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ABSTRACT

T his thesis is about the application of director theory to modelling fluid flow in pipes
and whether it could be beneficial to the field of cardiovascular modelling. Director

theory was first developed in the field of solid mechanics, primarily by the Cosserat
brothers, but was later applied in fluid dynamics by Green and Naghdi. However there
has been limited literature since applying director theory in this field.

Director theory simplifies the solution of the full 3D Navier-Stokes equations in thin
pipe-like geometries with arbitrary variation of thickness and orientation. Instead of
solving the equations pointwise, the theory solves integrated versions of the equations
over the cross-section of the pipe. Some information about the flow properties in the
cross-section are retained by the weighting functions of the velocity directors (vectors)
that depend on the cross-sectional coordinates. It is this property of director theory that
is thought could provide more accuracy than the classical 1D models for cardiovascular
modelling.

This thesis considers the development of director theory in regards to modelling
fluid flow through various pipe geometries of increasing complexity. The accuracy of the
model solutions are then assessed against full 3D computational simulations. The models
considered include straight pipes of constant and varying radius, pipes with constant
curvature of constant and varying radius and pipes of varying curvature.

With the director theory approach, the velocity of the fluid is approximated by an
expansion of directors (vectors that can depend on the the coaxial coordinate and time)
multiplied by weighting functions (which depend on the cross-sectional coordinates and
are which take polynomial form in the models presented in this thesis). In Chapter 3,
which focuses on the modelling of fluid flow through straight pipes, the order of this
expansion is specified by K which corresponds to the highest order polynomials in the
weighting functions. In Chapter 4, which focuses on the modelling of fluid flow though
pipes of constant curvature, the order of the expansion in later stages of the derivation is
specified by H, this also corresponds to the highest order polynomials in the weighting
functions, but in this case the weighting functions will take a more complicated form
in the end, after satisfying the relevant conditions to the case being considered. The
difference in notation stems from this, which will become more apparent where the
derivation in presented in the Chapter 4.

It is found that in a straight pipe of constant radius, the director theory approach
with a velocity expansion order of K = 3 is sufficient to recover the exact Poiseuille
flow solution. Director theory solutions were obtained for straight tapering and wavy
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(sinusoidal) walled pipes at two orders, K = 3 and K = 5. For the tapered pipe, the
maximum relative error between the director theory solution and the computational
simulations, at Reynolds number Re = 4 was approximately 5% at order K = 3 and 3% at
order K = 5. For the wavy walled pipe, the maximum relative error between the director
theory solution and the computational simulations, at Re = 4 was approximately 4.5% at
order K = 3 and 2.5% at order K = 5.

For the pipe with constant curvature and constant radius, director theory solutions
were obtained at a range of orders from H = 7 to H = 15. The average relative error
between the director theory solution and the computational simulation (with mesh base
size 0.025m), for Re = 1000 and curvature ratio δ = 0.01, was approximately 2% for
orders above H = 8. The average relative error between the director theory solution and
the computational simulation (with mesh base size 0.025m), for Re = 1000 and δ= 0.1,
was under 4% for orders above H = 11.

The central aim of this thesis is to modernise the presentation of director theory
in the application of fluid mechanics to improve accessibility and help promote future
work in the topic. In addition, a novel approach to deriving the system of equations for
fluid flow in curved pipes is presented. This novel approach is more intuitive within the
field of fluid dynamics as it is derived directly from the Navier-Stokes equations, while
achieving the same end results as the method put forward by Green and Naghdi.
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1
INTRODUCTION

Pipe flow is ubiquitous throughout the world, and is often associated with a transport

process. Examples from man-made structures include the water networks that provide

homes with running water, surgical tools and intravenous bags, as well as many machines

in industry [15]. Examples from the natural world include plants where water is absorbed

through the roots and transported throughout the plant as well as the cardiovascular

system in humans where blood is continually pumped round the body, collecting oxygen

from the lungs to be distributed throughout the body and expelling carbon dioxide [37].

In these examples and indeed generally, the conduits are rarely of simple design, but

rather they exhibit changes in shape, diameter, curvature and torsion, and may include

branching to form a network.

The motivation for this thesis is the mathematical modelling and numerical analysis

of blood flow and associated transport phenomena of oxygen and drug solutes. The

modelling is commonly carried out at a range of scales to find the balance between the

accuracy of 3D models at a higher computational cost, and the computationally effective

1D models which provide simplified solutions. Non-invasive medical techniques such as

magnetic resonance imaging (MRI) make it possible to reconstruct a 3D model of part of

a patient’s cardiovascular system [1]. This virtual model can be used to reliably simulate

blood flow and provide an indication of the health state of the patient for a number of

conditions and diseases.

The problem with 3D simulations is that they are too computationally expensive to

run for large portions of the cardiovascular system. Simulations that take too long cannot

1
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Figure 1.1: Geometries of cerebral arteries reconstructed from medical image data. The
sections investigated in 3D CFD simulations are small portions of the larger cardiovas-
cular network. [11]

be used effectively as a clinical tool. A way to overcome this is to couple 3D modelling

techniques with 1D modelling techniques. This is done by modelling a small section of the

arterial system in 3D and the remaining vasculature in 1D [1]. Fig 1.1 shows examples

of this coupling for geometries of cerebral arteries. The sections in red represent what is

typically used in 3D simulations. Fig 1.2 shows 3D and 1D modelling techniques of the

branching of an artery, in which the 1D models provide boundary conditions at artificially

truncated sections in the 3D models. Here, reduced order modelling is meaningful since

it is expected that the flow in the coaxial direction will behave at a larger scale than the

in-plane flow. However, flow in curved pipes is known to contain secondary flows which

are not negligible.

In some previous works, a velocity profile is assumed at inflow for the 3D simulation,

which is unlikely to be accurate. Using 1D models for the extensive arterial geometry

is useful in providing the 3D simulations with accurate boundary conditions. Whilst

3D-1D-0D coupled models currently exist for numerical simulations of the cardiovascular

system [1, 35], the intent is to look particularly at making use of director theory for the

2



Figure 1.2: Modelling techniques of the branching of an artery. Left: branches are
modelled as 3D geometries with 0D boundary conditions. Right: branches are modelled
as 1D model boundary conditions to retain accuracy at a reduced computational cost.
[44]

1D models. This has some benefits over more traditional 1D models. By making use of

director theory (see Chapter 2), the model is not limited to straight line segments, and

a more geometrically realistic representation of the arteries can be made. This should

allow the 3D simulation regions to be provided with more accurate boundary conditions.

The biological tissues that make up blood vessels are alive and respond to flow con-

ditions, amongst other factors. It has been found that vessels which remodel inwards,

and can lead to stenosis, tend to have low wall shear stress and vessels that remodel

outwards, which can lead to an aneurysm, tend to have high wall shear stress [12]. In

diseases, this remodelling gets out of control, due to either a continued response that

gets exaggerated, like an unstable feedback loop, or due to a fault with the biochemical

reactions or the signaling pathways. The conditions that the tissue responds to can be

biochemistry related (nutrient or waste transport for example) or mechanics related.

Fluid mechanics plays an important role through mechanotransduction, in which me-

chanical stimulus is sensed by the cells and initiates a signaling pathway. Mechanical

stimulus is often related to wall shear stress, or their derivatives, which is sensed by

endothelial cells. While highly debated, it is thought that the remodelling occurs in part

as an adapted response to alleviate undesirable haemodynamical conditions, such as a

lowered or elevated wall shear stress and derived measures. Such discussions can be

found in papers relating to cardiovascular modelling [10, 12, 11, 13, 27, 44].

The intent of this thesis is to provide a 1D modelling approach which employs director

theory, resulting in a computationally efficient tool which retains good accuracy.
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1.1 Related Work

1.1.1 Director theory

In this section a literature review on director theory and applications is presented, as

well as relevant topics in cardiovascular modelling.

Director theory, also known as Cosserat theory due to the work on the subject by

brothers Eugéne and François Cosserat, has been developed for many applications over

the past century. The Cosserat brothers [22] lay out the foundations and development of

director theory in detail in their book, although with quite different notation to that of

more modern work.

In some of their earlier work on the subject, Green et al [8] present what they consider

to be a complete general theory of a Cosserat surface that builds on work by previous

authors by taking constitutive equations into account. They then go on to consider some

special cases of the general theory, an elastic membrane being one case.

In later papers, they apply director theory to the thermodynamics of slender rods

[3], with a novelty that a temperature change is allowed across the cross-section of

the rod, and develop thermodynamic theories which account for electromagnetic effects

[5]. Special cases considered in this paper include a magnetic thermoelastic rod and a

non-conducting rod in free space.

In 1981, Naghdi [41] presented an account of recent developments in the direct

formulation of theories of rods and shells.

A more recent application of director theory was in the field of computer graphics.

Spillmann and Teschner [32] worked on modelling and dynamically simulating Cosserat

nets, which are networks of elastic rods linked by elastic joints. These structures can be

used to represent many objects such as elastic rings and coarse nets.

Over the past four or five decades, director theory has been applied in many areas

within the field of fluid mechanics, such as Bogey at al’s work on Cosserat jets [19]. Green

and Naghdi have been particularly prolific authors in this area. They have published

work on directed fluid sheets [2, 4], and used director theory to construct a general

approach to viscous fluid flow in straight and curved pipes [6], for which the pipes are

not required to be slender. They go on to use this direct approach to find an analytical

solution for incompressible viscous fluid flow in curved pipes [7]. They find their results

to compare well with experimental data and numerical solutions of the same problem,

based on the Navier-Stokes equations. A similar model to this will be presented in

Chapter 4, the novelty being in the way the system of equations are derived. They will be

4



1.1. RELATED WORK

derived directly from the Navier-Stokes equations, presenting a more intuitive approach

within the field of fluid mechanics.

Naghdi [40] applies the theory of directed fluid jets to Newtonian and non-Newtonian

flows. He begins with the theory of a general case for any finite number of directors

and later records results for the special cases of 2 and 5 directors. He considers the

applicability to straight Newtonian jets and how it relates to problems of instability or

breakup. He then considers Poiseuille flow through a circular pipe. He then focuses on

Poiseuille flow in the theory of directed jets. The final section focuses on the determination

on the unknown coefficients and constitutive response functions in the previous section.

This is done by making use of results from the three-dimensional theory.

An approach similar to director theory was used by Caulk and Naghdi [18] to study

slender axisymmetric surfaces of revolution. They make an assumption that the fluid

velocity can be approximated by a Taylor expansion. They then simplify the form of the

velocity by making use of the axisymmetry of the flow. They impose integral conditions

over the cross-section rather than satisfying the momentum equation pointwise. After

some manipulation and carrying out the integration, they end up with a system of six

scalar partial differential equations describing the fluid flow. They then consider how

different forms of the lateral surface simplify these equations. They find some solutions

to specific cases which compare well with the corresponding exact analytical solution

and experimental results.

The approach in the above paper is applied specifically to blood flow in small vessels

by Carapau and Sequeira [23]. They state that using directed curves can be of use as

an independent theory to predict some of the main properties of the 3D problems. Some

advantages of the director theory are listed, including that the theory incorporates all

components of the linear momentum and that invariance under superimposed rigid body

motions is satisfied at each order. They specifically apply the theory to modelling blood

flow in a straight, radially circular, rigid and impermeable walled vessel with constant

radius. From this, they derive the unsteady relationship between mean pressure gradient

and volume flow rate, along with the corresponding equation for wall shear stress. They

found their results to compare well with others. They later used the same approach to

model visco-elastic non-Newtonian generalised Oldroyd-B flows in an axisymmetric pipe

with circular cross-section [24].

Another application of director theory to blood flow was by Robertson and Sequeira

[13], who found the director theory approach to provide better results than the classical

1D models in geometries relevant to blood flow. Specifically considered is steady axisym-
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metric flow of incompressible linearly viscous fluids in slender bodies of revolution with

rigid walls, where it is appropriate for the fluid to be modelled as quasi-steady.

Most of the works mentioned in the preceding paragraphs focus on flow through

straight pipes and using what is often termed a nine director theory, which will corre-

spond to order K = 3 in Chapter 3. Novelties of the work presented in this thesis will

include presenting solutions for a wavy walled pipe, and presenting solutions at order

K = 5 in addition to K = 3 to assess whether increasing the order increases the accuracy

of the solution.

It would be fair to say that the full power of Naghdi and Green’s method has not

yet been brought to bear on the problem of flow in highly curved pipes of varying cross-

section. One might have expected that such ideas would lie at the heart of 1D numerical

approximation algorithms. At first sight, this might seem surprising because it was their

work which laid the foundation of this theory. As shall be seen in this thesis though,

their formulation requires a lot of additional work before it can be transformed into a

practical tool. Addressing this challenge provides the primary aim for this thesis.

