. [172] that lead them to explore multiple
sensor data including accelerometer, gyroscope, magnetic field and rotation. Both gyroscope
and rotation could provide hints of gaze, while accelerometer could inform a model about
the type of action being performed, as different actions require different speed of movement.
[172] trained an LSTM for each type of sensor data and combined them with late fusion.
Additionally the authors trained appearance and motion streams by incorporating RGB, optical
flow as well as stabilised optical flow to account for camera motion. The visual streams are
also combined with late fusion. A second fusion stage was applied to fuse the visual and sensor
streams. An interesting find is that max fusion, i.e. taking the maximum prediction across the
modalities was found to outperform averaging the multi-modal predictions.

In the realm of multi-stream architectures, [170] augmented appearance and motion streams
with an additional Ego Stream with the aim to capture egocentric cues, particularly related to
the coordination between hands, head and eyes. Different from works that task the network
to predict hand masks [120] or gaze [80, 108, 118, 128], the authors of [170] proposed to
feed the network with stacks of analogous features. To eliminate the need for annotation, the
authors resorted to computer vision techniques to generate hand masks, head motion as well as
saliency maps as a proxy for gaze. Ego Stream operates on the concatenation of those features
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and is composed of a 2D ConvNet and a 3D ConvNet. By design, the 2D ConvNet performs
early fusion of the features in the first convolutional layer while the 3D ConvNet fuses them
progressively throughout the architecture. The ego networks are combined with late fusion
independently from the spatial and temporal streams, and a second stage combines the fused
Ego Stream with the fused appearance and motion streams.

2.4.5 Multi-task learning

The motivation of multi-task learning is that training simultaneously for multiple tasks can
enhance the performance of individual tasks, particularly when the tasks are correlated. It can
also be seen as a form of regularisation that constrains a model to learn representations by
exploiting the relationships between the tasks. In egocentric datasets like EPIC-KITCHENS
and EGTEA [108], where actions are decomposed into verbs and nouns, there is a natural
correlation between verbs and nouns resulting from the ways that an object can be manipulated
that restrains the number of possible verb-noun combinations, e.g. you can chop a garlic or an
onion but not a cupboard whereas a cupboard can be opened or closed. [120] leveraged the
relationship of objects and actions and trained the egocentric-specific appearance stream to
classify objects while the motion stream to classify actions, individually as a first step. Then,
the two streams were combined with late fusion by concatenating their last fully-connected
layers and feeding them to a new fully-connected layer. On top, three classification heads
were added, one for verbs, one for nouns and the other for actions, i.e. verb-noun combinations,
and there was one loss function per head. The joint network was fine-tuned with a weighted
combination of the three losses. In a similar manner, [201] trained a VerbNet for actions and a
NounNet for objects, but differently than [120] the streams were fused with cross-gating and
trained simultaneously from the beginning. In EPIC-KITCHENS, all the baseline models were
trained in a multi-task setting too, with a verb head and a noun head. [179] evaluated LSTA in
EPIC-KITCHENS by also adding a head for verb-noun combinations in addition to the verb
and the noun heads, similarly to [120]. The multi-task learning paradigm of verbs and nouns
is adopted throughout this thesis too.

Multi-task learning was also employed by the approaches that jointly learn to predict gaze
and actions [80, 108, 118, 128] where the results of [108] and [80] demonstrated that when
training for gaze in addition to actions, action recognition performance improved. While
multi-task learning is a byproduct of the aforementioned approaches, Kapidis et al. [89] in-
troduced an explicit multi-task learning method, and provided a more systematic evaluation
of the importance of training for multiple tasks in egocentric action recognition. A shared 3D
backbone was utilised to simultaneously train for verb, noun, action recognition, gaze estima-
tion and hand localisation, resulting in five task-specific heads. Differently than the works of
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[80, 108, 118, 128] on gaze estimation, gaze was only used as a supervisory signal and the es-
timated gaze was not utilised for attending the visual features. Consistent improvements were
observed by training for multiple tasks over a single-task baseline.

2.4.6 Domain adaptation

Leveraging knowledge from a learnt source domain to train a target domain is a desirable prop-
erty of machine learning methods, which is particularly advantageous when there is ample data
in the source that can be utilised to enhance the performance of the target that lacks sufficient
data. Yet, the distributional shift between domains hinders the adoption of simple approaches,
such as pre-training a model in the source and fine-tuning it in the target. This problem con-
cerns egocentric action recognition too, where there are various types of domain gaps. Two
central types of domain gap are: 1) employing third-person data to improve models aimed to
recognise first-person actions, where during pre-training the third-person video model ignores
key egocentric properties such as the camera viewpoint and hand-object interactions, and 2) in
egocentric datasets like EPIC-KITCHENS, where data is recorded in different environments
(kitchens), adapting a model trained in a source environment to a target one is hard, due to
variability in appliances, cookware, room layout, as well as the motions of the wearer.

The goal of Li et al. [109] is to tackle the first type of domain gap by augmenting the tra-
ditional pre-training of third-person video models that uses an action classification objective
with additional tasks able to discover egocentric signals in third-person videos and distil them
into the video backbone. The motivation for this is to leverage large-scale labelled third-person
video datasets while at the same facilitating the model into learning egocentric-specific video
features that can narrow the domain gap when fine-tuning for downstream egocentric tasks. To
this end, the authors utilised pre-trained models from three egocentric tasks to assign different
types of pseudo-labels in third-person videos. The tasks are: i) determining the ‘egocentric-
ity’ of a video, by training a model in Charades-Ego [167] that contains paired egocentric and
third-person videos, to solve a binary classification task of whether a video is egocentric or not,
ii) recognising interactive objects by employing a model pre-trained on ImageNet, and iii) de-
tecting hand-object interaction regions by adopting an off-the-shelf hand-object detector. Each
model was ran on a third-person video dataset (Kinetics-400 [90]) producing a set of pseudo-
labels for each video instance in the form of soft labels, i.e. the class probability distribution for
the egocentricity and interactive object tasks, while for the hand-object detection task the gen-
erated bounding boxes were converted into hand and object score-maps. After obtaining the
pseudo-labels, the video backbone was augmented with a head per task forming a knowledge-
distillation loss that trained each head to approximate the responses of the egocentric models.
Qualitative results demonstrated that the model successfully identified egocentric signals in
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third-person videos as the scores of each head were particularly high when hand-object inter-
actions were present. Moreover, ablations demonstrated that the proposed approach learned
representations from third-person datasets that transfer better to egocentric action recognition
comparing to pre-training solely for third-person action classification, and that the proposed
tasks provided complementary benefits. The work of [167] also proposed a method to transfer
representations from third-person to first-person videos, yet focused on learning viewpoint in-
variant representations by exploiting corresponding third-person and egocentric videos.

To tackle the second type of domain gap, Munro and Damen [132] adopted the Unsupervised
Domain Adaptation (UDA) paradigm, and formulated the problem as transferring fine-grained
representations from a labelled environment to an unlabelled one using the EPIC-KITCHENS
dataset. [132] introduced a novel multi-modal domain adaptation method applied to RGB and
optical flow modalities, in contrast to previous approaches that operate on single modalities
(RGB). Inspired by multi-modal self-supervised approaches, the authors exploited the natural
congruence between RGB and optical flow and employed a self-supervised correspondence
task that trains a binary classifier to identify whether RGB and flow samples are from the
same video. The self-supervised correspondence task was applied to both source and unla-
belled target domains where it was shown that this strategy enables learning common features
in both domains encouraging adaptation. To further align the source and target domain distri-
butions, an adversarial alignment method [52] was utilised within each modality, that trains a
domain discriminator and reverses its gradients to maximise its loss and remove domain spe-
cific information from the feature representations. Finally, an action classifier was trained on
source-only videos with late fusion by summing the modalities’ predictions. The architecture
was trained by combining each individual loss.

2.4.7 Combining audio and vision

In this section, we have witnessed the importance of learning representations that can en-
code hand-object interactions for recognising fine-grained actions where a broad range of
approaches for tackling the problem have been discussed. Yet, none of these approaches
explored the role of audio in reasoning about interacted objects. The audio-visual methods
of [133, 196, 207] were evaluated on EPIC-KITCHENS and verified that audio is beneficial
for egocentric action recognition, although these are general-purpose action recognition ap-
proaches and not particularly designed for egocentric vision. The work presented in this thesis
fills this gap by introducing audio-visual action recognition approaches with the main objec-
tive being to recognise egocentric actions, by leveraging the discriminant sounds produced
from object interactions. In particular, Ch. 3 shows that audio is a competitive modality for
egocentric action recognition, achieving comparable performance to appearance. This is vastly
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different than third-person audio-visual action recognition approaches. For example, the pro-
posed method of [206] was evaluated on UCF101 were it was shown that the ability of audio
to recognise third person actions was severely limited (16% accuracy for audio compared to
80% and 78% for appearance and motion), with only minor improvements comparing to util-
ising only vision. A similar conclusion can be made for the Kinetics dataset from the results
of [115, 116, 196, 207].

2.5 Temporal Context for Video Recognition Tasks

Contextual information is valuable. For example, image recognition models frequently iden-
tify objects by resorting to their surroundings, such as other object instances or the background.
In the same way, video recognition models can benefit from contextual cues. The methods that
have been reviewed thus far, may implicitly do so by leveraging context within the clip, e.g. to
recognise the action ‘kick ball’ in a video that shows people playing football, the model might
learn to exploit the grass in the field in addition to the players’ movements. Nevertheless,
the temporal dimension of videos offers the opportunity of explicitly capitalising on temporal
context in more sophisticated ways. In this thesis, we would like to discriminate the notion
of temporal context from long-term temporal modelling which are typically used interchange-
ably. We refer to long-term temporal modelling for approaches that utilise a large temporal
horizon within the clip with the goal to model the progression of long events, whereas we use
the term temporal context for information outside the clip which is particularly useful when
untrimmed video is available. For instance, an action recognition method can take advantage
of the temporal context of surrounding actions or background frames outside the action bound-
aries [203], while an object recognition method can benefit from detections in neighbouring
frames [14]. Intuitively, a model that can relate the present with the past and the future (when
available) should develop better reasoning capabilities. Thereupon, this section reviews rele-
vant methods that make use of temporal context for various video recognition tasks.

Action anticipation, that is the task of predicting the action that will happen next given a video
segment, utilises temporal context by definition as the model operates on past context to make
a prediction and the context can include both background segments and other actions [49, 159].
Furnari et al. [49] introduced Rolling-Unrolling LSTMs (RU), where a Rolling LSTM encodes
the observed sequence of frames and an Unrolling LSTM provides predictions at sequential
anticipation times. Moreover, RU is multi-modal where appearance, motion and object-centric
RU branches are fused by linearly combining their predictions with modality attention weights.
Nevetheless, RU operates on short temporal horizons of 3.5s and an analysis on the input length
demonstrated that the model’s performance drops when using longer horizons.
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Sener et al. [159] proposed Temporal Aggregation Blocks (TAB) that operate on multi-scale
past temporal context for action anticipation and integrate recent observations with long-range
past context. The authors considered recent features that last up to a minute in the past and
spanning features from the longer past up to ten minutes before the current frame. Recent and
spanning feature banks were introduced that incorporate multi-scale features which were as-
sembled by splitting the video into snippets and max-pooling the features within each snippet,
where the scale is controlled by the number of snippets. A TAB is a bottom-up architecture
where at its core there are Non Local Blocks (NLB) [199] that perform dot-product atten-
tion inspired by Transformers. A TAB is composed of multiple Coupling Block (CB) that
use NLBs to relate a recent feature with spanning features from all scales and the outputs of
all CBs are aggregated within a TAB. [159] made an important observation about the role of
temporal context. It was shown that while for the Breakfast dataset [98] where actions are
sparsely annotated within the videos the performance was increasing by incorporating more
temporal context up to 10 minutes, for EPIC-KITCHENS where actions are much denser more
temporal context was beneficial up to a minute of video. The authors’ take on this behaviour
was that given the size of the EPIC-KITCHENS dataset the model was not able to capture
the large variability of long-range dependencies at longer temporal context. Nevertheless, the
proposed model can handle significantly longer temporal context than [49]. Finally, the model
was tested on action recognition as well by modifying the architecture to consider both past
and future context around the action to be classified.

Ng and Fernando [136] tackled the problem of human action sequence classification, where
given a video that contains multiple actions, the goal is to train a model to predict the sequence
of actions in the order they appeared in the video. The task, as defined by [136], is difficult
in that the model is trained with weak supervision using only the ground-truth sequence of
actions but not their temporal boundaries, and thus it should implicitly learn the action bound-
aries. To address this task, [136] proposed an autoregressive encoder-decoder LSTM with
attention, where after encoding the sequence of video features with the encoder, at each step
the decoder takes as input the predicted action from the previous step and predicts the current
action. Therefore, the model learns relationships between the current action and previous ac-
tions, effectively attending to the relevant temporal context that consists of other actions in the
video.

Zhang et al. [213] focused on the problem of fine-grained action classification in untrimmed
videos that consist of short events spanning a few frames, where multiple possibly overlap-
ping events can occur in a video. Similarly to [136], they investigated weak supervision for
solving the problem, i.e. no temporal location of events was provided, but differently than
[136] they did not consider the temporal ordering of actions; their goal was to identify which
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actions occur in a video by learning to answer to a predefined set of questions. To this end,
they introduced the Temporal Query Network (TQN) that operates on densely extracted clip-
level visual features and employs a set of learnable permutation-invariant query vectors that
are transformed into response vectors by attending over the visual features, where the query
vectors correspond to events and their attributes. More specifically, a Transformer decoder per-
forms cross-attention between the query vectors and the visual features and each query vector
aggregates information relevant to the corresponding event. The output of the Transformer is a
set of response vectors that are linearly classified into attributes with individual classifiers per
response. An analysis of the temporal context length in training showed that optimal results
were achieved by using the whole extent of the video, indicating that although the query vec-
tors are intended to pick out the segments relevant to a particular event, the temporal context
from other events is beneficial.

Wu et al. [203] augmented 3D ConvNets that typically operate on short video segments with
a Long-Term Feature Bank (LFB) that stores features of the entire untrimmed video. LFB is
coupled with a Feature Bank Operator (FBO), namely an attention mechanism that enhances
the clip-level representation of the ongoing action by relating it with information about the
past and the future using LFB. In more detail, FBO is realised with Non-Local Blocks and
uses the short-term representation of the ConvNet as the query and a subset of features from
LFB using a window centered at the current clip as keys and values and outputs an encoded
representation about the current clip by attending to past and future features from LFB. The
classifier then takes as input the concatenation of the short-term features and the enhanced
representation from FBO. The proposed model was evaluated for a range of different tasks
including spatio-temporal action localisation using the AVA dataset [65] and egocentric action
recognition using EPIC-KITCHENS. Depending on the needs of each task, different types
of features were stored in LFB. For AVA, a person detector was run for the entire video and
the features from a parallel ConvNet were RoI pooled using the detection boxes. For EPIC-
KITCHENS, two models were trained, one for verbs and one for nouns. While for the verb
model LFB was constructed by simply pooling the features of a 3D network, the noun model
utilised an object detector storing RoI pooled object-level features in LFB. Ablations on AVA
demonstrated that results improved by increasing the temporal support of LFB (maximum
was 60 seconds) and that although the model can be used in a causal setting, i.e. leveraging
only past context to predict the current action, exploiting both past and future context is more
beneficial. For EPIC-KITCHENS, the authors found that best performance was obtained using
a window length of 40 seconds for verbs and 12 for nouns, corroborating the findings of
[159] to some extent, that densely annotated datasets like EPIC-KITCHENS require shorter
context.
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Cartas et al. [27] leveraged egocentric-specific temporal context by modelling sequences of
hand-object interactions using a hierarchical LSTM. As a first stage, they adapted the method
of [58] for the egocentric domain, where hands and objects were detected for each frame and
actions were predicted at the frame level using a late fusion of the predictions from the pooled
hand and object features. The frame-level action predictions were used as input to an LSTM to
perform temporal modelling within each action clip and produce temporally consistent frame-
level predictions. At the top stage of the hierarchy, a second LSTM was utilised to capture
long-term temporal interactions across consecutive actions by exploiting the action boundaries.
That is, the hidden unit of the bottom LSTM corresponding to the last frame of each action
was fed to the top LSTM, effectively connecting past actions to the current action. The top
LSTM performed action-level classification. After training, the top LSTM was discarded to
remove the need for utilising the action boundaries in testing. Ablations demonstrated that
the temporal context of past actions was beneficial to a certain extent but bigger performance
boosts were due to temporal modelling within the action.

This section established that there is already a variety of different techniques for capturing
temporal context for video recognition. Nonetheless, all the presented approaches are targeted
at modelling temporal context in the visual domain. Ch. 5 argues that leveraging the temporal
context of multiple modalities has complementary benefits and fills the gap between multi-
modal methods and temporal context approaches by proposing a multi-modal temporal context
framework that capitalises on the temporal context in the data stream using vision and audio
as well as prior temporal context using a language model that operates on the action labels.
To facilitate better understanding of the framework, the next two sections describe relevant
concepts.

2.6 Multi-modal Transformer Architectures

The self-attention mechanism of transformers provides a natural bridge to connect multi-modal
signals by comparing multi-modal inputs and aggregating representations from different do-
mains using multi-modal attention weights. This property inspired the development of multi-
modal transformer architectures for a range of different applications, including vision and lan-
guage representation learning [104, 117, 182], image/audio/video classification [84, 99, 182],
image/video captioning [82, 102, 117, 182], image segmentation [210], cross-modal sequence
generation [51, 103, 105] and video retrieval [50]. Rather than delving into the details of each
approach and task, this section highlights some of the most common paradigms for multi-
modal transformer design.

The most basic distinctions between these architectures lie in the mechanism that integrates
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signals from different modalities, where two primary categories have emerged: 1) multi-stream
architectures [82, 99, 102, 103, 105, 117] and 2) single-stream architectures [50, 51, 84, 104,
182, 210]. The distinction is inspired by [91] which however covers mostly works on vision
and language, whereas here the categorisation is extended to other multi-modal areas described
above.

Early fusion has been broadly adopted among single-stream architectures, where a Trans-
former encoder simply ingests concatenated sequences from different modalities [50, 104, 182]
and performs self-attention to the multi-modal inputs. In such case, inputs from each modal-
ity act as queries and keys/values at the same time and interaction is allowed between all
queries and keys/values. Therefore, the Transformer encoder performs simultaneously within-
modal and cross-modal attention by comparing each query with keys from both the same and
other modalities. This produces multi-modal attention weights which then fuse the modali-
ties by aggregating the multi-modal values. In other problems, such as generating music from
videos [51], a single-stream autoregressive decoder is a reasonable approach as it provides
a straightforward mechanism for conditioning the audio generation on the input video. The
Transformer decoder enforces cross-modal attention by using the audio as query and the video
representation as key/value, therefore preventing interaction within the modalities.

A popular strategy in multi-stream architectures is to restrict the early layers to perform uni-
modal modelling and enable multi-modal communication only at the later layers of the archi-
tecture, i.e. mid-level fusion. In multi-stream Transformers, this is realised with modality-
specific Transformer streams that perform self-attention within each modality for the first
layers of the architecture followed by concatenating the uni-modal Transformer outputs and
feeding them to another Transformer that performs multi-modal self-attention [99, 105]. The
method of [133] (discussed in Sec. 2.3) is also in this category, where the concatenated outputs
of modality-specific Transformers are fed to attention bottleneck layers for multi-modal pro-
cessing. Others do not utilise a Transformer to fuse the uni-modal representations and apply
merely late fusion of the predictions of each Transformer stream [103]. Finally, cross-modal
attention has been employed in a two-stream setting too, where each modality’s cross-modal
Transformer uses inputs from that modality as queries and inputs from the other modality as
keys/values [102, 117].

In addition to being permutation invariant, Transformers are modality invariant too, i.e. they
cannot discriminate from which modality the inputs are coming from. This should not be an
issue for cross-attention as modality information is encoded in the query/key/value projection
weights because one modality is always used as they query and the other as key/value. How-
ever, it becomes a problem for approaches that concatenate modalities and encode them with
self-attention. A common strategy to alleviate this is to add learnable modality encodings to

60



2.7 Language Models and Their Usage for Capturing Action Context

the input in addition to the positional encodings [50, 84, 99, 104]. Another common paradigm
is to extract features for each modality from pre-trained uni-modal convolutional networks and
use them as inputs to the Transformer [50, 82, 99]. Similarly, models that operate on vision and
language use visual features from pre-trained ConvNets while for language word embeddings
are learnt within the Transformer [102, 104, 117, 182, 210].

Lastly, a major breakthrough in multi-modal Transformers was the Perceiver architecture [84].
While it belongs in the single-stream architectures it’s unique in its kind. Differently than other
multi-modal Transformers that operate on extracted convolutional features and more similarly
to [133], the Perceiver is trained end to end from raw multi-modal signals. Yet, while [133]
leverages the prior knowledge about the modality from which the inputs are coming from by
incorporating modality-specific streams before fusion, the Perceiver makes no assumptions
about its inputs. Modality inputs are simply flattened and concatenated and treated as a large
byte array. As the quadratic complexity of vanilla Transformers would make quite inefficient
the processing of such enormous byte arrays, they key contribution of the [84] is the intro-
duction of a learnable latent array of significantly smaller length than that of the input byte
array. The Perceiver projects the high-dimensional byte array into a low-dimensional bot-
tleneck using cross-attention between the byte array and the latent array followed by vanilla
self-attention and it alternates between cross-attention and self-attention layers. Following the
discussion on Subsec. 2.1.3, as the Perceiver does not exploit any inductive biases about the
inputs, it is mostly suitable for big data regimes.

2.7 Language Models and Their Usage for Capturing Action
Context

2.7.1 A brief introduction to language modelling

Language models estimate the probability distribution of a sequence of words or the prob-
ability of a word given other words in the sequence. That is, a language model assigns a
probability to a sequence of words that expresses how likely the sequence is. For example, a
language model trained with a corpus of human written text would assign a high probability
to a natural sentence and a low probability to a random sequence of words. Thus, language
models encode the prior structure of word sequences. Based on this capability they have been
used in various tasks such as speech recognition [28, 70, 127] and machine translation [66] to
re-score the predictions of the model and filter out improbable sequences. Typically these ap-
proaches perform a search (often a beam search) to find the most probable sequences of words
according to their model. To filter out improbable sequences, the language model is incorpo-
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rated in the search algorithm such that the most probable sequences are computed according to
both the model for the task in hand and the language model. A standard approach is a shallow
fusion that computes a weighted average of the probability of a sequence using the model for
the task in hand and the probability of the same sequence using the language model.

Traditionally, statistical language models have been extensively used where n-gram is a typi-
cal statistical language model. An n-gram model approximates the probability of a sequence
of words as the product of the conditional probabilities of each word in the sequence given
n − 1 preceding words, i.e. the context, based on the nth order Markov property. The condi-
tional probability is simply calculated by counting the frequency of occurrence of the word
given the n− 1 previous words among all sequences of length n. Nevertheless, a major weak-
ness of statistical language models is related to the curse of dimensionality; as the context
size increases for a given vocabulary size (i.e. the number of unique words), the number of
possible sequences increases exponentially which causes a data sparsity problem, where many
sequences do not occur and their probability cannot be calculated resulting in a sparse proba-
bility distribution.

Neural Language Models (NLM) employ neural networks to model the probability distribution
of word sequences [17, 127]. Similarly to an n-gram, they predict a word by taking as input
the context of previous words, and model the probability of a sequence as the product of the
conditional probabilities of the words in the sequence. A fundamental difference is that words
are represented as continuous vectors, namely word embeddings, and modelled as non-linear
combinations of weights in neural networks. An important property of word embeddings is that
semantically similar words are close in the learnt embedding space. Moreover, NLMs learn
jointly the word embedding and the probability distribution of words. In their simplest form,
NLMs adopt a feed-forward fully-connected neural network design [17]. At the input level,
the word embedding layer takes as input the context of preceding words as one-hot encodings
over the vocabulary size and projects each one independently. A hidden layer projects the
concatenation of the word embeddings of the context to a latent space. Subsequently a linear
layer with a softmax activation is used to predict the current word. The network is trained to
maximise the sum of the log-likelihood for each word in the sequence.

NLMs has certain advantages over n-grams. First, they scale better with the increase in the
vocabulary and the context size that cause only a linear increase in the parameters of the word
embedding layer and the hidden layer, respectively. Conversely, the representation of n-grams
grows exponentially with the context size for a given vocabulary size and becomes sparser.
Second, the learnt similarities between word embeddings foster generalisation to sequences of
words that have not been observed in training in contrast to n-grams that can reason only about
observed sequences. Furthermore, the strengths of NLMs over statistical language models
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have been validated experimentally [17, 44, 92]. It is also common to employ a recurrent
neural network instead of a feed-forward network as recurrent nets can handle both longer-
term and variable length context [127].

Recently, high-capacity transformer-based language models have shown outstanding perfor-
mance in various downstream tasks by pre-training them with language modelling objectives
using massive-scale datasets [21, 40, 149, 150, 209]. GPT [149] employed an autoregres-
sive Transformer decoder and pre-trained it using the traditional training objective of NLMs,
i.e. the cross-entropy of the conditional probability of a word given the context of previous
words, summed for each word in the sequence. BERT [40] proposed to leverage both past and
future context using a Transformer encoder that is bidirectional by default. Differently than
unidirectional language models that read text sequentially left-to-right or right-to-left, BERT
observes the whole sequence at once. Therefore, the standard language modelling objective of
predicting the next word would not be suitable for training BERT as the model could trivially
predict the target word because it would have observed it. To address this, [40] proposed a
Masked Language Modelling training objective for bidirectional models where a percentage
of the inputs are randomly masked and predicted.

2.7.2 Language modelling for sequences of actions

The ability of language models to capture the context of word sequences makes them appropri-
ate candidates for capturing the contextual structure of action sequences in untrimmed videos,
which can be achieved by treating the action labels as words and using them as inputs to a
language model. Action context can inform models about prior relationships in sequences of
actions, i.e. which actions are more likely to co-occur, and steer the learning and inference
process by constraining the space of possible solutions. This is a promising but underexplored
research direction and current applications include the use of language models for action de-
tection [154] and action sequence classification [111].

Richard et al. [154] considered the duration of actions using a length model and the temporal
context of actions using a language model and combined them with an action recognition
model for detecting and classifying actions. The problem was modelled under a probabilistic
framework where the goal was to segment a video into a sequence of actions by maximising the
conditional probability of the sequence of action boundaries and action labels given a sequence
of features for each frame in the video. Using the Bayes theorem this was decomposed into
a product of three terms that include: i) the action recognition model, ii) the length model
that specifies the length of each segment given the predicted actions, i.e. it learns the prior
duration of each action class, and iii) the language model that computes the prior probability
of a sequence of actions and penalises improbable sequences. For the language model, [154]
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utilised an n-gram where the conditional probability of an action given the context of previous
actions is estimated by counting the frequency of action sequences in the training set. The
length model was employed to compensate for the preference of the language model towards
longer and fewer segments as large sequences of actions are less likely, where different choices
of length models were considered including a class-dependent Poisson distribution. The action
recognition model was a linear softmax classifier operating on Fisher vector features, and the
framework was optimised with dynamic programming. It was demonstrated experimentally
that the language model provided consistent performance boosts.

Lin et al. [111] investigated the problem of recognising a sequence of actions from an untrimmed
video in a weakly supervised setting, i.e. without utilising action boundaries annotations but
only the temporal ordering of actions, a problem that was also considered by [136] which
however did not use a language model. To address this problem, [111] combined a sequen-
tial action recognition model with an n-gram for modelling the prior context of actions and
a prior about the length of actions. Evidently, this formulation draws similarities with [154].
Nevertheless, while [154] both detects and recognises actions, the aim of [111] was to predict
only the sequence of actions but not their temporal boundaries. The posterior probability of
the action sequence given the video was decomposed into two terms, the action recognition
model and the prior probability of the action sequence. [111] modelled the prior of the action
sequence as a product of the probability of the language model for the sequence of actions
and the prior length of the sequence. The action recognition model was a bidirectional LSTM
that takes as input Fisher vector features for each frame in the video. The proposed model
was trained with the Connectionist Temporal Classification (CTC) [64] to learn the mapping
between the inputs and the target output sequence. Similarly to [154], it was shown that both
the language model and the length model improved the efficacy of the proposed method.

While both of these works rely on a statistical language model, Ch. 5 adopts a transformer-
based language model trained with the MLM objective to take advantage of both past and
future action context and empirically demonstrates its benefits over an n-gram model.

2.8 Third-Person Action Recognition Datasets

There are third-person action recognition datasets that are relevant to the work presented in
this thesis as they capture hand-object interactions, like Breakfast [98], MPII Cooking [155],
50 salads [175] and Something-Something [62] but these do not contain audio. Moreover,
YouCook2 [218] and HowTo100M [126] exhibit object manipulations but the audio is mostly
speech of narrated instructions. This section focuses on two popular third-person action recog-
nition benchmarks which contain audio that mostly originates from the action and discusses
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possible reasons that the benefits of audio-visual recognition approaches on these have been
limited.

2.8.1 UCF101

UCF101 [173] is a medium-scale third-person action recognition dataset with over 13K action
clips downloaded from YouTube that amount to 27 hours of video and 101 actions. The dataset
is trimmed in that each clip contain a single action as opposed to untrimmed videos with
multiple actions occurring at different parts of the video. The approach of downloading content
from an online platform resulted in videos with camera motion, background clutter and diverse
lighting conditions amongst other challenges, as the videos have been captured in the wild in
naturalistic environments. UCF101 extended UCF50 [152] that had 50 classes with 51 new
classes but only the videos corresponding to the new classes have audio. The action classes
can be divided in five groups: i) human-object interactions, e.g. ‘apply lipstick’, ii) body-
motion only, e.g. ‘push ups’, iii) human-human interactions, e.g. ‘head massage’, iv) playing
musical instruments, e.g. ‘playing violing‘ and v) sports, e.g. skiing. The dataset was annotated
manually by downloading a pool of candidate clips from YouTube and the irrelevant ones were
removed after visual inspection. The mean clip length is 7.21s while the minimum is 1.06s
and the max 71.04s.