1.1.2 Cardiovascular flow modelling

The more mainstream approach to cardiovascular modelling [16] is to use classical 1D

modelling or to model a small section of the arterial system in 3D and couple it with 1D

or lumped parameter models. The classical 1D models have some in-built fluid-structure

interaction modelling, and hence are widely used to investigate pressure pulses travelling

in the cardiovascular system. However, they are known to provide unrealistic boundary

conditions for velocity profiles when using a coupled 3D-1D model.

For 3D techniques, there is the pressure splitting approach (also known as the

projection method) which was first developed by Chorin [17]. The algorithm involves

decomposing the velocity into a divergence-free part and an irrotational part. Firstly, an

intermediate velocity that does not satisfy the incompressibility constraint is computed

at each time step. Then the pressure is used to project the intermediate velocity into a

space of divergence-free velocity field to get the next update of velocity and pressure.

Papers of coupled modelling of the cardiovascular system include those by Formaggia

and Veneziani [35], who derive the classical 1D models for blood flow in arteries and

then focus on how to use multiscale models for the cardiovascular system, making use of

lumped (0D) parameter models; Bui et al [1], who use fractal tree models of all regions

of small cerebral vasculature; and Kashefi et al [10], who also develop a new extensive
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lumped parameter model of the entire arterial network which they find to have similar

outcomes to those of the coupled 3D healthy model.

Further 1D cardiovascular modelling works include that of Low et al [34], who present

an improved and robust 1D human arterial network model by adopting parts of the

physical models from different authors to establish an accurate baseline model; and

Flores et al [29], who developed a novel linear 1D dynamical theory of blood flow in

networks of flexible vessels based on a generalised Darcy’s model.

A particular area of interest is the relationship between blood flow properties and

cardiovascular disease. Gambaruto and João [11] obtained a set of measures that have

been related to diseased states, from analysis of the simulations in cerebral saccular

aneurysm cases. These measures include the impingement region, separation lines,

convective transport near the wall and vortex core lines or structures. Gambaruto et

al [12] use post-operative MRI scans of patients with bypass grafts in the peripheral

vasculature to assess how local haemodynamic parameters relate to vascular remodelling

where the graft rejoins the host artery. It is found that regions of both low wall shear

stress and convective transport towards the wall tend to correlate with regions of inward

modelling.

Other interesting works in the area include that of Alastruey et al [28] look at the

coupling of lumped parameter and 1D models. An algorithm is proposed and verified

to accurately estimate peripheral resistance and compliances from in vivo data. In

another paper, Alastruey et al [26] assess 1D numerical simulations against in vitro

measurements. It was found that, compared to the purely elastic model, viscoelasticity

significantly reduced the average relative root mean square errors between numerical

and experimental waveforms over the 70 locations measured in the in vitro model.

Lee et al [33] aim to better the understanding of steady flow in 3D non-planar

double bend geometries. These are chosen to loosely model a right coronary or femoral

artery, neglecting branches. The 3D computations are performed using a high accuracy

spectral/hp element Navier-Stokes solver. It is found that non-planarity has the biggest

effects on mixing and asymmetric secondary flow streamlines.

Boileau et al [21] test the accuracy of some of the most common numerical methods

applied to 1D modelling of blood vessels, including Galerkin methods, finite volume

method, a finite difference method and a simplified trapezium rule method. They apply

the methods to six benchmark test cases with an increasing degree of difficulty, from blood

flow in a tube to blood flow in the ADAN56 model which contains the largest 56 systemic

arteries of the cardiovascular system. They are compared with theoretical results, 3D
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numerical data and experimental data to assess their accuracy. Good agreement was

found among all the numerical methods tested and they were able to capture the main

features of pressure, flow and area waveforms. These findings support the use of 1D

modelling as a computationally cost-effective tool.

Ramalho et al [44] study how geometric description and the prescription of outflow

boundary conditions influence the computed flow field. Results of the effects of outflow

boundary modelling choice on computed haemodynamic parameters are used to identify

appropriateness of the models based on the physical interpretation.

Aguado-Sierra et al [25] propose separating the pressure and velocity into reservoir

and wave parts. The separation algorithm is applied to in-vivo human and canine data

as well as numerical data from a validated model of pulse wave propagation in the larger

conduit arteries. The algorithm is found to be reasonably robust, indicating potential

clinical usefulness.

There has also been previous works in the area that include curvature in the pipes.

There were two papers by Siggers and Waters [30, 31] focusing on steady and unsteady

flows, respectively, in curved pipes. The novelty in these papers is that finite curvature

is considered rather than asymptotically small curvature and the Coriolis force is con-

sidered in addition to the centrifugal force. Flow is considered to be driven by either a

steady or oscillatory axial pressure gradient and a local coordinate system following the

curvature is used, similar to the director theory approach. For small Dean number and

ratio of curvature, an asymptotic solution in these parameters is considered. For large

Dean number and finite curvature, an integrated form of the boundary layer equation in

considered.

Alastruey et al [27] presented a new method to investigate the mechanisms by which

vascular curvature and torsion affect blood flow. It is applied to steady flow in single

bends, helices, double bends and a rabbit thoraic aorta based on image data. The roles of

each of the forces on the patterns of primary and secondary velocities, vortical structures

and wall stresses in each cross-section are analysed.

The majority of the current work, with a few exceptions, on cardiovascular modelling

use either lumped parameter models or classical 1D models, sometimes coupled with

a section of a full 3D model. Classical 1D models can be useful for modelling a large

network that would be infeasible to model in 3D due to computation costs. However,

oversimplifications of the geometry can lead to inaccuracies and loss of information. The

director theory method offers an appealing alternative to classical 1D models, with the

ability to allow for curvature and capture secondary flows. However, for this to be an
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implementable tool, a clearer methodology for the theory and research into how to model

more complex geometries than have been considered in the past is required. The intent

of this thesis is to work toward overcoming these barriers.

1.2 Overview of the Director Theory Methodology

Firstly the equations of motion are derived from the conservation of mass and linear

momentum, and nondimensionalised, then solutions are obtained by considering specific

pipe geometries which allows the system of equations to be simplified and solved.

The method for deriving the equations of motion involves approximating the velocity

field as a summation of vectors (directors) that may depend on the coaxial coordinate

along the pipe (hence a 1D model) and time, multiplied by weighting functions that

depend on the cross-sectional coordinates. The form of the weighting functions is chosen,

which will generally be polynomials of the cross-sectional coordinates. Then an order for

the velocity expansion is chosen, which will generally relate to the polynomial order of

the weighting functions. The directors are the terms that will be solved for, for a specified

Reynolds number or pressure drop. The number of unknown directors is first reduced

any considering boundary conditions and fluid properties such as incompressibility, along

with any symmetry conditions. The reduced form of the velocity expansion is substituted

into the Navier-Stokes equations. The conservation of momentum of each director is

considered by forming a system of equations of the Navier-Stokes equations multiplied

by each respective weighting function and integrated over the cross-section. This system

of equations is then solved for using an appropriate method, such as least squares or an

iterative solver, to find the value of the directors, which can then be substituted back

into the velocity expansion to give the velocity profile. The particular constraints on the

velocity form and how the pressure terms are dealt with will vary depending on the

geometry being considered.

The method can be summarised in algorithmic form as follows:

1. Set up a coordinate system that follows the centreline of the pipe.

2. Derive the Navier-Stokes equations in this coordinate system.

3. Choose a form for the weighting functions (e.g polynomials) and the order of the

velocity expansion.
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4. Reduce the number of unknown directors by requiring the velocity expansion to

satisfy any conditions being considered (such as steady state, fully developed flow,

no-slip, incompressibility and symmetry conditions).

5. Substitute the reduced form of the velocity expansion into the derived Navier-

Stokes equations.

6. Form the system of equations, that will depend at most of the coaxial coordinate

and time, by multiplying the Navier-Stokes equations by each weighting function

and integrating over the cross-section of the pipe. Prescribe the coaxial pressure

gradient, while how to deal with the cross-sectional pressure gradients will depend

the geometry being considered.

7. Nondimensionalise the system of equations.

8. Solve the equations using an appropriate method for the system, such as least

squares or an iterative solver, to obtain the values of the directors.

9. Substitute into the reduced velocity expansion to recover the velocity profile.

10. Comparisons can then be made with known exact solutions or results of 3D simula-

tions to assess the accuracy.

1.3 Objectives

This chapter has provided a review of literature of director theory and cardiovascular

modelling. Director theory was originally developed within the field of solid mechanics

and later adapted as of 1D modelling technique in fluid mechanics. Director theory has

been applied in fluid mechanics to model fluid flow in channels, straight Newtonian

jets and in straight and curved pipes. Classical approaches to cardiovascular modelling

involve coupling 3D models with typical 1D or lumped parameter models. The intent of

this thesis is to build on the existing body of literature, by introducing curved pipes into

the director theory approach to modelling the cardiovascular system. By having a more

realistic geometry in the model, the hope is to obtain improved results to feed into the 3D

model. An accurate model that is time efficient to run could be of use in a clinical setting.

The director theory approach offers improved accuracy over traditional 1D models due to

the allowance of curvature and secondary flows, while being computationally cheaper

than full 3D models.
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There has been a limited amount of work involving director theory in recent years. A

secondary aim of this thesis is to modernise the presentation of director theory for fluid

flow in pipes, which may improve accessibility. In addition, a novel approach for deriving

the system of equations for the director theory model will be introduced, namely they

will be derived directly from the Navier-Stokes equations, which is more intuitive than

the solid mechanics based approach presented by Green and Naghdi [6] and which will

be outlined in Chapter 2.

To allow for useful applications going forward, future researchers will need to be able

to turn director theory into a practical computational tool. Hence the objective of this

thesis is to turn the somewhat abstract methods of Naghdi and Green into something that

can be applied algorithmically, while at the same time, providing a robust comparison of

the accuracy of the method with the modern 3D computational simulations.

1.4 Outline

The rest of this thesis is outlined as follows.

Chapter 2, which follows, introduces the concept of director theory in relation to fluid

mechanics and contains a mathematical derivation of the conservation laws in regards to

director theory. It also provides a summary of the approach that will be taken, to model

fluid flow in pipes using director theory, in later chapters. Finally, a background is given

on the computational fluid dynamics (CFD) simulations that will be used for comparison

with the director theory models.

Chapter 3 contains a director theory approach to modelling fluid flow in straight

pipes. Pipe geometries considered in Chapter 3 are a pipe of constant radius, a tapered

pipe and a wavy walled (sinusoidal) pipe. The results are then compared with those of

equivalent CFD simulations. The tapered and wavy walled pipes are novel applications

of the director theory method.

Chapter 4 contains a director theory approach to modelling fluid flow in a toroidally

curved (constant curvature) pipe of constant radius. A similar method to Chapter 3 is

followed, in which the equations of motion are derived and non-dimensionalised, although

in this case, a new coordinate system is firstly set up which follows the centreline of the

curved pipe. A larger number of directors are required to model the more complicated

flow in a curved pipe, which leads to a larger system of equations to solve for. The system

is solved using an in-built solver (fsolve) in Maple [38] at a range of orders and compared

with corresponding CFD simulations.
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Chapter 5 contains an insight into how to approach fluid flow modelling in more

generally curved pipes using director theory. The equations of motion are derived for a

toroidally curved pipe with varying radius and for a pipe with varying curvature.

Chapter 6 contains conclusions and suggests avenues for future work.
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2
DEVELOPMENT OF DIRECTOR THEORY FOR FLUID

MECHANICS

2.1 Introduction

The first goal is to focus on gaining a solid understanding of director theory and how to

apply it within the field of fluid mechanics, specifically looking at fluid flow in pipes as

this will be relevant for modelling blood flow in arteries.

Director theory (also known as Cosserat theory) is a powerful technique that uses

vectors called directors to describe a geometry. There are hierarchical theories for 3D

continua, 2D shells, 1D rods and 0D points, which are detailed in the book by Rubin [43].

Cosserat theory was first applied to solid mechanics and later also to fluid mechanics.

In applications to fluid mechanics, it is akin to approximating the velocity field by

expressing it as a summation of vectors that depend only on the coaxial coordinate

and time, multiplied by weighting (or shape) functions that depend on the in-plane

coordinates, resulting in a higher-order 1D model.

Relevant to this thesis, is the potential to use these one-dimensional Cosserat rods

to help accurately model the complicated geometry of the cardiovascular system. The

advantage of Cosserat rods is that the directors (di) depend only on the tangent of the

space curve and time (as shown in Fig 2.1), allowing a simpler description of curves that

bend in space and time than traditional coordinate systems.
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Figure 2.1: Cosserat rod along with directors d1,d2,d3 (top) and curvilinear base vectors
a1,a2,a3 (bottom), with H being the lateral surface [43].

2.2 Development of the Theory

A brief outline of how the theory is developed is provided in Appendix A of the paper

by Green and Naghdi [6]. Owing to the complexity of the theory, and the brevity of the

treatment in that Appendix, a detailed derivation and explanation is given below, in so

doing, also providing a clearer presentation of the methodology. This lays out how to

form the new coordinate system, the expansions for position and velocity and how to

rewrite various balance laws in these terms.

This will be done to explore and understand the original approach by Green and

Naghdi of applying director theory to fluid mechanics. However, a different approach to

deriving the system of equations will be presented, that comes directly from the Navier-

Stokes equations. This presents a more intuitive method than the approach presented in

this chapter, which was first developed within the field of solid mechanics.
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2.2.1 Coordinate systems and covariant and contravariant
basis vectors

Presently, a Lagrangian coordinate system will be set up and the mapping between the

Eulerian (fixed) and Lagrangian (convective) system will be shown. A convective frame

is often appealing in setting up the problem and equations in fluid mechanics. Covariant

and contravariant basis vectors for the Lagrangian system will be defined. Expressions

for the position vector and velocity vector of a particle in the Lagrangian system will be

stated. The Lagrangian system will then be related to a curvilinear system at a fixed

time t, and consequently can be readily related to a fixed reference frame.

The motivation for this is to to be able to go from the Lagrangian form of the balance

equations, which the director curve is defined in, to a Eulerian form which is the standard

system to work in within fluid dynamics.

The system of Cartesian coordinates shall be denoted by (x1, x2, x3), with correspond-

ing base vectors e1, e2 and e3. As such, the position vector x of an arbitrary point in this

space, from the origin O, is given by

(2.1) x= xi ei = x1 e1 + x2 e2 + x3 e3

Now consider a system of convective coordinates denoted by (θ1,θ2,θ3). At each time t,
there will be a bijective mapping from the Cartesian coordinate system to the convective

coordinate system. There therefore exist functions σi and ψi, (i = 1,2,3) such that

θi =σi(x1, x2, x3, t)

and

xi =ψi(θ1,θ2,θ3, t).

So the position vector from (2.1) can also be expressed as follows

x=ψi(θ j, t) ei

=ψ1(θ1,θ2,θ3, t) e1 +ψ2(θ1,θ2,θ3, t) e2 +ψ3(θ1,θ2,θ3, t) e3.

There are two useful properties that the basis vectors, ei, of the Cartesian coordinate

system have. Firstly, each ei is the direction of increase of a single coordinate, with the

other coordinates being held constant. Secondly, each ei is orthogonal to a plane formed

by holding one coordinate constant and allowing the others to vary. [20]

If the basis vectors for our convective coordinate system are formed using the first

property, covariant base vectors are obtained. These are obtained from the Cartesian
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basis vectors ui by observing how a change of a single convective coordinate, while

holding the others constant, affects the Cartesian coordinates. That is, the covariant

basis vectors gi are defined by

gi = ∂x j

∂θi e j

= ∂x1

∂θi e1 + ∂x2

∂θi e2 + ∂x3

∂θi e3.

If the basis vectors for our convective coordinate system are formed using the second

property, the contravariant base vectors are obtained. The contravariant basis vectors gi

are defined by

gi ·g j = δi
j,

where δi
j is the Kronecker delta defined by

δi
j =

1, if i = j

0, otherwise.

Now let g i j be defined as

g i j = gi ·g j,

and gi j be defined as

gi j = gi ·g j.

Here, g i j and gi j are the covariant and contravariant metric tensors, respectively. See

[9, 14] for more information. Let g(1/2) be defined to be the determinant of the matrix

whose columns are the covariant base vectors gi. That is

g(1/2) = det(g1,g2,g3)

=

∣∣∣∣∣∣∣∣
∂x1

∂θ1
∂x1

∂θ2
∂x1

∂θ3

∂x2

∂θ1
∂x2

∂θ2
∂x2

∂θ3

∂x3

∂θ1
∂x3

∂θ2
∂x3

∂θ3

∣∣∣∣∣∣∣∣
.

The velocity of a typical particle is given by

v= ẋ

=


∂x1

∂t
∂x2

∂t
∂x3

∂t

 .
(2.2)
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The convective coordinates, θi, are held constant in the above as they always represent

the same particle. Now assume the body is bounded by the surface

(2.3) H(θ1,θ2,θ3)= 0.

Suppose that this surface represents the lateral surface of a tube-like body along the

θ3-direction. For this tube-like body under consideration, let the position vector x admit

the representation

(2.4) x=
K∑

N=0
λN(θ1,θ2) dN(θ3, t),

with d0 = r(θ3, t) and λ0 = 1. The λN(θ1,θ2) can be thought of as weighting functions

while the dN(θ3, t) represent the directors; r can be identified as the position vector

representing points on a one-dimensional curve in the tube-like body. Its tangent vector

is defined by

a3 = ∂r
∂θ3

=


∂r1

∂θ3

∂r2

∂θ3

∂r3

∂θ3

 .

Using Eq. (2.4), the velocity vector in Eq. (2.2) takes the form

v=
K∑

N=0
λN(θ1,θ2) wN(θ3, t),

where w0 = v∗ = ∂r
∂t and wN = ∂dN

∂t . So the velocity is considered a summation of vectors

(directors) that depend on a single spatial coordinate, that is the coordinate following the

centreline of the pipe, multiplied by scalar function of the cross-sectional coordinates,

which could be thought of as weighting functions.

Now let ζi with i = 1,2,3 be a system of fixed curvilinear coordinates in the same

Euclidean 3-space and let points in this space be specified by the position vector

x̄= r̄(ζi).

The corresponding covariant base vectors, ḡi, are given by

ḡi = ∂x j

∂ζi e j

= ∂x1

∂ζi e1 + ∂x2

∂ζi e2 + ∂x3

∂ζi e3.
(2.5)
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The contravariant base vectors, ḡi, are defined by

(2.6) ḡi · ḡ j = δi
j.

Now let ḡ i j be defined as

ḡ i j = ḡi · ḡ j,

and ḡi j be defined as

ḡi j = ḡi · ḡ j.

Here, ḡ i j and ḡi j are the covariant and contravariant metric tensors, respectively. Then,

ḡ(1/2) is defined to be the determinant of the matrix whose columns are the covariant

base vectors ḡi. That is

ḡ(1/2) = det(ḡ1, ḡ2, ḡ3)

=

∣∣∣∣∣∣∣∣
∂x1

∂ζ1
∂x1

∂ζ2
∂x1

∂ζ3

∂x2

∂ζ1
∂x2

∂ζ2
∂x2

∂ζ3

∂x3

∂ζ1
∂x3

∂ζ2
∂x3

∂ζ3

∣∣∣∣∣∣∣∣ .
(2.7)

A fixed reference curve may be selected in this space, represented by the position vector

r̄= r̄(ζ3),

and its tangent vector is defined by

ā3 = ∂r̄
∂ζ3

=


∂r̄1

∂ζ3

∂r̄2

∂ζ3

∂r̄3

∂ζ3

 .

In terms of the fixed coordinates, ζi, the velocity of the tube-like body at time t may be

represented by

v= v̄(ζi, t)

= v̄iḡi

=
K∑

N=0
λ̄N(ζ1,ζ2)w̄N(ζ3, t),

(2.8)

where w̄0 = v̄∗.
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2.2. DEVELOPMENT OF THE THEORY

The surface described in Eq. (2.3), which bounds the body, can now be specified by

H̄(ζ1,ζ2,ζ3, t)= 0.

This is a material surface and moves with the body. Therefore its material derivative

will be equal to zero:

DH̄
Dt

= ∂H̄
∂t

dt
dt

+ ∂H̄
∂x

dx
dt

= ∂H̄
∂t

+ v̄ ·∇H̄

= ∂H̄
∂t

+ v̄iḡi · ∂H̄
∂ζ j ḡ j

= ∂H̄
∂t

+ v̄i ∂H̄
∂ζi

= 0.

2.2.2 Representation of the physics

Here, expressions for important physical laws, such as conservation of mass density and

conservation of linear momentum will be derived in the curvilinear coordinate system.

Any function associated with the body may be expressed either in terms of (θi, t) or

in terms of (ζi, t). Thus

(2.9) F(θi, t)= F̄(ζi, t).

In particular, the mass density has representations

ρ(θi, t)= ρ̄(ζi, t),

and the conservation of mass requires that

0= ρ̇+ρ(∇·v)

= ∂ρ̄

∂t
+ v̄ ·∇ρ̄+ ρ̄(∇· v̄)

(
here the derivatives ∇ are

∂

∂θ

)
= ∂ρ̄

∂t
+∇· (ρ̄v̄)

= ∂ρ̄

∂t
+ 1

ḡ(1/2)
∂

∂ζi ( ḡ(1/2)ρ̄v̄i).
(
here ḡ−1/2 is used as ḡ(1/2)∂ζ= ∂θ

)
(2.10)

More generally, the conservation laws may be written for ρF as

(2.11) 0= ˙
ρF +ρF(∇·v)= ∂

∂t
(ρ̄F̄)+ 1

ḡ(1/2)
∂

∂ζi ( ḡ(1/2)ρ̄F̄ v̄i).
(
here ˙

ρF = ∂(ρF)
∂t

)
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Now the convected coordinates θi are chosen such that at time t the θi curves coincide

with the fixed ζi curves. Also, the moving curve represented by the position vector r
coincides with the fixed reference curve represented by the position vector r̄ at this time.

With this choice of θi,

gi = ḡi

g i j = ḡ i j

gi j = ḡi j

g(1/2) = ḡ(1/2)

a3 = ā3

λ(θ1,θ2)= λ̄(ζ1,ζ2).

2.2.3 Averaging across the cross-section

The key step in the theory of Green and Naghdi [6] is creating averaged versions of

the equations of motion Eq. (2.10) and Eq. (2.11) by first projecting onto each of the

directors and then averaging by integration across the cross section. The details are

presented below. The cases of Eq. (2.10) and Eq. (2.11) are treated separately, to obtain

the integrations equations for the conservation of mass density and linear momentum

respectively. Beginning with mass density, first multiply both sides of Eq. (2.10) by

λNλM = λ̄N λ̄M :

0= (
ρ̇+ρ(∇·v)

)
λNλM

= ∂

∂t
(ρ̄λ̄N λ̄M)+ 1

ḡ(1/2) λ̄N λ̄M
∂

∂ζi ( ḡ(1/2)ρ̄v̄i)

= ∂

∂t
(
ρ̄λ̄N λ̄M

)+ 1
ḡ(1/2)

∂

∂ζi

(
ḡ(1/2)ρ̄λ̄N λ̄M v̄i

)
− ρ̄v̄α

(
∂λ̄M

∂ζα
λ̄N + ∂λ̄N

∂ζα
λ̄M

)
,

where α= 1,2 and repeated indices are summed. This is because the second term on the

right hand side is obtained from

1
ḡ(1/2)

∂

∂ζi ( ḡ(1/2)ρλ̄N λ̄M v̄i)= 1
ḡ(1/2) λ̄N λ̄M

∂

∂ζi ( ḡ(1/2)ρ̄v̄i)+ 1
ḡ(1/2) ḡ(1/2)ρv̄i ∂

∂ζi (λ̄N λ̄M)

= 1
ḡ(1/2) λ̄N λ̄M

∂

∂ζi ( ḡ(1/2)ρ̄v̄i)+ ρ̄v̄i
(
λ̄N

∂λ̄M

∂ζi + λ̄M
∂λ̄N

∂ζi

)

Now, multiplying both sides by ḡ(1/2) (note that g(1/2) = ḡ(1/2) as under consideration

is when the curves represented in the curvilinear and Lagrangian coordinate systems
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coincide, so the left hand side is multiplied by g(1/2) and the right hand side by ḡ(1/2)), to

obtain

0= (
ρ̇+ρ(∇·v)

)
λNλM g(1/2) = ∂

∂t

(
ḡ(1/2)ρ̄λ̄N λ̄M

)
+ ∂

∂ζi

(
ḡ(1/2)ρ̄λ̄N λ̄M v̄i

)
− ḡ(1/2)ρ̄v̄α

(
∂λ̄M

∂ζα
λ̄N + ∂λ̄N

∂ζα
λ̄M

)
.

As shown in [14],

˙
g(1/2) = d

dt

∣∣∣∣∣∣∣∣
∂x1

∂θ1
∂x1

∂θ2
∂x1

∂θ3

∂x2

∂θ1
∂x2

∂θ2
∂x2

∂θ3

∂x3

∂θ1
∂x3

∂θ2
∂x3

∂θ3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
d
dt

(
∂x1

∂θ1

)
d
dt

(
∂x1

∂θ2

)
d
dt

(
∂x1

∂θ3

)
∂x2

∂θ1
∂x2

∂θ2
∂x2

∂θ3

∂x3

∂θ1
∂x3

∂θ2
∂x3

∂θ3

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

∂x1

∂θ1
∂x1

∂θ2
∂x1

∂θ3

d
dt

(
∂x2

∂θ1

)
d
dt

(
∂x2

∂θ2

)
d
dt

(
∂x2

∂θ3

)
∂x3

∂θ1
∂x3

∂θ2
∂x3

∂θ3

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

∂x1

∂θ1
∂x1

∂θ2
∂x1

∂θ3

∂x2

∂θ1
∂x2

∂θ2
∂x2

∂θ3

d
dt

(
∂x3

∂θ1

)
d
dt

(
∂x3

∂θ2

)
d
dt

(
∂x3

∂θ3

)
∣∣∣∣∣∣∣∣ ,

and

d
dt

(
∂xi

∂θ j

)
= ∂

∂θ j

(
dxi

dt

)
= ∂vi

∂θ j

= ∂vi

∂xk
∂xk

∂θ j .