2.8.2 Kinetics

The Kinetics dataset [90] (also known as Kinetics-400) contains 400 human action classes with
at least 400 clips per action resulting in ~300K trimmed videos clips with audio. Each clip lasts
10s and the clips were collected from unique YouTube videos rather than extracting many clips
from the same video. As the videos are amassed from YouTube they contain many challenging
conditions as UCF101, but this is more amplified in Kinetics due to its scale. Moreover,
by collecting each clip from a different YouTube video the data contain a large number of
performers and variance in camera viewpoint. Kinetics has a mixture of coarse-grained and
fine-grained classes and the types of actions can be divided in three categories: i) singular
human actions, i.e. actions that do not involve interactions such as singing and drinking, ii)
human-human actions where humans interact with each other like hugging and kissing and iii)
human-object actions where humans interact with objects, for example ‘cleaning shoes’ and
‘washing dishes’. An important contribution of [90] is the partial automation of the dataset
curation process by resorting to image classifiers for selecting candidate clips and to action
classifiers for filtering out ambiguous classes and videos with noisy labels.

Kinetics-600 [25] is an extension of Kinetics-400 and was collected by refining the annotation
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process of Kinetics-400. The dataset contains 600 classes with at least 600 videos each and
~500K video clips. Further fine-tuning of the data collection pipeline resulted in Kinetics-
700 [26] with ~650K clips and 700 classes with at least 600 clips each, and subsequently in
Kinetics-700-2020 [171] with 700 classes and at least 700 clips per class.

Concluding remarks

As discussed in Subsec. 2.4.7, audio classification performance on Kinetics and UCF101 has
been low, inhibiting advances using audio-visual fusion. This might be due to a few different
reasons. First, these datasets were not curated with an audio-visual correspondence objective,
that is it was not guaranteed that the visual action can also be heard, which can lead to videos
with irrelevant audio, such as speech from a narrator or background music. This is more
pronounced in Kinetics because of its large scale. Second, many classes do not have distinct
sound signatures, e.g. ‘tying tie’ in Kinetics and ‘apply eye makeup’ in UCF101. Lastly, in
third-person videos the microphone is often far from the action and important sounds might be
missed.

2.9 Egocentric Action Recognition Datasets

Differently than third-person datasets that often contain irrelevant sounds and classes with
indiscriminative audio, most egocentric actions are inherently audio-visual due to object inter-
actions and sound-emitting objects. Nevertheless, the collection of egocentric datasets some-
times results in audio-visual artifacts (which will be discussed in this section) limiting their
use for audio-visual egocentric action recognition. Another factor impeding the adoption of
modern deep learning approaches for audio-visual fusion is the small scale of some of the ex-
isting egocentric datasets that contain audio like ADL [147], CMU [38] and BEOID [34]. In
addition, an issue of ADL in particular is that the wearable cameras were chest-mounted rather
than head-mounted occluding the sound of many actions from the friction of the microphone
with the wearers’ clothings. This section details medium to large scale audio-visual egocentric
datasets (with the exception of [108] that is visual-only) and also discusses possible issues
with their audio recordings.

2.9.1 EGTEA Gaze+

EGTEA Gaze+ [108] is a visual-only dataset for egocentric action recognition and gaze es-
timation. It consists of 32 subjects preparing 7 different meals, such as American breakfast,
Greek salad and pizza, and it was collected in a single kitchen environment. The dataset con-
tains 86 untrimmed egocentric videos with a total duration of 29 hours recorded using SMI
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eye-tracking glasses, and each untrimmed video contains a single meal preparation activity
that is composed of multiple actions. Gaze location was also recorded at every frame. Actions
are combinations of verbs and nouns and there are 19 verb classes, 53 noun classes and 106
action classes. The start and end times of actions were annotated for each untrimmed video,
resulting in a total of 10K annotated action segments with an average duration of 3.2s. The
action classes follow a long-tailed distribution. EGTEA provides hand mask annotations too.
While audio was not released with the dataset, EGTEA accommodates sequences of short ac-
tions within untrimmed videos making it a suitable candidate for evaluating part of the method
proposed in Ch. 5 for capturing visual temporal context from sequences of actions.

2.9.2 Charades-Ego

Charades-Ego [167] features paired first-person and third-person videos to facilitate research
in transfer learning from third- to first-person vision. The videos were collected following
the approach of [166], where Amazon Mechanical Turk (AMT) workers were asked to record
videos of themselves performing certain activities. For Charades-Ego, the authors employed
crowd-sourced scripts from the Charades dataset [166], and asked workers to record two videos
enacting the same script: one in a third person setting, and the second in first-person using a
head-mounted camera. The dataset consists of 112 subjects performing actions in different
rooms at their homes. All the 157 actions from the Charades dataset are included which
are verb-noun pairs and some examples include ‘holding a laptop’, ‘making a sandwich’ and
‘closing a window’. There are 4000 pairs of third/first-person untrimmed videos with audio
with an average length of 31.2s and 43.5K trimmed action clips in total. While Charades-Ego
is seemingly a large scale dataset (in terms of number of action segments), this is not exactly
true in practice. That is because the start/end times annotations of actions are noisy, where
many annotated segments do not actually contain the labelled action, making it impractical for
training and evaluating egocentric action recognition models. Moreover, the egocentric video
recording procedure is questionable as there are activities recorded by holding the camera in
one hand while performing the activity with the other restricting the freedom of the performer,
which resulted in cases where the recording does not contain the performed activity.

2.9.3 Home Action Genome

Home Action Genome (HOMAGE) [151] is a multi-modal multi-view dataset for action recog-
nition with hierarchical activity labels and spatio-temporal scene graph annotations. Con-
cretely, the dataset offers videos from both first-person and third-person viewpoints and the
annotations capture video-level activity labels as well as segment-level action labels. Similarly
with the other egocentric datasets described thus far, HOMAGE is scripted as participants were
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given specific instructions for performing tasks. The dataset contains recordings of 27 partici-
pants performing activities in different rooms of two different houses. Multi-modal data were
composed using 12 different sensors amongst cameras, microphones, infrared, acceleration,
gyro, humidity and temperature. For the third-person views the sensors were placed in various
locations in the room whereas for the egocentric view it was mounted to the participants’ heads
and the cameras for all views were synchronised.

About the annotation process, each video was assigned with a single activity label and multiple
often overlapping atomic action labels using verb-object pairs. Moreover, the scene graph la-
bels are bounding boxes of the person performing the action and the interacted objects from the
third-person views. HOMAGE comprises of 75 activities labels, 453 actions labels and 1752
untrimmed multi-modal sequences. Labelling of start/end times of action resulted in 24.5K ac-
tion segments of short duration (60% is under 2s). It should be noted that the egocentric views
of one participant are not provided and therefore the actual scale of the dataset in terms of ego-
centric videos is smaller. Furthermore, the annotation of actions is redundant in that there are
many overlapping actions that carry similar semantics (e.g. ‘take cup from somewhere’-‘hold
cup’-‘close cabinet’-‘hold cabinet’ happening simultaneously). Finally, while providing mul-
tiple sensor measurements can facilitate research in sensor fusion for action recognition, for
purely audio-visual purposes the dataset is not ideal because audio is not always in sync with
the video possibly because the two modalities were not captured from the same device.

2.9.4 EPIC-KITCHENS

In the previous decade, a major bottleneck in egocentric action recognition research was the
lack of sufficiently large and diverse datasets. Existing egocentric datasets [34, 38, 108, 147,
167] were significantly smaller than their third-person analogues. One factor limiting the vol-
ume of ego-datasets is the scarce availability of footage capturing interactions from wearable
cameras in YouTube, making their collection burdensome. Apropos the restricted data di-
versity, a central cause is that all egocentric datasets were scripted, that is participants were
asked to act out a script or to perform a predetermined set of actions. This approach does
not conform with real-life scenarios where people perform multiple tasks in parallel and each
individual completes a task in their own way and order; instead, it reduces the heterogeneity
of videos as the subjects perform the steps of an activity in a particular order. Another issue
was that most first-person datasets were captured in a single environment [34, 38, 108]. This
was addressed by ADL [147] and Charades-Ego [167] where the recordings took place in the
participants native environments. Nevertheless, these datasets are scripted as well.

EPIC-KITCHENS [35, 36, 37] addressed the shortcomings of previous first-person datasets by
allowing participants to perform non-scripted daily activities in their native kitchen environ-
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ments. As participants did not follow instructions, the data are more natural and reflect real-life
challenges such as multi-tasking and interleaving tasks, i.e. pausing a task to perform another
and then resuming the former. Until recently, EPIC-KITCHENS was the largest dataset in
egocentric vision. The first version of the dataset, namely EPIC-KITCHENS-55 [35, 37], con-
tains 55 hours of untrimmed video corresponding to 432 sequences and a total of ~11.5M
frames that were temporally annotated resulting in ~39.6K action segments. The videos were
recorded by 32 participants (thus 32 different environments) from 10 different nationalities
across 4 different cities. Participants were asked to be alone in their kitchen while recording,
and thus the dataset contains single-person activities and focuses on interactions with objects.
The data was captured with a head-mounted GoPro at 60fps and a resolution of 1920×1440.
The audio was recorded from the GoPro’s built-in microphone, with 2 channels, a sampling
rate of 48000kHz and a bit rate of 128kb/s. The proximity of the microphone to the ongoing
action offered audio recordings of high amplitude with a small signal-to-noise ratio, making
the dataset ideal for audio-visual research. Ch. 3 returns to the importance of audio in EPIC-
KITCHENS and discusses sources of ambient noise in the dataset and how these affect the
models’ performance. The annotation pipeline is described next.

To obtain initial coarse annotations, participants were asked to watch their videos and narrate
their actions live (i.e. without pausing the video) using a recording device. Participants were
instructed to use verb-object pairs for narrating an action (e.g. ‘peel carrot’) and they were
allowed to narrate in their native language resulting in narrations in five different languages:
English, Italian, Spanish, Greek and Chinese. The narrations were transcribed using Ama-
zon Mechanical Turk (AMT) and the narration timestamps were also extracted from the audio
recordings and used as rough locations of the actions. The transcribed narrations along with
narration timestamps were utilised for crowd-sourcing accurate action segmentations using
AMT too. In particular, AMT workers annotated the start and end time of actions by watch-
ing the videos subtitled with the narrations. For robustness, each action was annotated by
four different workers and the annotation of the worker with the maximum agreement with
other workers was used as the ground-truth temporal bound of the action. As the participants
narrated their actions using free text, a large variety of verbs and nouns have been collected.
These were manually clustered to reduce the number of classes by merging synonyms. This
resulted in a final set of 125 verb classes and 331 noun classes, though these are heavily imbal-
anced. Finally, object bounding boxes were annotated too. The test set of EPIC-KITCHENS
is divided in two splits: Seen Kitchens (S1) where sequences from the same environment are
in both training and testing, and Unseen Kitchens (S2) where the complete sequences for 4
participants are held out for testing.

One important aspect of EPIC-KITCHENS is that actions are densely and accurately annotated
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Figure 2.13: Consecutive action segments in EPIC-KITCHENS [35] with object
bounding box annotations. Actions are densely annotated resulting in well-defined
sequences of actions that are correlated within large temporal neighbourhoods.

(the error of the start/end time annotations was 5.7%) resulting in well-defined sequences of
actions within untrimmed videos, as depicted in Fig. 2.13. Evidently, actions are correlated
within a temporal neighbourhood (e.g. open cupboard → take saucepan → put saucepan) and
the density of annotations enables correlations within large neighbourhoods. This is in stark
contrast with other egocentric datasets [108, 151, 167]. Charades-Ego [167] contains tempo-
ral annotations with high amount of noise and HOMAGE [151] has many redundantly over-
lapping actions both resulting in ill-defined sequences of actions. In EGTEA [108] on the
other hand, although the sequences of actions are semantically meaningful the annotations
are sparse, limiting correlations between actions within smaller neighbourhoods comparing to
EPIC-KITCHENS. Evaluations of the temporal context approach in Ch. 5 using both datasets
verify that while the action recognition performance in EPIC-KITCHENS increases with larger
context windows, EGTEA enjoys benefits from shorter context.

EPIC-KITCHENS-100 [36] is an extension of EPIC-KITCHENS-55 [35, 37]. The exten-
sion contains additional footage from 16 out of 32 participants from [35, 37] as well as data
from 5 new subjects. 8 out of the 16 preexisting participants had changed homes, and thus
the number of subjects has increased to 37 while the total number of kitchens to 45 in the
extended dataset. The extension data were captured using a GoPro Hero7 black at 50fps.
EPIC-KITCHENS-100 features an improved annotation pipeline; a fundamental difference
is the ‘pause-and-talk’ narration approach (as opposed to non-stop narration in [35]), where
participants narrate the actions they perform in videos, using an interface that allows them to
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pause the video and speak. This resulted in denser annotations, i.e. more actions per video
with smaller gaps between actions. Furthermore, there is a higher ratio of labelled frames, as
well as shorter actions (avg length 2.6s and min length 0.25s versus avg length 3.7s and min
length 0.5s in EPIC-KITCHENS-55) and higher amount of overlapping actions, comparing
to the previous version. The narration timestamps are closer to their related actions which
resulted in more accurate start/end time annotations in the temporal annotation step. It also
worth noting that while in EPIC-KITCHENS-55 workers annotated the temporal segments of
actions using only vision, in EPIC-KITCHENS-100 the audio was included too to improve the
annotation of actions that are out of the camera’s field-of-view but also to accommodate more
precise temporal localisation of the action by leveraging the synchrony of audio and vision.
All transcribed narrations, including the ones from EPIC-KITCHENS-55, were re-parsed into
verbs and nouns using a more complete parser and re-clustered to reduce ambiguities in verb
and noun clusters. The dataset was also enriched with automatic hand and object segmenta-
tions using Mask R-CNN [72] and hand-object interaction detections from [161]. Last but not
least, to facilitate progress in various areas of video understanding, [36] introduced six tasks
with baselines and evaluation metrics: action recognition, weakly-supervised action recog-
nition, action detection, action anticipation, cross-modal retrieval, and unsupervised domain
adaptation for action recognition.

EPIC-KITCHENS-100 contains 100 hours of data, split across 700 untrimmed videos, and
90K trimmed action clips. There are 97 verb classes, 300 noun classes, and 4025 action classes.
The dataset is split in Train/Val/Test splits with a ratio of ∼ 75/10/15, where each video with all
its action segments is in one of the splits. The validation set contains the videos from the test
sets of EPIC-KITCHENS-55 and the test set contains only newly collected videos. Validation
and test set contain two subsets, each: i) unseen participants, i.e. participants not present in
Train, where there are 2 in Val and 3 in Test and ii) tail classes, defined as the set of smallest
classes which comprise 20% of the total number of examples in the training set.

2.9.5 Ego4D

Ego4D [63] is a recently proposed multi-modal egocentric vision dataset of enormous-scale
with 3000 hours of video, the largest and most diverse of its kind to date. It was recorded
by 855 different people with wearable cameras from 74 cities across 9 different countries.
The geographic and demographic diversity of the participants resulted in a large variety of
objects and activities that lack from any other egocentric dataset. The dataset captures both
indoor and outdoor unscripted daily life activities of the camera wearers in various places
and circumstances such as in the home, workplace as well as social interactions, covering a
wide range of scenarios, like cooking, arts & crafts, construction and cleaning. To enable
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cross-device generalisation, different types of wearable cameras were used for collecting the
dataset, offering different camera viewpoints depending on the mounting and the field of view
of each device. Moreover, the multi-type camera setting enabled multi-modal data collection,
where in addition to video, subsets of the dataset contain audio, stereo, 3D meshes, gaze,
synchronised multi-view cameras as well as other modalities. Audio in particular amounts for
73% of the dataset and contains conversations, acoustic scenes and events, and sounds from
interacted objects. Inspired by the pause-and-talk narration approach of EPIC-KITCHENS-
100, Ego4D was narrated by annotators that were pausing the video to write a sentence about
every action performed by the wearers. The narrations contain 1772 verbs and 4336 nouns
which were clustered into 117 verb and 556 noun classes. Along with the data, [63] offers
five benchmark challenges to enable research in core egocentric areas and annotations for each
benchmark. The tasks that incorporate vision and audition are: i) Audio-Visual Diarisation,
that is to localise and recognise the active speakers and transcribe their speech (i.e. ASR), and
ii) Social Interactions, where given a video and audio that portray people interacting, a model
should predict whether each person is looking and talking to the camera wearer. Unfortunately,
in this version of the dataset the authors did not consider an audio-visual event detection and
recognition task, but I do hope they will do in the future to facilitate progress in audio-visual
object interaction modelling at scale.

2.10 Large-Scale Datasets for Auditory Model Pre-training

While it has been shown that leveraging ImageNet pre-trained models is beneficial for audio
recognition [59, 60, 67, 138], it permits utilising only image recognition architectures like
ResNets. Yet, for developing a specialised architecture for audio, where pre-trained models
for images do not exist, one should resort to germane auditory databases for pre-training the
model. This section examines datasets for auditory scene and event recognition, as they are
the most pertinent for pre-training auditory action recognition models. A pre-training dataset
should enable learning discriminant features and generalisable to downstream tasks. This can
be achieved using large-scale datasets with accurate annotations. Thus, small-scale datasets
for audio scene and event recognition like DCASE 2018 [124], UrbanSound8k [157] or ESC-
50 [146] are not appropriate as they would overfit deep architectures. AudioSet [55] is the
largest scale audio-visual dataset of audio events with 2.1M clips of 10s and 527 annotated
classes. While it has been a milestone for audio recognition, it has high labelling noise and
highly unbalanced data, hence not ideal for supervised pre-training. A dataset that meets better
the criteria for supervised pre-training of audio architectures is presented next.
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2.10.1 VGG-Sound

VGG-Sound [30] is an audio-visual dataset collected from YouTube with over 200K video
clips that last 10s. There are 300 audio classes with at least 300 clips each. The classes
are grouped into the following categories: people, animals, music, sports, nature, vehicle,
home, tools, and others. VGG-Sound was curated with a semi-automated pipeline based on
computer vision techniques that ensures a low number of labelling errors as well as audio-
visual correspondence, i.e. that the sound-emitting object is present in the visual clip. The
data collection process consisted of multiple stages. In a similar spirit to Kinetics, it started by
downloading a large number of candidate videos from YouTube using a list of potential classes
as queries followed by progressively filtering out videos and classes to arrive at a subset with
accurate annotations. The initial list of classes was created by considering classes of sounds
that occur naturally in real world scenarios and that can be visually grounded. The filtering
stages consist of visual verification, audio verification, and iterative noise filtering. The visual
verification stage employed image classifiers to detect frames in the videos that were most
likely to contain the visual signature of the sound class (e.g. that a video with the class ‘cat
meowing’ contains a cat). These frames were then used as the centre of the 10s candidate clips
and videos that did not pass the test were discarded. The goal of the audio verification step
was to ensure that videos do not contain speech or background music but sound emitted from
the visual object. This was achieved using an audio classifier to reject clips, which was trained
with three classes: music, speech and others. Finally, iterative noise filtering trained audio
classifiers for each of the remaining classes to select clips that their class can be easily guessed
from audio, and visual features to retrieve clips that is hard to distinguish their category from
audio because they contain multiple sound sources.

2.11 Summary

This chapter reviewed the literature that is relevant to the contributions of this thesis. The
chapter started by scrutinising third-person visual action recognition approaches – the basis of
both egocentric and audio-visual action recognition. Special emphasis was given on state-of-
the-art convolutional and transformer-based approaches for spatio-temporal modelling as well
as two-stream visual action recognition methods as this thesis builds on these works.

Next, the chapter introduced the preliminaries of audio processing for audio recognition and
reviewed methods and techniques for auditory scene and event recognition that this thesis is
based on. Audio-visual action recognition approaches were then reviewed in detail as all the
chapters in this thesis build upon relevant audio-visual architectures. After having discussed
the advances in third-person action recognition, the chapter provided an overview of the most

73



2.11 Summary

central works in egocentric action recognition several of which are used for comparison with
the method presented in Ch. 5.

As Ch. 5 proposes a method for capturing multi-modal temporal context from vision, audio
and language using a multi-modal Transformer architecture, this chapter presented methods
for modelling visual temporal context for video recognition, followed by an overview of the
most common paradigms in multi-modal Transformers as well as a discussion on language
models for capturing action context.

Finally, the chapter reviewed audio-visual datasets for third-person and egocentric action recog-
nition as well as for scene and event recognition, some of which are used for the experimental
analysis of the proposed methods.
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CHAPTER

THREE

AUDIO-VISUAL TEMPORAL BINDING

This chapter explores the potential temporal asynchrony between the action’s appearance and
the discriminative audio signal. In Fig. 3.1, we show an example of ‘breaking an egg into a pan’
from the EPIC-KITCHENS dataset. The distinct sound of cracking the egg, the motion of sep-
arating the egg and the change in appearance of the egg occur at different frames/temporal po-
sitions within the video. Approaches that fuse modalities with synchronised inputs (e.g. [46])
would thus be limited in their ability to learn such actions. Another challenge in integrating
visual frames with audio segments, resulting from the large discrepancy in visual and audi-
tory sampling rates, is the correspondence problem. That is, the ambiguity about which visual
frame should be combined with an audio segment amongst the sequence of frames within the
audio segment’s temporal range. It is unclear whether it should be the middle, first, last or
any frame in between. This chapter explores fusing inputs within a Temporal Binding Win-
dow (TBW) (Fig. 3.1), allowing the model to train using asynchronous inputs from the various
modalities. Evidence in neuroscience and behavioural sciences points at the presence of such
a TBW in humans [139, 191]. This is typically assessed by presenting to subjects audio-visual
stimuli at varying temporal delays across modalities and asking them to determine whether
the stimuli are synchronised. Even when the audio-visual signals are delayed by hundreds
of milliseconds the subject still perceives them as synchronous at high rates, suggesting that
there is a window of time, the so called TBW, that offers a “range of temporal offsets within
which an individual is able to perceptually bind inputs across sensory modalities” [176, 191].
This is triggered by the gap in the biophysical time to process different senses [123]. Interest-
ingly, the width of the TBW in humans is heavily task-dependent, shorter for simple stimuli
such as flashes and beeps and intermediate for complex stimuli such as a hammer hitting a
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Figure 3.1: A video of ‘breaking an egg into a pan’ with samples of appearance, mo-
tion and audio modalities. The Temporal Binding Window (TBW) allows the fusion
of modalities within a range of temporal shifts, where the range is bounded by the
width of the window. As the width of TBW increases (left to right), modalities are
fused with increasingly varied temporal shifts, enabling asynchronous fusion, which
is useful in this example as the sound of cracking the egg, the motion of separating it,
and the appearance of the broken egg take place at different temporal positions in the
video.

nail [191]. It is also intriguing that infants have a very large TBW which narrows as they grow
older [191].

Combining our explorations into audio for egocentric action recognition, and using a TBW for
asynchronous modality fusion, this chapter’s contributions are summarised as follows. First,
an end-to-end trainable mid-level fusion Temporal Binding Network (TBN) is proposed. Sec-
ond, we present the first audio-visual fusion attempt in egocentric action recognition. Third, we
achieve state-of-the-art results on the EPIC-KITCHENS public leaderboards on both seen and
unseen test sets. Our results show (i) the efficacy of audio for egocentric action recognition, (ii)
the advantage of mid-level fusion within a TBW over late fusion, (iii) that multi-modal fusion
can alleviate the class imbalance problem, and (iv) the robustness of our model to background
or irrelevant sounds.1

1Python code of our TBN model and pre-trained model on EPIC-Kitchens are available at
http://github.com/ekazakos/temporal-binding-network.
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3.1 The Temporal Binding Network

3.1 The Temporal Binding Network

Our goal is to find the optimal way to fuse multiple modality inputs while modelling temporal
progression through sampling. We first explain the general notion of temporal binding of
multiple modalities in Subsec. 3.1.1, then detail our architecture in Subsec. 3.1.2.

3.1.1 Multi-modal temporal binding

Consider a sequence of samples from one modality in a video stream, mi = (mi1,mi2, · · · ,miT/ri)

where T is the video’s duration and ri is the modality’s frame-rate (or frequency of sampling).
For simplicity, we will be using Ti in the place of T/ri. Input samples are first passed through
uni-modal feature extraction functions fi. To account for varying representation sizes and
frame-rates, most multi-modal architectures apply pooling functions G to each modality in the
form of average pooling or other temporal pooling functions (e.g. maximum or VLAD [86]),
before attempting multi-modal fusion.

Given a pair of sequences of samples m1 and m2 from two modalities corresponding to the
same video, the final class predictions for the video are hence obtained as follows:

y = h
(
G(z(f1(m1))), G(z(f2(m2)))

)
(3.1)

where fi ∈ RTi×S1
mi

×...×S
Li
mi → RTi×D are uni-modal feature extraction functions (S1

mi
× ...×

SLi
mi

: shape of modality mi, D: dimension of extracted feature), z ∈ RTi×D → RTi×C is a uni-
modal classifier (C: number of classes), G ∈ RTi×C → RC is a temporal aggregation function,
h ∈ RC×C → RC is the multi-modal fusion function and y is the output label for the video. In
such architectures (e.g. TSN [194]), modalities’ predictions are temporally aggregated before
different modalities are fused; this is typically referred to as ‘late fusion’.

Conversely, multi-modal fusion can be performed at each time step as in [46]. One way to do
this would be to synchronise modalities and perform a multi-modal prediction at each time-
step. For modalities with matching frame-rates, synchronised multi-modal samples can be
selected as (m1k,m2k), and fused according to the following equation:

y = G(z(fsync(m1k,m2k))) (3.2)

where fsync ∈ RTsync×(S1
m1

×...×S
L1
m1

)×(S1
m2

×...×S
L2
m2

) → RTsync×D is a multi-modal feature ex-
tractor that produces a representation for each time step k, z ∈ RTsync×D → RTsync×C is a
multi-modal classifier, and G ∈ RTsync×C → RC then performs temporal aggregation over
all time steps. Note that here T1 = T2 = Tsync. Basic differences with (3.1) are: i) here
multi-modal fusion takes place within fsync followed by temporal aggregation of multi-modal
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3.1 The Temporal Binding Network

predictions, therefore there is no h, while in (3.1) fusion takes place after temporal aggregation
of uni-modal predictions, therefore feature extraction and fusion should be performed in two
separate steps, ii) (3.2) requires modalities with matching frame-rates while in (3.1) frame-
rates can differ as predictions are temporally aggregated before fused. The later is a limitation
of (3.2) which can be tackled as explained next.

When frame-rates vary, and more importantly so do representation sizes, only approximate
synchronisation can be attempted,

y = G(z(fsync(m1k,m2l))) : l = ⌈kr2
r1

⌉ (3.3)

by mapping samples of one modality to the samples of the other using their frame-rate ratio
r2
r1

. We refer to (3.2) and (3.3) as ‘synchronous fusion’ where synchronisation is achieved or

approximated. Differently than (3.2), the temporal dimension of each function in (3.3) is T1 as
for each sample of m1 a corresponding sample of m2 is calculated.

A disadvantage of (3.3) is that the approximation is prone to errors. Approximation errors
result from rounding up to the next integer to estimate l, which is necessary as we have access
to discrete modalities’ samples. These errors increase with the addition of more modalities.
More importantly, a disadvantage of ‘synchronous fusion’, i.e. both (3.2) and (3.3), is that it is
not able to model examples where the discriminative samples of each modality are at different
temporal positions, as shown in Fig. 3.1, as modalities are fused with synchronous inputs. We
provide a solution to both of these issues, as shown next in our proposal.

In this work, we propose fusing modalities asynchronously within temporal windows. Here,
modalities are fused within a range of temporal offsets, with all offsets constrained to lie within
a finite time window, which we henceforth refer to as a temporal binding window (TBW).
Formally,

y = G(z(ftbw(m1k,m2l))) : l ∈
[
⌈kr2
r1

− b

2
⌉, ⌈kr2

r1
+

b

2
⌉
]

(3.4)

where ftbw is a multi-modal feature extractor that combines inputs within a binding window
of width b. Concretely, first m1k is sampled from modality m1. Then, a TBW of width b is
placed around m1k and m2l is sampled within the window. Therefore, similarly to (3.3), the
temporal dimension of each function in (3.4) is T1 as for each sample of m1 a sample of m2 is
randomly selected within the TBW. Note that (3.4) is a generalisation of both (3.2) and (3.3);
when b = 0 it corresponds to (3.3), and when in addition r2 = r1 and therefore l = k, it
corresponds to (3.2) as well. Hence, it is apparent that (3.4) is more flexible as it encapsulates
‘synchronous fusion’ but also extends to asynchronous sample combination. Interestingly, as
the number of modalities increases, say from two to three modalities, the TBW representation
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3.1 The Temporal Binding Network

allows fusion of modalities each with different temporal offsets, yet within the same binding
window of width b:

y = G(z(ftbw(m1k,m2l,m3n))) : l ∈
[
⌈kr2
r1

− b

2
⌉, ⌈kr2

r1
+

b

2
⌉
]

: n ∈
[
⌈kr3
r1

− b

2
⌉, ⌈kr3

r1
+

b

2
⌉
] (3.5)

This formulation hence allows a large number of different input combinations to be fused. This
is different from proposals that fuse inputs over predefined temporal differences (e.g. [112]).
Sampling within a temporal window allows fusing modalities with various temporal shifts,
up to the temporal window width b. This: 1) enables straightforward scaling to multiple
modalities with different frame-rates, removing the need for synchronisation approximation
and therefore making the model robust to approximation errors, 2) allows training with a
variety of temporal shifts, accommodating, say, different speeds of action performance and
3) provides a natural form of multi-modal data augmentation.