So

˙
g(1/2) =

∣∣∣∣∣∣∣∣
∂v1

∂xk
∂xk

∂θ1
∂v1

∂xk
∂xk

∂θ2
∂v1

∂xk
∂xk

∂θ3

∂x2

∂θ1
∂x2

∂θ2
∂x2

∂θ3

∂x3

∂θ1
∂x3

∂θ2
∂x3

∂θ3

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

∂x1

∂θ1
∂x1

∂θ2
∂x1

∂θ3

∂v2

∂xk
∂xk

∂θ1
∂v2

∂xk
∂xk

∂θ2
∂v2

∂xk
∂xk

∂θ3

∂x3

∂θ1
∂x3

∂θ2
∂x3

∂θ3

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

∂x1

∂θ1
∂x1

∂θ2
∂x1

∂θ3

∂x2

∂θ1
∂x2

∂θ2
∂x2

∂θ3

∂v3

∂xk
∂xk

∂θ1
∂v3

∂xk
∂xk

∂θ2
∂v3

∂xk
∂xk

∂θ3

∣∣∣∣∣∣∣∣
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and ∣∣∣∣∣∣∣∣
∂v1

∂xk
∂xk

∂θ1
∂v1

∂xk
∂xk

∂θ2
∂v1

∂xk
∂xk

∂θ3

∂x2

∂θ1
∂x2

∂θ2
∂x2

∂θ3

∂x3

∂θ1
∂x3

∂θ2
∂x3

∂θ3

∣∣∣∣∣∣∣∣=
(
∂v1

∂x1
∂x1

∂θ1 + ∂v1

∂x2
∂x2

∂θ1 + ∂v1

∂x3
∂x3

∂θ1

)(
∂x2

∂θ2
∂x3

∂θ3 − ∂x3

∂θ2
∂x2

∂θ3

)

−
(
∂v1

∂x1
∂x1

∂θ2 + ∂v1

∂x2
∂x2

∂θ2 + ∂v1

∂x3
∂x3

∂θ2

)(
∂x2

∂θ1
∂x3

∂θ3 − ∂x3

∂θ1
∂x2

∂θ3

)
+

(
∂v1

∂x1
∂x1

∂θ3 + ∂v1

∂x2
∂x2

∂θ3 + ∂v1

∂x3
∂x3

∂θ3

)(
∂x2

∂θ1
∂x3

∂θ2 − ∂x3

∂θ1
∂x2

∂θ2

)
= ∂v1

∂x1

(
∂x1

∂θ1
∂x2

∂θ2
∂x3

∂θ3 − ∂x1

∂θ1
∂x3

∂θ2
∂x2

∂θ3 − ∂x1

∂θ2
∂x2

∂θ1
∂x3

∂θ3

+∂x1

∂θ2
∂x3

∂θ1
∂x2

∂θ3 + ∂x1

∂θ3
∂x2

∂θ1
∂x3

∂θ2 − ∂x1

∂θ3
∂x3

∂θ1
∂x2

∂θ2

)
+ ∂v1

∂x2

(
∂x2

∂θ1
∂x2

∂θ2
∂x3

∂θ3 − ∂x2

∂θ1
∂x3

∂θ2
∂x2

∂θ3 − ∂x2

∂θ2
∂x2

∂θ1
∂x3

∂θ3

+∂x2

∂θ2
∂x3

∂θ1
∂x2

∂θ3 + ∂x2

∂θ3
∂x2

∂θ1
∂x3

∂θ2 − ∂x2

∂θ3
∂x3

∂θ1
∂x2

∂θ2

)
+ ∂v1

∂x3

(
∂x3

∂θ1
∂x2

∂θ2
∂x3

∂θ3 − ∂x3

∂θ1
∂x3

∂θ2
∂x2

∂θ3 − ∂x3

∂θ2
∂x2

∂θ1
∂x3

∂θ3

+∂x3

∂θ2
∂x3

∂θ1
∂x2

∂θ3 + ∂x3

∂θ3
∂x2

∂θ1
∂x3

∂θ2 − ∂x3

∂θ3
∂x3

∂θ1
∂x2

∂θ2

)
= ∂v1

∂x1 g(1/2).

Similarly, ∣∣∣∣∣∣∣∣
∂x1

∂θ1
∂x1

∂θ2
∂x1

∂θ3

∂v2

∂xk
∂xk

∂θ1
∂v2

∂xk
∂xk

∂θ2
∂v2

∂xk
∂xk

∂θ3

∂x3

∂θ1
∂x3

∂θ2
∂x3

∂θ3

∣∣∣∣∣∣∣∣=
∂v2

∂x2 g(1/2)

and ∣∣∣∣∣∣∣∣
∂x1

∂θ1
∂x1

∂θ2
∂x1

∂θ3

∂x2

∂θ1
∂x2

∂θ2
∂x2

∂θ3

∂v3

∂xk
∂xk

∂θ1
∂v3

∂xk
∂xk

∂θ2
∂v3

∂xk
∂xk

∂θ3

∣∣∣∣∣∣∣∣=
∂v3

∂x3 g(1/2).

So

˙
g(1/2) =

(
∂v1

∂x1 + ∂v2

∂x2 + ∂v3

∂x3

)
g(1/2)

= (∇·v) g(1/2).
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Alternatively, this can be derived in tensor notation (see e.g. pp61-63, [42]). Therefore

0= (ρ̇+ρ(∇·v))λNλM g(1/2)

=
(
ρ̇g(1/2) +ρ ˙

g(1/2)
)
λNλM

= ˙
ρg(1/2)λNλM ,

leading to

˙
ρg(1/2)λNλM = ∂

∂t

(
ḡ(1/2)ρ̄λ̄N λ̄M

)
+ ∂

∂ζi

(
ḡ(1/2)ρ̄λ̄N λ̄M v̄i

)
− ḡ(1/2)ρ̄v̄α

(
∂λ̄M

∂ζα
λ̄N + ∂λ̄N

∂ζα
λ̄M

)
= 0.

Integrals are taken over the cross-section rather than satisfying the conservation

equations pointwise in the fluid. Integrating over an area of constant θ3 bounded by

H(θ1,θ2,θ3) = 0, which at time t coincides with an area of constant ζ3 bounded by

H̄(ζ1,ζ2ζ3, t)= 0, the conservation of mass equation, gives
ˆ ˆ

A

˙
ρg(1/2)λNλM dθ1dθ2 =

ˆ ˆ
Ā

(
∂

∂t
( ḡ(1/2)ρ̄λ̄N λ̄M)+ ∂

∂ζi ( ḡ(1/2)ρ̄λ̄N λ̄M v̄i)

− ḡ(1/2)ρ̄v̄α
(
∂λ̄M

∂ζα
λ̄N + ∂λ̄N

∂ζα
λ̄M

))
dζ1dζ2 = 0.

Assuming zero flux in the ζ1 and ζ2 directions, this becomes

˙ˆ ˆ
A
ρg(1/2)λNλM dθ1dθ2 = ∂

∂t

ˆ ˆ
Ā

ḡ(1/2)ρ̄λ̄N λ̄M dζ1dζ2 + ∂

∂ζ3

ˆ ˆ
Ā

( ḡ(1/2)ρ̄λ̄N λ̄M v̄3) dζ1dζ2

−
ˆ ˆ

Ā
ḡ(1/2)ρ̄v̄α

(
∂λ̄M

∂ζα
λ̄N + ∂λ̄N

∂ζα
λ̄M

)
dζ1dζ2 = 0.

(2.12)

So Eq. (2.12) is the integral form of the equation for conservation of mass density.

By following a similar methodology to above for Eq. (2.11), first will be obtained a

general conservation law in integral form, and then by appropriate substitution, the

conservation of linear momentum.

Multiplying both sides of Eq. (2.11) by λN(θ1,θ2)= λ̄N(ζ1,ζ2) gives

λN

( ˙
ρF +ρF(∇·v)

)
= λ̄N

(
∂

∂t
(ρ̄F̄)+ 1

ḡ(1/2)
∂

∂ζi ( ḡ(1/2)ρ̄F̄ v̄i)
)
= 0.

After multiplying both sides by g(1/2) = ḡ(1/2), this can be written as

(2.13)
˙

ρF g(1/2)λN = ∂

∂t
( ḡ(1/2)ρ̄F̄λ̄N)+ ∂

∂ζi ( ḡ(1/2)ρ̄F̄λ̄N v̄i)− ḡ(1/2)ρ̄F̄
∂λN

∂ζα
v̄α = 0.
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Similar to Eq. (2.4), F is considered as an expansion of components multiplied by the

weighting functions λM , and making the substitutions

(2.14) F =
K∑

M=0
fMλM

and

(2.15) F̄ =
K∑

M=0
f̄Mλ̄M

gives

0=
˙

ρg(1/2)λN

K∑
M=0

fMλM

= ∂

∂t

(
ḡ(1/2)ρ̄λ̄N

K∑
M=0

f̄Mλ̄M

)
+ ∂

∂ζi

(
ḡ(1/2)ρ̄λ̄N v̄i

K∑
M=0

f̄Mλ̄M

)
− ḡ(1/2)ρ̄

∂λ̄N

∂ζα
v̄α

K∑
M=0

f̄Mλ̄M .

Similarly to before, integrating over an area of constant θ3 bounded by H(θ1,θ2,θ3)= 0,

which at time t coincides with an area of constant ζ3 bounded by H̄(ζ1,ζ2,ζ3, t)= 0, and

again assuming zero flux in the ζ1 and ζ2 directions gives

0=
˙ˆ ˆ

A
ρg(1/2)λN

K∑
M=0

fMλMdθ1dθ2

= ∂

∂t

ˆ ˆ
Ā

(
ḡ(1/2)ρ̄λ̄N

K∑
M=0

f̄Mλ̄M

)
dζ1dζ2 + ∂

∂ζ3

ˆ ˆ
Ā

(
ḡ(1/2)ρ̄λ̄N v̄3

K∑
M=0

f̄Mλ̄M

)
dζ1dζ2

−
ˆ ˆ

Ā

(
ḡ(1/2)ρ̄

∂λ̄N

∂ζα
v̄α

K∑
M=0

f̄Mλ̄M

)
dζ1dζ2.

If fM = fM(θ3, t) and f̄M = f̄M(ζ3, t), then this can be written as

0=
˙K∑

M=0

ˆ ˆ
A

g(1/2)ρλMλN dθ1dθ2 fM

= ∂

∂t

K∑
M=0

ˆ ˆ
Ā

ḡ(1/2)ρ̄λ̄N λ̄Mdζ1dζ2 f̄M + ∂

∂ζ3

K∑
M=0

f̄M

ˆ ˆ
Ā

ḡ(1/2)ρ̄λ̄Mλ̄N v̄3dζ1dζ2

−
K∑

M=0
f̄M

ˆ ˆ
Ā

ḡ(1/2)ρ̄
∂λ̄N

∂ζα
λ̄M v̄αdζ1dζ2.

(2.16)
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Making the substitutions fM = wM and f̄M = w̄M gives

0=
˙K∑

M=0

ˆ ˆ
A

g(1/2)ρλMλN dθ1dθ2wM

= ∂

∂t

K∑
M=0

ˆ ˆ
Ā

ḡ(1/2)ρ̄λ̄N λ̄Mdζ1dζ2w̄M + ∂

∂ζ3

K∑
M=0

w̄M

ˆ ˆ
Ā

ḡ(1/2)ρ̄λ̄Mλ̄N v̄3dζ1dζ2

−
K∑

M=0
w̄M

ˆ ˆ
Ā

ḡ(1/2)ρ̄
∂λ̄N

∂ζα
λ̄M v̄αdζ1dζ2.

(2.17)

So Eq. (2.17) is the integral form of the equation for conservation of linear momentum.

The above analysis gives a connection between integral balances in Lagrangian and

Eulerian forms and hence direct connections between Lagrangian and Eulerian forms of

field equations.

This section has derived a relation between the balance laws in convective and curvi-

linear coordinate systems, based on that presented by Green and Naghdi [6], although

displaying more details of the derivation in an effort to aid accessibility. Green and

Naghdi also provide an alternative method of derivation, in addition to other relations

such as those for energy and entropy balance, however, since these will not be considered

in the models presented in this thesis, they have not been presented in this section.