With the basic concept of a TBW in place, we now describe our proposed audio-visual fusion
model, TBN.

3.1.2 TBN with sparse temporal sampling

Our proposed TBN architecture is shown in Fig. 3.2 (left), consisting of RGB, Flow and Audio
modalities. First, the action video is divided into K segments of equal width. Within each
segment, we select a random sample of the first modality ∀k ∈ K : m1k. This ensures the
temporal progression of the action is captured by sparse temporal sampling of this modality,
as with previous works [194, 217], while random sampling within the segment offers further
data for training. The sampled m1k is then used as the centre of a TBW of width b. The other
modalities are selected randomly from within each TBW (Eq. 3.5). In total, the input to our
architecture in both training and testing is K ×M samples from M modalities.

Within each of the K TBWs, we argue that the complementary information in audio and vision
can be better exploited by combining the internal representations of each modality before
temporal aggregation, and hence we propose a mid-level fusion. A ConvNet (per modality)
extracts mid-level features, which are then fused through concatenating the modality features
and feeding them to a non-linear fully-connected layer, making multi-modal predictions per
TBW. Hence, we model ftbw from Eq. 3.5 as:

ftbw(m1k,m2l,m3n) = σ(W [f1(m1k); f2(m2l); f3(m3n)] + c), (3.6)

where σ is a non-linear activation function, [; ] denotes input concatenation, and f1(m1k),
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3.1 The Temporal Binding Network

Figure 3.2: Left: our proposed Temporal Binding Network (TBN). Modalities are
sampled within a TBW, where average pooled convolutional features are extracted per
modality, and fused with mid-level fusion. Modalities are trained jointly. A classifier
takes as input the fused multi-modal features and performs a prediction per TBW. Pre-
dictions from multiple TBWs, possibly overlapping, are averaged. Modality-specific
weights (same colour), as well as fusion and classification weights are shared amongst
different TBWs. Right: TSN [194] with an additional audio stream performing late
fusion. Here, predictions of each modality are first temporally aggregated indepen-
dently, followed by modality fusion via averaging. Modalities are trained indepen-
dently. Note that while in TSN a prediction is made for each modality, TBN produces
a single prediction per TBW after fusing all modality representations. Best viewed in
colour.

f2(m2l) and f3(m3n) correspond to the mid-level features extracted from the RGB, Flow and
Audio ConvNets, denoted as f1, f2 and f3, respectively. Gradients are backpropagated all
the way to the inputs of the ConvNets. Fig. 3.3 details the proposed TBN block. The pre-
dictions, for each of the K unified multi-modal representations (one per TBW), are obtained
using z, and are finally temporally aggregated using G for video-level predictions. In the
proposed architecture, we train all modalities simultaneously. The convolutional weights for
each modality are shared over the K TBWs. Additionally, mid-level fusion weights and class
prediction weights are also shared across the TBWs.

To avoid biasing the fusion towards longer or shorter action lengths, we calculate the window
width b relative to the action video length. Our TBW is thus of variable width, where the
width is a function of the length of the action. We note again that b can be set independently
of the number of segments K, allowing the temporal windows to overlap. This is detailed in
Subsec. 3.2.1.
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3.2 Experimental Setup

Figure 3.3: A single TBN block showing architectural details and feature sizes. Audio
is converted into a spectrogram, a single RGB frame is used as input to the appearance
stream, while for motion, stacks of five consecutive horizontal and vertical optical
flow frames are used. A ConvNet per modality extracts convolutional feature maps
which are average pooled, and the resulting feature vectors are used as input to the
fusion layer. Fusion takes the form of concatenation of modality features followed by
a fully-connected layer that learns multi-modal relationships. We model the problem
of learning both verbs and nouns as a multi-task learning problem, by adding two
output fully-connected layers, one that predicts verbs and the other nouns (as in [35]).
Outputs from multiple TBN blocks are averaged as shown in Fig. 3.2. Best viewed in
colour.

Relation to TSN. In Fig. 3.2, we contrast the TBN architecture (left) to an extended version
of the TSN architecture (right). The extension is to include the audio modality, since the orig-
inal TSN only utilises appearance and motion streams. There are two key differences: first, in
TSN each modality is temporally aggregated independently (across segments), and the modal-
ities are only combined by late fusion (e.g. the RGB scores of each segment are temporally
aggregated, and the flow scores of each segment are temporally aggregated, individually), as
in Eq. 3.1. Hence, it is not possible to benefit from combining modalities within a segment
which is the case for TBN. Second, in TSN, each modality is trained independently first after
which predictions are combined in inference. In the TBN model instead, all modalities are
trained simultaneously, and their combination is also learnt.

3.2 Experimental Setup

We evaluate the TBN architecture on EPIC-KITCHENS-55 [35, 37].
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3.2.1 Implementation details

RGB and Flow. We use the publicly available RGB and computed optical flow with the
dataset [35]. RGB is extracted at 60fps whereas Flow at 30fps.

Audio processing. We extract 1.28s of audio, convert it to single-channel, and resample it to
24kHz. 1.28s of audio is a reasonable choice in our setup because it is ≈ 1

3
×avg_action_length

in EPIC-KITCHENS-55, and we train TBN using K = 3 segments (more details on training
hyperparameters can be found below).2 The sampling rate is halved (original is 48kHz) to
reduce the input size for tackling overfitting. The subsampled audio segment is then converted
to a log-spectrogram representation using an STFT of window length 10ms, hop length 5ms
and 256 frequency bands. This results in a 2D spectrogram matrix of size 256 × 256, after
which we compute the logarithm. Preliminary experiments have shown that the window and
hop length are important hyperparameters as our method is sensitive to those (this happens
to be the case for most methods). The reason is that using overly large windows results in
temporally coarse representations while very short windows can induce overfitting due to very
large representation sizes (which imply a parameter increase in the model). An empirical rule
for setting these values is that the window and hop length should scale linearly with the input
length, where longer inputs require longer windows (to capture sufficiently global statistics
of the input) while for shorter inputs shorter windows are adequate.3 Finally, since many
egocentric actions are very short (< 1.28s), we extract 1.28s of audio from the untrimmed
video, allowing the audio segment to extend beyond the action boundaries.

Architectural details. We implement our model in PyTorch [141]. We use Inception with
Batch Normalisation (BN-Inception) [83] as a base architecture, and fuse the modalities after
the average pooling layer, corresponding to the outputs of f1, f2 and f3 in Eq. 3.6. We chose
BN-Inception as it offers a good compromise between performance and model-size, critical for
our proposed TBN that trains all modalities simultaneously, and hence is memory-intensive.
Compared to TSN, the three modalities have 10.78M, 10.4M and 10.4M parameters, with only
one modality in memory during training. In contrast, TBN has 32.64M parameters. In Eq. 3.6,
we use a ReLU for the non-linearity, σ. For the temporal aggregation function, G, we use
average. Finally, as shown in Fig. 3.3, we learn verbs and nouns simultaneously as in multi-
task learning, and therefore the classifier z consists of two output fully-connected layers, for
predicting verbs and nouns, respectively (as in [35]).

2Note that we don’t set the audio input length to exactly 1
3 × avg_action_length = 1.23s as the backbone archi-

tecture [83] in TBN cannot operate on any arbitrary input size.
3In addition to the input length, the input domain is another important factor for choosing an appropriate window
(and hop) length; for example, for instantaneous sounds like hitting a drum short windows are sufficient whereas
for ambient sounds like the sound of the rain long windows work better.
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Train / Val details. We train using SGD with momentum [148] and cross-entropy loss, a
batch size of 128, a momentum of 0.9 and a learning rate of 0.01. Networks are trained for 80
epochs, and the learning rate is decayed by a factor of 10 at epoch 60. For regularisation, we
employ dropout on the output of the fusion layer with a probability of 0.5, as well as a weight
decay of 5 · 10−4. Furthermore, we clip the parameter gradients using the value of 20. In the
visual modalities, we apply the same data augmentations as the ones used in TSN, while we do
not augment audio. We initialise the RGB and the Audio streams from ImageNet. While for
the Flow stream, we use stacks of 10 interleaved horizontal and vertical optical flow frames,
and use the pre-trained Kinetics [90] model, provided by the authors of [194]. We fine-tune
on EPIC-KITCHENS by freezing the Batch-Normalisation layers except the first one, as done
in TSN. Note that our network is trained end-to-end for all modalities and TBWs. We train
with K = 3 segments over the M = 3 modalities. We allow TBWs to be as large as the action
segment by setting b/2 = T and trimming parts of the window that fall outside the action
boundaries. Formally, in Eq. 3.5 we select the TBW boundaries as:

l ∈
[
max(0, ⌈kr2

r1
− T ⌉),min(T, ⌈kr2

r1
+ T ⌉)

]
n ∈

[
max(0, ⌈kr3

r1
− T ⌉),min(T, ⌈kr3

r1
+ T ⌉)

] (3.7)

Thus, there is full overlapping between all TBWs and the action boundaries. We test using 25

evenly spaced samples for each modality, and a single centre crop per sample for the visual
modalities (spectrograms are not cropped). Note that TSN uses 10 crops per sample.

3.2.2 Evaluation metrics

We follow the evaluation protocol that we introduced in [35], and report aggregate and per-
class metrics. For aggregate metrics, we compute top-1 accuracy and top-5 accuracy. Top-1
accuracy measures the ratio of correctly classified examples, yet it assigns the same weight to
all examples disregarding the dataset’s class distribution. Top-5 accuracy counts an instance
as correctly classified if it is correctly predicted by any of the top-5 classifier’s scores. It is
particularly useful for fine-grained datasets with a large number of classes as a wrong top-
1 prediction might still be meaningful in cases where it carries similar semantics with the
ground-truth (e.g. cut onion vs cut garlic). For per-class metrics, we compute per-class pre-
cision and recall for classes with more than 100 examples in the training set, and average the
results across classes. We call these average class precision and average class recall.4 Average

4Average class precision should not be confused with the well known Average Precision, as the former calculates
an overall precision score for each class while the latter calculates precision values at different recall ranks and
then computes the area under the Precision-Recall curve.

83



3.3 Results

Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall

Modality Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

S1

RGB 45.68 36.80 19.86 85.56 64.19 41.89 61.64 34.32 09.96 23.81 31.62 08.81
Flow 55.65 31.17 20.10 85.99 56.00 39.30 48.83 26.84 09.02 27.58 24.15 07.89
Audio 43.56 22.35 14.21 79.66 43.68 27.82 32.28 19.10 07.27 25.33 18.16 06.17
TBN (RGB+Flow) 60.87 42.93 30.31 89.68 68.63 51.81 61.93 39.68 18.11 39.99 38.37 16.90
TBN (All) 64.75 46.03 34.80 90.70 71.34 56.65 55.67 43.65 22.07 45.55 42.30 21.31

S2

RGB 34.89 21.82 10.11 74.56 45.34 25.33 19.48 14.67 04.77 11.22 17.24 05.67
Flow 48.21 22.98 14.48 77.85 45.55 29.33 23.00 13.29 05.63 19.61 16.09 07.61
Audio 35.43 11.98 06.45 69.20 29.49 16.18 22.46 09.41 04.59 18.02 09.79 04.19
TBN (RGB+Flow) 49.61 25.68 16.80 78.36 50.94 32.61 30.54 20.56 09.89 21.90 20.62 11.21
TBN (All) 52.69 27.86 19.06 79.93 53.78 36.54 31.44 21.48 12.00 28.21 23.53 12.69

Table 3.1: Comparison of our fusion method to single modality performance. For
both splits, the fusion outperforms single modalities. TBN trained on audio-visual
modalities (All) outperforms TBN trained on visual-only modalities (RGB+Flow).
For the seen split (S1), the RGB and Flow modalities perform comparatively for ac-
tions, while RGB perform better for nouns and Flow for verbs. For the unseen split
(S2), the Flow modality outperforms RGB for all verbs, nouns and actions. Audio is
comparable to RGB on top-1 verb accuracy for both splits, while it can better predict
verbs than nouns.

class precision assesses the classifier’s purity of predictions for each class while average class
recall evaluates the coverage of different classes by the classifier. Both average class precision
and recall are better suited for imbalanced datasets than accuracy as they consider the size
of each class. We calculate all metrics over verbs, nouns as well as their valid combinations
(actions).

3.3 Results

This section is organised as follows. First, we show and discuss the performance of single
modalities, and compare them with our proposed TBN, with a special focus on the efficacy of
the audio stream. Second, we compare different mid-level fusion techniques. And finally, we
investigate the effect of the TBW width on both training and testing.

3.3.1 Single-modality vs multi-modal fusion performance

We examine the overall performance of each modality individually in Table 3.1. Although it
is clear that RGB and optical flow are stronger modalities than audio, an interesting find is
that audio performs comparably to RGB on some of the metrics (e.g. top-1 verb accuracy),
signifying the relevance of audio on recognising egocentric actions. While as expected Flow
outperforms RGB in S2, interestingly for S1, the RGB and Flow modalities perform compar-

84



3.3 Results

Figure 3.4: Venn diagrams showing verb (left) and noun (right) classes’ performances
on the S1 test set using single modalities for top-performing 32 verb and 41 noun
classes, using single modality accuracy. For each class, we consider whether the ac-
curacy is high for Flow, Audio or RGB, or for two or all of these modalities, and
accordingly plot that class in the outer part of the modality’s circle or in the intersec-
tion of two or all three circles, respectively. It can be clearly seen that noun classes can
be predicted with high accuracy using RGB alone, whereas for verbs, Flow is more
important. Audio is important for both verbs and nouns, but there is higher concentra-
tion of verb than noun classes in audio’s circle which is also validated from Table 3.1
that shows that audio is more accurate for verbs.

atively, and in some cases RGB performs better. This matches the expectation that optical
flow is more invariant to the environment as models trained on it do not suffer from colour
bias.

To obtain a better analysis of how these modalities perform, we examine the accuracy of
individual verb and noun classes on S1, using single modalities. Fig. 3.4 plots top-performing
verb and noun classes, into a Venn diagram. For each class, we consider the accuracy of
individual modalities. If all modalities perform comparably (within 0.15), we plot that class
in the intersection of the three circles. On the other hand, if one modality is clearly better than
the others (more than 0.15), we plot the class in the outer part of the modality’s circle. For
example, for the verb ‘close’, we have per-modality accuracy of 0.23, 0.47 and 0.42 for RGB,
Flow and Audio respectively. We thus note that this class performs best for two modalities:
Flow and Audio, and plot it in the intersection of these two circles.

From this plot, many verb and noun classes perform comparably for all modalities (e.g. ‘wash’,
‘peel’ and ‘fridge’, ‘sponge’). This suggests all three modalities contain useful information
for these tasks. A distinctive difference, however, is observed in the importance of individual
modalities for verbs and nouns. Verb classes are strongly related to the temporal progression of
actions, or in other words the motion of the hands of the wearer, making Flow more important
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Figure 3.5: Per-class accuracies on the S1 test set for verbs (top) and nouns (bottom),
for fusion and single modalities. We select verb classes with more than 10 samples,
and noun classes with more than 30 samples. The classes are presented in decreas-
ing order of number of samples per class, from left to right. For many classes, the
fusion method provides significant performance gains over single modality classifica-
tion (largest improvements shown in bold). Best viewed in colour.

for verbs than nouns. Conversely, noun classes can be predicted with high accuracy using
RGB alone showing the importance of appearance/colour in classifying objects. This is also
manifested in Table 3.1, where in S1 Flow has higher accuracy for verbs and RGB for nouns.
Audio, on the other hand, is important for both nouns and verbs, particularly for some verbs
such as ‘turn-on’, and ‘spray’. For nouns, Audio tends to perform better for objects with
distinctive sounds (e.g. ‘switch’, ‘extractor fan’) and materials that sound when manipulated
(e.g. ‘foil’). Nevertheless, as demonstrated in Table 3.1, audio is more informative for verbs
than nouns, attributed to the fact that there are several soundless objects, as it will be further
shown next that we look at per-class accuracies.

In Table 3.1, we compare single modality performance to the performance over the three
modalities. Single modalities are trained as in TSN, as TBN is designed to bind multiple
modalities. We find that the fusion method outperforms single modalities, and that audio is a
significantly informative modality across the board. Per-class accuracies (on S1), for individ-
ual modalities as well as for TBN trained on all three modalities, can be seen in Fig. 3.5. The
advantage of the fusion method is more pronounced for verbs (where we expect motion and au-
dio to be more informative) than nouns, and more for particular noun classes than others, such
as ‘pot’, ‘kettle’, ‘microwave’, and particular verb classes e.g. ‘spray’ (fusion 0.54, RGB 0.09,
Flow 0, Audio 0.3). This suggests that the mixture of complementary and redundant informa-
tion captured in a video is highly dependent on the action itself, yielding the fusion method to
be more useful for some classes than for others. To further demonstrate that, in Tables 3.2a
and 3.2b, we show per-class accuracies on S1, on selected verbs and nouns, respectively. We
arrange the chosen set of verbs and nouns in three main categories: top: TBN outperforms
the best individual modality, mid: TBN performs comparably with the best modality, and bot-
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Verb RGB Flow Audio TBN

open 63.32 66.81 51.05 79.08
walk 55.56 11.11 55.56 88.89
turn-on 13.79 13.79 33.79 53.10
scoop 02.27 04.55 02.27 18.18
look 14.29 14.29 00.00 28.57
scrape 25.00 00.00 16.67 25.00
hold 00.00 20.00 00.00 20.00
set 33.33 00.00 16.67 33.33
cook 28.57 00.00 14.29 28.57
finish 00.00 00.00 16.67 16.67
insert 01.79 00.00 07.14 03.57
divide 00.00 40.00 00.00 20.00
sprinkle 00.00 00.00 11.11 00.00
sample 00.00 00.00 07.14 00.00
pat 25.00 33.33 00.00 16.67

(a) Verbs

Noun RGB Flow Audio TBN

paella 25.00 00.00 00.00 50.00
fridge 83.25 80.10 60.73 87.96
hand 56.38 59.73 43.62 76.51
sponge 25.27 32.97 23.08 48.35
salt 40.98 27.87 16.39 62.30
switch 50.00 00.00 75.00 75.00
knife 36.29 52.12 27.80 52.12
salad 14.29 19.05 04.76 19.05
tortilla 42.86 00.00 14.29 42.86
leaf 00.00 10.00 10.00 10.00
pizza 100.00 09.09 36.36 72.73
fish 90.00 00.00 00.00 50.00
bowl 51.49 29.79 19.57 42.98
chicken 31.58 15.79 07.89 26.32
paper 03.70 00.00 14.81 07.41

(b) Nouns

Table 3.2: Top-1 accuracy of selected verbs and nouns on the S1 test set for indi-
vidual modalities and for TBN (Single Model). Shading of rows reflects grouping
of verbs/nouns in three categories: top: TBN performs better than the best modality,
mid: TBN performs on par with the best modality, and bottom: TBN performs worse
than the best modality.

tom: TBN performs worse than the best individual modality. We shade the rows reflecting
these three groups in the order mentioned above.

A few conclusions could be made from these tables about properties of the proposed mid-level
fusion:

1. Fusion can improve results when all modalities are individually performing well for
both verb and noun classes (e.g. ‘open’, ‘fridge’), as well as when all modalities are
under-performing (e.g. ‘scoop’, ‘sponge’).

2. Fusion can though be difficult at times, particularly when two of the three modalities are
uninformative (e.g. ‘divide’, ‘fish’).

3. All nouns for which audio is outperforming other modalities have distinct sounds (e.g.
‘switch’, ‘paper’).

4. Similarly, audio is least distinctive when the noun does not have a sound per se or its
sound depends on the action (e.g. ‘chicken’, ‘salt’).

We also note that the fusion method helps to significantly boost the performance of the tail
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RGB Flow Audio TBN

V
er

b Top-10% 41.90 49.29 35.02 63.00
Tail 02.85 02.26 04.21 11.00

N
ou

n Top-10% 39.52 34.23 22.36 46.50
Tail 06.22 02.38 04.76 13.02

Table 3.3: Comparison of mean class accuracy on the S1 test set, for the top-10%
of classes when ranked by class size and the remaining (tail) classes, for individual
modalities and TBN. It can be seen that fusion, clearly, has a greater effect on the tail
classes, where single modalities perform very poorly (rate of improvement of TBN on
tail ≫ rate of improvement of TBN on top-10%).

classes, where individual modality performance tends to suffer. This can be seen in Fig. 3.5,
right, and further discussed in the next subsection.

3.3.2 Effect of fusion on tail classes

Table 3.3 shows a comparison of the performance of the top largest classes against the less
represented classes on the S1 test set, for individual modalities, and our proposed TBN. The
classes are ranked by the number of examples in training, and the results are reported sepa-
rately for the top-10% classes versus the rest which we refer to as tail classes. The effect of fu-
sion (compared to the best individual modality in each case) is more evident on the tail classes
– 161.2% improvement on tail vs. 27.8% improvement on top-10% for verbs, and 109.3%

improvement on tail vs. 17.6% improvement on top-10% for nouns. This finding shows that
fusion in TBN decreases the effect of the class-imbalance. Furthermore, it is important to note
that audio outperforms RGB and flow on the tail verbs.

3.3.3 Efficacy of audio

We train TBN only with the visual modalities (RGB+Flow) and the results can be seen in Ta-
ble 3.1. An increase of 5% (S1) and 4% (S2) in top-5 action recognition accuracy with the addi-
tion of audio demonstrates the importance of audio for egocentric action recognition. Fig. 3.6
shows the confusion matrices without and with the utilisation of audio for the largest-15 verb
and noun classes (in S1). The confusion matrices on the left show TBN (RGB+Flow), and the
ones on the middle show TBN (RGB+Flow+Audio). Studying the difference (Fig. 3.6 right)
clearly (yet not uniformly) demonstrates an increase (blue) in confidence along the diagonal,
and a decrease (red) in confusion elsewhere.
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Figure 3.6: Confusion matrices for largest-15 verb classes (top) and the largest-15
noun classes (bottom) in the S1 test set, without (left) and with (middle) audio, as well
as their difference (right). The difference shows increase (blue) in confidence in the
main diagonal and decrease (red) in confusion elsewhere, when audio is incorporated.

All RGB+Flow

TBN Verb Noun Action Verb Noun Action

S1

irrelevant 61.37 46.46 32.63 57.28 42.55 27.73
rest 65.28 45.97 35.14 61.44 42.99 30.72

S2

irrelevant 47.32 23.36 15.30 44.41 20.45 12.39
rest 57.21 31.66 22.22 54.00 30.09 20.52

Table 3.4: Comparing top-1 accuracy of All modalities (left) to RGB+Flow (right).
Actions are split in segments with ‘irrelevant’ background sounds, and the ‘rest’ of
the test set. With the addition of audio, the model’s accuracy increases consistently,
even for the ‘irrelevant’ segments.

3.3.4 Audio with irrelevant sounds

In the recorded videos of EPIC-Kitchens, background sounds irrelevant to the observed ac-
tions have been captured by the wearable sensor. These include music or TV playing in the
background, ongoing washing machine, coffee machine or frying sounds while other actions
take place. To quantify the effect of these sounds, we annotated the audio in the test set, and
report that 14% of all action segments in S1, and 46% of all action segments in S2 contain
other audio sources. We refer to these as actions containing ‘irrelevant’ sounds, and report
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Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall

Fusion technique Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

S1

Concatenation 64.75 46.03 34.80 90.70 71.34 56.65 55.67 43.65 22.07 45.55 42.30 21.31
Context gating [125] 63.77 44.33 33.47 90.04 69.09 54.10 57.31 42.20 21.72 45.63 41.53 20.20
Gating fusion [9] 61.52 43.54 31.61 89.54 68.42 52.57 52.07 39.62 18.39 42.55 39.77 18.66

S2

Concatenation 52.69 27.86 19.06 79.93 53.78 36.54 31.44 21.48 12.00 28.21 23.53 12.69
Context gating [125] 52.65 27.35 19.16 79.25 52.00 36.40 30.82 23.16 11.72 23.39 25.03 12.58
Gating fusion [9] 50.16 27.25 18.41 78.80 50.84 34.04 28.42 22.42 12.34 23.92 24.15 13.14

Table 3.5: Comparison of mid-level fusion techniques for the TBN architecture. The
fusion techniques are presented in increasing order of number of parameters, from top
to bottom. Concatenation surpasses the more sophisticated approaches. Performance
drops with the increase in parameters.

results independently for the subset with irrelevant background audio, and the ‘rest’ of the
test set, in Table 3.4. Results are shown for both TBN trained on all modalities (All) and
for TBN trained on visual-only modalities (RGB+Flow). The table shows that when audio is
incorporated, the model performs consistently better, even when ‘irrelevant’ sounds occur in
the background. Both models (All and RGB+Flow) show a drop in performance for ‘irrel-
evant’ comparing to ‘rest’, validating that irrelevant sounds are not the source of confusion,
but that this set of action segments is more challenging even in the visual modalities, where
audio is absent and therefore irrelevant sounds cannot affect the model’s performance. This
demonstrates the robustness of our network to noisy and unconstrained audio sources.

3.3.5 Comparison of fusion strategies

As Fig. 3.2 indicates, TBN performs mid-level fusion on the modalities within the binding
window, with concatenation, as shown in Eq. 3.6 and Fig. 3.3. Here, we describe two alterna-
tive mid-level fusion strategies to concatenation and then compare their performances.

(i) Context gating was used in [125], aiming to recalibrate the strength of the activations of
different units with a self-gating mechanism:

f context
tbw = σ(Wv + c) ◦ v, (3.8)

where σ is a sigmoid function and ◦ is element-wise multiplication. We apply context gating
on top of our multi-modal fusion with concatenation, so v in (3.8) is equivalent to (3.6).

(ii) Gating fusion was introduced in [9], where a gate neuron, g, takes as input the features
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from all modalities to learn the importance of one modality w.r.t. all modalities.

vi = σ1(Wifi(mij) + ci) ∀i ∈ [1, 2, 3] ∀j ∈ [k, l, n] (3.9)

gi = σ2(Wgi [f1(m1k); f2(m2l); f3(m3n)] + cgi) ∀i ∈ [1, 2, 3] (3.10)

f gating
tbw = g1 ◦ v1 + g2 ◦ v2 + g3 ◦ v3, (3.11)

where σ1 is a hyperbolic tangent function and σ2 is a sigmoid function. vi and gi use different
activation functions (σ1 and σ2), as the design of Eq. 3.9-3.11 in [9] was inspired by LSTMs
that perform gating using sigmoid activation functions to model the contribution of past and
current cell states to the new cell state, while the current state is non-linearly projected with a
tanh activation function.

In Table 3.5, we compare the various fusion strategies. We find that the simplest method,
concatenation (Eq. 3.6) generally outperforms more complex fusion approaches. Although the
other two strategies perform comparably to concatenation, we observe that the performance
drops with the increase in the fusion technique’s parameters; gating fusion that has the most
parameters performs the worst in most metrics. Therefore, these approaches might perform
better if trained in larger datasets.

3.3.6 The effect of TBW width

Here, we investigate the effect of the TBW width in training and testing. We varied the TBW
width with b ∈ { T

60
, T
30
, T
24
, T
15
, T
9
, T
6
, T
3
, T} (remember that the width of the TBW is variable

with the action segment length, T , as opposed to using a fixed width). This corresponds, on
average, to varying the width of TBW on the training set between 60ms and 3750ms while on
the S1 test set between 60ms and 3650ms.

To evaluate the effect of the window width in training, we trained eight TBN models for
each respective window width as well as one with synchrony b ∼ 0, while testing all with
synchrony. 5 To test the effect of the window width during inference, we use the model with the
optimal width in training and evaluate it in an asynchronous fashion for each width, as follows:
within a window of a given width, we randomly sample 25 inputs per modality, pass them to
TBN and average the predictions to marginalise the noise from random sampling. We also
compare with synchrony in testing. We train and test the models using a single TBW, to solely
assess the effect of the window size, and disentangle it from the effect of temporal aggregation

5By the time of writing the paper in which we presented TBN, we had trained all the models in the paper with
different random seeds per optimisation run, including the experiments of varying the TBW width in training.
We re-trained the models of different window widths in this subsection with a fixed seed for a more conclusive
evaluation (in the rest of the chapter models are trained with random seeds).
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Training Testing

Figure 3.7: Effect of the TBW width in training (left) and inference (right), on verb
(V), noun (N) and action (A) top-1 accuracy, evaluated on the S1 split. The different
widths are multiples of the action length, T , as the width of the window is variable
with T rather than fixed. To assess the effect of the width in training, eight TBNs
are trained, one for each width, by sampling a single TBW per action segment, and
each model is evaluated with synchrony (b ∼ 0) by using the centre sample of the
video for each modality. We also train a TBN with synchrony for comparison. For the
effect of the width in testing, the model with the optimal width in training is utilised
and evaluated asynchronously for each width as well as with synchrony (Sync); for
asynchronous evaluation, the centre sample of the video is used for RGB, while 25
Flow and audio random samples are extracted within a TBW centred on the RGB
sample and their predictions are averaged. The range in the y-axis is cut to emphasise
the details. The best performance is obtained using the largest width b = T in both
training and testing, excluding verbs in training.

of multiple TBWs. Accordingly, in testing, for synchrony we use the centre sample from the
video for each modality, whereas for asynchronous evaluation we use the centre sample from
the video for RGB, and sample Flow and audio inputs from a TBW centred at the RGB sample.
All evaluations are performed on the S1 test set.

Results are shown in Fig. 3.7, where comparisons are performed using top-1 accuracy of verbs
(V), nouns (N) and actions (A). The effect of the TBW width is more evident in testing, where
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Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall

Model Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

S1

Attention Clusters [115] 40.39 19.37 11.09 78.13 41.73 24.36 21.17 09.65 02.50 14.89 11.50 03.41
[35] (from leaderboard) 48.23 36.71 20.54 84.09 62.32 39.79 47.26 35.42 11.57 22.33 30.53 09.78
Ours (TSN [194] w. Audio) 55.49 36.27 23.95 87.04 64.17 44.26 53.85 30.94 13.55 30.60 29.82 11.11
Ours (TBN, Single Model) 64.75 46.03 34.80 90.70 71.34 56.65 55.67 43.65 22.07 45.55 42.30 21.31
Ours (TBN, Ensemble) 66.10 47.89 36.66 91.28 72.80 58.62 60.74 44.90 24.02 46.82 43.89 22.92

S2

Attention Clusters [115] 32.37 11.95 05.60 69.89 31.82 15.74 17.21 03.86 01.84 11.59 07.94 02.64
[35] (from leaderboard) 39.40 22.70 10.89 74.29 45.72 25.26 22.54 15.33 06.21 13.06 17.52 06.49
Ours (TSN [194] w. Audio) 46.61 22.50 13.05 78.19 48.59 29.13 28.92 15.48 06.47 21.58 16.61 07.55
Ours (TBN, Single Model) 52.69 27.86 19.06 79.93 53.78 36.54 31.44 21.48 12.00 28.21 23.53 12.69
Ours (TBN, Ensemble) 54.46 30.39 20.97 81.23 55.69 39.40 32.57 21.68 10.96 27.60 25.58 13.31

Table 3.6: Results on EPIC-Kitchens for S1 and S2 test sets. TBN (Single Model)
with mid-level fusion significantly outperforms a late fusion of the same modalities
(TSN w. Audio). An ensemble of five TBNs trained with different TBW widths pro-
vides further boost in performance.

performance of nouns and actions consistently increases with the increase in the TBW width
where b = T obtains the highest accuracy, showcasing that asynchronous combination of
modalities in test time is advantageous. Synchrony is performing only slightly better than b =
T
60

, which is expected due to noise in sampling. For verbs, inference-time asynchronous fusion
is also helpful where long TBWs with b ∈ {T

3
, T} provide better accuracy than synchrony,

while performance drops for widths in between.

In training, there is a fluctuation in performance comparing synchrony and the various TBW
widths. Although most asynchronous models are performing comparably or worse with syn-
chrony, optimal performance is attained for b > 0; the optimal width for nouns and actions
is b = T whereas for verbs b = T

15
, demonstrating the benefits of asynchronous fusion in

training as well. We attribute the variation in performance in training as well as the low perfor-
mance of intermediate widths for verbs in testing to different widths providing complementary
benefits to different types of classes, which is supported by the results in the next subsection
where we show that an ensemble of TBNs trained with different TBW widths improves the
performance.

Finally note that in Fig. 3.7, we compare widths on a single temporal window. When we
temporally aggregate multiple TBWs, in both training and testing, the effect of the TBW width
is smoothed and the model becomes robust to TBW widths. Nevertheless, the results of our
ensemble in the next subsection convey the gains of exploiting TBWs of different widths, even
with temporal aggregation.
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3.3.7 Comparison with the state of the art

We compare our work to the baseline results reported in [35] in Table 3.6 on all metrics.
The baseline model in [35] is a TSN with late fusion of RGB+Flow. First, we show that
a late fusion with an additional audio stream (TSN w. Audio), outperforms the baseline on
top-1 verb accuracy by 7% on S1 and also 7% on S2. This complements our finding about
the usefulness of audio which is shown in Table 3.1 for mid-level fusion, as here it is also
shown for late-fusion. Second, we show that our TBN (Single Model) improves these results
significantly (9%, 10% and 11% on top-1 verb, noun and action accuracy on S1, and 6%,
5% and 6% on S2, respectively), validating our assumption that combining modalities before
temporal aggregation with mid-level learnable fusion is more efficient than late fusion with
averaging. Finally, we report results of an Ensemble of five TBNs, where each one is trained
with a different TBW width. The ensemble shows additional improvement of up to 3% on
top-1 metrics, demonstrating that TBWs of different widths lead to TBNs that learn to predict
actions in a complementary way.

We compare TBN with Attention Clusters [115], a previous effort to utilise RGB, Flow, and
Audio for action recognition, using pre-extracted features. We use the authors’ available im-
plementation, and fine-tuned features (TSN, BN-Inception) on EPIC-Kitchens, from the global
avg pooling layer (1024D), to provide a fair comparison to TBN, and follow the implementa-
tion choices from [115]. The method from [115] performs significantly worse than the base-
line, as pre-extracted video features are used to learn attention weights, signifying the need for
end-to-end training.

In Fig. 3.8, we show results for Ours (TBN, Single Model) and Ours (TBN, Ensemble), as
they appeared on the public leaderboard of the EPIC-Kitchens - Action recognition challenge
on CodaLab at the time of submission (March 22nd 2019). The single model TBN outperforms
all other submissions on all metrics by a clear margin, on both test sets S1 and S2, and the
results are further improved using the ensemble of TBNs. In particular, our TBN Ensemble
results demonstrated an overall improvement over all state-of-the-art, published or anonymous,
by 11%, 11% and 13% on top-1 verb, noun and action for S1 and by 11%, 7% and 6% on
top-1 verb, noun and action for S2, respectively. As the challenge concluded, our model
(TBN_Ensemble) was ranked 2nd in the leaderboard. A snapshot of the leaderboard for the
2019 challenge is available at
https://epic-kitchens.github.io/2019#results.
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Figure 3.8: Our submission on the 2019 EPIC-Kitchens - Action recognition chal-
lenge for S1 (top) and S2 (bottom) test sets. At the time of submission, the single
model TBN outperformed all previous methods on all metrics by a significant margin
on both S1 and S2, and the TBN Ensemble further increased the gap.
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Figure 3.9: Qualitative results on a held-out validation set, from the training videos.
The ground truth and the predictions of RGB, Flow and Audio are compared with
TBN (Single Model). We show success cases where TBN predicts both the verb and
the noun correctly.

3.4 Qualitative Results

In Fig. 3.9-3.11, we show selected qualitative results on a held-out validation set, from the
publicly available training videos. We hold-out 14 (untrimmed) videos from the training set,
for qualitative examples. Results are shown using a TBN trained on the rest of the training
set. For each example, we show the ground truth, and the predictions of individual modalities
(RGB, Flow, Audio) compared with our TBN (Single Model). In Fig. 3.9 and Fig. 3.10, we
show success cases were TBN predicts both the verb and the noun correctly. One interesting
example is ‘close bin’, where only audio amongst individual modalities predicts the action
correctly, because of the characteristic sound of the bin’s lid when it closes. In the ‘soak
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Figure 3.10: More success cases.

sponge’ example, where the sponge and the hand that holds it are occluded by the other hand,
comparing to single modalities only audio can predict the action correctly from the distinctive
sound of the water when the sponge is squeezed. On the contrary, in ‘peel onion’, audio
confuses the action with ‘take garlic’ as both actions generate similar sounds. These two
examples showcase that multiple modalities help to resolve ambiguities arising from one of
the modalities, where in the first case there is visual occlusion and audio can predict the action
correctly, while in the second case the visual modalities can infer the action where audio
is not discriminative. Another notable example is ‘dry plate’, where in addition to TBN,
only audio predicts the verb correctly, demonstrating the clear and high amplitude audio in
egocentric videos due to the proximity of the wearable camera to the action. Finally, there
are examples, such as ‘drink water’, where although all modalities provide wrong predictions,
TBN can still predict the action correctly, showcasing the potential of multi-modal fusion. In
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Figure 3.11: Failure cases where TBN predicts the verb and the noun, or only the
noun, incorrectly.

Fig. 3.11, there are failure cases where TBN mispredicts the action. In ‘put bowl’ and ‘fill
kettle’ only audio makes correct prediction, whereas in ‘take glass’ and ‘take bottle’ RGB
is sufficient, while TBN cannot recover from errors made from the other modalities. For a
better understanding of the qualitative results, please watch the video with audio at https:
//www.youtube.com/watch?v=VzoaKsDvv1o.

3.5 Conclusion

We have shown that the TBN architecture is able to flexibly combine the RGB, Flow and
Audio modalities with sparse temporal sampling and mid-level fusion within TBWs. TBN
achieves an across the board performance improvement, compared to individual modalities. In
particular, we have demonstrated how audio is complementary to appearance and motion for a
number of classes; audio is more informative for verbs than nouns, while being discriminative
for nouns when the associated objects make distinct sounds or for certain materials that sound
upon interaction. The complementarity of audio to appearance and motion was also conveyed
by comparing an audio-visual TBN to a visual-only TBN, as when audio was incorporated
performance improved and class confidence increased, while confusion dropped. Moreover,
we have illustrated the preeminence of appearance for noun classes, whereas for verbs, motion
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is dominating. The performance of TBN significantly exceeds TSN trained on the same data
showcasing the capabilities of mid-level learnable fusion compared to late fusion. TBN also
provided state-of-the-art results on the public 2019 EPIC-Kitchens leaderboard. Another im-
portant find is the potential usefulness of multi-modal fusion for tackling the class imbalance
problem; TBN significantly improved the performance on tail classes compared to individual
modalities. Last but not least, we have illustrated that asynchronous fusion can be advanta-
geous, over the more common synchronous approaches, in two ways. First, by showing that a
long TBW provides optimal recognition accuracy and second by showing that an ensemble of
TBNs trained with different TBW widths improves the performance.

In this work, we have shown the usefulness of multi-modal temporal binding in egocentric
action recognition, but its applicability is not limited in this context. It could be adopted in any
problem where multiple modalities with different sampling rates need to be fused, and where
possibly the semantics in each modality progress at different speeds. Binding could also go
beyond time, and extend to other dimensions as well. Some examples include: a) applications
using video and text where text is particularly asynchronous to video and binding could be
used to combine different parts of a video with different parts of a sentence, b) integration of
multiple sensor measurements for robotic applications and c) fusion of multi-modal medical
data such as medical images and electronic health records where a binding network could learn
to associate parts of an image with subsets of health records of a patient.

The work presented in this chapter sheds light on challenges of binding vision with audio
using neural networks, but also provides insights of how to address them. A limitation of our
approach is that temporal aggregation of multiple TBWs diminishes the effect of the TBW
width, therefore designing temporal aggregation techniques sensitive to the width of TBW
would be an interesting exploration. A challenge not only for our approach, but for multi-
modal problems in general, is the design of the optimal fusion function. We have shown that
the simplest approach, concatenation, outperformed more sophisticated methods, where the
performance decreased with increase in parameters. Thus, a fusion method should either be
lightweight and subtle at the same time, or be (pre) trained in large-scale datasets when more
complex. Further avenues for exploration include a model that learns to adjust TBWs over
time, while also being able to learn the modalities’ temporal offsets within the window. This
could be enhanced by implementing class-specific temporal binding windows, since different
actions progress at different speeds. Spatio-temporal binding would be an intriguing step
forward as a way to perform visual grounding using binding windows. Finally, given the
successful application of Transformers in many vision tasks, one should not disregard their
feasibility to perform multi-modal attention within and across TBWs.
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CHAPTER

FOUR

AUDITORY SLOW-FAST NETWORKS AND

MULTI-STREAM AUDIO-VISUAL FUSION

Recognising objects, interactions and activities from audio is distinct from prior efforts for
scene audio recognition, due to the need for recognising sound-emitting objects (e.g. alarm
clock, coffee-machine), sounds generated from interactions with objects (e.g. put down a glass,
close drawer), and activities (e.g. wash, fry). This introduces challenges related to variable-
length audio associated with these activities, the primary motivation of our work. Some can be
momentary (e.g. close) while others span over a longer period (e.g. fry). Moreover, other chal-
lenges include that many sounds exhibit intra-class variations (e.g. cut onion vs cut cheese) as
well as that background or irrelevant sounds are often captured with these activities (also dis-
cussed in the previous chapter). Our first goal in this chapter is to perform activity recognition
solely from the audio signal associated with videos from activity-based datasets, where we fo-
cus on VGG-Sound [30] and EPIC-KITCHENS [36], captured from YouTube and egocentric
videos respectively.

In these datasets, an example of sounds that span over longer timescales are harmonic sounds
whereas an example of shorter sounds are percussive sounds. These are demonstrated in
Fig. 4.1. Harmonic sounds are defined as pitched sounds spanning in time, such as “rinse
bell pepper” and “canary calling”. The prototype of a harmonic sound is the acoustic realisa-
tion of a sinusoid [131]. Percussive sounds are defined as momentary or temporally repetitive
sounds, e.g. “chop garlic cloves” and “typing on typewriter”. The prototype of a percussive
sound is the acoustic realisation of an impulse [131].

Therefore, we propose to use two-stream architectures, able to capture long-term sounds in
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“rinse bell pepper”

Harmonic Percussive

“chop garlic cloves”

EPIC-KITCHENS

“canary calling”

VGG-Sound

“typing on typewriter”

Figure 4.1: Harmonic (left) and percussive (right) sounds on EPIC-KITCHENS (top)
and VGG-Sound (bottom). Harmonic sounds are pitched sounds spanning in time,
whereas percussive sounds are momentary or temporally repetitive sounds.

one stream and short-term sounds in the other. We draw further inspiration from neuroscience,
where there is strong evidence for the existence of two streams in the human auditory system,
the ventral stream for identifying sound-emitting objects and the dorsal streams for locating
these objects. Studies [158, 219] suggest the ventral stream accordingly exhibits high spectral
resolution for object identification, while the dorsal stream has a high temporal resolution and
operates at a higher sampling rate.

Using this evidence as the driving force for designing our architecture, and inspired by a similar
vision-based architecture [47], we propose two streams for auditory recognition: a Slow and
a Fast stream, that realise some of the properties of the ventral and dorsal auditory pathways
respectively. Our streams are variants of residual networks and use 2D separable convolu-
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tions that operate on frequency and time independently. The streams are fused in multiple
representation levels with lateral connections from the Fast to the Slow stream, and the fi-
nal representation is obtained by concatenating the global average pooled representations for
action recognition.

Our second goal in this chapter is to fuse our proposed auditory Slow-Fast architecture with
its visual analogue [47]. Visual Slow-Fast aims to learn appearance and motion in the two
streams. We are motivated by the observation that appearance in vision and long-term sounds
in audio are both characterised by slow temporal changes, while motion in vision and short-
term sounds in audio are characterised by faster temporal changes, and propose the fusion of
corresponding streams across modalities, i.e. visual Slow with auditory Slow and visual Fast
with auditory Fast, with the aim to associate appearance with long-term sounds and motion
with short-term sounds. To this end, we propose fusing the streams at multiple representation
levels with cross-modal attention fusion that incorporates residual connections.

We also show that such architectures are difficult to train, where evidence points to two
main causes of overfitting: 1) the discrepancy in training dynamics between vision and audio
where audio overfits faster [196, 207], and 2) co-adaptations between modalities representa-
tions [135], where complex multi-modal relationships are learnt as a modality learns to correct
the errors of other modalities, resulting in modalities intolerant to the noise and to the absence
of other modalities. This is more likely to happen when one modality is weaker, as the weaker
modality makes more errors which lead to more co-adaptations. In our case the weaker modal-
ity is audio, where by leveraging some of our observations from Ch. 3, we note that noise in
the auditory data stream of egocentric actions originates from background sounds irrelevant to
the action or from actions with overlapping audio. Moreover, similar to the complete absence
of a modality in [135], there are silent egocentric actions, such as ‘open cupboard’ and ‘spoon
sugar’. The visual modality can falsely co-adapt to noisy audio and silent actions, affecting
negatively the performance of the model. Motivated by these observations, our goal is twofold:
1) slow down the learning pace of the audio network to match that of its visual counterpart,
2) alleviate audio-visual co-adaptations that are caused by noisy audio/silent actions, to learn
robust visual representations that are not affected by noise in the audio stream. To address
these, we explore different variants of regularisation by dropping the audio modality during
training, which we term as DropAudio.

The contributions of the first part of this chapter are the following: i) we propose a novel
two-stream architecture for auditory recognition that respects evidence in neuroscience; ii) we
achieve state-of-the-art results on both EPIC-KITCHENS and VGG-Sound; iii) we show the
importance of fusing our specialised streams through an ablation analysis; and finally iv) we
show that the Slow stream learns harmonic sounds while the Fast stream focuses on percussive
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4.1 ASF: Auditory Slow-Fast Network

Figure 4.2: Proposed Auditory Slow-Fast (ASF) architecture. The input to the Slow
pathway is strided by α, whereas Fast takes as input the whole spectrogram. Slow
has increased number of channels with the first layers performing convolutions only
over the frequency dimension (brown blocks). The Fast pathway has less channels, by
β, with convolutions over both frequency and time over the whole architecture (green
blocks). The architecture employs separable convolutions over frequency and time,
for both types of residual blocks (brown vs green), as shown on the right. Streams
are fused with multi-level lateral connections from the Fast to the Slow stream, with
strided temporal convolution on Fast and concatenation on Slow. Final representa-
tions, fed to the classifier, are globally average pooled and concatenated.

sounds through class analysis and feature map visualisations.

The second part of this chapter offers the following contributions: i) a novel four-stream ar-
chitecture for audio-visual action recognition with visual and auditory Slow and Fast streams
which aims to learn corresponding concepts across modalities; ii) we achieve state-of-the-art
results on EPIC-KITCHENS; iii) an investigation of fusion techniques at different levels of
the architecture, namely late fusion, mid-level fusion and multi-level fusion showcasing the
benefits of the proposed multi-level cross-attention fusion with residual connections; iv) an
ablation analysis demonstrating the necessity of audio-visual regularisation through dropping
audio, where we propose DropAudio building on existing techniques [207].1

4.1 ASF: Auditory Slow-Fast Network

Next, we describe the design principles of our architecture, depicted in Fig. 4.2, namely Au-
ditory Slow-Fast Network (ASF). The Slow stream operates on a low sampling rate with high
channel capacity to capture frequency semantics, while the Fast stream operates on a high
sampling rate with more temporal convolutions and less channels to capture temporal pat-
terns.

1Our pre-trained models and python code for auditory Slow-Fast are available at https://github.com/
ekazakos/auditory-slow-fast. In the future, we will also release the code for the proposed audio-
visual Slow-Fast.
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4.1 ASF: Auditory Slow-Fast Network

stage Slow pathway Fast pathway output sizes T×F

spectrogram - - 400×128

data layer stride 4, 1 stride 1, 1 Slow : 100×128
Fast : 400×128

conv1
1×7, 64 5×7, 8 Slow : 50×64

Fast : 200×64stride 2, 2 stride 2, 2

pool1
3×3 max 3×3 max Slow : 25×32

Fast : 100×32stride 2, 2 stride 2, 2

res2

[
1×1, 64
1×3, 64

1×1, 256

]
×3

[
3×1, 8
1×3, 8
1×1, 32

]
×3 Slow : 25×32

Fast : 100×32

res3

[
1×1, 128
1×3, 128
1×1, 512

]
×4

[
3×1, 16
1×3, 16
1×1, 64

]
×4 Slow : 25×16

Fast : 100×16

res4

[
3×1, 256
1×3, 256
1×1, 1024

]
×6

[
3×1, 32
1×3, 32
1×1, 128

]
×6 Slow : 25×8

Fast : 100×8

res5

[
3×1, 512
1×3, 512
1×1, 2048

]
×3

[
3×1, 64
1×3, 64
1×1, 256

]
×3 Slow : 25×4

Fast : 100×4

global average pool, concatenate, fc # classes

Table 4.1: Architecture details of ASF (Fig. 4.2). Temporal downsampling is per-
formed at conv1 and pool1 layers using a stride = 2. Frequency downsampling with
a stride = 2 is performed at conv1 and pool1, as well as at the middle convolutional
layer of the first residual block of each residual stage except res2, following [47].
pool1 performs max-pooling with a kernel of 3×3. In convolutional layers (conv1 and
resi), first the kernel sizes are shown followed by the number of channels. In residual
stages, the numbers after the brackets denote the number of residual blocks. Colors of
kernels correspond to the different types of blocks from Fig. 4.2. The output sizes of
the feature maps of each layer are also shown on the rightmost column.

Input. Both streams operate on the same audio length, from which a log-mel-spectrogram is
extracted. The Fast stream takes as input the whole log-mel-spectrogram without any striding,
while the Slow stream uses a temporal stride of α on the input log-mel-spectrogram, where
a ≥ 1. Hence, for T frames in the Fast stream, the temporal input dimension to the Slow
stream is T/α.

Slow and Fast streams. The two streams are variants of ResNet50 [71]. Each stream is
comprised of an initial convolutional block with a pooling layer followed by 4 residual stages,
where each stage contains multiple residual blocks. The two streams differ in their ability to
capture frequency semantics and temporal patterns. The details of each stream including the
number and type of blocks per stage, numbers of channels and output sizes can be seen in
Table 4.1.
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4.1 ASF: Auditory Slow-Fast Network

The Slow stream has a high channel capacity, with β times more channels than the Fast stream,
while operating on a low sampling rate. As the input spectrogram is strided temporally by α,
the intermediate feature maps have a lower temporal resolution. Moreover, the Slow stream
has temporal convolutions only in res4 and res5, as shown in Fig. 4.2 right, where the brown
residual block (left) utilises only frequency convolution whereas the green block (right) em-
ploys both frequency and temporal convolutions (Table 4.1 uses the same colours as Fig. 4.2
to denote frequency-only and frequency-temporal convolutional blocks). By restricting the
temporal resolution and the temporal kernels of the Slow stream while keeping a high channel
capacity, this stream can focus on learning frequency semantics, as its architecture is composed
of high-capacity frequency-only convolutions up to intermediate layers (conv1-res3).

The Fast stream on the other hand uses no temporal striding in the input. Therefore, the inter-
mediate feature maps have a higher temporal resolution, with temporal convolutions through-
out the stream. With a high temporal resolution and more temporal kernels while having fewer
channels, the design of the Fast stream facilitates the learning of temporal patterns while main-
taining a reasonable computational budget and parameter increase.

Separable convolutions. We use separable convolutions in frequency and time as can be
seen in the green block in Fig. 4.2 right. We break a 3 × 3 kernel in two kernels, 3 × 1

followed by 1× 3. Separable convolutions have proven useful for video recognition [187] and
have recently been used in audio as well [207]. Motivated by the necessity of non-symmetric
filtering over the frequency and temporal dimensions of spectrograms (see Subsec. 2.2.2), we
utilise separable convolutions to separately attend to time and frequency of the input signal. We
contrast them to two-dimensional filters that convolve across both frequency and time.

Multi-level fusion. Following the approach in [47], we fuse the information from the Fast
to the Slow stream with lateral connections, at multiple levels. We first apply a 2D temporal
convolution with a kernel 7 × 1 and a stride of α to the output of the Fast stream to match
the Slow stream sampling rate, and then we concatenate the downsampled feature map with
the Slow stream feature map. Fusion is applied after pool1 and each residual stage except
res5.

Output representation. The final representation fed to the classifier is obtained by applying
time-frequency global average pooling after the last convolutional layer of both Slow and Fast
streams and concantenating the pooled representations.
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4.2 AVSF2: Audio-Visual Slow-Fast Stream Fusion
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Figure 4.3: The visual Slow-Fast architecture [47]. Differences to auditory Slow-
Fast: Visual Slow-Fast operates on space-time, therefore the inputs are 3D rather than
2D. Accordingly, 3D separable convolutions are incorporated over space and time in
the residual blocks (pink and purple blocks). Furthermore, the lateral connections em-
ploy 3D strided temporal convolutions. The first layers of Slow perform convolutions
only over space (as opposed to frequencies in auditory Slow-Fast), whereas Fast has
convolutions over both space and time over the whole architecture.

4.2 AVSF2: Audio-Visual Slow-Fast Stream Fusion

After having described our proposed ASF architecture for audio recognition, in this section
we detail our approach for integrating visual and auditory Slow and Fast streams, which we
dub Audio-Visual Slow-Fast Stream Fusion (AVSF2). First, we demonstrate the visual Slow-
Fast network [47] and discuss its differences to our proposed auditory Slow-Fast architecture.
Then, we describe various audio-visual multi-stream fusion techniques we investigate. Finally,
we propose different audio-visual regularisation schemes.

4.2.1 Visual vs auditory Slow-Fast networks

The visual Slow-Fast network [47] is shown in Fig. 4.3 and the details of its architecture can
be seen in Table 4.2. Our two-stream auditory architecture is inspired by its visual counter-
part [47], however, key differences are introduced: Our input is 2D rather than 3D, as we
operate on time-frequency while the visual Slow-Fast operates on time-space. Hence, we use
2D separable convolutions decomposed as 3× 1 and 1× 3 filters, whereas [47] uses 3D sepa-
rable convolutions decomposed as 3× 1× 1 and 1× 3× 3 filters. Similarly, we use 2D strided
temporal convolutions in the lateral connections, while [47] uses 3D strided temporal convo-
lutions. Additionally, the sampling rate for audio is naturally significantly higher than that of
video, e.g. 24kHz vs 50fps in EPIC-KITCHENS-100, and the dimensionality in video is sig-
nificantly higher. Accordingly, the approach in [47] only considers a few temporal samples (16
and 64 frames in the Slow and Fast streams respectively). In contrast, our audio spectrogram
(see Subsec. 4.3.2) contains 100 and 400 temporal dimensions in the Slow and Fast streams,

106



4.2 AVSF2: Audio-Visual Slow-Fast Stream Fusion

stage Slow pathway Fast pathway output sizes T×S2

raw clip - - 128×2242

data layer stride 8, 12 stride 2, 12 Slow : 16×2242

Fast : 64×2242

conv1
1×72 , 64 5×72 , 8 Slow : 16×1122

Fast : 64×1122stride 1, 22 stride 1, 22

pool1
1×32 max 1×32 max Slow : 16×562

Fast : 64×562stride 1, 22 stride 1, 22

res2

[
1×12 , 64
1×32 , 64
1×12 , 256

]
×3

[
3×12 , 8
1×32 , 8

1×12 , 32

]
×3

Slow : 16×562

Fast : 64×562

res3

[
1×12 , 128
1×32 , 128
1×12 , 512

]
×4

[
3×12 , 16
1×32 , 16
1×12 , 64

]
×4

Slow : 16×282

Fast : 64×282

res4

[
3×12 , 256
1×32 , 256
1×12 , 1024

]
×6

[
3×12 , 32
1×32 , 32
1×12 , 128

]
×6

Slow : 16×142

Fast : 64×142

res5

[
3×12 , 512
1×32 , 512
1×12 , 2048

]
×3

[
3×12 , 64
1×32 , 64
1×12 , 256

]
×3

Slow : 16×72

Fast : 64×72

global average pool, concatenate, fc # classes

Table 4.2: Architecture details of visual Slow-Fast [47] (Fig. 4.3). Temporal input
dimension (16 in Slow and 64 in Fast) is smaller than the one used in auditory Slow-
Fast (100 in Slow and 400 in Fast), due to the large difference in video vs audio
sampling rates. Differently than auditory Slow-Fast, no temporal downsampling is
performed. conv1, pool1 layers, and the middle convolutional layer of the first residual
block of each residual stage except res2 perform spatial downsampling with a stride =
2. Colors of kernels correspond to the different types of blocks from Fig. 4.3.

respectively. To compensate for the high sampling rate of audio, we temporally downsample
the representations of both streams by a factor of 4, using a temporal stride = 2 in conv1 and
pool1 of both streams, whereas [47] does not perform any temporal downsampling, retaining
the initial temporal dimension size (as shown in Table 4.2 right). The remaining stages of our
proposed auditory architecture do not perform any temporal downsampling.

4.2.2 Multi-stream fusion architectures

We explore techniques of integrating visual and auditory Slow and Fast streams. Our goal
is to fuse and train all four streams simultaneously, end to end. The innovation of our pro-
posal lies in that there are same types of streams across modalities, i.e. audio-visual Slow
and audio-visual Fast. We leverage this to fuse visual and auditory Slow streams and learn
correspondences between the appearance of an entity and its spectral auditory properties; e.g.
associate the presence of an object such as a blender with the frequencies at which it sounds.
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4.2 AVSF2: Audio-Visual Slow-Fast Stream Fusion
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Figure 4.4: Techniques for fusing visual and auditory Slow and Fast streams. In late
fusion ((a) and (b)), streams are fused at the prediction layer by averaging (

⊕
) their

predictions. We propose combining same types of streams across modalities, shown
on (a) for late fusion (SS-FF: SlowV-SlowA & FastV-FastA), which is contrasted to
combining different types of streams within modalities, shown on (b) (SF-SF: SlowV-
FastV & SlowA-FastA). Mid-level fusion (c) integrates visual and auditory features at
the last convolutional layer of each stream (output of res5), using two fully-connected
layers for Slow and Fast streams, respectively, which are then concatenated and fed to
the prediction layer. Multi-level fusion (d) is employed at multiple intermediate layers
of the network with a Slow and a Fast fusion block, producing visual and auditory
outputs of same size as their inputs. At the last convolutional layer, there is no multi-
level fusion block; the globally pooled outputs of all four streams are concatenated
and fed to the prediction layer. Note that the Slow multi-level fusion block takes as
input the concatenation of Slow with the lateral connection from the Fast stream. The
different multi-level fusion blocks that we consider are shown in Fig. 4.5.
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4.2 AVSF2: Audio-Visual Slow-Fast Stream Fusion

We also fuse the Fast streams of the two modalities to correlate the motion with temporal au-
ditory properties; e.g. the movements of the hand when chopping an onion with the percussive
sound of the knife knocking the chopping board. To this end, we explore late, mid-level, and
multi-level fusion techniques, which are shown in Fig. 4.4 and detailed below.

Late fusion. In this scheme, fusion takes place at the prediction level. Before the prediction
layers, the visual and auditory Slow-Fast architectures remain unchanged. We combine the
same type of streams across modalities. We concatenate the globally pooled representations of
the Slow streams and feed them in a prediction layer, and similarly we feed the concatenated
representations of the Fast streams to a different prediction layer. Finally, the audio-visual
Slow and Fast streams’ predictions are averaged. These serve as the final predictions and their
error is backpropagated. As shown in Fig. 4.4 top, we contrast our approach (Fig. 4.4a) to
combining same modalities across streams (Fig. 4.4b).