2.3 Solving steady state Newtonian and
incompressible Navier-Stokes equations using
director theory

This chapter has given an overview of the development of director theory. However in

the following chapters where director theory models will be presented for solving fluid

flow in pipes, it will not be necessary to consider many of these details. The main point is

to consider the velocity as an expansion of directors (vectors) that follow depend on the

centreline of the pipe multiplied by weighting (or shape) functions that depend on the

cross-sectional pipe.

The relevant equations of motion will then be derived in the curvilinear coordinate

system that follows the centreline of the pipe. Then instead of solving the momentum

conservation equations pointwise, director momentum will be considered. That is, the

equations that will be solved for will be the momentum equations multiplied by the
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weighting function λN of each director wN in turn, integrated over the cross-section

of the pipe. The form of the weighing functions will be chosen, such as polynomials of

the cross-sectional coordinates, then the weighting functions will be determined more

specifically and the number of unknown directors reduced by required the velocity

expansion to satisfy relevant boundary and fluid property conditions. The size of the

system of equations will depend on the number of directors considered for the velocity

expansion. For large systems in-built solvers just as fsolve in Maple [38] or lsqr in

MATLAB [39] will be used to solve for the weighting functions, after which the velocity

profile can be reconstructed.

2.4 Computational fluid dynamics simulations

To evaluate the accuracy of the models developed using director theory, the solutions

obtained will be compared with computational fluid dynamics (CFD) simulations, which

use the finite volume method [36]. The CFD software that will be used to create the

simulations is Simcenter STAR-CCM+ [45]. An outline of how the software works will

be presented here, further details of which can be found in the Simcenter STAR-CCM+

index. A system of equations is formed from the fundamental conservation laws, with

additional equations from constitutive laws, which will vary depending on the material

being considered, added to form a closed set. When integrated over a finite control volume,

the continuity, momentum and energy equations can be expressed respectively as

∂

∂t

ˆ
V
ρdV +

˛
A
ρv ·da=

ˆ
V

SdV

∂

∂t

ˆ
V
ρvdV +

˛
A
ρv⊗v ·da=−

˛
A

pI ·da+
˛

A
T ·da+

ˆ
V

fbdV +
ˆ

V
sdV

∂

∂t

ˆ
V
ρEdV +

˛
A
ρHv ·da=−

˛
A

q ·da+
˛

A
T ·vda+

ˆ
V

fb ·vdV +
ˆ

V
SdV

where

• t is time

• V is the control volume

• a is the area vector

• ρ is the density of the fluid

• v is the velocity of the fluid
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• S and s are source terms

• p is pressure

• T is the viscous stress tensor

• fb is the resultant of body forces

• E is the total energy

• H is the total enthalpy

• q is the heat flux

Later chapters will will focus on incompressible flows without source terms, so the

energy equation can be disregarded and the continuity and momentum equations can be

simplified to ˛
A

v ·da= 0

ρ
∂

∂t

ˆ
V

vdV +ρ
˛

A
v⊗v ·da=−

˛
A

pI ·da+
˛

A
T ·da

A mesh is created dividing the continuous domain being considered into a finite number

of cells and the continuous equations are discretised using either the finite volume or

finite element method, depending on the mathematical model. Models are selected with

the physics and mesh continua that are appropriate to the flow and geometry being solved

for. For the simulations presented in later chapters, models for the physics continuum

have been chosen to represent a 3D laminar, steady state flow for a liquid of constant

density and viscosity.

For the mesh continuum, the Surface Remesher and Polyhedral Mesher tools were

selected. The Surface Remesher improves the overall quality of an existing surface and

optimises it for the volume mesh models. The Polyhedral Mesher uses an arbitrary

polyhedral cell shape in order to build the core mesh. The Prism Layer Mesher adds

prismatic cell layers next to wall boundaries, they are important for allowing the solver to

resolve near wall flow accurately. The Generalized Cylinder is used with the Polyhedral

Mesher to generate an extruded mesh along the length of cylindrical type parts, this

typically reduces the overall cell count and in some cases can improve the rate of

convergence. Examples of meshes with these models are shown in Fig. 2.2.

For steady state problems the SIMPLE algorithm is used, and the solution process

can be summarised as follows

1. Set the boundary conditions;
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Figure 2.2: Example of finite volume mesh used in Chapter 4 (a similar mesh is used
in Chapter 3. The left hand image depicts a mesh with base size 0.05m, while the right
hand image depicts a finer mesh with base size 0.025m, with pipe diameter 2m. The
grey area is the wall of the pipe and the purple area is the fluid inlet. The prism layers
can be seen around the circumference of the inlet, close to the wall.

2. Compute the gradients of velocity and pressure;

3. Solve the discretised momentum equation to compute the intermediate velocity

field v∗;

4. Compute the uncorrected mass fluxes at faces ṁ∗
f ;

5. Solve the Poisson equation for the pressure correction to produce cell values of the

pressure correction p′;

6. Update the pressure field as the previous pressure plus the pressure correction

multiplied by the under-relaxation factor: pn+1 = pn +ωp′;

7. Update the boundary pressure corrections p′
b;

8. Correct the face mass fluxes: ṁn+1
f = ṁ∗

f + ṁ′
f ;

9. Correct the cell velocities

vn+1
p = v∗

p −
V∇p′

a′v
p

where ∇p′ is the gradient of the pressure corrections, a′v
p is the vector of central

coefficients for the discretised velocity equation, and V is the cell volume.

2.5 Comparison of solutions

In subsequent chapters comparisons between the 1D director theory solutions and those

observed from the 3D finite volume solver are presented and discussed. The relative

error between these solutions is obtained by

1. Taking a cross-section from the 3D finite volume solution at the specified location;
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2. Extracting coordinates and solution at the nodes in this section;

3. Compute solutions at these points using the 1D director theory;

4. Compute the relative error, given by

(2.18) Error= 1
N

N∑
i=1

∣∣φi
FV M −φi

director

∣∣
φAv

FV M

where

φAv
FV M = 1

N

N∑
i=1

∣∣∣φi
FV M

∣∣∣ .

2.6 Summary

This chapter has introduced the concept of director theory in relation to fluid flow in pipes.

A Lagrangian coordinate system was introduced and the relation for various conservation

laws between the curvilinear and Lagrangian coordinate system was derived. This

provides some context on the historical development of the application of director theory

to fluid mechanics with the approach presented by Green and Naghdi [6].

It has also given a brief introduction to the computational fluid dynamics simulations

that will later be used to compare with the solutions found using the director theory

model. In the following chapters, the director theory model will be applied to specific pipe

flow geometries and the accuracy assessed against the 3D simulations. A alternative

method to that laid out above will be used, that presents a more intuitive approach.
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3
STRAIGHT AXISYMMETRIC PIPE

3.1 Introduction

The first case to which the theory was applied was fluid flow through a straight axisym-

metric pipe. This work is a study of a paper by Caulk and Naghdi [18]. Their paper

investigates axisymmetric flow of an incompressible fluid through a slender surface of

revolution (e.g. pipe or jet flow), where the radius can vary along the axial coordinate

and with time, as shown in Fig. 3.1. Starting from the Navier-Stokes equations and then

assuming that the fluid velocity can be approximated by a Taylor expansion, Caulk and

Naghdi derive a system of partial differential equations that describe the fluid flow. They

then go on to consider these equations for special cases.

The next section follows the derivation of Caulk and Naghdi [18], filling in some of

the algebraic steps omitted in their paper. Maple (2019) was used as part of the present

derivations. In the following section, the system of equations are simplified for special

forms of the geometry, namely for a constant radius and then for a radius depending only

on the axial coordinate (independent of time). In the latter case, the specific forms of a

tapered pipe and wavy (sinusoidal) walled pipe are then considered. For the case of a

constant radius, solutions are found for a steady axial flow and for a steady swirling flow.
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ϕ(x3,t)

H(x1,x2,x3,t)

x3

x1

x2

pe

τ1

τ2

Figure 3.1: Straight axisymmetric pipe where the radius φ can vary along the coaxial
direction and with time. H denotes the lateral surface and pe,τa,τh are the normal and
tangential components of the stress vector [18].

3.2 Derivation of Equations

Let the Cartesian coordinates be denoted by xi and their associated unit base vectors be

denoted by ei for i = 1,2,3. In a fixed reference frame the equations governing the fluid

motion are then stated to be

(3.1)
∂Ti

∂xi
= ρ

(
∂v
∂t

+vi
∂v
∂xi

)
,

representing conservation of linear momentum, and

(3.2)
∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
= 0,

representing conservation of mass for an incompressible fluid. The Cauchy (or full) stress

tensor is given by

(3.3) Ti =−pei +σi je j,

and the stress vector on a surface is given by

(3.4) t= νiTi.

Here the variables are defined as follows

• t denotes the stress vector on a surface whose outward unit normal is ν= νiei;

• ρ is the constant fluid density;

• v= viei is the velocity vector;
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3.2. DERIVATION OF EQUATIONS

• p is an arbitrary pressure determined by the solutions to Eqs. (3.1) and (3.2);

• σi j is the deviatoric stress response, which is determined by a constitutive equation

and is responsible for the viscous forces.

The boundary of the fluid is defined by

(3.5) H(x1, x2, x3, t)=φ(2) − x2
1 − x(2)

2 = 0,

where φ = φ(x3, t) denotes the instantaneous radius of the surface of revolution. This

boundary moves with the fluid, therefore its material derivative is zero. Therefore

DH
Dt

= ∂H
∂t

+v ·∇H

= ∂φ(2)

∂t
+v1(−2x1)+v2(−2x2)+v3

∂φ(2)

∂t

= 2φ
∂φ

∂t
−2x1v1 −2x2v2 +2φ

∂φ

∂x3
v3

= 0.

This gives the boundary condition

(3.6) φ
∂φ

∂t
+φ ∂φ

∂x3
v3 − x1v1 − x2v2 = 0.

The components of the outward unit normal to the surface are given by

vi =−
∂H
∂xi

[( ∂H
∂x1

)(2) + ( ∂H
∂x2

)(2) + ( ∂H
∂x3

)(2)](1/2)
.

Considering each component explicitly:

v1 = 2x1

[4x(2)
1 +4x(2)

2 +4φ( ∂φ
∂x3

)(2)](1/2)

= 2x1

2[(x(2)
1 + x(2)

2 )+φ(2)( ∂φ
∂x3

)(2)](1/2)

= x1

[φ(2) +φ(2)( ∂φ
∂x3

)(2)](1/2)

= x1

φ[1+ ( ∂φ
∂x3

)(2)](1/2)
;

similarly

v2 = x2

φ[1+ ( ∂φ
∂x3

)(2)](1/2)
;
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and finally

v3 =−
2φ ∂φ

∂x3

2φ[1+ ∂φ

∂x3
]

=−
∂φ

∂x3

[1+ ( ∂φ
∂x3

)(2)](1/2)
.

The velocity is then assumed to be approximated by the finite polynomial series of order

K given by

(3.7) v=w00 +
K∑

N=1

N∑
j=0

x( j)
1 x(N− j)

2 w j,N− j,

where

• w00 = wi
0,0(x3, t)ei (i = 1,2,3) is the velocity along the centre line (x3-axis) of the

flow;

• w j,N− j = wi
j,N− j(x3, t)ei (i = 1,2,3).

In the context of a director theory approach, the polynomials x( j)
1 x(N− j)

2 could be considered

shape functions and the vectors w j,N− j considered directors. As an example, if the order

is set to K = 3, then the velocity expansion takes the form

v= (wi
00+x1wi

1,0+x2wi
0,1+x(2)

1 wi
2,0+x1x2wi

1,1+x(2)
2 wi

0,2+x(3)
1 wi

3,0+x(2)
1 x2wi

2,1+x1x(2)
2 wi

1,2+x(3)
2 wi

0,3)ei,

where i = 1,2,3 (where the directors have been split up into the components of the

coordinate basis).

Assuming the flow is axisymmetric, some of the directors will have to be set to zero

due to symmetry conditions. This can be determined by considering that rotating the

body through an angle θ about its centreline, the velocity profile should look the same.

This is to say that if the velocity is expressed in cylindrical polar coordinates, it should be

independent of θ i.e. v(r,θ, z, t)= v(r, z, t). The unit base vectors of the cylindrical polar

coordinate system are given in terms of the Cartesian base vectors by

r̂= cos(θ)e1 +sin(θ)e2; θ̂ =−sin(θ)e1 +cos(θ)e2; ẑ= e3.