Mid-level fusion. Here, fusion takes place in between the last convolutional layer and the
prediction layer. Similarly to the mid-level fusion in TBN (Ch. 3), it is realised with fully-
connected layers on top of the concatenation of the globally pooled representations. A fully-
connected layer takes as input the concatenated Slow representations and projects them to a
lower dimension, producing an audio-visual Slow representation, and likewise another fully-
connected layer operating on the Fast representations produces an audio-visual Fast represen-
tation. The final Slow and Fast features are concatenated and fed to a prediction layer.

Multi-level fusion. We explore audio-visual fusion at multiple representation levels. Although
in Fig. 4.4 we demonstrate multi-level fusion only at the output of res4, we apply it at the output
of each residual stage, where also Slow-Fast fusion within modalities with lateral connections
takes place. The last residual stage (res5) is excluded and there is no multi-level fusion block,
akin to the uni-modal Slow-Fast architectures where there are no lateral connections; at res5
the outputs of all four streams are simply concatenated and fed to a prediction layer. We fuse
Slow streams across modalities after the concatenation of lateral connections from Fast to Slow
within modalities. In preliminary experiments, we also tried fusing Slow streams before lateral
connections and observed a drop in performance. Fast streams fusion takes as input solely the
Fast output representations from the previous layer.

There are a few architectural constraints that need to be considered for designing a multi-level
fusion function. To leverage pretrained networks within each modality, the original uni-modal
architectures should not be modified. That means that the fusion block should output two

representations of the same shapes as its inputs to be passed to the next layer of each modality
(late and mid-level fusion produce a single output). Therefore, it should be able to associate
tensors of different shapes. For example, video tensors are 4D whereas audio 3D; these need
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Figure 4.5: Different multi-level fusion blocks. In MMTM fusion [88] (left), glob-
ally pooled visual and auditory representations are concatenated and passed to a non-
linear layer producing an audio-visual feature. A multi-modal gating mechanism then,
takes as input the audio-visual feature and uses two fully-connected layers, one for
each modality, followed by a sigmoid activation, which are multiplied with the in-
put representations of each modality channel-wise. In Cross-Attention fusion (right),
the pooled representations of each modality are passed to two non-linear layers, one
per modality, producing a visual query and an audio query. The dot-product of the
query from one modality with the input feature from the other modality is calcu-
lated, followed by a sigmoid activation to form visual and auditory cross-attention
masks. These are then multiplied position-wise with the input features of each modal-
ity. Cross-Attention employs residual connections (

⊕
) from the input feature of each

modality to the output of the fusion block for that modality.

to be fused and the outputs should also be 4D and 3D audio-visual tensors, respectively. These
constraints are also partially discussed in [88].

We investigate two fusion techniques that respect these constraints: i) the Multimodal Transfer
Module (MMTM) [88], and ii) an approach that we term Cross-Attention fusion. Similar
techniques to Cross-Attention fusion have been used for unsupervised audio-visual source
localisation [3, 7, 160], while here we investigate its viability for supervised action recognition.
Both types of multi-level fusion blocks are shown in Fig. 4.5.

MMTM [88] proposed multi-modal Squeeze-And-Excitation blocks [79]. For a more detailed
description of [88], please see Subsec. 2.1.4. MMTM injects multi-modal knowledge in the
feature maps of each modality using a multi-modal gating mechanism. In Fig. 4.5 (left), we
illustrate an MMTM block for fusing our visual and auditory streams. First, global average
pooling aggregates the feature maps of both modalities into visual and auditory channel de-
scriptors. These are then concatenated and passed to a non-linear fully-connected layer to
model dependencies between audio-visual channels by projecting them to a lower dimension.
Finally, the gating mechanism is formed with two fully-connected layers (projecting back to
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4.2 AVSF2: Audio-Visual Slow-Fast Stream Fusion

the original modalities dimensions), one for each modality, followed by sigmoid activation,
which rescale the visual and auditory feature maps channel-wise, enhancing them with multi-
modal information.

The motivation of our Cross-Attention block (Fig. 4.5, right) is to attend to spatio-temporal
visual areas corresponding to sounding objects/actions and to frequency-temporal auditory lo-
cations corresponding to visually salient objects/actions. To this end, first a global average
pooling layer is applied to both modalities followed by a non-linear fully-connected layer per
modality. The fully-connected layers produce a learnt feature vector per modality that is used
to query the feature map of the other modality about the presence of the learnt concept at each
location of the feature map. This is achieved by calculating the dot-product between the audio
query and each spatio-temporal location of the input visual feature map followed by a sigmoid
activation function, producing the visual attention mask. Similarly, the auditory attention mask
is produced from the dot-product of the visual query and each frequency-temporal location of
the input auditory feature map, followed by a sigmoid. The attention masks are then multi-
plied position-wise with the input feature maps, producing cross-modally attended visual and
auditory features.

A disadvantage of Cross-Attention is that, by focusing on regions that are relevant to the query
from the other modality, it may disregard discriminant within-modal features. For example, for
the action ‘cut cheese’ it may produce a visual feature map with strong activations in the area
that corresponds to the hand and the knife as these are responsible for the generated sound,
while suppressing the feature map locations that correspond to the cheese. To mitigate this,
we employ residual connections from the input feature of each modality to the output of the
fusion block for that modality. This can address the within-modal information loss as the
identity mappings provide access to the original feature map before attention.

A fundamental difference between Cross-Attention and MMTM is that while MMTM per-
forms channel-wise attention by sharing each channel’s attention weight across all positions
within that channel, Cross-Attention performs position-wise attention by sharing each posi-
tion’s attention weight across all channels. Furthermore, a key difference between our Cross-
Attention block and the attention modules in [3, 7, 160] is that we employ both visual and
auditory cross-attention masks as we want to leverage information from both modalities for
action recognition, while [3, 7, 160] utilise only visual cross-attention masks as the problem
they are targeting is to localise the sound source in images/videos.
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4.2 AVSF2: Audio-Visual Slow-Fast Stream Fusion

4.2.3 Audio-visual regularisation

In this subsection, we investigate techniques to regularise the training of audio-visual net-
works. The regularisation methods we explore are inspired by [135] and [207], where modal-
ities are randomly dropped in training. Following our motivation, our goal is to tackle over-
fitting from two different perspectives: i) adapt the learning pace of the audio streams to that
of their visual analogues, addressing the discrepancy in training dynamics of the two modal-
ities [196, 207], and ii) hinder false co-adaptations between modalities representations [135,
207], i.e. learn robust visual representations that do not rely on the auditory features, mitigat-
ing the effect of silent actions or noisy audio. In order to fulfil these objectives, we focus our
attention on different schemes of randomly dropping audio, and exclude dropping out video
from our study (which was considered in [135]). Both Slow and Fast auditory streams are
either dropped or retained simultaneously, and we do not experiment with dropping one while
preserving the other. An overview of the schemes that we explore is shown in Fig. 4.6, while
they are described next in detail.

DropAudio-Pathways. Different variants of dropping modalities have been proposed in [135]
and [207], where the pathway to be dropped is masked with 0 at different layers of its architec-
ture, depending on the strategy. First, we explain why ModDrop [135] is inadequate to fulfil
our goals. Then, we analyse why DropPathway [207] can only partially tackle both sources of
overfitting that we are interested in, as it is not carefully crafted. Finally, we propose a simple
but practically important modification to DropPathway to rectify its shortcomings.

ModDrop is not designed to drop only audio in audio-visual networks, but to drop any modal-
ity in multi-modal networks. Despite that it would be easy to modify it to drop only audio, it
would still probably not boost the performance of the model. ModDrop’s primary motivation
is to learn robust modalities representations with the aim to handle missing modalities in infer-
ence. It achieves that by randomly dropping modalities inputs by masking them with 0. While
it successfully aids the model to maintain a decent performance in the absence of a modality,
it does not provide any gains when all modalities are present. This might happen because
ModDrop cannot address the incompatibility in training dynamics between modalities. For a
multi-modal network implemented with a single-layer fully-connected network and concate-
nation of the multi-modal inputs, it is easy to show that when a modality’s input is dropped by
setting it to zero, the gradients of the parameters of the dropped modality are also zero. Thus,
for single-layered networks ModDrop can slow down the learning speed of a dropped modality
by not updating its parameters. Nonetheless, this is not true for multi-layered networks; due to
the addition of bias in each layer, the intermediate representations are non-zero even with zero
inputs. In this scenario, zero inputs do not result in zero parameter gradients, and therefore
dropping a modality’s input does not decrease its training speed.
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Figure 4.6: DropAudio regularisation. DropAudio-Gradients (left) drops randomly
the gradients of the auditory streams in the backward pass, effectively slowing down
the training of the auditory network by not updating its parameters. DropAudio-
Pathways drops randomly the auditory streams in the forward pass which has the effect
of dropping their gradients in the backward pass too. Here, DropAudio is demon-
strated for mid-level fusion for simplicity of illustration, while it can be applied in late
and multi-level fusion too.

DropPathway drops randomly the auditory lateral connections of the AVSlowFast architecture
of [207]. This corresponds to simultaneously removing all the audio-visual multi-level fusion
blocks, allowing the auditory stream to be combined with the visual streams only via late fu-
sion in the classification layer (see Fig. 2.10). This exposes a weakness of DropPathway: it
does not completely drop the audio pathway as it ignores dropping its connection with the clas-
sifier. This has two main consequences. First, DropPathway is not capable of slowing down
the learning of the entire audio network but only the auditory lateral connections parameters.
This stems from the fact that auditory layers with lateral connections to the visual streams are
also connected to the next auditory layer, i.e. they employ two output heads. Therefore, they
receive gradient contributions from both heads. As gradient contributions from multiple heads
are additive (rather than multiplicative), even when auditory lateral connections are dropped,
gradients are backpropagated to the audio network since it is linked to the prediction layer, and
as a result its parameters keep updating. This could result in overfitting due to insufficient ad-

113



4.2 AVSF2: Audio-Visual Slow-Fast Stream Fusion

justment of the training dynamics of the two modalities. Second, DropPathway does not train
the classifier to perform well in the absence of audio, as the classifier consistently depends on
audio inputs in training, and thus its performance can still be undermined from noisy audio or
silent actions. Moreover, co-adaptations between visual and auditory representations can only
incompletely be alleviated through dropping the auditory lateral connections, as they can still
co-adapt through their connection in the classifier, i.e. errors from the audio network can still
be injected in the visual pathway and vice-versa.

We propose a straightforward solution which we term DropAudio-Pathways: drop the con-
nection of the audio streams to the prediction layer along with audio in the multi-level fusion
blocks (when present), effectively performing a full drop of the audio pathways. Concretely,
for all fusion schemes that we examine, this corresponds to randomly masking with zeros the
output of the last convolutional layer of both Slow and Fast auditory streams, i.e. the out-
put of res5. For late fusion and mid-level fusion, this is sufficient to drop the entire audio
pathway, while for multi-level fusion we also mask with zeros the audio input features to
the fusion blocks, adapted from DropPathway that masks the auditory lateral connections, as
the multi-level fusion techniques we investigate do not employ lateral connections. Similarly
to DropPathway and ModDrop and differently from vanilla Dropout, DropAudio-Pathways
drops randomly an entire layer rather than a random subset of the units of a layer, i.e. it utilises
a Bernoulli random variable per layer as opposed to using a Bernoulli random variable per
unit. Also, note that in the case of multi-level fusion, for all DropAudio-Pathways layers in
both the fusion blocks and before the prediction layer, the same Bernoulli random variable is
used, i.e. all the layers to which DropAudio-Pathways is applied are either dropped or retained
simultaneously to implement a full drop of the audio network.

So far, we have only described how DropAudio-Pathways eliminates all possible pathways
through which audio can contribute in the predictions in the forward pass. Importantly, it also
blocks any auditory parameter gradient computation in the backward pass. To understand this,
let’s first consider the case of late or mid-level fusion where there are no multi-level audio-
visual links. When a DropAudio-Pathways layer that is inserted on top of the auditory res5
layers sets their outputs to zero, all the auditory parameter gradients up to res5 are also zero.
That is because when a DropAudio-Pathways layer drops all its input features producing zero
outputs, it backpropagates zero gradients as well. From the chain rule used to derive backprop-
agation, the gradients at a given layer are calculated as the product of intermediate gradients
from the output layer down to that layer. Consequently, the gradients of any layer preceding the
DropAudio-Pathways layer include a term corresponding to the gradients of the DropAudio-
Pathways layer, and become zero when DropAudio-Pathways backpropagates zeros. Further-
more, when multi-level fusion comes into play, the additional DropAudio-Pathways layers on
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the audio inputs to fusion prevent gradients from the visual pathways to leak into the auditory
ones.

In conclusion, our proposed DropAudio-Pathways decreases the training momentum of all
parameters of the audio streams, which can lead to better generalisation due to more adequate
adaptation of the learning dynamics of audio and vision, compared to DropPathway. Finally,
dropping audio from the classifier in addition to possibly existing multi-level fusion blocks
has two benefits: 1) the classifier is trained to be robust to noisy audio or silent actions, and 2)
features co-adaptations through late fusion are prevented.

DropAudio-Gradients. We also devise a novel approach of dropping audio that has not
been explored before. This scheme aims solely to make the training speed of visual and
auditory nets compatible, by randomly dropping the audio SGD parameter updates while al-
ways updating the visual net parameters. As depicted in Fig. 4.6, its main difference with
DropAudio-Pathways is that while the latter drops audio in both the forward and the back-
ward pass, DropAudio-Gradients drops only the gradients of the auditory parameters in the
backward pass. Thus, DropAudio-Gradients cannot train the visual net to be robust to the ab-
sence of audio, as it allows the network’s predictions and consequently the visual parameter
gradients to rely on audio. Accordingly, we propose this scheme to disentangle the effect of
the incompatibility of learning pace between audio and vision from the effect of audio-visual
co-adaptations.

In more detail, at each training iteration, with a probability qA = 1 − pA, the error is not
backpropagated in the audio network, and therefore gradients are not calculated and set as
∇WA = 0. This can be seen as multiplying the audio network gradients in an SGD update
with a Bernoulli random variable δA ∈ {0, 1}:

W t+1
A = W t

A − λδA∇WA, (4.1)

where λ is the common learning rate of visual and audio nets. Taking the expectation w.r.t. δA
leads to:

EδA(W
t+1
A ) = W t

A − λpA∇WA. (4.2)

Therefore, the learning rate of the audio network is expected to be scaled with the probability
pA of retaining ∇WA. For any value of pA < 1, the training of the audio streams is slowed
down (given that pV = 1, where pV is the probability of retaining the video streams’ gradients).
Although this technique is equivalent in expectation with simply setting a lower learning rate
for the audio network, randomly dropping the audio SGD updates provides extra regularisation
as different audio clips are dropped in each epoch [207].
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4.3 Experimental Setup

4.3.1 Datasets

VGG-Sound. We utilise VGG-Sound [30] as an audio recognition benchmark for evaluating
ASF, as it captures human actions, sound-emitting objects as well as interactions, and therefore
it is appropriate for auditory activity recognition. Audio is sampled at 16kHz. We do not
employ this dataset in our experiments with AVSF2, where we focus on egocentric action
recognition.

EPIC-KITCHENS-100. We employ EPIC-KITCHENS-100 [36] to evaluate both ASF and
AVSF2. Remember that EPIC-KITCHENS-100 is an extension of EPIC-KITCHENS-55 [35,
37]. The extension videos are recorded at 50fps, different from EPIC-KITCHENS-55 at 60fps.
Audio has a sampling rate of 48kHz.

4.3.2 Implementation details of ASF

Feature extraction. We extract log-mel-spectrograms with 128 Mel bands using the Librosa
library. For both datasets, we first convert audio to single-channel. For VGG-Sound, we use
5.12s of audio with a window of 20ms and a hop of 10ms, resulting in spectrograms of size
512 × 128. For EPIC-KITCHENS-100, we resample audio at 24kHz, and we use 2s of audio
with a 10ms window and a 5ms hop, resulting in spectrograms of size 400 × 128. For clips
< 2s in EPIC-KITCHENS-100, we duplicate the last time-frame of the log-mel-spectrogram.
We found that these audio input lengths perform the best based on preliminary experiments.
An explanation for the need of longer inputs in VGG-Sound is that it contains audio examples
of 10s each while the average action length in EPIC-KITCHENS-100 is 3.1s. For setting the
window and hop length for extracting spectrograms, we follow the empirical rule discussed in
Subsec. 3.2.1, where the length of the window (and hop) should scale linearly with the input
length. Accordingly, for EPIC-KITCHENS-100 we use the same values as the ones used for
EPIC-KITCHENS-55 in Ch. 3, as the input length is not significantly different. For VGG-
Sound, we double the window and hop size as the input length is > ×2 the input length used
for EPIC-KITCHENS-100.

Train / Val details. All models are trained using SGD with momentum set to 0.9 and cross-
entropy loss. We train on EPIC-KITCHENS-100 as a multitask learning problem (similarly to
the previous chapter), using two prediction heads, one for verbs and one for nouns. We train
on VGG-Sound from random initialisation for 50 epochs using a learning rate of 0.01 and
fine-tune on EPIC-KITCHENS-100 using the VGG-Sound pretrained models with a learn-
ing rate of 0.001 for 30 epochs. We drop the learning rate by 0.1 at epochs 30 and 40 for
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VGG-Sound, and at epochs 20 and 25 for EPIC-KITCHENS-100. For fine-tuning, we freeze
Batch-Normalisation layers except the first one (we also utilised this technique in TBN). For
regularisation, we use dropout on the concatenation of Slow and Fast streams with probability
0.5, plus weight decay in all trainable layers using the value of 10−4. For data augmentation
during training, we use the implementation of SpecAugment [140] from [1] and set its pa-
rameters as follows: 2 frequency masks with F=27, 2 time masks with T=25, and time warp
with W=5. During training we randomly extract one audio segment from each clip. During
testing we average the predictions of 2 equally distanced segments for VGG-Sound, and 10
for EPIC-KITCHENS-100. We set α = 4 and β = 8 in all our experiments.

4.3.3 Implementation details of AVSF2

RGB. For the visual modality, we utilise the publicly available extracted RGB frames from the
videos of EPIC-KITCHENS-100. As shown in Table 4.2, clips are formed from 128 consecu-
tive frames, which correspond to 2.13s under 60fps. For the videos with 50fps, we adjust the
number of frames per clip to 107, such that the same duration (2.13s) is covered (as done in
SlowFast codebase [47] to cope with variable frame rates in videos). From these, 64 uniformly
spaced frames are sampled (regardless of the video’s frame rate), which form the final visual
input. For clips < 64 frames, we replicate the last frame of the clip.

Audio feature extraction. We compute log-mel-spectrograms for EPIC-KITCHENS-100
with a slightly different procedure than the one used for ASF. Here, we desire audio to be
in full sync with video, i.e. their start/end times to coincide, which is accomplished by sam-
pling only the start/end frames of the video clip and mapping them to the start/end samples
of the audio clip. Thus, audio clips are also 2.13s long. The same window size, hop size and
number of Mel bands are used as for ASF, producing spectrograms of size 425× 128

Train / Val details. We use the Kinetics-400 [90] pre-trained model for the visual pathways
provided by the authors of [47], and our VGG-Sound pre-trained model for the auditory path-
ways. Differently from ASF, we fine-tune by keeping the Batch-Normalisation layers unfrozen
(while we freeze them for training the visual Slow-Fast baseline). We also apply warm-up, by
starting with a learning rate of 0.001 and linearly increase it to 0.01 during the first epoch.
Dropout is always applied before the prediction layer. For late fusion, this corresponds to two
separate dropout layers, one on the concatenation of Slow streams and the other on the con-
catenation of Fast streams. For mid-level fusion, dropout is applied on the concatenation of
the outputs of Slow and Fast fusion layers. And finally, in multi-level fusion, dropout acts on
the concatenation of all four streams. For DropAudio, we use a pA = 0.2 (i.e. we drop audio
in training 80% of the time, while it is fully utilised in testing). We employ the same visual
data augmentations used in [47], while for audio we use SpecAugment. During training, we
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randomly sample one audio-visual clip from each video. In inference, we sample 10 equally
distanced clips per video, and a centre crop per visual clip (spectrograms are not cropped), and
average their predictions. For the visual streams, we use α = 4 and β = 8, same as for ASF.
All unspecified hyperparameters remain identical as the ones used for ASF.

4.3.4 Evaluation and baselines

Evaluation metrics. For VGG-Sound, we follow the evaluation protocol of [30, 75] and report
mAP, AUC, and d-prime. Additionally, we report top-1/5% accuracy. mAP is the mean Aver-
age Precision (AP) across all classes. AP is the area under the Precision-Recall (PR) curve. For
classification, per-class AP is computed by taking the predictions of all examples for a given
class, ranking them in descending order based on the predicted scores, and then computing the
precision and recall at each rank. AP is then calculated by computing the weighted average of
the precision values across ranks using the difference in recall between consecutive ranks as
the weight. AUC is the area under the Receiver Operating Characteristic Curve (ROC). The
ROC curve is the recall as a function of the false positive rate, i.e. the probability of incor-
rectly classifying a negative example as positive. [30, 75] calculated the average AUC across
all classes. A perfect classification gives an AUC of 1.0. In signal detection theory, d-prime
is the separation between the means of the signal and noise distributions. In classification, it
expresses class separation, i.e. how well the classifier discriminates positives from negatives.
The definition used in [30, 75] expresses d-prime as a function of AUC: d′ =

√
2F−1(AUC),

where F−1 is the inverse cumulative distribution function for a unit Gaussian.

While we report mAP to be able to directly compare our approach with [30], there are cer-
tain methodological issues with using it [48]. The most notable one is that precision values
between two precision points on the PR curve cannot be computed as a linear interpolation of
the two points; thus it is not meaningful taking the arithmetic mean of precision points as it
leads to calculation errors. ROC curves are more appropriate as they do not suffer from the
issues of PR curves, and for imbalanced classification problems where PR analysis is more
desirable, one could use Precision-Recall-Gain Curves [48] which addresses the issues of PR
curves. Moreover, although we report d-prime for a full one-to-one comparison with [30], it is
monotonically related with AUC, and therefore redundant.

For EPIC-KITCHENS-100, we follow the evaluation protocol of [36] and report top-1 and
top-5 % accuracy for the validation and test sets separately, as well as top-1% accuracy for
the subset of unseen participants within val/test. For evaluating AVSF2, we also report top-1%
accuracy of tail classes.

Baselines and ablation study for ASF. We compare to published state-of-the-art results in
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each dataset, considering methods that utilise only audio. For VGG-Sound, we also compare
against [122] using their publicly available code, which is the closest work to ours in motiva-
tion, as it uses two audio streams separating input into low/high frequencies.

Training the model in [122] using the publicly available code with the default hyperparameters
on VGG-Sound provided poor results. We tuned the hyperparameters as follows: We set the
maximum learning rate to 0.01, train the network for 62 epochs, with alpha = 0.1 for mixup.
Lastly, we adjusted the number of FFT points to 682 for log-mel-spectrogram extraction, to
apply a window and hop length similar to the ones in [122] (their datasets are sampled at
48kHz and 44.1kHz, while VGG-Sound is sampled at 16kHz).

We also perform an ablation study investigating the importance of the two streams as fol-
lows:

• Slow, Fast: We compare to each single stream individually.
• Enriched Slow stream: We combine two Slow streams with late fusion of predictions, as

well as a deeper Slow stream (ResNet101 instead of ResNet50).
• Slow-Fast without multi-level fusion: Streams are fused with late fusion, by averaging their

predictions, without lateral connections.

Finally, we provide an ablation of separable convolutions on VGG-Sound.

Baselines and ablation study for AVSF2. We compare to state-of-the-art audio-visual as well
as visual-only methods in EPIC-KITCHENS-100. Moreover, we carry out experiments and
ablations to assess the significance of fusing visual and auditory Slow-Fast streams, to show-
case the importance of DropAudio regularisation for effective fusion, as well as to identify
the best technique of combining the streams. To this end, we first perform a modality abla-
tion comparing the proposed audio-visual model, AVSF2, to the visual-only and auditory-only
Slow-Fast. Then, we compare the two different DropAudio techniques we introduced and we
also ablate DropAudio from our method. And finally, we compare the four different fusion
schemes that we presented.

4.4 Results for ASF

4.4.1 EPIC-KITCHENS-100

Our proposed network achieves state-of-the-art results as can be seen in Table 4.3 for both
Val and Test. Our previous results [36] use a TSN with a single-stream BN-Inception architec-
ture [194], i.e. the audio network from TBN in the previous chapter, initialised from ImageNet,
while here we utilise pre-training from VGG-Sound. Moreover, the audio network of TBN was

119



4.4 Results for ASF

Overall Unseen Participants

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%)

Split Model Verb Noun Action Verb Noun Action Verb Noun Action # Param.

Va
l

Damen et al. [36] 42.63 22.35 14.48 75.84 44.60 28.23 35.40 16.34 9.20 10.67M
Slow 41.17 18.64 11.37 77.52 42.34 24.20 34.93 14.65 7.79 24.89M
Fast 39.84 17.07 8.76 76.94 41.31 22.01 33.33 15.21 6.57 00.49M

Two Slow Streams 41.41 19.06 11.41 77.87 43.05 24.73 34.37 14.27 6.85 49.78M
Slow ResNet101 42.24 19.35 12.12 78.14 42.83 25.30 37.37 13.90 7.61 46.11M

Slow-Fast (late fusion) 42.28 19.23 11.27 78.40 44.17 25.36 34.65 15.68 7.70 25.38M
Slow-Fast (Proposed) 46.05 22.95 15.22 80.01 47.98 30.24 37.56 16.34 8.83 26.88M

Te
st Damen et al. [36] 42.12 21.51 14.76 75.06 41.12 25.86 37.45 17.74 11.63 10.67M

Slow-Fast (Proposed) 46.47 22.77 15.44 78.30 44.91 28.56 42.48 20.12 12.92 26.88M

Table 4.3: Results on EPIC-KITCHENS-100. We provide an ablation study over the
Val set on the importance of the two streams, as well as a comparison to published
state-of-the-art [36], where our proposed model outperforms [36] in audio recognition
on both Val and Test. Models in the ablation study are split in three groups: Top: Sin-
gle streams, Middle: Enriched Slow Streams with i) late fusion of two Slow streams,
and ii) a deeper Slow stream, Bottom: Slow-Fast streams with i) late fusion, and ii)
the proposed architecture with multi-level fusion. Number of parameters per model is
also shown on the rightmost column. Slow outperforms Fast. Our proposed architec-
ture outperforms enriched Slow streams, crucially with less parameters. Multi-level
fusion surpasses the performance of late fusion.

trained in Ch. 3 and [36] without data augmentation, while here we train ASF using SpecAug-
ment. Our proposed architecture outperforms [36] by a good margin, showcasing the benefits
of combining Slow and Fast auditory streams for egocentric action recognition.

We report the ablation comparison using the published Val split. The significant improvement
in our proposed Slow-Fast architecture when compared to Slow and Fast streams indepen-
dently shows that there is complementary information in the two streams that benefits audio
recognition. The Slow stream performs better than Fast, due to the increased channel capac-
ity. When comparing to the enriched Slow architectures (see the last column of Table 4.3
for number of parameters), our proposed model still significantly outperforms these baselines,
showcasing the need for the two different pathways. We conclude that the synergy of Slow
and Fast streams is more important than simply increasing the number of parameters of the
stronger Slow stream. Finally, our proposed architecture consistently outperforms late fusion,
indicating the importance of multi-level fusion with lateral connections.

4.4.2 VGG-Sound

We report results in Table 4.4 comparing to state-of-the-art from [30], which uses a single-
stream ResNet50 architecture, [122] which uses a ResNet variant with 19 layers as backbone
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Model Top-1 Top-5 mAP AUC d-prime

Chen et al. [30] 51.00 76.40 0.532 0.973 2.735
McDonnell & Gao [122] 39.74 71.65 0.403 0.963 2.532
Slow 45.20 72.53 0.472 0.967 2.607
Fast 41.44 70.68 0.442 0.966 2.576
Two Slow Streams 45.80 72.78 0.482 0.969 2.633
Slow ResNet101 45.60 72.27 0.476 0.968 2.615
Slow-Fast (late fusion) 46.75 73.90 0.498 0.971 2.671
Slow-Fast (Proposed) 52.46 78.12 0.544 0.974 2.761

Table 4.4: Results on VGG-Sound. We compare to published results from [30] which
is a ResNet50, and also against [122] (using their publicly available code) which is a
two-stream ResNet variant. Our proposed model outperforms both. Furthermore, we
perform the same ablation analysis as in EPIC-KITCHENS-100, where we come to
the same conclusions. One noteworthy difference is that here, the performance gap
between Slow, Fast and the proposed Slow-Fast is larger.

Model Top-1 Top-5 mAP AUC d-prime

Chen et al. [30] 51.00 76.40 0.532 0.973 2.735
ResNet50 52.23 78.08 0.542 0.974 2.747
ResNet50-separable 52.38 77.81 0.544 0.975 2.777
Slow-Fast (Proposed) 52.46 78.12 0.544 0.974 2.761

Table 4.5: Ablation of separable convolutions on VGG-Sound. An original ResNet50
without separable convolutions (trained with our training setup) outperforms Chen et
al. [30], which is also a ResNet50. ResNet50 with separable convolutions outper-
forms the original ResNet50 in all metrics except Top-5. Slow-Fast provides a further
increase in performance in Top-1 and Top-5.

for their two-stream architecture with significantly less parameters than our model at 3.2M pa-
rameters, as well as ablations of our model. We report the best performing model on the test set
in each case. Our proposed Slow-Fast architecture outperforms [30] and [122]. The rest of our
observations on the ablations from EPIC-KITCHENS-100 hold for VGG-Sound as well, with
a key difference: the gap in performance between single streams and our proposed two-stream
architecture is even bigger for VGG-Sound, indicating more complementary information in
the two streams. The fact that Slow-Fast outperforms Slow by such a large accuracy gap with
an insignificant increase in parameters indicates the efficient interaction between Slow and
Fast streams.

4.4.3 Ablation of separable convolutions

We provide an ablation of separable convolutions in Table 4.5. We trained the ResNet50
architecture as proposed in [71] without separable convolutions, as well as a variant with sep-
arable convolutions. We compare this to the published results by Chen et al. [30] that also
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uses a ResNet50 architecture. Our reproduced results (ResNet50) already outperform [30].
ResNet50-separable has separable convolutions as used in our Slow-Fast network (see Fig. 4.2
and Table 4.1).

Results show that ResNet50-separable achieves slightly better results than ResNet50 in all
metrics except Top-5. Although accuracy is not significantly increased in this ablation, we
employ separable convolutions in our proposed architecture, following our motivation to attend
differently to frequency and time. These results also show that a single stream ResNet50 has
comparable performance to our two stream proposal, however ours performs marginally better
in accuracy, but more importantly the two streams accommodate different characteristics of
audio classes, satisfying our expectations that Slow learns harmonic while Fast percussive
sounds, as shown next.

4.5 What is Learnt from Each of the Auditory Streams?

Here, we provide further insight into what each of the Slow and Fast streams learn, through
class analysis and visualising feature maps from each stream, on VGG-Sound.

4.5.1 Class performance of the two streams

In Fig. 4.7, we distinguish between VGG-Sound classes that are better predicted from the Slow
stream to the left, and classes that are better predicted from the Fast stream to the right. To
obtain these, we calculated per-class accuracy and retrieved classes for which the accuracy
difference is above a threshold. Particularly, we used accuracySlow − accuracyFast > 20% to
retrieve classes best predicted from Slow and accuracyFast − accuracySlow > 10% to retrieve
classes best predicted from Fast. We used a higher threshold for the Slow stream as it more
frequently outperforms the Fast stream, as shown in our earlier results.

As can be seen in Fig. 4.7, Slow predicts better animals and scenes. This matches our intuition
that Slow focuses on learning frequency patterns as different animals make distinct harmonic
sounds at different frequencies, e.g. mosquito buzzing vs whale calling, requiring a network
with fine spectral resolution to distinguish between those. In Scenes, there are classes such as
sea waves, airplane and wind chime, that contain harmonic sounds as well.

The Fast stream, in contrast, can better predict classes with percussive sounds like playing
drum kit, tap dancing, woodpecker pecking tree, and popping popcorn. This also matches our
design motivation that the Fast stream learns better temporal patterns as these classes contain
temporally localised sounds that require a model with fine temporal resolution. Interestingly,
Fast is better at human speech, laughter, singing, and other human voices, where we speculate
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Figure 4.7: Classes from VGG-Sound that are significantly better predicted from
Slow (left) versus Fast (right) streams. These sets of classes are assembled by cal-
culating class-wise accuracy and retrieving classes for which the accuracy difference
between the two streams is above a threshold. A threshold of 20% is used to retrieve
classes best predicted from Slow while a threshold of 10% for classes best predicted
from Fast. Slow can better predict animals and scenes, containing harmonic sounds,
while Fast is better at percussive sounds, as well as human voices.

that it can better capture articulation.

4.5.2 Visualising feature maps

We show examples of feature maps from Slow and Fast streams, when trained independently
(Fig. 4.8). In each case, we show two samples from classes that are better predicted from
the corresponding stream. For Slow, these are sea waves and mosquito buzzing, compared to
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Figure 4.8: Feature maps from classes that are better predicted from Slow (left) and
Fast (right) streams. In each case, we show the input spectrogram and feature maps
from residual stages 3 and 5. Time is represented horizontally while frequency ver-
tically, and a single channel from the feature maps is shown. For ‘sea waves’ and
‘mosquito buzzing’ (where Slow performs better), Slow extracts frequency patterns
over time while Fast is attempting to perform temporal localisation. For ‘woodpecker
pecking tree’ and ‘playing vibraphone’ (which are better predicted from Fast), Fast
temporally detects the hits of the woodpecker in the tree as well as the hits of the mal-
lets on the vibraphone.

woodpecker pecking tree and playing vibraphone for Fast. In each case, we show the input
spectrogram as well as feature maps from residual stages 3 and 5. In each plot, the horizontal
axis represents time while the vertical axis corresponds to frequency. We visualise a single
channel from each feature map, manually chosen.

In Fig. 4.8, we demonstrate that Fast is capable of temporally detecting the hits of the wood-
pecker on the tree as well as the hits of the mallets on the vibraphone, as there are activations
in both residual stages 3 and 5 that temporally coincide with the hits in the input spectrogram.
In contrast, Slow extracts frequency patterns that do not seem to be useful for discriminating
these classes that contain temporally localised sounds. For sea waves and mosquito buzzing,
Slow extracts frequency patterns over time, where by comparing the input spectrogram and
residual stage 3, it can be seen that the feature maps can capture the energy distribution of the
input signal in different frequency bands. Fast aims to temporally localise events, which does
not assist the discrimination of these classes that contain harmonic sounds.

These observations provide some further evidence that Slow models harmonic sounds by learn-
ing to attend at the relevant frequency bands, whereas Fast models percussive sounds by learn-
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Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

V A Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

✓ ✗ 67.54 51.54 40.26 90.92 75.60 60.03 58.22 43.85 31.27 39.43 24.47 20.71
✗ ✓ 44.97 21.80 14.32 77.81 45.99 28.89 38.78 14.84 08.26 17.67 09.32 05.54
✓ ✓ 68.89 53.64 42.44 91.09 76.46 60.84 61.88 45.54 33.99 39.32 27.68 21.35

Table 4.6: Modality ablation on the validation set of EPIC-KITCHENS-100. With
the addition of audio (A), the performance improves consistently over the visual-only
network (V).

ing to temporally localise them.2

4.6 Results for AVSF2

We present an ablation analysis in Subsec. 4.6.1 and 4.6.2 as well as comparison of fusion
strategies in Subsec. 4.6.3, performed on the validation set of EPIC-KITCHENS-100. In Sub-
sec. 4.6.4, we compare AVSF2 to the state of the art in both the validation and test sets of
EPIC-KITCHENS-100.

4.6.1 Modality ablation

An ablation of modalities is shown in Table 4.6. Note that the performance of the audio modal-
ity alone, i.e. Auditory Slow-Fast, is slightly worse than the one reported in Table 4.3, as the
feature extraction process differs here as described in Subsec. 4.3.3. Although the modifica-
tion to the log-mel-spectrogram computation is introduced to synchronise visual and auditory
inputs when modalities are trained jointly, for this ablation we follow the same procedure for
single modalities too, for a fair comparison between individual modalities and the joint net-
work; that is, for training the auditory network individually, we sample start/end video frames
which are then converted to start/end audio samples to compute the log-mel-spectrogram. Con-
sequently, the drop in performance of the audio network compared to Table 4.3 arises from
reduced temporal augmentation of audio inputs, i.e. audio start/end times are sampled at larger
intervals (video-frame basis vs audio-sample basis) allowing smaller temporal variation of
auditory inputs.

One compelling observation is that, compared to the modality ablation in the previous chapter,

2Additionally, some qualitative results for both EPIC-KITCHENS and VGG-Sound where we play the audio and
show the ground truth as well as the individual predictions of Slow and Fast streams compared to our proposed
Slow-Fast architecture can be seen (and heard) at https://youtu.be/3q31N43Dr4k?t=331.
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4.6 Results for AVSF2

Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

Modality Fusion DropAudio Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

V - - 67.54 51.54 40.26 90.92 75.60 60.03 58.22 43.85 31.27 39.43 24.47 20.71

AV

L
at

e - 67.08 50.50 39.42 90.11 74.41 58.31 59.06 41.41 30.14 36.53 24.79 19.13
Gradients 68.58 52.42 40.90 90.73 76.62 61.58 59.62 44.79 32.11 38.18 25.26 19.77
Pathways 68.89 53.00 41.81 91.25 76.65 61.58 61.03 44.23 32.39 40.23 26.16 20.71

M
ul

.-l
ev

. - 66.99 51.15 39.92 90.00 75.26 58.68 59.44 42.25 32.02 37.22 26.84 20.26
Gradients 69.00 52.71 41.45 91.26 76.48 61.36 59.15 43.57 30.99 40.11 26.89 20.81
Pathways 68.89 53.64 42.44 91.09 76.46 60.84 61.88 45.54 33.99 39.32 27.68 21.35

Table 4.7: Ablation of DropAudio on the validation set of EPIC-KITCHENS-100 for
both late and multi-level fusion. When DropAudio is not incorporated (-) in the audio-
visual network (AV), the performance degrades with the addition of audio compared
to the visual-only model (V) for both late and multi-level fusion. When DropAudio is
employed, the inclusion of audio boosts the performance of the model. DropAudio-
Gradients increases fairly the accuracy, and DropAudio-Pathways improves the results
further in most metrics.

here the gap in performance between the visual and auditory networks is larger, due to the
enhanced performance of the visual Slow-Fast network. While in the previous chapter the
audio stream has shown comparable performance to the RGB stream in top-1 verbs, here
visual Slow-Fast that takes only RGB inputs as well performs significantly better than auditory
Slow-Fast in all metrics including top-1 verbs. This is reasonable as the RGB network in the
previous chapter is single-stream, modelling only appearance, while visual Slow-Fast enables
both appearance (Slow) and motion (Fast) modelling.

Despite the restricted auditory temporal augmentation, and the strong performance of visual
Slow-Fast alone, combining auditory Slow and Fast streams with their visual analogues boosts
decently the performance of the model, outperforming the visual-only network. This show-
cases that visual and auditory Slow-Fast networks contain complementary information which
can be leveraged for more accurate action recognition, when these are fused and trained prop-
erly as will be shown in the next subsections.

4.6.2 Audio-visual regularisation ablation

We demonstrate the necessity of DropAudio for training AVSF2 through an ablation in Ta-
ble 4.7 for both late and multi-level fusion. Similar to the findings of [207] and [196], when
DropAudio is not incorporated in training, not only the performance does not improve with the
addition of audio, but the audio-visual model performs worse compared to using only vision.
Importantly, this finding is consistent for both late and multi-level fusion, validating that this
is not a property of a particular type of fusion, but more probably an attribute of the partic-
ular architecture that we consider for each modality. In the previous chapter, TBN behaved
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differently with the addition of audio, where performance improved without the need of any
form of audio-visual regularisation. Here, one cause of deterioration of performance could be
that both the audio architecture and the full audio-visual network are higher capacity models
compared to the audio stream in TBN and the complete TBN architecture, respectively; TBN
has a lightweight single auditory stream with 10.67M parameters while Auditory Slow-Fast
has 26.88M parameters (comparison of #parameters in Table 4.3), and the full TBN model has
32.60M parameters vs 65.80M parameters in AVSF2. The increased number of parameters in
audio-visual networks (compared to uni-modal networks) is also discussed in [196] as a po-
tential source of overfitting. A higher capacity audio-visual model is more prone to complex
co-adaptations across modalities, and noisy audio as well as silent actions can easier ovefit the
model.

When DropAudio is employed, performance improves allowing audio to benefit action recog-
nition. DropAudio-Gradients obtains a good boost in performance compared to not using
DropAudio, demonstrating that the incompatibility in learning dynamics between audio and
vision is a significant factor of overfitting and that adapting their learning pace increases gen-
eralisation. For multi-level fusion, DropAudio-Gradients outperforms DropAudio-Pathways
in top-5 accuracy for all verb, noun and action, as well as in top-1 and tail verbs. We con-
clude that DropAudio-Gradients is a reasonable baseline for audio-visual regularisers for ac-
tion recognition. DropAudio-Pathways increases the accuracy of the model further in most
metrics, showcasing that in addition to addressing the discrepancy in training speed between
modalities, training an audio-visual network by also calibrating the degree it depends on audio
(i.e. dropping the audio pathways in the forward pass along with their gradients in the back-
ward pass) is important as well. One possible explanation is that DropAudio-Pathways inhibits
co-adaptations between the modalities, by limiting the amount to which irrelevant noise in the
audio data stream can contaminate the visual representations and the predictions of the model.
Note that even for the metrics mentioned above where DropAudio-Gradients has better per-
formance in multi-level fusion, DropAudio-Pathways achieves comparable performance. As
the results show that DropAudio-Pathways is more effective overall, tackling both sources of
overfitting we consider, we utilise it as a default choice in all our experiments.

4.6.3 Comparison of fusion techniques

We compare the efficacy of the different fusion schemes we consider in Table 4.8. First of
all, our results demonstrate a case, commonly observed among different fusion studies: late
fusion is a strong competitor over more complex fusion approaches, where for example it
obtains second best top-1 action accuracy. In general, mid-level fusion as well as MMTM and
Cross-Attention without residual connections show similar performance to late fusion.
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Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

Fusion Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

Late 68.89 53.00 41.81 91.25 76.65 61.58 61.03 44.23 32.39 40.23 26.16 20.71
Mid-level 69.35 52.01 41.39 91.21 76.61 61.75 60.56 44.88 33.43 38.52 23.95 19.58
MMTM w/o res. (multi-level) 68.91 52.58 41.69 91.04 77.15 61.16 59.81 43.19 32.21 38.24 26.58 20.58
MMTM w. res. (multi-level) 68.88 53.11 41.78 91.19 77.35 61.71 59.72 43.57 31.36 37.78 28.05 20.90
Cross-Attention w/o res. (multi-level) 68.57 52.71 41.51 91.21 76.65 61.42 59.72 44.41 32.11 40.11 27.21 20.97
Cross-Attention w. res. (multi-level) 68.89 53.64 42.44 91.09 76.46 60.84 61.88 45.54 33.99 39.32 27.68 21.35

Table 4.8: Comparison of fusion strategies using the validation set of EPIC-
KITCHENS-100. Late fusion is competing more complex fusion approaches, ob-
taining the second place in top-1 action accuracy. Mid-level fusion as well as MMTM
and Cross-Attention without residual connections perform comparably to late fusion.
Cross-Attention with residual connections obtains the best performance in most met-
rics excluding mainly top-5 accuracy.

The best results in several metrics are obtained using Cross-Attention with residual connec-
tions, while the other fusion approaches obtain best performance in two metrics at most. In
Cross-Attention, residual connections provide a non-negligible boost in performance, show-
casing their importance. We also add residual connections in MMTM for a more thorough
evaluation. The results show that while residuals provide small boosts in MMTM, they mostly
benefit Cross-Attention. This finding is an indication that our assumption holds, i.e. that Cross-
Attention without residuals disregards discriminant within-modal information by attending on
features that are important to the other modality, and that residual connections alleviate that
by providing access to the initial feature map before attention. MMTM does not suffer from
this problem, but yet its slight increase in performance after the addition of residuals could be
because residuals can also ease the training of deep networks allowing for better propagation
of gradient signals [71]. Note that, adding residuals is only possible for multi-level fusion,
which both takes as input and produces as output visual and auditory features, allowing to
add visual and auditory residuals in the outputs, respectively. Adding residuals in late and
mid-level fusion is not feasible, as they produce as output a single multi-modal representation,
to which visual and auditory features cannot be added. It is interesting that the performance
of Cross-Attention (with residuals) is particularly better in top-1 nouns compared to the rest
fusion approaches, as it could signify its ability to attend to objects that sound. To properly as-
sess whether Cross-Attention indeed possesses this property, we should visualise its attention
maps and we leave this for future exploration. We employ Cross-Attention with residuals in
all our experiments as it provides the best performance overall.
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Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

Split Model Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

Va
l

TSN [194] 60.18 46.03 33.19 89.59 72.90 55.13 47.42 38.03 23.47 30.45 19.37 13.88
TRN [217] 65.88 45.43 35.34 90.42 71.88 56.74 55.96 37.75 27.70 34.66 17.58 14.07
TBN (Ch. 3) 66.00 47.23 36.72 90.46 73.76 57.66 59.44 38.22 29.48 39.09 24.84 19.13
TSM [110] 67.86 49.01 38.27 90.98 74.97 60.41 58.69 39.62 29.48 36.59 23.37 17.62
SlowFast [47] 67.54 51.54 40.26 90.92 75.60 60.03 58.22 43.85 31.27 39.43 24.47 20.71
AVSF2 (Proposed) 68.89 53.64 42.44 91.09 76.46 60.84 61.88 45.54 33.99 39.32 27.68 21.35

Te
st

TSN [194] 59.03 46.78 33.57 87.55 72.10 53.89 53.11 42.02 27.37 26.23 14.73 11.43
TRN [217] 63.28 46.16 35.28 88.33 72.32 55.26 57.54 41.36 29.68 28.17 13.98 12.18
TBN (Ch. 3) 62.72 47.59 35.48 88.77 73.08 56.34 56.69 43.65 29.27 30.97 19.52 14.10
TSM [110] 65.32 47.80 37.39 89.16 73.95 57.89 59.68 42.51 30.61 30.03 16.96 13.45
SlowFast [47] 64.63 48.62 37.40 88.61 73.84 56.13 57.54 41.24 28.71 33.64 21.27 16.05
AVSF2 (Proposed) 66.06 51.12 39.83 89.85 75.94 58.89 59.49 46.35 33.36 31.94 22.83 16.83

Table 4.9: Comparison with the state of the art on both the validation (top) and test
set (bottom) of EPIC-Kitchens-100. AVSF2 outperforms all other approaches where
of particular interest is TBN which is also audio-visual and SlowFast which we utilise
for the visual streams of AVSF2.

4.6.4 Comparison with the state of the art

A comparison of AVSF2 with state-of-the-art convolutional approaches in both the validation
and test sets of EPIC-KITCHENS-100 can be seen in Table 4.9. AVSF2 outperforms all other
methods by a noticeable margin. Of particular interest is TBN (which we proposed in the
previous chapter) as it is audio-visual and SlowFast since it shares the same architecture as
our visual streams. Note that the results for TBN are from [36] where TBN was trained with
slightly different hyperparameters than those presented in Ch. 3; namely, a batch size of 64
was used, 6 segments, and the learning rate was dropped at epoch 40 and 60, while the rest
hyperparameters were left unchanged. We have already discussed the improvement of AVSF2

over SlowFast in the ablations in Subsec. 4.6.1 and 4.6.2. Using only the visual streams of
AVSF2 (i.e. SlowFast), we can already outperform TBN, showcasing that the visual Slow and
Fast streams have enhanced appearance and motion modelling capabilities compared to the
RGB and optical flow streams of TBN, and also that there is a subtle interplay between Slow
and Fast streams (through multi-level lateral connections) which is more effective than TBN’s
mid-level fusion. Another benefit of the visual Fast stream of AVSF2 compared to the motion
stream of TBN is that it does not require costly computation of optical flow. Our AVSF2

equipped with high-performing visual streams and state-of-the-art auditory streams as well
as more effective fusion (we’ve already shown that Cross-Attention is better than mid-level
fusion) outperforms TBN by an even wider margin.
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4.7 Conclusion

The first part of this chapter introduced a two-stream architecture for audio recognition, in-
spired by the two pathways in the human auditory system, fusing Slow and Fast streams with
multi-level lateral connections. We demonstrated the importance of our fusion architecture
through ablations on two activity-based datasets, EPIC-KITCHENS-100 and VGG-Sound,
achieving state-of-the-art performance. In particular, we have shown that multi-level is better
than late fusion, that the two streams have useful complementary information and that their
fusion is more beneficial than simply using higher capacity single stream architectures. Class
analysis revealed that Slow focuses on learning frequency semantics and is able to capture har-
monic sounds such as animals and scenes, while Fast models temporal patterns and predicts
better percussive sounds and human voices (possibly capturing articulation). Feature map vi-
sualisation has further verified the spectral modelling capabilities of Slow, and importantly the
temporal detection capabilities of the lightweight Fast stream.

At the second part, this chapter proposed a four-stream architecture for integrating visual and
auditory Slow and Fast streams by associating corresponding streams across modalities using
multi-level cross-modal attention fusion with residual connections. Ablation analysis show-
cased that auditory Slow-Fast streams contain complementary information to visual Slow-Fast
streams, and therefore can assist in increasing their performance. More importantly, the chap-
ter offered a thorough investigation of audio-visual regularisation by randomly dropping au-
dio, namely DropAudio, and the results have demonstrated that audio-visual regularisation is
of vital importance, as when it is removed from training the auditory modality cannot benefit
action recognition. Dropping the auditory pathways in the forward pass (rather than merely
their gradients in the backward pass) provided higher boosts, signifying that both the training
dynamics of the two modalities should be adjusted and the network’s dependence on audio
should be calibrated to mitigate shortcut training of the network by memorising noise in au-
dio. Lastly, a thorough comparison of fusion schemes has demonstrated the benefits of fusing
the modalities at multiple levels with Cross-Attention fusion that incorporates residual con-
nections, pointing out that attention can effectively enhance each modality’s representations.
The proposed model, AVSF2, outperforms TBN which is introduced in Ch. 3 as well as other
visual approaches, obtaining state-of-the-art performance.

Despite the intriguing findings of this chapter regarding four-stream fusion and audio-visual
regularisation, there are various baselines, experiments and analysis that are crucial for a more
thorough evaluation of AVSF2, and yet these have not been performed in this chapter and are
left for future exploration. These are:

• Assessment of the basic idea: First of all, as the chapter’s main motivation is that it
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is beneficial to fuse the same type of streams across modalities, it would be essential to
demonstrate it by contrasting it to combining different type of streams within modalities,
i.e. SlowV-SlowA and FastV-FastA versus SlowV-FastV and SlowA-FastA (see Fig. 4.4a
vs Fig. 4.4b).

• Comparison with additional audio-visual approaches: AVSF2 has been compared only
with TBN from audio-visual approaches. A comparison with Audiovisual SlowFast [207]
is important as it is the closest to AVSF2. Moreover, it would be necessary to compare
against [196] as it is an audio-visual method reporting on EPIC-KITCHENS. Both [207]
and [196] are trained on EPIC-KITCHENS-55, and thus AVSF2 needs to be trained on
EPIC-KITCHENS-55 too, for a direct comparison.

• Scrutinising DropAudio: Although the chapter discussed how the proposed DropAudio-
Pathways can more adequately tackle the sources of overfitting in audio-visual net-
works that have been considered in this chapter, compared to DropPathway [207], this
still needs to be verified experimentally. In addition, a comparison with Gradient-
Blending [196] by incorporating it in training AVSF2 instead of DropAudio would also
be fruitful, as its motivation is to address overfitting due to inconsistent training dy-
namics between modalities, similar to DropAudio and DropPathway. Another valuable
experiment is to test whether DropAudio-Pathways improves the performance particu-
larly on the subsets that contain noisy audio/silent actions, and compare it with Mod-
Drop [135] that has shown good performance with noisy/absent modalities. Dropping
the visual modality in addition to dropping audio can also be explored to assess the
contribution of the stronger modality to overfitting.

• Hyperparameter tuning: In [207], the authors have shown that it is beneficial to fuse
audio-visual features with multi-level lateral connections only starting from intermedi-
ate layers, attributing it to the fact that low-level features are not generalisable across
modalities. As this chapter has utilised multi-level fusion blocks across the whole archi-
tecture of AVSF2, tuning the layers to which multi-level fusion should be applied could
provide further boosts in performance.

• Qualitative analysis: A qualitative evaluation, where the video clips are shown along
with the ground truth, the predictions of the each modality and predictions of AVSF2,
can help to identify modes of failure of the proposed model. Finally, a visualisation of
attention maps from ‘Cross-Attention’ fusion can reveal whether sound source localisa-
tion in videos emerges using action supervision.

The architectures proposed in this chapter can be employed out of the box in different re-
search areas. A follow up of our work [195] showed that training Auditory Slow-Fast with
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self-supervision leads to strong audio representations that are transferable across a wide range
of tasks, including environmental sound classification tasks, as well as speech and music tasks.
However, [195] demonstrated that the transferability of the Auditory Slow-Fast representations
is affected by the architecture’s normalisation scheme and proposed a normaliser-free variant
of Auditory Slow-Fast by employing the design principles of [20] to avoid the shortcomings of
normalisation. The success of Auditory Slow-Fast in speech tasks can be attributed to its abil-
ity to model slow temporal changes, such as prosody, in the Slow stream, and faster changes,
such as phonemes, consonants and temporal pitch, in the Fast stream (see [219] for similar
findings in the neuroscience domain). The applicability of Auditory Slow-Fast in music tasks
may be related with the ability of Slow to model the harmonic sounds of musical instruments
such as guitars and violins, and the capacity of Fast to learn the percussive sounds of musi-
cal instruments such as drums. This would also make the application of Auditory Slow-Fast
straightforward to music source separation. For audio-visual music source separation, AVSF2

could assist in learning correspondences of streams across modalities for better separation, e.g.
associate the sound of the drums with the motion of hitting them using the Fast streams.

Another exciting avenue of research is to enhance the Slow-Fast streams with more proper-
ties of the dorsal and ventral streams from neuroscience to facilitate robots able to perceive
the world audio-visually using the ventral streams as well as to speak and interact with ob-
jects using the dorsal streams, as research in visual and auditory dorsal-ventral streams has
revealed that the auditory dorsal stream maps acoustic speech signals into articulatory motor
representations which are essential for speech production [76], while the visual dorsal stream
maps a visual signal to a motor command for visually guided reaching and grasping [61].
A step towards dorsal and ventral streams for robotic manipulation has already been made
in [165].

This chapter has investigated a novel paradigm for designing efficient architectures that operate
on temporal streams of data, i.e. leveraging complementary information within and across
modalities using two streams per modality, one that learns slow and the other fast changing
concepts, along with merging Slow streams independently from Fast. Interestingly, Slow and
Fast modelling can go beyond audio-visual applications and be employed in any modality
formed as a temporal stream of data, e.g. lidars, with several interesting applications including
visual-lidar Slow and Fast streams fusion for self-driving cars.

By scrutinising Slow-Fast architectures in vision and audio, several directions of investiga-
tion have emerged that would enable more robust and efficient training and network design.
First, a learnable and adaptive stride (α) parameter would allow to adjust the complementarity
of information within each stream based on the example through balancing the ‘slowness’ of
the Slow stream in relation to Fast. While there is sufficient supporting evidence and motiva-
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tion for modelling frequency and time independently, separable convolutions did not boost the
performance of Auditory Slow-Fast adequately, and possibly more sophisticated approaches
are required, e.g. [215]. The building idea of AVSF2, i.e. the combination of same type of
streams across modalities, need to be assessed and advanced through further means. To this
end, stream-specific fusion blocks could be designed as opposed to stream-agnostic fusion that
has been used in this chapter (that is, the same fusion block has been used for either Slow or
Fast stream fusion). Moreover, a loss function that encourages the representations of corre-
sponding streams across modalities to be close in space could further assist in meeting the goal
of leveraging corresponding audio-visual streams. Finally, adaptive DropAudio regularisation
(rather than random) by deciding whether an audio input is informative or should be dropped
is worth investigating.
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CHAPTER

FIVE

LEVERAGING MULTI-MODAL TEMPORAL CONTEXT

Action recognition in egocentric video streams from sources like EPIC-KITCHENS poses a
number of challenges that differ substantially from those of conventional third-person action
recognition – where training and evaluation is on 10 second video clips and classes are quite
high-level [90]. Actions are fine-grained (e.g. ‘open bottle’) and noticeably short, often one
second or shorter. Along with the challenge, the footage offers an under-explored opportunity,
as actions are captured in long untrimmed videos of well-defined and at-times predictable
sequences. For example the action ‘wash aubergine’ can be part of the following sequence –
you first ‘take the aubergine’, ‘turn on the tap’, ‘wash the aubergine’ and finally ‘turn off the
tap’ (Fig. 5.1). Furthermore, the objects (the aubergine and tap in this case) are persistent over
some of the neighbouring actions.

This chapter investigates utilising not only the action’s temporal context in the data stream,
but also the temporal context from the labels of neighbouring actions. A model that attends to
neighbouring actions is proposed. Note that these action start/end times are readily available
in labelled datasets for untrimmed videos and do not require additional labels. These are just
leveraged. Concretely, the attention mechanism of a multi-modal transformer architecture is
used to take account of the context in both the data and labels, using three modalities: vision,
audio and language. Motivated by the significance of audio in recognising egocentric actions
(shown in Ch. 3 and [196, 208]), we include the auditory temporal context in addition to the
visual clips. We also utilise context further, by training a language model on the sequence of
action labels, inspired by the success of language models [21, 40, 209] in re-scoring model
outputs for speech recognition [28, 70, 127] and machine translation [66] (Fig. 5.2).
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Figure 5.1: Egocentric video demonstrating two temporal context windows (pink,
green), centred around the action to be recognised (in border). The timestamps cor-
respond to the start and end times of each action. We can infer ‘wash aubergine’
with higher accuracy if we know that the tap was turned on before and turned off af-
terwards. The example also exhibits the variable length of different temporal context
windows, due to both variable length of actions and variable distance between actions.