Therefore, the velocity components in cylindrical polar coordinates are

vr = cos(θ)v1 +sin(θ)v2; vθ =−sin(θ)v1 +cos(θ)v2; vz = v3.
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Also, noting the transformation from Cartesian coordinates to cylindrical polar coordi-

nates

x1 = r cos(θ); x2 = rsin(θ); x3 = z;

such that for order K = 3:

vr = cos(θ)
(
w1

0,0 + r cos(θ)w1
1,0 + rsin(θ)w1

0,1 + r(2) cos(2)(θ)w1
2,0 + r(2) cos(θ)sin(θ)w1

1,1 + r(2) sin(2)(θ)w1
0,2

+r(3) cos(3)(θ)w1
3,0 + r(3) cos(2)(θ)sin(θ)w1

2,1 + r(3) cos(θ)sin(2)(θ)w1
1,2 + r(3) sin(3)(θ)w1

0,3

)
+sin(θ)

(
w2

0,0(r cos(θ)w2
1,0 + rsin(θ)w2

0,1 + r(2) cos(2)(θ)w2
2,0 + r(2) cos(θ)sin(θ)w2

1,1 + r(2) sin(2)(θ)w2
0,2

+r(3) cos(3)(θ)w2
3,0 + r(3) cos(2)(θ)sin(θ)w2

2,1 + r(3) cos(θ)sin(2)(θ)w2
1,2 + r(3) sin(3)(θ)w2

0,3

)
;

vθ =−sin(θ)
(
w1

0,0 + r cos(θ)w1
1,0 + rsin(θ)w1

0,1 + r(2) cos(2)(θ)w1
2,0 + r(2) cos(θ)sin(θ)w1

1,1 + r(2) sin(2)(θ)w1
0,2

+r(3) cos(3)(θ)w1
3,0 + r(3) cos(2)(θ)sin(θ)w1

2,1 + r(3) cos(θ)sin(2)(θ)w1
1,2 + r(3) sin(3)(θ)w1

0,3

)
+cos(θ)

(
(w2

0,0 + r cos(θ)w2
1,0 + rsin(θ)w2

0,1 + r(2) cos(2)(θ)w2
2,0 + r(2) cos(θ)sin(θ)w2

1,1 + r(2) sin(2)(θ)w2
0,2

+r(3) cos(3)(θ)w2
3,0 + r(3) cos(2)(θ)sin(θ)w2

2,1 + r(3) cos(θ)sin(2)(θ)w2
1,2 + r(3) sin(3)(θ)w2

0,3

)
;

vz = w3
0,0 + r cos(θ)w3

1,0 + rsin(θ)w3
0,1 + r(2) cos(2)(θ)w3

2,0 + r(2) cos(θ)sin(θ)w3
1,1 + r(2) sin(2)(θ)w3

0,2

+ r(3) cos(3)(θ)w3
3,0 + r(3) cos(2)(θ)sin(θ)w3

2,1 + r(3) cos(θ)sin(2)(θ)w3
1,2 + r(3) sin(3)(θ)w3

0,3.

For these expressions to be independent of θ, we can consider the values of the directors

at each order, as these terms will have matching powers of r. For vr at order 0 the

expression is

cos(θ) w1
0,0 +sin(θ) w2

0,0.

For this expression to be independent of θ, it must be the case that w1
0,0 = w2

0,0 = 0. For vr

at order 1 the expression is

(3.8) r
(
cos(2)(θ)w1

1,0 +cos(θ)sin(θ)(w1
0,1 +w2

1,0)+sin(2)(θ)w2
0,1

)
.

Given that

(3.9) cos(2)(θ)+sin(2)(θ)= 1,

for the expression given by Eq. (3.8) to be independent of θ it is required that w1
1,0 = w2

0,1

and w1
0,1 =−w2

1,0. For vr at order 2 the expression is

r(2)
(
cos(3)(θ)w1

2,0 +cos(2)(θ)sin(θ)(w1
1,1 +w2

2,0)+cos(θ)sin(2)(θ)(w1
0,2 +w2

1,1)+sin(3)(θ)w2
0,2

)
.
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For this expression to be independent of θ it is required that w1
2,0 = w2

0,2 = 0, w1
1,1 =−w2

2,0

and w1
0,2 =−w2

1,1. For vr at order 3 the expression is

r(3)
(
cos(4)(θ)w1

3,0 +cos(3)(θ)sin(θ)(w1
2,1 +w2

3,0)+cos(2)(θ)sin(2)(θ)(w1
1,2 +w2

2,1)

+ cos(θ)sin(3)(θ)(w1
0,3 +w2

1,2)+sin(4)(θ)w2
0,3

)
.

(3.10)

Given that

(3.11) cos(4)(θ)+2cos(2)(θ)sin(2)(θ)+sin(4)(θ)=
(
sin(2)(θ)+cos(2)(θ)

)(2) = 1,

for the expression given by Eq. (3.10) to be independent of θ it is required that w1
2,1 =

−w2
3,0, w1

0,3 =−w2
1,2, w1

3,0 = w2
0,3 and w1

1,2 = 2w2
0,3 −w2

2,1.

The relationships between the directors that have been found thus far can be used

when examining the terms for each order of vθ. For vθ at order 0 the expression is 0. For

vθ at order 1 the expression is

r
(
sin(2)(θ)+cos(2)(θ)

)
w2

1,0 = rw2
1,0.

So this expression is already independent of θ.

For vθ at order 2 the expression is

r(2)
(
cos(θ)(sin(2)(θ)+cos(2)(θ))w2

2,0 +sin(θ)(sin(2)(θ)+cos(2)(θ))w2
1,1

)
= r(2)

(
cos(θ)w2

2,0 +sin(θ)w2
1,1

)
.

For this expression to be independent of θ it is required that w2
1,1 = w2

2,0 = 0.

For vθ at order 3 the expression is

r(3)
(
cos(4)(θ)w2

3,0 +cos(3)(θ)sin(θ)(w2
2,1 −w2

0,3)+cos(2)(θ)sin(2)(θ)(w2
1,2 +w2

3,0)

+cos(θ)sin(3)(θ)((w2
2,1 −w2

0,3)+sin(4)(θ)w2
1,2

)
.

Given Eq. (3.11), for this expression to be independent of θ, it is required that w2
1,2 = w2

3,0

and w2
2,1 = w2

0,3.

Lastly, consider the values of the directors at each order for vz. For vz at order 0, the

expression is w3
00 which is already independent of θ. For vz at order 1 the expression is

r
(
cos(θ)w3

1,0 +sin(θ)w3
0,1

)
.

For this expression to be independent of θ it is required that w3
1,0 = w3

0,1 = 0.

For vz at order 2 the expression is

r(2)
(
cos(2)(θ)w3

2,0 +cos(θ)sin(θ)w3
1,1 +sin(2)(θ)w3

0,2

)
.
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Given Eq. (3.9), for this expression to be independent of θ it is required that w3
1,1 = 0 and

w3
0,2 = w3

2,0.

For vz at order 3, the only way for the expression to be independent of θ is for all the

directors at this order to equal zero, i.e. w3
3,0 = w3

2,1 = w3
1,2 = w3

0,3 = 0.

Setting w2
1,0 = w1

0,1, w2
0,1 = w1

1,0, w2
3,0 = w1

0,3, w2
0,3 = w1

3,0, w3
0,0 = v and w3

2,0 = w3
2,0, the

velocity now takes the form

v= [(w1
1,0 + (x(2)

1 + x(2)
2 )w1

3,0)x1 − (w1
0,1 + (x(2)

1 + x(2)
2 )w1

0,3)x2]e1

+ [(w1
1,0 + (x(2)

1 + x(2)
2 )w1

3,0)x2 + (w1
0,1 + (x(2)

1 + x(2)
2 )w1

0,3)x1]e2 + [w3
0,0 + (x(2)

1 + x(2)
2 )w3

2,0]e3,

(3.12)

where w3
0,0, w1

1,0, w1
0,1, w3

2,0, w1
3,0, w1

0,3 are scalar functions of x3 and t.

• w3
0,0 represents the velocity along the axis of symmetry;

• w3
2,0 is related to transverse shearing motion;

• w1
0,1 and w1

0,3 are related to rotational motion about e3;

• w1
1,0 and w1

3,0 are related to transverse elongation.

For simplicity and to avoid confusion of superscripts and powers in later equations, the

following notational changes will be made and used henceforth. The directors pointing in

the cross-section of the form w1
j,k will now be written as u j,k and the directors pointing

along the pipe of the form w3
j,k will now be written as w j,k. So the velocity for order K = 3

given by Eq. (3.12) is now written as

v= [(u1,0 + (x(2)
1 + x(2)

2 )u3,0)x1 − (u0,1 + (x(2)
1 + x(2)

2 )u0,3)x2]e1

+ [(u1,0 + (x(2)
1 + x(2)

2 )u3,0)x2 + (u0,1 + (x(2)
1 + x(2)

2 )u0,3)x1]e2 + [w0,0 + (x(2)
1 + x(2)

2 )w2,0]e3.

(3.13)

The above argument for K = 3 can be generalised to any K by considering axisymmetry

and it is found that there has to be a certain symmetry in the form of the directors and

their weighting functions.

If the order K = 5 was chosen then the velocity would take the form

v= [(u1,0 + (x(2)
1 + x(2)

2 )u3,0 + (x(2)
1 + x(2)

2 )(2)u5,0)x1 − (u0,1 + (x(2)
1 + x(2)

2 )u0,3 + (x(2)
1 + x(2)

2 )(2)u0,5)x2]e1

+ [(u1,0 + (x(2)
1 + x(2)

2 )u3,0 + (x(2)
1 + x(2)

2 )(2)u5,0)x2 + (u0,1 + (x(2)
1 + x(2)

2 )u0,3 + (x(2)
1 + x(2)

2 )(2)u0,5)x1]e2

+ [w0,0 + (x(2)
1 + x(2)

2 )w2,0 + (x(2)
1 + x(2)

2 )(2)w4,0]e3.

(3.14)
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Substituting the expression given by Eq. (3.13) for v into the boundary condition, given

by Eq. (3.6), gives

φ
∂φ

∂t
+φ ∂φ

∂x3
(w0,0 + (x(2)

1 + x(2)
2 )w2,0)− x1[(u1,0 + (x(2)

1 + x(2)
2 )u3,0)x1 − (u0,1 + (x(2)

1 + x(2)
2 )u0,3)x2]

− x2[(u0,1 + (x(2)
1 + x(2)

2 )u0,3)x1 + (u1,0 + (x(2)
1 + x(2)

2 )u3,0)x2]

=φ∂φ
∂t

+φ ∂φ

∂x3
(w0,0 +φ(2)w2,0)−u1,0(x(2)

1 + x(2)
2 )−φ(2)u3,0(x(2)

1 + x(2)
2 )

= ∂φ

∂t
+ ∂φ

∂x3
(w0,0 +φ(2)w2,0)−u1,0φ−u3,0φ

(3)

= ∂φ

∂t
+ (w0,0 +φ(2)w2,0)

∂φ

∂x3
− (u1,0 +φ(2)u3,0)φ

= 0.

(3.15)

The corresponding expression for the boundary condition at order K = 5, found by

substituting Eq. (3.14) into Eq. (3.6) is given by

(3.16)
∂φ

∂t
+ (w0,0 +φ(2)w2,0 +φ(4)w4,0)

∂φ

∂z
− (u1,0 +φ(2)u3,0 +φ(4)u5,0)φ= 0.

Substituting the expression for v, given by Eq. (3.13), into the incompressibility condition,

given by Eq. (3.2), gives

∂

∂x1
[(u1,0 + (x(2)

1 + x(2)
2 )u3,0)x1 + (u0,1 − (x(2)

1 + x(2)
2 )u0,3)x2]

+ ∂

∂x2
[(u0,1 + (x(2)

1 + x(2)
2 )u0,3)x1 + (u1,0 + (x(2)

1 + x(2)
2 )u3,0)x2]+ ∂

∂x3
[w0,0 + (x(2)

1 + x(2)
2 )w2,0]

= u1,0 + (3x(2)
1 + x(2)

2 )u3,0 −2x1x2u0,3 +2x1x2u0,3 +u1,0 + (x(2)
1 +3x(2)

2 )u3,0 +
∂w0,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂w2,0

∂x3

= 2u1,0 +4(x(2)
1 + x(2)

2 )u3,0 + ∂v
∂x3

+ (x(2)
1 + x(2)

2 )
∂w2,0

∂x3

=
(
∂w0,0

∂x3
+2u1,0

)
+ x(2)

α

(
∂w2,0

∂x3
+4u3,0

)
= 0.

For the above equation to hold at every point in the fluid, the velocity coefficients must

satisfy the separate conditions

(3.17)
∂w0,0

∂x3
+2u1,0 = 0

and

(3.18)
∂w2,0

∂x3
+4u3,0 = 0.
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For order K = 5, these two equations and the following one are required to satisfy

incompressibility

(3.19)
∂w4,0

∂z
+6u5,0 = 0.

Instead of satisfying the momentum equation Eq. (3.1) pointwise in the fluid, recalling

the method detailed in Chapter 2, the following integral conditions are imposed:

(3.20)
ˆ

A

[
∂Ti

∂xi
−ρ

(
∂v
∂t

+vi
∂v
∂xi

)]
da = 0;

(3.21)
ˆ

A

[
∂Ti

∂xi
−ρ

(
∂v
∂t

+vi
∂v
∂xi

)]
xα1 · · ·xαN da = 0;

for N = 1,2,3. Here, the notation xα1 · · ·xαN is used to represent the weighting functions

x( j)
1 x(N− j)

2 in the velocity expansion given by Eq. (3.7), with αi taking the values of 1 or

2. This notation is temporarily adopted to assist with the following analysis. A is an

arbitrary cross-section of the slender surface of revolution defined by x3 = constant and

bounded by the circle given by Eq. (3.5).