The main contributions of this chapter are summarised as follows: First, temporal context
is formulated as a sequence of actions surrounding the action in a sliding window. Second,
a novel framework able to model multi-modal temporal context is proposed. It consists of
a transformer encoder that uses vision and audio as input context, and a language model as
output context operating on the action labels. Third, state-of-the-art performance is obtained
on two datasets: (i) the large-scale egocentric dataset EPIC-KITCHENS, outperforming high-
capacity end-to-end transformer models; and (ii) the EGTEA dataset. Finally, an ablation study
analysing the importance of the extent of the temporal context and of the various modalities is
included. The results presented in this chapter signify: (i) the advantages of multiple temporal
context, where audio and language provide complementary benefits to visual temporal context,
(ii) the capacity of language models to improve the predictions of audio-visual networks by
filtering out improbable sequences, and (iii) that additional supervision from the neighbouring
actions in the temporal context can enhance the recognition of the action of interest.1

5.1 Multi-modal Temporal Context Network (MTCN)

Given a long video, we predict the action in a video segment by leveraging the temporal con-

text around it. We define the temporal context as the sequence of neighbouring actions that
precede and succeed the action, and aim to leverage that information, when useful, through
learnt attention. We utilise multi-modal temporal context both at the input and the output of
our model. An audio-visual transformer ingests a temporally-ordered sequence of visual in-
puts, along with the corresponding sequence of auditory inputs. We use modality-independent
positional encodings as well as modality-specific encodings. The language model, acting on

1The Python code for the proposed model and the pre-trained model on EPIC-KITCHENS-100 as well as the
extracted audio-visual features for all datasets are available at https://github.com/ekazakos/MTCN.
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5.1 Multi-modal Temporal Context Network (MTCN)
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Figure 5.2: The Multi-modal Temporal Context Network (MTCN). An encoding
layer takes as input visual and auditory features and produces as output visual and
auditory tokens by first projecting the features to a lower dimension using fully-
connected layers, gv and ga, followed by tagging them with positional and modality
encodings. Verb and noun learnable classification tokens with independent positional
encodings are appended in the sequence. An audio-visual transformer encoder attends
to the sequence. The verb and noun summary embeddings predict the action at the
centre of the window (‘take washing liquid’) using a two-head classifier. The clas-
sifier also predicts the sequence of actions from the audio-visual tokens to train an
auxiliary loss that enhances the prediction of the centre action using additional su-
pervision from the temporal context. A Masked Language Model (also a transformer
architecture) that takes as input the sequence of action labels, operates on the concate-
nation of verb and noun embeddings using two separate word-embedding layers. The
language model is trained by randomly masking any ground-truth action and predict-
ing it. Given the predictions of the audio-visual transformer for the whole sequence,
a beam search computes the K most probable sequences. The language model filters
out improbable sequences by computing the probability of each sequence.

the output of the transformer learns the prior temporal context of actions, i.e. the probability
of the sequence of actions, using a learnt text embedding space.

Inspired by similar approaches [202], and instead of using a single summary embedding as
in prior works for image [43] and action classification [10], the audio-visual model utilises
two separate summary embeddings to attend to the action (i.e. verb) class and the object (i.e.
noun) class. This allows the model to attend independently to the temporal context of verbs
vs objects. For example, the object is likely to be the same in neighbouring actions while the
possible sequences of verbs can be independent of objects (e.g. ‘take’ → ‘put’). Each summary
embedding uses a different learnt classification token, and the classifier predicts a verb and a
noun from the summary embeddings. The predictions of the audio-visual transformer are
then enhanced by filtering out improbable sequences using the language model. We term the
proposed model Multi-modal Temporal Context Network (MTCN).

In the next three subsections, we detail the architectural components of MTCN, as well as our
training strategy and inference procedure. An overview of MTCN is depicted in Fig. 5.2.
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5.1.1 Audio-visual Transformer

Let Xv ∈ Rw×dv be the sequence of visual inputs from a video, and Xa ∈ Rw×da the corre-
sponding audio inputs (video and audio inputs/features are synchronised, therefore they have
the same length w), for w consecutive actions in the video (i.e. the temporal context window),
with dv, da being the input dimensions of the two modalities respectively. Xv and Xa cor-
respond to features extracted from visual and auditory networks, respectively. Our temporal
window is centred around an action bi with surrounding action segments, excluding any back-
ground frames. That is, each action bj within the window, i − w−1

2
≤ j ≤ i + w−1

2
is part of

the transformer’s input.

Encoding layer. Our model first projects the inputs Xv, Xa to a lower dimension D and tags
each with positional and modality encodings. Then, an audio-visual encoder performs self-
attention on the sequence to aggregate relevant audio-visual temporal context from neighbour-
ing actions. Because all self-attention operations in a transformer are permutation invariant,
we use positional encodings to retain information about the ordering of actions in the sequence.
We use w learnt absolute positional encodings, shared between audio-visual features to model
corresponding inputs from the two modalities. Modality encodings, mv, ma ∈ RD, are learnt
vectors added to discriminate between audio and visual tokens.

A classifier predicts the action bi, using two summary embeddings, acting on the learnt verb/noun
tokens. We use the standard approach of appending learnable classification tokens to the end of
the sequence but use two tokens, one for verbs and one for nouns, denoted as CLSV, CLSN ∈
RD, with unique positional encodings. To summarise, the encoding layer transforms the inputs
Xv and Xa as follows:

Xe
vj
= gv(Xvj) + pj +mv Xe

aj
= ga(Xaj) + pj +ma ∀j ∈ [1, ..., w] (5.1)

CLSe
V = CLSV + pw+1 CLSe

N = CLSN + pw+2 (5.2)

Xe = [Xe
v ;X

e
a;CLSe

V;CLSe
N], (5.3)

where [; ] denotes input concatenation and p ∈ R(w+2)×D are the positional encodings. gv(·) :
Rdv 7→ RD and ga(·) : Rda 7→ RD, are fully-connected layers projecting the visual and audio
features, respectively, to a lower dimension D. The input to the transformer is Xe ∈ R(2w+2)×D.
In Subsec. 5.3.4, we compare the absolute positional encodings with relative [162] and Fourier
feature positional encodings [84].

Transformer and classifier. We use a transformer encoder f(·) to process sequential audio-
visual inputs, Z = f(Xe). We share the weights of the transformer encoder layer-wise. In
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5.1 Multi-modal Temporal Context Network (MTCN)

Subsec. 5.3.4, we compare this to a version without weight sharing. Weight sharing uses 2.7×
fewer parameters with comparable results. A two-head classifier h(·) for verbs and nouns
then predicts the sequence of w actions from both the transformed visual and audio tokens
Ŷ = h(Z1:2w), and the action bi from the summary embeddings ŷ = h(Z2w:2w+2).

Loss function. Recall that our goal is to classify bi, the action localised at the centre of
our temporal context. Nevertheless, we can leverage the ground-truth of neighbouring actions
within w for additional supervision to train the audio-visual transformer. Our loss is composed
of two terms, the main loss for training the model to classify the action at the centre of our
temporal context i = w

2
, and an auxiliary loss to predict all actions in the sequence:

Lm = CE(Y V
i , ŷV) + CE(Y N

i , ŷN) (5.4)

La =
w∑

j=1

(
CE(Y V

j , Ŷ V
j ) + CE(Y V

j , Ŷ V
|w|+j) + CE(Y N

j , Ŷ N
j ) + CE(Y N

j , Ŷ N
|w|+j)

)
(5.5)

loss = βLm + (1− β)La, (5.6)

where CE() is a cross-entropy loss, and Y = (Y1, ..., Yw) is the ground-truth of the sequence,
while Ŷ1, ..., Ŷw and Ŷw+1, ..., Ŷ2w correspond to predictions from the transformed visual and
auditory inputs respectively. We use β to weight the importance of the auxiliary loss.

5.1.2 Language model

In addition to input context from the visual and audio domains, we introduce output context
using a language model. Language modelling, commonly applied to predict the probability of
a sequence of words, is a fundamental task in NLP research [21, 40, 144, 209]. Our language
model predicts the probability of a sequence of actions. We use the language model to improve
the predictions of the audio-visual transformer by filtering out improbable sequences.

We adopt the popular Masked Language Model (MLM), introduced in BERT [40]. There-
fore, our language model employs a transformer architecture too. We train this model in-
dependently from the audio-visual transformer. Specifically, given a sequence of actions
Y = (Yi−w−1

2
, ..., Yi+w−1

2
), we randomly mask any action Yj and train the model to predict

it. For example, an input sequence to the model (for w = 5) would be: (‘turn on tap’, ‘wash
hands’, <MASK>, ‘pick up towel’, ‘dry hands’). Without any visual or audio input, the lan-
guage model is tasked to learn a high prior probability for ‘turn off tap’, which is masked.
Note that the model is trained using the ground-truth sequence of actions. For input repre-
sentation, we split the action into verb and noun tokens (e.g. ‘dry hands’ → ‘dry’ and ‘hand’),
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5.2 Experimental Setup

convert them to one-hot vectors and input them into separate trainable word-embedding layers.
In preliminary experiments we found that learning a word embedding outperforms pretrained
embeddings. MLM takes as input the concatenation of verb and noun embeddings. The out-
puts are scores for verb and noun classes using a two-head classifier, and the model is trained
with a cross-entropy loss per output.

5.1.3 Inference

Given the scores of the sequence, Ŝ = (ŷi−w−1
2
, ..., ŷi+w−1

2
), from the audio-visual model (these

are temporally ordered predictions from the summary embeddings, and thus different from Ŷ ),
we apply a beam-search of size K to find the K most probable action sequences Ŝb. Therefore,
Ŝb is of size K ×w. In inference, the trained language model takes as input Ŝb, i.e. it operates
on sequences predicted from the audio-visual transformer.

For each sequence l, we calculate the probability of the sequence pLM(Ŝl
b) from the language

model by utilising the method introduced in [164]. We mask actions, one at a time, and predict
their probability. pLM(Ŝl

b) is the sum of log probabilities of all actions in l. We also calculate
the probability pAV (Ŝ

l
b) by summing the log probabilities of all predicted actions in l by the

audio-visual model. Then, we combine the probabilities of sequences of the audio-visual and
language models:

p(Ŝl
b) = λpLM(Ŝl

b) + (1− λ)pAV (Ŝ
l
b). (5.7)

Sequences are then sorted in descending order by p(Ŝl
b). The score of the centre action from

the sequence with the highest probability is used as the final prediction.

5.2 Experimental Setup

5.2.1 Datasets

We evaluate MTCN on EPIC-KITCHENS-100 [36] and EGTEA [107]. As EPIC-KITCHENS-
100 contains unscripted daily activities, it offers naturally variable sequences of actions. There
are on average 129 actions per video (std 163 actions/video and maximum of 940 actions/video).
This makes the dataset ideal for exploring temporal context. The length of sequences of w = 9

actions (this is our default window length) is 34.4 seconds of video on average with an std of
27.8 seconds (minimum of 3.4 seconds to a maximum of 720.2 seconds). For completeness,
we also perform experiments separately on EPIC-KITCHENS-55 [35]. Regarding EGTEA,
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5.2 Experimental Setup

although it does not contain audio, it has sequential actions annotated within long videos, and
we use it to train part of our approach (vision and language).

5.2.2 Implementation details

Visual features. For EPIC-KITCHENS, we extract visual features with SlowFast [47], us-
ing the public model and code from [36]. We first train the model with slightly different
hyperparameters, where we sample a clip of 2s from an action segment, do not freeze batch
normalisation layers, and warm-up training during the first epoch starting from a learning rate
of 0.001. We note that this gave us better performance. All unspecified hyperparameters re-
main unchanged. For feature extraction, 10 clips of 1s each are uniformly sampled for each
action segment, with a center crop per clip. The resulting features have a dimensionality of
dv = 2304. The SlowFast visual features are used for all the results in this paper, apart for
the comparison with the state of the art in Tables 5.10 and 5.11 where we additionally experi-
ment with features from Mformer-HR [143]. These are extracted from the EPIC-KITCHENS
pretrained model using a single crop per clip. The resulting features have a dimensionality of
dv=768.

For EGTEA, we train SlowFast [47] using the EPIC-KITCHENS pre-trained model, by sam-
pling a clip of 2s from an action segment similar to EPIC-KITCHENS. We use a learning rate
of 0.001, no warm-up, and we keep the batch normalisation layers frozen. All unspecified
hyperparameters remain unchanged. For feature extraction, we follow the same procedure as
EPIC-KITCHENS, except that we use clips of 2s rather than 1s.

Auditory features. We use Auditory SlowFast (Ch. 4) for audio feature extraction when
present. Similarly to the visual features, we extract 10 clips of 1s each uniformly spaced for
each action segment, with average pooling and concatenation of the features from the Slow
and Fast streams, and the resulting features have the same dimensionality, da = 2304.

Architectural details. Both the audio-visual transformer encoder and the language model
consist of 4 layers with shared weights, 8 attention heads and a hidden unit dimension of 512.
In the audio-visual transformer, positional/modality encodings as well as verb/noun tokens
have also dimensionality D = 512 and are initialised to N (0, 0.001). The layers gv(·) and
ga(·) reduce the features to the common dimension D = 512. In the encoding layer, dropout
is applied at the inputs of gv(·) and ga(·) as well as at Xe. In the language model, both verb
and noun word-embedding layers have a dimension of 256, and positional encodings have a
dimension of 512, while dropout is applied to its inputs.

Scheduled sampling. We modify the scheduled sampling from [16] to train the language
model. At each training iteration, we randomly mask an action, predict it, and replace the
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corresponding ground-truth with the prediction.

Train / Val details. For EPIC-KITCHENS-100, the audio-visual transformer is trained using
SGD, a batch size of 32 and a learning rate of 0.01 for 100 epochs. Learning rate is decayed
by a factor of 0.1 at epochs 50 and 75. In the loss function, we set β = 0.9. For regular-
isation, a weight decay of 0.0005 is used and a dropout 0.5 and 0.1 for the encoding layers
and transformer layers respectively. We use mixup data augmentation [214] with α = 0.2.
The language model is trained for the same number of epochs with a batch size of 64, Adam
optimiser with initial learning rate of 0.001 and the learning rate is decreased by a factor of
0.1 when validation accuracy saturates for over 10 epochs. The values of dropout and weight
decay are the same as those of the audio-visual model. For inference, we tune λ in Eq. 5.7 on
the validation set with grid-search from the set {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}, and we use
a beam size of K = 10. For training the audio-visual transformer, we randomly sample 1 out
of 10 features per action. For testing, we feed all 10 features per action to the transformer and
we share the positional encoding corresponding to an action with all 10 features. We also tried
single feature per action followed by averaging 10 predictions but observed no difference in
performance.

For EPIC-KITCHENS-55, where there is no official validation set, we used the same hyper-
parameters as for EPIC-KITCHENS-100 for training both the audio-visual transformer and
the language model. Accordingly, we trained the models for 64 epochs which was the epoch
that the audio-visual transformer obtained the highest accuracy on EPIC-KITCHENS-100, and
dropped the learning rate only at epoch 50. We also followed the same testing procedure used
for EPIC-KITCHENS-100.

Remember that for EGTEA we train only vision and language as EGTEA does not contain
audio. First, as there is no audio input to the transformer, we do not use modality encodings
either. Second, following previous methods [80, 108, 118, 128, 178, 179] that train using a
single head for actions and report only action accuracy, we use a single summary embedding
for actions, rather than verb/noun embeddings. Accordingly, the language model utilises a
single word-embedding for actions, with a dimension of 512. For training the visual-only
transformer, we use a learning rate of 0.001, train the model for 50 epochs and decay the
learning rate at epochs 25 and 38, while keeping all other hyperparameters unchanged. We
use same hyperparameters for the language model. For evaluation, differently than EPIC-
KITCHENS, we average the predictions of the 10 clips per action, rather than feeding all 10
clips in the transformer, as we experimentally found that this option provides better results for
EGTEA.
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5.2.3 Evaluation metrics

For EPIC-KITCHENS-100, similarly to Ch. 4, we follow [36] and report top-1 and top-5
accuracy for the validation and test sets separately. We also follow [36] and report results for
two subsets within val/test: unseen participants and tail classes. For EPIC-KITCHENS-55,
we report top-1 and top-5 accuracy solely for the Seen split (S1). For EGTEA, we follow
[89, 118, 128] and report top-1 accuracy and mean class accuracy using the first train/test split.
In contrast to top-1 accuracy, mean class accuracy accounts for the size of each class, and thus
it’s more suitable for imbalanced datasets.

5.3 Results

This section is organised as follows. First, we assess the importance of temporal context ex-
tent in Subsec. 5.3.1. Then, we perform an ablation analysis of modalities and the auxiliary
loss in Subsec. 5.3.2. In Subsec. 5.3.3, we assess the statistical significance of the language
model and compare the performance of MTCN to variants using baseline language models. In
Subsec. 5.3.4, we analyse architectural components of MTCN, followed by testing the perfor-
mance of MTCN in an online setting in Subsec. 5.3.5. Finally, we compare MTCN with SOTA
in Subsec. 5.3.6. For the analysis of the model and ablations in Subsecs. 5.3.1-5.3.5, we use
the validation set of EPIC-KITCHENS-100, except from Subsec. 5.3.1 where we additionally
use EGTEA.

5.3.1 Analysis of temporal context length

We first analyse the importance of the temporal context extent by varying the size of w, i.e.
the length of window of actions that our model observes, for both EPIC-KITCHENS-100
and EGTEA. For EPIC-KITCHENS, we perform this analysis both for MTCN containing all
modalities as shown in Table 5.1, as well as for the language model as shown in Table 5.2.
Varying the length of the window has a big impact on the model’s accuracy showcasing that
MTCN successfully utilises temporal context. Using temporal context outperforms w = 1, i.e.
no temporal context. As the window length increases the performance also increases. Overall
top-1 accuracy increases up to w = 9 while top-5 up to a window w = 5. Performance on
unseen participants and tail classes also increases up to w = 9.

In Table 5.2, experiments are conducted by masking the centre action and measuring how
well the model predicts it. We use ground-truth for the other actions, as in this experiment
we are interested in the maximum possible performance of the language model, i.e. assuming
correct predictions from the audio-visual model. Here w = 1 corresponds to a language model
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Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

w Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

1 67.93 52.29 41.30 90.53 76.47 61.52 61.13 44.60 32.58 42.05 27.42 21.48
3 69.80 55.24 43.52 91.30 79.04 63.25 61.41 46.48 33.71 39.09 32.58 23.06
5 70.38 56.16 45.13 91.67 79.47 64.14 61.97 46.95 34.74 43.12 32.53 24.54
7 70.43 56.19 45.01 91.23 79.13 63.52 62.63 47.14 34.84 41.31 32.79 24.12
9 70.60 56.26 45.48 91.14 79.06 63.06 63.76 47.14 35.87 41.36 32.84 24.70
11 70.55 55.74 44.68 91.18 79.23 63.02 62.91 46.57 34.74 41.82 33.58 24.44

Table 5.1: Analysis of temporal context extent for MTCN on the validation set of
EPIC-KITCHENS-100. As the length of the window, w, increases the accuracy of
the model increases as well. For top-1 accuracy best performance is obtained using
a window of 9 actions, while for top-5 accuracy optimal results are achieved with
w = 5. For unseen participants and tail classes a window of 9 actions provides the
highest performance gains too.

Overall

Top-1 Accuracy (%)

w Verb Noun Action

1 19.32 3.74 0.82
3 38.08 45.56 23.85
5 42.15 50.36 29.48
7 42.93 50.35 29.91
9 43.06 50.22 29.41
11 41.89 49.96 29.14

Table 5.2: Analysis of temporal context extent for the language model using the val-
idation set of EPIC-KITCHENS-100. In this experiment, the centre action is masked
and predicted, and the ground-truth is used for the rest of the actions in the temporal
context. w = 1 corresponds to a random chance baseline. Verb performance improves
up to w = 9, while for nouns up to w = 5 and w = 7 for actions.

that randomly guesses the masked action without any context. When varying the length of
the window for the language model, verb performance increases when enlarging the temporal
context from w = 3 to w = 9 while for nouns optimal temporal context is w = 5, and w = 7

for actions. Interestingly, the language model is performing particularly well for nouns, since
the same object is often used for the entire sequence.

Finally, Fig. 5.3 shows the effect of temporal context extent on verb and noun accuracy of
the individual modalities as well as of MTCN for EPIC-KITCHENS-100. For verbs, visual
modality performance increases up to 7 actions and then decreases while for nouns, it steadily
increases up to 11 actions, possibly because larger context is able to resolve ambiguities due
to occlusion. Audio can better capture temporal context for verbs than the language model,
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showcasing that the progression of sounds conveys more useful information about the action.
For nouns, the language model outperforms audio. Moreover, the language model performs
better on nouns because of repetitions of the same object in the sequence. MTCN utilising all
modalities (A-V-LM) benefits the most from larger temporal context, particularly for verbs.
With this analysis completed, we fix w to 9 in all subsequent experiments concerning EPIC-
KITCHENS.
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Figure 5.3: Effect of temporal context on verb (left) and noun (right) accuracy of in-
dividual modalities and for MTCN on the validation set of EPIC-KITCHENS-100. V:
Visual, A: Audio, LM: Language Model, A-V-LM: MTCN. The Y-axis is cut to em-
phasise details. Performance of the visual modality increases up to 7 actions for verbs
while it continually increases for nouns. Audio performs better than the language
model for verbs, while for nouns the opposite is true. Also, note that the language
model perform better on nouns than verbs. Finally, MTCN attains the highest gains
from larger temporal context, especially for verbs.

Visual Visual + LM

w Top-1(%) Mean Class (%) Top-1(%) Mean Class (%)

1 72.26 64.98 72.26 64.98
3 72.55 64.86 73.59 65.87
5 73.10 65.42 73.49 65.57
7 72.26 64.38 73.19 65.31
9 72.55 64.86 73.44 66.02

Table 5.3: Analysis of temporal context extent and ablation of language model in the
first test split of EGTEA. The visual-only model achieves optimal top-1 and mean
class accuracy for w = 5, while when the language model is incorporated best top-1
accuracy is obtained at w = 3 and best mean class accuracy at w = 9. Note that
the language model improves the results, where optimal performance is achieved at a
shorter temporal context comparing to the visual-only model.

We study the effect of the temporal context length both with and without the language model
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Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

V A LM Aux Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

✓ ✗ ✗ ✓ 67.10 53.54 41.49 90.62 78.22 62.32 58.87 43.29 30.99 40.97 30.47 22.35
✓ ✗ ✓ ✓ 67.84 54.08 42.05 90.63 78.20 60.68 59.06 44.23 31.36 39.77 31.32 22.38
✓ ✓ ✗ ✓ 70.23 55.82 45.00 91.13 79.06 64.58 63.29 46.38 35.02 41.76 32.26 24.41
✓ ✓ ✓ ✗ 69.31 55.46 43.81 91.19 79.76 62.35 61.13 46.01 33.90 39.55 30.74 22.74

✓ ✓ ✓ ✓ 70.60 56.26 45.48 91.14 79.06 63.06 63.76 47.14 35.87 41.36 32.84 24.70

✓ ✓ † ✓ 71.33 63.56 50.32 92.05 83.16 67.85 62.25 52.68 37.56 41.53 44.16 29.89

Table 5.4: Ablation on multi-modal temporal context and auxiliary loss on the val-
idation set of EPIC-KITCHENS-100. V: Visual, A: Audio, LM: Language Model,
Aux: Auxiliary loss. †: upper bound performance from the addition of the language
model using ground-truth temporal context actions as its input. Multi-modal temporal
context ( i.e. audio and language in addition to vision) provides a noticeable boost in
performance. Audio is particularly helpful. The language model offer smaller gains;
nevertheless it has complementary advantages to audio and the upper bound perfor-
mance from its addition showcases the space for improvement.

on the first test split of EGTEA. Results are shown in Table 5.3. For the visual-only model,
top-1 accuracy increases when we increase the length of temporal context from w = 1 to 5,
and optimal results for both top-1 and mean class accuracy are obtained for w = 5. When the
language model is incorporated top-1 accuracy increases from w = 1 to 3 and then decreases
while best mean class accuracy is obtained at w = 9. These findings showcase that our model
successfully utilises context in this dataset as well. Furthermore, the language model is helpful
for EGTEA, where it is worth noting that after its addition best performance is obtained at a
shorter temporal context, showing that shorter sequences of actions provide a stronger prior in
this dataset.

5.3.2 Ablation study

Multi-modality Ablation. We offer an ablation to identify the performance impact of the
components of our MTCN. Results are shown in Table 5.4. We remove audio and language
modalities from our model’s input and output respectively to assess their importance. Multi-
modal context is important, as our proposed model enjoys considerable margins compared
with the model trained only with visual context (line 1 in Table 5.4). Audio is beneficial,
confirming the findings of prior works and previous chapters of this thesis.

Although the language model provides smaller boost in performance than audio, it showcases
that it is useful to model prior temporal context at the output level, and that its benefits are
complementary to audio. We also include upper bound performance improvement from the
addition of the language model, where it takes as input the ground-truth preceding/succeeding
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Top-1 Accuracy (%) Top-5 Accuracy (%)

LM Verb Noun Action Verb Noun Action

✗ 70.26 ± 0.27 55.70 ± 0.22 44.90 ± 0.20 91.12 ± 0.13 79.03 ± 0.18 64.79 ± 0.17
✓ 70.52 ± 0.25 56.08 ± 0.21 45.25 ± 0.18 91.13 ± 0.13 79.03 ± 0.18 64.58 ± 0.18

Table 5.5: Mean and standard deviation of multiple runs both w. & w/o language
model in the validation set of EPIC-KITCHENS-100. The experiment was conducted
by training 10 audio-visual transformers and 10 language models with different ran-
dom seeds. The employment of the language model improves the efficiency of the
model on average with a low std.

actions rather than the predictions from the audio-visual transformer (last line in Table 5.4),
effectively a language infilling problem. These results demonstrate the potential margin for
improvement, particularly for nouns and accordingly action accuracy as well as tail classes. In
Subsec. 5.3.3, we report statistical significance over multiple runs for the language model, and
compare it to alternative baselines.

Auxiliary loss. Also from Table 5.4, training MTCN with auxiliary loss boosts its perfor-
mance almost in all metrics, confirming that utilising supervision from neighbouring actions
can improve the performance of the action of interest, i.e. the action at the centre of the win-
dow.

5.3.3 Language model

In this section, we assess the statistical significance of our language model and compare the
performance of our MTCN to variants using baseline language models.

Statistical significance of LM. We train 10 audio-visual transformers and 10 corresponding
language models with different random seeds. Table 5.5 shows the mean and standard devi-
ation top-1 and top-5 accuracy without and with the language model. Utilising the language
model improves performance on average with a low std, demonstrating that the improvement
from the language model is statistically significant. We further showcase that by conducting
T-tests on verb, noun and action top-1 accuracies, obtaining a p-value of 3.6e − 2, 6.0e − 4,
9.7e− 4, respectively.

Baselines comparison. We compare our MTCN that uses a transformer based language model
to two baselines, N-gram and Bi-directional LSTM (BiLSTM). For N-gram, we follow a simi-
lar procedure to natural language processing. In particular, from all action sequences of length
9 in the training set, we derive the heuristic probability of occurrence of the centre action given
the preceding and succeeding actions. We train a BiLSTM with 3 layers and a hidden size of
512. The rest hyperparameters are the same as the transformer encoder.
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Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

Model Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

No LM 70.23 55.82 45.00 91.13 79.06 64.58 63.29 46.38 35.02 41.76 32.26 24.41

N-gram 70.23 55.84 45.02 91.13 79.06 64.49 63.29 46.38 35.02 41.76 32.26 24.41
BiLSTM 70.57 55.97 45.09 91.14 79.06 64.55 63.29 46.76 35.31 40.68 32.47 24.15
Transformer enc. (proposed) 70.60 56.26 45.48 91.14 79.06 63.06 63.76 47.14 35.87 41.36 32.84 24.70

Table 5.6: Performance of MTCN in the validation set of EPIC-KITCHENS-100
using different language models. For N-gram, we calculate the heuristic probability
of occurrence of the centre action given the preceding and succeeding actions. The
BiLSTM has 3 hidden layers of size 512 while the rest hyperparameters are identical
with the transformer encoder. Adding an N-gram (comparing to not using a language
model) does not affect the performance as only a handful of preceding-succeeding
sequences from train also appear in val. The proposed transformer-based language
model outperforms both N-gram and BiLSTM.

Results are shown in Table 5.6. It turns out that only a few preceding-succeeding action se-
quences in the training set also appear in the validation set, resulting in no difference in per-
formance when N-gram is added comparing to not using a language model. Our transformer-
based Masked Language Model (MLM) outperforms both the N-gram and BiLSTM, showcas-
ing that it is beneficial to use a deep neural network language model over a heuristic prior and
that MLM with transformers outperforms recurrent architectures in this problem.

5.3.4 Analysis of architectural components

In Table 5.7, we explore different number of layers in MTCN, both without and with (layer-
wise) weight sharing, and compare each case with a single layer. Note that we use the same
number of layers and sharing strategy for both AV and LM. We use bold to indicate best perfor-
mance within each group rather than overall. Best results are obtained using four layers in most
metrics, both without & with weight sharing. These outperform a single layer, demonstrating
that is beneficial to use a multi-layered transformer. Although MTCN without weight sharing
performs slightly better, our proposed model (with weight sharing) has 2.7× less parameters
with only a minor drop in performance.

In Table 5.8, we compare the effect of different types of positional encodings. Specifically,
we replace our chosen absolute learnt positional encoding with relative positional encodings
[162] and Fourier feature positional encodings [84]. Fourier feature positional encodings re-
place our learnable absolute positional encodings with non-learnable ones represented as a
vector of log-linearly spaced frequency bands up to a maximum frequency. Relative positional
encodings replace our absolute positional encodings of the inputs, with positional encodings
representing distances between tokens and placed within the self-attention layers. As shown
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Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

Layers Shared Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

1 - 69.58 55.04 43.71 91.27 79.02 63.96 61.03 46.01 33.33 42.10 32.42 24.09

2 ✗ 69.49 55.41 43.94 91.13 78.96 63.86 62.72 46.57 34.37 41.42 32.32 23.90
4 ✗ 71.01 56.55 46.04 90.98 79.28 63.97 62.35 47.61 35.96 39.94 31.89 24.22
6 ✗ 69.58 55.68 44.89 90.28 78.17 63.37 61.31 45.63 34.46 38.75 32.21 23.90

2 ✓ 69.82 55.37 43.81 91.09 78.97 64.26 61.50 44.32 32.68 42.05 32.58 23.74
4 ✓ 70.60 56.26 45.48 91.14 79.06 63.06 63.76 47.14 35.87 41.36 32.84 24.70
6 ✓ 69.58 55.68 44.89 90.28 78.17 63.37 61.31 45.63 34.46 38.75 32.21 23.90

Table 5.7: Analysis of performance using different number of layers, both w. and
w/o (layer-wise) weight sharing. Results are shown in the validation set of EPIC-
KITCHENS-100. The same number of layers and sharing strategy are used both for
AV and LM. Bold indicates best performance within each group rather than overall.
Optimal performance in most metrics is achieved using 4 layers both with and without
weight sharing which outperform using a single layer. MTCN without weight sharing
performs only slightly better whereas the proposed model with weight sharing has
2.7× less parameters with an insignificant decline in performance.

Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

Pos. enc. Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

Fourier PE 69.60 56.13 44.63 90.65 78.86 63.31 63.29 45.63 35.12 38.86 32.53 23.09
Relative PE 70.32 56.30 45.37 91.01 79.35 64.04 61.41 46.67 33.99 41.42 33.74 24.96
Absolute PE (Proposed) 70.60 56.26 45.48 91.14 79.06 63.06 63.76 47.14 35.87 41.36 32.84 24.70

Table 5.8: Comparison of different positional encodings (PE) using the validation
set of EPIC-KITCHENS-100. Fourier feature encodings are non-learnable absolute
positional encodings represented as vectors of log-linearly spaced frequency bands.
Relative learnable positional encodings, as opposed to absolute ones, represent dis-
tances between tokens and are applied within the self-attention layers. The proposed
absolute positional encodings outperform Fourier feature positional encodings, and
in comparison to relative positional encodings, the proposed ones are better in top-1
accuracy and unseen participants while relative positional encodings perform better in
top-5 accuracy and tail classes. In general, the differences between different types of
positional encodings are insignificant.

in the table our proposed absolute learnable positional encodings outperform Fourier feature
positional encodings in all metrics (except top-5 action accuracy). Comparing to relative po-
sitional encodings, our positional encodings are slightly better in top-1 verbs and actions, as
well as in unseen participants, while relative positional encodings perform slightly better in
top-5 accuracy and tail classes. Overall, there are no notable differences between the different
choices of positional encodings.
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Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

w Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

1 67.93 52.29 41.30 90.53 76.47 61.52 61.13 44.60 32.58 42.05 27.42 21.48
3 68.42 54.15 42.59 91.20 78.52 61.10 61.69 44.41 32.11 40.11 31.26 22.58
5 68.58 54.04 42.75 90.96 78.27 62.04 59.81 43.94 32.11 39.49 31.11 22.48
7 68.88 54.31 42.96 90.89 77.87 62.39 61.41 43.38 32.02 40.51 32.00 23.61
9 68.77 54.28 42.77 90.66 77.72 62.44 60.38 45.07 31.83 40.80 32.68 23.86
11 67.83 54.04 42.13 90.63 78.85 62.10 57.46 43.94 31.46 36.88 30.74 21.96

Table 5.9: Online action recognition results by varying temporal context length in
the validation set of EPIC-KITCHENS-100. In the online setting, only the preceding
actions are used to predict the current action. The audio-visual transformer is trained
to predict the last action in the sequence instead of the centre one, whereas there is
no need to train a new language model; the last action in the sequence is masked
and predicted. The performance of the model improves for w > 1, with w = 7
performing the best for top-1 accuracy, while unseen participants benefit more from
shorter temporal context, w = 3, and tail-classes from larger, w = 9. Compared to the
original proposal that utilises both past and future context, performance degrades by
2.5%.

5.3.5 Online action recognition

The focus of this work is to leverage both past and future context to predict an action, i.e. offline
action recognition. In this subsection however, we explore the performance of our model in
online recognition, i.e. using only the preceding actions as context to predict the current action.
This approach can be used to recognise actions in an online fashion for streaming videos. For
this setting, we train the audio-visual transformer to predict the last action in the sequence
instead of the centre one. We do not train a new language model for this task; we simply mask
and predict the last action in the sequence instead of the centre one.

Results are demonstrated in Table 5.9 by varying w. Our model can also utilise temporal
context in this setting, as performance improves for w > 1 with optimal top-1 accuracy at
w = 7 and optimal accuracy on tail-classes at w = 9. Compared to our original proposal
that utilises also future context (see Table 5.1), the overall performance degrades – best top-1
action performance using past context solely is 42.96% compared to 45.48% using surrounding
context, indicating that leveraging future context is beneficial.

5.3.6 Comparison with the state of the art

EPIC-KITCHENS-100. We compare our approach with the state-of-the-art (SOTA) ap-
proaches on the validation set of EPIC-KITCHENS-100 as shown in Table 5.10. We first focus
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Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

Model Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

TSN [194] 60.2 46.0 33.2 89.6 72.9 55.1 47.4 38.0 23.5 30.5 19.4 13.9
TBN (Ch. 3) 66.0 47.2 36.7 90.5 73.8 57.7 59.4 38.2 29.5 39.1 24.8 19.1
TSM [110] 67.9 49.0 38.3 91.0 75.0 60.4 58.7 39.6 29.5 36.6 23.4 17.6
SlowFast [47] 67.5 51.5 40.3 90.9 75.6 60.0 58.2 43.9 31.3 39.4 24.50 20.7
ViViT-L/16x2 [10] 66.4 56.8 44.0 - - - - - - - - -
X-ViT (16x) [22] 68.7 56.4 44.3 - - - - - - - - -
Mformer-HR [143] 67.0 58.5 44.5 - - - - - - - - -
MBT [133] 64.8 58.0 43.4 - - - - - - - - -
MTCN - v.f. SlowFast [47] 70.6 56.3 45.5 91.1 79.1 63.1 63.8 47.1 35.9 41.4 32.8 24.7
MTCN - v.f. Mformer-HR [143] 70.7 62.1 49.6 90.7 83.1 68.6 63.7 50.9 38.9 41.9 39.2 27.7

Table 5.10: Comparison with SOTA on the validation set of EPIC-KITCHENS-
100. For this comparison, MTCN is trained and evaluated using two different vi-
sual features (‘v.f.’): from SlowFast [47] as well as from Mformer-HR [143]. The
authors of [10, 22, 133, 143] published only top-1 accuracy. Using the SlowFast
visual features, MTCN outperforms TBN that is also audio-visual and SlowFast
that uses the same visual features. MTCN outperforms the transformer-based ap-
proaches [10, 22, 133, 143] in top-1 verbs and actions too, and performs comparably
to [10, 22] in top-1 nouns. By employing the visual features of Mformer-HR, MTCN
surpasses the performance of all transformer-based approaches, including the audio-
visual method in [133], by considerable margins.

Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

Model Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

TSN [194] 59.03 46.78 33.57 87.55 72.10 53.89 53.11 42.02 27.37 26.23 14.73 11.43
TBN (Ch. 3) 62.72 47.59 35.48 88.77 73.08 56.34 56.69 43.65 29.27 30.97 19.52 14.10
TSM [110] 65.32 47.80 37.39 89.16 73.95 57.89 59.68 42.51 30.61 30.03 16.96 13.45
SlowFast [47] 64.63 48.62 37.40 88.61 73.84 56.13 57.54 41.24 28.71 33.64 21.27 16.05
Ego-Exo [109] 66.07 51.51 39.98 89.39 76.31 60.68 59.83 45.50 32.63 33.92 22.91 16.96
MTCN - v.f. SlowFast [47] 68.44 55.41 44.10 88.74 78.04 61.69 61.82 47.62 34.94 34.77 28.60 20.45
MTCN - v.f. Mformer-HR [143] 67.88 60.02 46.83 88.69 81.84 66.48 61.07 55.21 38.98 35.16 34.70 22.79

Table 5.11: Comparison with SOTA on the test set of EPIC-KITCHENS-100 using
two different visual features (‘v.f.’), similarly to Table 5.10. MTCN outperforms all
approaches, including [109] that distills egocentric signals from larger-scale third-
person datasets.

on MTCN trained with SlowFast visual features. MTCN significantly outperforms convolu-
tional approaches ([47, 110, 194] and TBN from Ch. 3). We outperform the audio-visual TBN
by 8% on top-1 actions, and SlowFast [47] by 5% (using the same visual features). We also
outperform very recent transformer-based approaches [10, 22, 133, 143] on top-1 verbs and
actions, reporting published results (the authors of these approaches provided only top-1 ac-
curacy). Note, that MTCN consists of a lightweight transformer that operates on pre-extracted
features, while [10, 22, 133, 143] are high-capacity models trained end-to-end. Nevertheless,
these approaches perform better than MTCN on top-1 nouns (when the latter is trained with
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Top-1 Accuracy (%) Top-5 Accuracy (%)

Model Verb Noun Action Verb Noun Action

LFB [203] 60.0 45.0 32.7 88.4 71.8 55.3
G-Blend [197] 66.7 48.5 37.1 88.9 71.4 56.2
AV-SlowFast [207] 65.7 46.4 35.9 89.5 71.7 57.8
Ego-Exo [109] 65.97 47.99 37.09 90.32 70.72 56.32
MTCN (Ours) 69.12 51.30 40.77 90.18 73.53 59.15

Table 5.12: Comparison with SOTA on the Seen split (S1) of EPIC-KITCHENS-55.
MTCN outperforms all other approaches, where [197] and [207] are audio-visual and
[203] was one of the first works to employ temporal context.

SlowFast visual features) due to the enhanced object recognition performance of their ViT
backbone [43] and its large-scale pre-training. Interestingly, MTCN performs comparably to
[10, 22] in top-1 nouns, demonstrating that it has competitive object recognition performance
even when trained with visual features extracted from models that were pre-trained on smaller
scale and less variable datasets.

When we employ visual features from Mformer-HR [143], MTCN improves over all transformer-
based approaches, including audio-visual fusion [133], by 3.5% on top-1 nouns and 5% on
actions. Although as explained above, the boost on nouns is due to the large-scale pre-trained
backbone of Mformer-HR, these results further demonstrate the potential to boost other meth-
ods and features by utilising multi-modal temporal context which therefore has complementary
benefits to training large transformer models end-to-end.

Unfortunately, most works do not report on the leaderboard test set. In Table 5.11, we pro-
vide results on the test set comparing our model to baselines from [36] (i.e. the convolutional
approaches [47, 110, 194] and TBN from Ch. 3), as well as Ego-Exo [109] that distills knowl-
edge from a much larger training set. MTCN outperforms all other methods, including the
competitive method of [109], showcasing that multi-modal temporal context from consecutive
actions is more beneficial than pretraining large models (ResNet101) using egocentric signals
from third-person datasets.

EPIC-KITCHENS-55. We also compare our model to works that report on the earlier version
of this dataset, namely EPIC-KITCHENS-55 [35] in Table 5.12. We compare MTCN with two
audio-visual approaches [197] and [207], as well as [203] which was one of the first works
to utilise temporal context. We also report the performance of [109] which evaluates their
method on both EPIC-KITCHENS-55 and EPIC-KITCHENS-100. Our MTCN outperforms
all approaches.

EGTEA. We compare MTCN without audio with the state of the art on EGTEA, in Table 5.13.
This model uses w = 3 which provided the best top-1 accuracy (see Table 5.3). Our model
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Method Top-1 (%) MC(%)

Li et al. [108] - 53.30
Ego-RNN [178] 62.17 -
Kapidis et al. [89] 68.99 61.40
Lu et al. [118] 68.60 60.54
SlowFast [47] 70.43 61.92
MCN [80] 55.63 -
Min et al. [128] 69.58 62.84
MTCN (V) (Ours) 72.55 64.86
MTCN (V+LM) (Ours) 73.59 65.87

Table 5.13: Comparative results on the first test split of EGTEA. MC: Mean Class.
This model is trained using only vision and language as EGTEA does not contain
audio and with w = 3. As there is no audio, modality encodings are not incorporated
either, and a single summary embedding for actions is used to be directly comparable
with the other methods that utilise a single classification head for actions. MTCN
improves over all approaches by 3% in both metrics, and it outperforms SlowFast
which was used to extract features. The addition of the language model provides a
bigger boost in performance than in EPIC-KITCHENS (‘V’ vs ‘V+LM’).

improves over previous approaches by 3% in both top-1 and mean class accuracy. Note that
MTCN outperforms SlowFast [47] which we used to extract features. Importantly, the abla-
tion of the language model in Table 5.13 (‘V’ vs ‘V+LM’) showcases that the language model
provides a bigger boost in performance in EGTEA than in EPIC-KITCHENS (ablation shown
in more detail in Table 5.3). The main reason is because priors (inductive biases) are more
helpful for small datasets. This has also been witnessed with the shift to transformers from
convolutional architectures, where transformers do not capture the inductive biases of con-
volutional networks, i.e. grid structure and translation invariance; yet when transformers are
trained with massive scale data, they can outperform convolutional networks, whereas convo-
lutional networks outperform transformers when both pre-trained on smaller datasets thanks
to the priors they are able to model.

5.4 Qualitative Results

In Fig. 5.4 and 5.5, we demonstrate qualitative results selected from the validation set of EPIC-
KITCHENS-100. We visualise the auditory (purple) and visual (green) temporal context at-
tention, that is the attention weights from the noun embedding to auditory and visual tokens.
One could likewise show the attention from the verb embedding, but we found it to be visually
indistinguishable to the one from the noun embedding. As there are 10 clips per action, we
average the 10 attention weights per action. In each case, we also show the ground-truth along
with the predictions of the model.

Fig. 5.4 illustrates success cases, where the centre action in the sequence is predicted correctly.
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Figure 5.4: Qualitative results of attention weights along with the ground-truth and
the predictions of MTCN using selected examples from the validation set of EPIC-
KITCHENS-100. Green and purple edges represent attention weights from the noun
embedding to visual and auditory tokens, respectively. Thickness indicates attention
weights magnitude to centre (bordered) and temporal context actions. There are 10
clips per action and the 10 attention weights per action are averaged. This figure
demonstrates success cases where the model predicts the centre action correctly. For
‘open package’, actions that contain the blueberries package are more informative to
the model while for ‘wash chopping board’ the model attends especially to actions
that include the chopping board. The last two examples demonstrate the importance
of auditory temporal context with some actions having high auditory attention in com-
parison to the visual one.
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Figure 5.5: Qualitative results of attention weights along with the ground-truth and
the predictions of MTCN using selected examples from the validation set of EPIC-
KITCHENS-100. This figure demonstrates failure cases where the model fails to
provide a correct prediction of the centre action. For ‘take yoghurt’, the model has
high attention on actions containing the egg and mispredict the noun as egg. ‘close
dishwasher’ is predicted as ‘take chopping board’ corresponding to the first and last
actions in the temporal context. In the third example the noun is wrongly predicted as
knife, as a knife appears in several action clips in the sequence. In the fourth example,
MTCN predicts the action as ‘mix sauce’, probably being distracted by the mixing in
the fourth action and the sauce in the second and third actions.

For ‘open package’, the preceding actions of taking the blueberries and closing the fridge, as
well as the subsequent actions of pouring blueberries and closing the package are particularly
informative. In the ‘wash chopping board’ example, the model particularly attends to actions
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containing the chopping board. For ‘open cupboard’, the model has high audio-visual atten-
tion to the centre action, and high attention to the audio of the previous action (‘insert coffee
maker’), showing that at times audio provides useful temporal context. The importance of
audio is also apparent in the fourth example.

Fig. 5.5 displays failure cases, where MTCN predicts the centre action incorrectly. For ‘take
yoghurt’, both visual and auditory attention weights are high on actions containing the egg,
causing the model to incorrectly predict the noun as egg. A similar source of error in the
model results from confusing the centre action with another action in the sequence; in the
second example ‘close dishwasher’ is predicted as ‘take chopping board’ which corresponds
to the first and last actions in the temporal context. The third example is also interesting
because while there is no action in the temporal context containing the knife, it is consistently
visually present in most of the action clips, causing the model to mispredict the noun as knife.
Finally, in the last example, MTCN incorrectly predicts the action as ‘mix sauce’ possibly by
assembling the verb and the noun from different actions in the sequence, i.e. ‘mix noodle’ and
‘add sauce’. Overall a common source of error in most of these cases arises from confusing the
(centre) action with another action or part of another action (i.e. either the verb or the noun) in
the sequence.

A more thorough demonstration of qualitative results where the change in attention is illus-
trated using a sliding window over a sequence of video clips with audio can be watched at
https://youtu.be/AkvyX79RVvw?t=112.

5.5 Conclusion

Differently from the previous chapters that treated actions in isolation, this chapter explores a
new dimension, that of the temporal context formulated as a sequence of actions, and utilises
past and future context to enhance the prediction of the centre action in the sequence. We pro-
posed MTCN, a model that attends to vision and audio as input modality context, and language
as output modality context. MTCN is trained with additional supervision from neighbouring
actions. The results demonstrated that MTCN successfully utilises temporal context, as when
temporal windows of more than one actions were employed the performance improved notice-
ably. It was illustrated that the temporal context of each modality has a different effect on verbs
and nouns. For the visual modality, object recognition accuracy was consistently increasing
for longer windows, as larger context can possibly resolve ambiguities due to occlusions. In
addition, the language model is more powerful for nouns probably due to repetitions of the
same object in the sequence of action labels. MTCN incorporating all modalities benefited the
most from larger temporal context particularly for verbs. Furthermore, the importance of audio

155

https://youtu.be/AkvyX79RVvw?t=112


5.5 Conclusion

and language as additional modality context was demonstrated through an ablation analysis.
Finally, MTCN obtained SOTA results on two egocentric video datasets: EPIC-KITCHENS
and EGTEA. In EPIC-KITCHENS, MTCN outperformed high-capacity transformer models
and its ability to improve over existing methods was demonstrated. A noteworthy find is that
the language model provides higher boosts in EGTEA, since priors are more useful in small
datasets as has been also shown in works that compare the inductive biases of ConvNets versus
the prior-free transformers. This could further urge researchers working with small untrimmed
action recognition datasets to incorporate language models as priors in their approaches.

The paradigm investigated in this chapter is that of a temporal horizon of actions that informs
a model what took place in the past and what will occur in the future for a better understanding
of what is happening in the present. This paradigm could generalise beyond action recognition,
essentially in any area of research that is concerned with temporal streams of data where there
is progression of events that depend on each other. Of course, temporal context can be consid-
ered within events by modelling their long-term temporal dependencies (e.g. [179, 194, 217]),
but here we focus our discussion on the temporal dependencies across sequential events. First
of all, similarly to how temporal context has been utilised for object detection by harnessing
detected objects of nearby frames from static cameras [14], action detection could benefit from
temporal context too, by leveraging nearby detected actions. An exciting application of tem-
poral context, and importantly for social good, is in sign language recognition where signs
in a given temporal proximity depend on each other. In the video domain, temporal context
would be well suited in learning from instructional videos as well. Interestingly, multi-modal
temporal context could be deployed in all the aforementioned problems; for action detection,
auditory and language temporal context can be utilised in the same way as MTCN when avail-
able, while for sign language recognition and instructional videos language temporal context
can be exploited from the subtitles. The instructional speech as well as the audio from the task
being carried out can provide auditory temporal context in instructional videos too.

The endeavour of modelling multi-modal temporal context paved the path for fascinating av-
enues of future exploration but also exposed vulnerabilities of MTCN that require attention.
First and foremost, MTCN depends on the start-end times annotations of the actions in the
temporal context. While the annotated start-end times of actions is a common requirement
in action recognition evaluation protocols, it is restricting and does not align with real-world
settings where these timestamps are not available. An extension to MTCN to address this
shortcoming would incorporate an actionness score of neighbouring frames, to distinguish
background frames and learn from action sequences in untrimmed videos without temporal
bounds during testing. This would bridge the problems of recognition and detection, util-
ising multi-modality and temporal context. Moreover, the qualitative results in this chapter
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have shown that a common source of error in MTCN emerges from confusing the action to be
recognised with another action in the sequence which signifies the need for more sophisticated
positional encodings able to associate more efficiently the classification tokens with the action
of interest.

Intuitively, joint training of vision, audio, and language could enhance the capabilities of the
model which could be achieved with an autoregressive encoder-decoder architecture. Moti-
vated by the dominance of Transformers over ConvNets in computer vision and NLP amongst
other domains, where their flexibility has been extensively demonstrated in various works, this
chapter changed tack from the previous chapters and adopted the transformer paradigm too.
Nevertheless, MTCN operates on pre-extracted features and an end-to-end trainable trans-
former architecture that also leverages multi-modal temporal context would unlock the full
potential of Transformers.
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CHAPTER

SIX

CONCLUSION

This thesis sets the grounds towards perceiving egocentric actions visually and aurally. This
endeavour was triggered by the finding that the audio signal in egocentric videos is strong due
to the sounds produced upon interacting with objects and the proximity of the microphone
to the ongoing action. The thesis was concerned with three major problems of multi-modal
egocentric vision: audio-visual fusion, audio recognition and modelling multi-modal temporal
context. While many questions within these areas remain unanswered, the conclusions of the
research outcomes of this thesis will hopefully facilitate finding answers to those questions in
the future. These are provided below.

1. Audio complements effectively visual modalities through audio-visual fusion but it also
performs surprisingly well on its own for fine-grained analysis of objects, actions, and inter-
actions. Thus, the inherent audio-visuality of egocentric videos suggests that audio modelling
should be an integral part of fine-grained action recognition methods, particularly if we want
to close the gap with the human paradigm.

2. Actions unfold at different speeds for each modality, meaning that modalities are temporally
misaligned at the semantic level. Thus, to unlock the full potential of audio-visual integration
for action recognition, it is important to employ an asynchronous fusion approach capable
of associating the most discriminant moments across modalities, be it a ConvNet or a Trans-
former. Late fusion should be avoided because it marginalises temporal information before
modality fusion and cannot perform asynchronous modality integration.

3. Egocentric action recognition using only audio is a viable avenue of research, but currently
this topic has been explored only within this thesis. While there are many possible research
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directions, disentangling audio modelling into multiple streams where each focuses on a dif-
ferent auditory characteristic, such as frequency and time, is a fruitful approach.

4. Vision and audio have different learning dynamics – audio overfits faster. Moreover, audio-
visual models can memorise the noise in the audio signal that typically originates from ir-
relevant background audio and silent actions. These are causes of overfitting in audio-visual
models which can be alleviated with audio-visual regularisation.

5. Untrimmed videos contain useful temporal context as actions are organised into well-
defined sequences of actions that constitute an activity. Allowing a model to observe the
actions that took place before and the ones that will happen after the action of interest leads to
significant performance gains in comparison to models that treat each action in isolation as the
model leverages the progression of the ongoing activity. Multi-modal temporal context offers
additional benefits; auditory temporal context is complementary to visual temporal context,
and importantly a language model can capture prior temporal context and filter out improbable
sequences from the labels of actions.

Findings and limitations
The main findings of this thesis, limitations, as well as possible means of addressing them are
presented below.

Ch. 3 offered the first attempt to audio-visual integration for egocentric action recognition.
A thorough empirical analysis signified that audio provides complementary information to
appearance and motion for various classes, while audio is more informative for actions than
objects. Yet, the audio stream is incapable of predicting silent actions, objects with indistinct
sounds or materials that do not sound when interacted, which amount to a considerable number
of classes.

The study suggested that multi-modal data streams are semantically misaligned and questioned
the ability of existing late fusion and synchronised mid-level fusion approaches to capture such
asynchronous information. To address this, an end-to-end trainable mid-level fusion architec-
ture of appearance, motion and audio was proposed, coupled with a Temporal Binding Window
that allowed fusing modalities asynchronously. A limitation of the proposed approach is that
it is incapable of binding the most discriminative temporal samples from each modality but
simply uses random temporal modality offsets. A Transformer with early fusion would enable
learnable (as opposed to random) modality binding as multi-modal self-attention naturally
links multi-modal inputs with learnable attention weights. Importantly, such scheme would
allow to systematically assess the significance of asynchronous versus synchronous fusion by
evaluating the ratio of asynchronous to synchronous attention weight magnitude.
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Ch. 4 took a step towards activity recognition using only audio and introduced a two-stream
architecture with a Slow stream for capturing spectral patterns and a Fast stream for tempo-
ral modelling. The streams were fused with multi-level lateral connections which performed
significantly better than late fusion, denoting the virtue of learning hierarchically integrated
auditory representations. The effectiveness of the proposed approach was verified in two dif-
ferent domains, egocentric action recognition using EPIC-KITCHENS and activity recognition
using VGG-Sound. Nevertheless, techniques that enable non-symmetric filtering in frequency
and time were not investigated in depth. Instead, a simple approach of employing separable
convolutions was considered, which though intuitive, didn’t prove fruitful. In fact, this is an
open problem in auditory recognition and there is ample room for improvements. Harmonic
convolutions [215] could be a good starting point.

The second part of Ch. 4 revisited audio-visual fusion and investigated a four-stream archi-
tecture that integrates audio-visual Slow and audio-visual Fast streams. A concluding remark
from that study is that sound-source localisation is likely to be important for audio-visual ac-
tion recognition as cross-modal attention fusion performed optimally. Yet, the gap with the
baselines was not sufficiently large and the problem necessitates deeper investigation, but it
opens a new exciting horizon of research that could bridge audio-visual recognition and source
localisation. An interesting question is, can video-level labels (e.g. ground-truth actions) be
used as a weak supervisory signal to facilitate progress in sound-source localisation as opposed
to pixel-level annotations or self-supervision that is the current paradigm [7, 160]?

Ch. 5 argued for the significance of relating actions within a temporal horizon in untrimmed
videos and introduced for the first time the notion of multi-modal temporal context from vision,
audio and language. A multi-modal Transformer architecture was proposed that attends to
the action’s temporal context in the data stream using vision and audio, as well as to the
temporal context from the labels of neighbouring actions using a language model that estimates
the prior probability of the action sequence and re-scores the model’s outputs. The results
of the investigation suggest that enlarging the temporal context enhances considerably the
action recognition capabilities of the model, and that multi-modal context is important too,
corroborating the previous chapters that audio is complementary to vision and other studies
about the capacity of language models to model prior action context [111, 154].

Yet, the proposed model is far from perfect. While the study showcased the potential useful-
ness of the language model by estimating its upper bound performance, its contribution was
small. Language models need abundant data to learn the prior structure of action sequences
using only text, a possibility that can become a reality with the introduction of Ego4D [63], the
largest scale egocentric dataset that contains action sequences from untrimmed videos. More-
over, the dependence of the proposed model on the temporal bounds of actions is impractical.
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A model that operates on untrimmed video should be able to perform action detection or at
least use weak temporal supervision [130]. The localisation capabilities of audio (Ch. 4) and
the applicability of language models for action detection [154] could make this happen.

Finally, a limitation of this thesis as a whole is that it has focused on evaluating predicted
classes (e.g. using top-1/top-5 accuracy), neglecting the possibility of evaluating predicted
probabilities. Two popular metrics for predicted probability evaluation are the log loss and the
Brier score, where the former is equivalent to the cross-entropy loss that is typically used for
training deep networks for classification and the latter is the mean squared error between the
predicted probabilities and the ground-truth class encoded as one-hot vector. Evaluating pre-
dicted probabilities can be particularly useful for imbalanced datasets, like EPIC-KITCHENS,
as it allows calibrating the predicted probabilities and reducing the bias towards the majority
classes.

From egocentric vision to egocentric multi-sensory percep-
tion
The findings of this thesis signify the multi-modality of egocentric reasoning and will hope-
fully serve as a starting point for reshaping the mindset of the community from egocentric
vision to egocentric multi-sensory perception. This is an ambitious yet important goal as
multi-modality is the essence of reasoning about interactions with objects and learning object-
centric representations – humans interact with objects using all their five senses. Yet, this
thesis provided only an initial exploration of this vast area of research, focusing on vision and
audio and showcasing the potential benefits of language. Thus, the thesis left ample space for
research and some directions for future investigation are provided below.

Unified multi-sensory perception. An exciting avenue of exploration is unified multi-sensory
perception, i.e. a single architecture for handling all modalities, as it would allow efficiently
scaling up to many modalities. One such architecture is the Perceiver [84] that treats modal-
ities simply as concatenated byte arrays and processes them with a single Transformer ar-
chitecture making no modality-specific assumptions, while tackling the quadratic complexity
of Transformers with learnt latent representations. Leveraging the findings of this thesis, a
more efficient and bio-plausible unified multi-sensory perception model would be a Perceiver
that restricts its attention within Temporal Binding Windows, reducing its complexity fur-
ther while respecting the neuroscience paradigm regarding modality binding. Towards unified
multi-sensory egocentric perception, one could enhance such models with interacting units that
reason about hand-object interactions [119] and train them with large-scale datasets [63].

Transfer learning. Apropos audio-visual learning, while the sounds produced from object
interactions are strong and discriminative, a model would still benefit from pre-training in
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audio-visual sources with a broader collection of audio, such as scenes, events and environ-
mental sounds and transferring the acquired knowledge to audio-visual interaction recog-
nition in egocentric videos. Maybe better transferability could be achieved by extending
the paradigm of [109] to distill audio-visual egocentric signals from large-scale audio-visual
databases.

Multi-tasking. To enable human-level egocentric perception a model should be able to do
much more than simply recognising actions. It should be able to remember what happened in
the past, to predict what will happen in the future as well as to understand intuitive physics,
e.g. ‘what will happen to the object if I poke it?’. These capabilities can be enabled by training
models in various sophisticated egocentric tasks, and an ideal testbed for this is the Ego4D
benchmark suite [63] that introduces tasks like episodic memory, object state change detection
and predicting future actions, interacted objects, as well as camera and hand movements. An
additional intriguing multi-modal forecasting task that is not considered in Ego4D is to predict
the future gaze of the wearer from the present video clip.

More senses. Finally, a longer-term goal is to collect datasets that employ additional human-
like sensory inputs such as touch, smell and taste. One such effort is [54] that proposes visual,
auditory and tactile synthetic representations. While this is an important step forwards, eventu-
ally we need real (as opposed to synthetic) and in-the-wild tactile data recorded with wearable
tactile sensors in egocentric datasets along with vision and audition. While this is an arduous
procedure we ultimately need to undertake it, because if we desire more intelligent agents we
must activate all their senses.
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