By separating the cross-sectional and coaxial component of the stress tensor, Eq. (3.20)

can be rewritten as ˆ
A

∂Tα

∂xα
da+

ˆ
A

∂T3

∂x3
da =

ˆ
A
ρ

(
∂v
∂t

+vi
∂v
∂xi

)
da.

As x3 is constant over the surface of integration, the derivative in the second term can be

taken outside the integral. Applying the divergence theorem to the first term gives

(3.22)
ˆ

A

∂Tα

∂xα
=
ˆ
∂A

tα ·νds =
ˆ
∂A

t · ν̂ds,

where ν̂ is the unit vector comprised of only the e1 and e2 components of ν. To find the

scale factor to ensure ν̂ is a unit vector, the norm of ν1e1 +ν2e2 is calculated:

|ν1e1 +ν2e2| = (ν1
2 +ν2

2)(1/2)

=

 x(2)
1 + x(2)

2

φ(2)
(
1+ ∂φ

∂x3

(2))


(1/2)

= 1(
1+ ∂φ

∂x3

(2))(1/2) .

So

ν̂=
(
1+ ∂φ

∂x3

(2)
)(1/2)

(ν1e1 +ν2e2).
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Substituting this expression for ν̂ into Eq. (3.22) gives

ˆ
A

∂Tα

∂xα
=
ˆ
∂A

(
1+ ∂φ

∂x3

(2)
)(1/2)

t · (ν1e1 +ν2e2)ds.

However, from Eq. (3.4)

ˆ
∂A

(
1+ ∂φ

∂x3

(2)
)(1/2)

t · (ν1e1 +ν2e2)ds =
ˆ
∂A

(
1+

(
∂φ

∂x3

)(2)
)(1/2)

tds.

With this simplification, Eq. (3.20) becomes

∂

∂x3

ˆ
A

T3da+
ˆ
∂A

(
1+

(
∂φ

∂x3

)(2)
)(1/2)

tds

=
ˆ

A
ρ

(
∂v
∂t

+vi
∂v
∂xi

)
da.

(3.23)

This gives the equation for conversation of momentum considered over the cross-section

of the pipe. Next, the conservation of momentum of the individual directors over the cross-

section will be considered, starting from Eqs. (3.21). A similar method of manipulation to

that detailed above for conservation of momentum will be carried for the conservation of

director momentum to obtain the form of the equations that will solved for. This process

now follows.

Eqs. (3.21) can be rewritten as

(3.24)
ˆ

A

∂Tα

∂xα
xα1 · · ·xαN da+

ˆ
A

∂T3

∂x3
xα1 · · ·xαN da =

ˆ
A
ρ

(
∂v
∂t

+vi
∂v
∂xi

)
xα1 · · ·xαN da,

for N = 1,2,3. Looking at the equation for N = 1 for Eq. (3.24), by the chain rule

∂

∂xα
(xα1Tα)=Tα1 + xα1

∂Tα

∂xα
,

where α is summed over 1 and 2, and α1 takes the value of 1 or 2 depending on the

weighting function. Rearranging gives

xα1

∂Tα

∂xα
= ∂

∂xα
(xα1Tα)−Tα1 .

Taking the integral over the cross-section givesˆ
A

∂Tα

∂xα
xα1 da =

ˆ
A

∂

∂xα
(Tαxα1)da−

ˆ
A

Tαda.

Applying the divergence theorem, similarly to before, gives

ˆ
A

∂Tα

∂xα
xα1 da =

ˆ
∂A

(
1+

(
∂φ

∂x3

)(2)
)(1/2)

txα1 ds−
ˆ

A
Tαda.
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So, for N = 1, Eq. (3.21) becomes

∂

∂x3

ˆ
A

T3xα1 da+
ˆ
∂A

(
1+

(
∂φ

∂x3

)(2)
)(1/2)

txα1 ds

=
ˆ

A
Tα1 da+

ˆ
A
ρ

(
∂v
∂t

+vi
∂v
∂xi

)
xα1 da.

(3.25)

Similar derivation for Eqs. (3.21) when N = 2 and N = 3 gives

∂

∂x3

ˆ
A

T3xα1 xα2 da+
ˆ
∂A

(
1+

(
∂φ

∂x3

)(2)
)(1/2)

txα1 xα2 ds

=
ˆ

A
(Tα1 xα2 +Tα2 xα1)da+

ˆ
A
ρ

(
∂v
∂t

+vi
∂v
∂xi

)
xα1 xα2 da;

(3.26)

∂

∂x3

ˆ
A

T3xα1 xα2 xα3 da+
ˆ
∂A

(
1+

(
∂φ

∂x3

)(2)
)(1/2)

txα1 xα2 xα3 ds

=
ˆ

A
(Tα1 xα2 xα3 +Tα2 xα1 xα3 +Tα3 xα1 xα2)da+

ˆ
A
ρ

(
∂v
∂t

+vi
∂v
∂xi

)
xα1 xα2 xα3 da.

(3.27)

The stress vector on the lateral surface is resolved in terms of its normal and tangential

components, as shown in Fig. 3.1 in the form

(3.28) t= τaea − peν+τheθ,

where

• pe is the external pressure acting normal to the surface;

• τa and τh are stress acting tangential to the surface;

• ea and eθ are unit tangent vectors.

The tangent vectors eθ and ea are defined as

eθ =−x2

φ
e1 + x1

φ
e2
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CHAPTER 3. STRAIGHT AXISYMMETRIC PIPE

and

ea = ν×eθ

=

 x1

θ

(
1+

(
∂φ

∂x3

)(2)
)(1/2) e1 + x2

φ

(
1+

(
∂φ

∂x3

)(2)
)(1/2) e2 −

∂φ

∂x3(
1+

(
∂φ

∂x3

)(2)
)(1/2)

×
[
− x2

φ
e1 + x1

φ
e2

]

=
x1

∂φ

∂x3

φ

(
1+

(
∂φ

∂x3

)(2)
)(1/2) e1 +

x2
∂φ

∂x3

φ

(
1+

(
∂φ

∂x3

)(2)
)(1/2) e2 +

x(2)
1 + x(2)

2

φ(2)
(
1+

(
∂φ

∂x3

)(2)
)(1/2) e3

=
x1

∂φ

∂x3

φ

(
1+

(
∂φ

∂x3

)(2)
)(1/2) e1 +

x2
∂φ

∂x3

φ

(
1+

(
∂φ

∂x3

)(2)
)(1/2) e2 + 1(

1+
(
∂φ

∂x3

)(2)
)(1/2) e3.

From this, the stress vector on the lateral surface can be rewritten in terms of Cartesian

base vectors as

t= τa

 x1
∂φ

∂x3

φ

(
1+

(
∂φ

∂x3

)(2)
)(1/2) e1 +

x2
∂φ

∂x3

φ

(
1+

(
∂φ

∂x3

)(2)
)(1/2) e2 + 1(

1+
(
∂φ

∂x3

)(2)
)(1/2) e3


− pe

 x1

φ
(
1+ ( ∂φ

∂x3
)(2)

)(1/2) e1 + x2

φ
(
1+ ( ∂φ

∂x3
)(2)

)(1/2) e2 −
∂φ

∂x3(
1+ ( ∂φ

∂x3
)(2)

)(1/2) e3

+τh

[
− x2

φ
e1 + x1

φ
e2

]

=

φ−1

 x1

(
τa

∂φ

∂x3
− pe

)
(
1+

(
∂φ

∂x3

)(2)
)(1/2) − x2τh


e1 +

φ−1

 x2

(
τa

∂φ

∂x3
− pe

)
(
1+

(
∂φ

∂x3

)(2)
)(1/2) + x1τh


e2

+

 τa + pe
∂φ

∂x3(
1+

(
∂φ

∂x3

)(2)
)(1/2)

e3.

(3.29)

The deviatoric stress response in a linear viscous fluid is given by

σi j =µ
(
∂vi

∂x j
+ ∂v j

∂xi

)
.

Substituting this into Eq. (3.3) gives the following expressions for T1, T2 and T3:

T1 =
(
−p+2µ

∂v1

∂x1

)
e1 +µ

(
∂v1

∂x2
+ ∂v2

∂x1

)
e2 +µ

(
∂v1

∂x3
+ ∂v3

∂x1

)
e3;
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T2 =µ
(
∂v2

∂x1
+ ∂v1

∂x2

)
e1 +

(
−p+2µ

∂v2

∂x2

)
e2 +µ

(
∂v2

∂x3
+ ∂v3

∂x2

)
e3;

T3 =µ
(
∂v3

∂x1
+ ∂v1

∂x3

)
e1 +µ

(
∂v3

∂x2
+ ∂v2

∂x3

)
e2 +

(
−p+2µ

∂v3

∂x3

)
e3.

Substituting in the expression for the velocity, given by Eq. (3.13), gives

T1 = [−p+2µ(u1,0 + (3x(2)
1 + x(2)

2 )u3,0 −2x1x2u0,3)]e1

+µ[4x1x2u3,0 + (2x(2)
1 −2x(2)

2 )u0,3]e2

+µ
[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
x1 −

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3

)
x2 +2x1w2,0

]
e3;

(3.30)

T2 =µ[4x1x2u3,0 + (2x(2)
1 −2x(2)

2 )u0,3]e1

+ [−p+2µ(u1,0 + (x(2)
1 +3x(2)

2 )u3,0 +2x1x2u0,3)]e2

+µ
[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
x2 +

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3

)
x1 +2x2w2,0

]
e3;

(3.31)

T3 =µ
[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
x1 −

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3

)
x2 +2x1w2,0

]
e1

+µ
[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
x2 +

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3

)
x1 +2x2w2,0

]
e2

+
[
−p+2µ

(
∂v
∂x3

+ (x(2)
1 + x(2)

2 )
∂w2,0

∂x3

)]
e3.

(3.32)

Correspondingly, in the case of order K = 5, the expressions are given by

T1 =
[
−p+2µ(u1,0 + (3x(2)

1 + x(2)
2 )u3,0 + (5x(2)

1 + x(2)
2 )(x(2)

1 + x(2)
2 )u5,0 −2x1x2u0,3 −4x1x2(x(2)

1 + x(2)
2 )u0,5)

]
e1

+
[
2µ(2x1x2u3,0 +4x1x2(x(2)

1 + x(2)
2 )u5,0 + (x(2)

1 − x(2)
2 )u0,3 +2(x(4)

1 − x(4)
2 )u0,5)

]
e2

+µ
[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3
+ (x(2)

1 + x(2)
2 )(2)∂u5,0

∂x3

)
x1 −

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3
+ (x(2)

1 + x(2)
2 )(2)∂u0,5

∂x3

)
x2

+2x1w2,0 +4x1(x(2)
1 + x(2)

2 )w4,0

]
e3;

(3.33)

T2 =
[
2µ(2x1x2u3,0 +4x1x2(x(2)

1 + x(2)
2 )u5,0 + (x(2)

1 − x(2)
2 )u0,3 +2(x(4)

1 − x(4)
2 )u0,5)

]
e1[

−p+2µ
(
u1,0 + (x(2)

1 +3x(2)
2 )u3,0 + (x(2)

1 +5x(2)
2 )(x(2)

1 + x(2)
2 )u5,0 +2x1x2u0,3 +4x1x2(x(2)

1 + x(2)
2 )u0,5

)]
+µ

[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3
+ (x(2)

1 + x(2)
2 )(2)∂u5,0

∂x3

)
x2 −

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3
+ (x(2)

1 + x(2)
2 )(2)∂u0,5

∂x3

)
x1

+2x2w2,0 +4x2(x(2)
1 + x(2)

2 )w4,0

]
e3;

(3.34)
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T3 =µ
[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3
+ (x(2)

1 + x(2)
2 )(2)∂u5,0

∂x3

)
x1

−
(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3
+ (x(2)

1 + x(2)
2 )(2)∂u0,5

∂x3

)
x2 +2x1w2,0 +4x1(x(2)

1 + x(2)
2 )w4,0

]
e1

+µ
[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3
+ (x(2)

1 + x(2)
2 )(2)∂u5,0

∂x3

)
x2

−
(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3
+ (x(2)

1 + x(2)
2 )(2)∂u0,5

∂z

)
x1 +2x2w2,0 +4x2(x(2)

1 + x(2)
2 )w4,0

]
e2

+
[
−p+2µ

(
∂w0,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂w2,0

∂x3
+ (x(2)

1 + x(2)
2 )(2)∂w0,5

∂x3

)]
e3.

(3.35)

By substituting the stress and velocity terms into Eqs. (3.23) and (3.24), after convert-

ing to cylindrical polar coordinates, integrating and some algebraic manipulation, which

is detailed in Appendix A (Appendix A), the following six resulting partial differential

equations with unknown functions dependent on the coaxial coordinate and time are

obtained for K = 3:

2πµ
∂

∂z

[
φ(2)

(
∂w0,0

∂z
+ φ(2)

2
∂w2,0

∂z

)]
+2πφ

(
τa + pe

∂φ

∂z

)
= ∂p
∂z

+πρφ(2)
[
∂w0,0

∂t
+ ∂w0,0

∂z

(
w0,0 + φ(2)

2
w2,0

)
+ φ(2)

2

(
∂w2,0

∂t
+ ∂w2,0

∂z

(
w0,0 + 2

3
φ(2)w2,0

)
+2w2,0

(
u1,0 + 2

3
φ(2)u3,0

))]
;

(3.36)

πµ

4
∂

∂z

[
φ(4)

(
∂u1,0

∂z
+ 2

3
φ(2)∂u3,0

∂z

)]
+ πµ

2
∂

∂z
(w2,0φ

(4))−2πµφ(2)(u1,0 +φ(2)u3,0)+πφ(2)
(
τa
∂φ

∂z
− pe

)
=−pI + ρπφ(4)

4

[
∂u1,0

∂t
+ ∂u1,0

∂z

(
w0,0 + 2

3
φ(2)w2,0

)
+u1,0

(
u1,0 + 2

3
φ(2)u3,0

)
−u0,1

(
u0,1 + 2

3
u0,3φ

(2)
)

+2
3
φ(2)

[
∂u3,0

∂t
+ ∂u3,0

∂z

(
w0,0 + 3

4
φ(2)w2,0

)
+3u3,0

(
u1,0 + 3

4
φ(2)u3,0

)
−u0,3

(
u0,1 + 3

4
φ(2)u0,3

)]]
;

(3.37)

µ

4
∂

∂z

[
φ(4)

(
∂u0,1

∂z
+ 2φ(2)

3
∂u0,3

∂z

)]
+φ(2)τh

(
1+

(
∂φ

∂z

)(2)
)(1/2)

= ρφ(4)

4

[
∂u0,1

∂t
+ ∂u0,1

∂z

(
w0,0 +

2φ(2)w2,0

3

)
+2u0,1

(
u1,0 +

2φ(2)u3,0

3

)
2φ(2)

3

(
∂u0,3

∂t
+ ∂u0,3

∂z

(
w0,0 +
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4

)
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(
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4
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;

(3.38)
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πµ

2
∂

∂z
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φ(4)
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∂w0,0

∂z
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3
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∂z
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2
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∂z

)
+πφ(3)

(
τa + pe
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4
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u1,0 +
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4

))]
;

(3.39)

πµ

24
∂

∂z
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(
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∂z
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4
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∂z
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∂

∂z
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2

(
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3

)
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4

(
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)
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∂t
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5
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;

(3.40)

µ
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∂
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6
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5

))]
.

(3.41)

The corresponding set of partial differential equations for order K = 5 are:

2
3
πµφ(6)∂
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3
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2
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− 1
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∂w4,0
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= 0;
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∂z
− 1

2
πρφ(12)u5,0u0,5 − 3

4
πρφ(8)u1,0u0,5 − 1

8
πρφ(8)w0,0
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2
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πρφ(8)u3,0w2,0
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4
πρφ(4)w0,0

∂w0,0

∂z
− 1

4
πµφ(8)∂u5,0

∂z
+2πµφ(5)∂φ

∂z
∂w2,0

∂z
+2πµφ(3)∂φ

∂z
∂w0,0
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∂z
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πµφ(8)∂
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2
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πµφ(6)w4,0

− 1
2
πµφ(4)∂u1,0
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∂z
∂w4,0
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3qI + 1
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2
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2
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40
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8
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∂t
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πµφ(7)∂φ

∂z
∂u3,0
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∂φ
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40
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∂t
− 3

4
πµφ(8)u0,5 − 1

2
πµφ(6)u0,3 − 3

40
πρφ(10)w4,0
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1
4
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8
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∂z
− 3

32
πρφ(8)w0,0

∂w2,0
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∂z
+ 5

8
πµφ(9)∂φ

∂z
∂u3,0
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∂z(2) − 5
28
πρφ(14)u0,3u5,0 − 5

96
πρφ(12)w4,0

∂u0,1

∂z
− 1

4
πρφ(10)u0,3u1,0

− 5
64
πρφ8w0,0

∂u0,1

∂z
− 1

16
πρφ(10)w0,0

∂u0,3

∂z
− 5

112
πρφ(14)w4,0

∂u0,3

∂z
− 1

16
πρφ(10)w2,0

∂u0,1

∂z

+ 5
8
πµφ(9)∂u0,3

∂z
∂φ

∂z
+ 5

8
πµφ(7)∂u0,1

∂z
∂φ

∂z
+ 5

8
πµφ(11)∂u0,5

∂z
∂φ

∂z
− 5

96
πρφ(12)∂u0,5

∂t

− 5
96
πρφ(12)w2,0

∂u0,3

∂z
− 5

24
πρφ(12)u0,3u3,0 = 0.

3.3 Nondimensionalisation

In this section the system of partial differential equations will be nondimensionalised,

before seeking solutions to them for special cases in the next section. To nondimension-

alise, standardised velocity and length parameters are introduced, these are U and L
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respectively. Dimensionless variables are introduced with the following definitions

x̄1 = x1

L
; x̄2 = x2

L
; x̄3 = x3

L
;

w̄0,0 =
w0,0

U
; w̄2,0 =

L(2)w2,0

U
; w̄4,0 =

L(4)w4,0

U
;

ū1,0 =
ReLu1,0

U
; ū3,0 =

ReL(3)u3,0

U
; ū5,0 =

ReL(5)u5,0

U
;

ū0,1 =
ReLu0,1

U
; ū0,3 =

ReL(3)u0,3

U
; ū0,5 =

ReL(5)u0,5

U
;

p̄e = Lpe

µU
; τ̄a = Lτa

µU
; τ̄h = Lτh

µU
;

p̄I = pI

µLU
; q̄I = qI

µL(3)U
; h̄I = hI

µL(5)U
;

p̄ = Lp
µU

; t̄ = Ut
L

; φ̄= φ

L
;

T̄1 = LT̄1

µU
; T̄2 = LT̄2

µU
; T̄1 = LT̄1

µU
;

t̄= L(2)t
µU

; v̄= v
U

;

where Re is the Reynolds number defined by Re = ρLU
µ

. Here, the flow regime of interest

is that of thin pipes which are not so thin that asymptotic reduction of the Navier-Stokes

equations such as lubrication theory applies, however the fundamental flow is such that

is dominated by the flow in the coaxial direction so a quasi-1D numerical method might

be more efficient than a full-scale solution of the Navier-Stokes equations. The pressure

integral terms pI , qI and hI are defined respectively by

(3.42) pI =
ˆ ˆ

A
pda;

(3.43) qI =
ˆ ˆ

A
px(2)

1 da =
ˆ ˆ

A
px(2)

2 da

(3.44) hI =
ˆ ˆ

A
px(4)

1 da =
ˆ ˆ

A
px(4)

2 da;

The nondimensionalised velocity at order K = 3, corresponding to Eq.(3.13) is

v̄= 1
Re

[(ū1,0 + (x̄(2)
1 + x̄(2)

2 )ū3,0)x̄1 − (ū0,1 + (x̄(2)
1 + x̄(2)

2 )ū0,3)x̄2]e1

+ 1
Re

[(ū1,0 + (x̄(2)
1 + x̄(2)

2 )ū3,0)x̄2 + (ū0,1 + (x̄(2)
1 + x̄(2)

2 )ū0,3)x̄1]e2 + [w̄0,0 + (x̄(2)
1 + x̄(2)

2 )w̄2,0]e3.

(3.45)
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The nondimensionalised velocity at order K = 5, corresponding to Eq.(3.14) is

v̄= 1
Re

[(ū1,0 + (x̄(2)
1 + x̄(2)

2 )ū3,0 + (x̄(2)
1 + x̄(2)

2 )(2)ū5,0)x̄1 − (ū0,1 + (x̄(2)
1 + x̄(2)

2 )ū0,3 + (x̄(2)
1 + x̄(2)

2 )(2)ū0,5)x̄2]e1

+ 1
Re

[(ū1,0 + (x̄(2)
1 + x̄(2)

2 )ū3,0 + (x̄(2)
1 + x̄(2)

2 )(2)ū5,0)x̄2 + (ū0,1 + (x̄(2)
1 + x̄(2)

2 )ū0,3 + (x̄(2)
1 + x̄(2)

2 )(2)ū0,5)x̄1]e2

+ [w̄0,0 + (x̄(2)
1 + x̄(2)

2 )w̄2,0 + (x̄(2)
1 + x̄(2)

2 )(2)w̄4,0]e3.

(3.46)

The stress vector given by Eq. (3.29) can be written in nondimensional form as

t̄=

φ̄−1

 x̄1

(
τ̄a

∂φ̄

∂x̄3
− p̄e

)
(
1+

(
∂φ̄

∂x̄3

)(2)
)(1/2) − x̄2τ̄h


e1 +

φ̄−1

 x̄2

(
τ̄a

∂φ̄

∂x̄3
− p̄e

)
(
1+

(
∂φ̄

∂x̄3

)(2)
)(1/2) + x̄1τ̄h


e2

+

 τ̄a + p̄e
∂φ̄

∂x̄3(
1+

(
∂φ̄

∂x̄3

)(2)
)(1/2)

e3.

The conditions that must be satisfied for incompressibility to hold at order K = 3, given

by Eqs. (3.17) and (3.18) , are given in nondimensional form as

(3.47)
∂w̄0,0

∂x̄3
+ 2

Re
ū1,0 = 0

and

(3.48)
∂w̄2,0

∂x̄3
+ 4

Re
ū3,0 = 0.

The extra equation that must be satisfied for incompressibility to hold at order K = 5,

given by Eq. (3.19), is given in nondimensional form as

(3.49)
∂w̄4,0

∂x̄3
+ 6ū5,0

Re
= 0.

The boundary condition for order K = 3, given by Eq. (3.15), is given in nondimensional

form by
∂φ̄

∂t̄
+ (w̄0,0 + φ̄(2)w̄2,0)

∂φ̄

∂x̄3
− (ū1,0 + φ̄(2)ū3,0)

φ̄

Re
= 0.

The corresponding boundary condition for order K = 5, given by Eq (3.16) , is given in

nondimensional form by

∂φ̄

∂t̄
+ (w̄0,0 + φ̄(2)w̄2,0 + φ̄(4)w̄4,0)

∂φ̄

∂x̄3
− (ū1,0 + φ̄(2)ū3,0 + φ̄(4)ū5,0)

φ̄

Re
= 0.
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By substituting these nondimensional variables into Eqs. (3.36) - (3.41) and multiply-

ing through by a suitable term, the dimensionless system of partial differential equations

for K = 3 are obtained as the following:

2π
∂

∂z̄

[
φ̄(2)

(
∂w̄0,0

∂z̄
+ φ̄(2)

2
∂w̄2,0

∂z̄

)]
+2πφ̄

(
τ̄a + p̄e

∂φ̄

∂z̄

)
= ∂pI

∂z̄
+πReφ̄(2)

[
∂w̄0,0

∂t̄

+∂w̄0,0

∂z̄

(
w̄0,0 + φ̄(2)

2
w̄2,0

)
+ φ̄(2)

2

(
∂w̄2,0

∂t̄
+ ∂w̄2,0

∂z̄

(
w̄0,0 + 2

3
φ̄(2)w̄2,0

)
+ 2

Re
w̄2,0

(
ū1,0 + 2

3
φ̄(2)ū3,0

))]
;

(3.50)

π

4
∂

∂z̄

[
φ̄(4)

(
∂ū1,0

∂z̄
+ 2

3
φ̄(2)∂ū3,0

∂z̄

)]
+ π

2
∂

∂z̄
(w̄2,0φ̄

(4))− 2
Re

πφ̄(2)(ū1,0 + φ̄(2)ū3,0)+πφ̄(2)
(
τ̄a
∂φ̄

∂z̄
− p̄e

)
− p+ πφ̄(4)

4

[
∂ū1,0

∂t̄
+ ∂ū1,0

∂z̄

(
w̄0,0 + 2

3
φ̄(2)w̄2,0

)
+ ū1,0

(
ū1,0 + 2

3
φ̄(2)ū3,0

)
− ū0,1

(
ū0,1 + 2

3
ū0,3φ̄

(2)
)

+2
3
φ̄(2)

[
∂ū3,0

∂t̄
+ ∂ū3,0

∂z̄

(
w̄0,0 + 3

4
φ̄(2)w̄2,0

)
+3ū3,0

(
ū1,0 + 3

4
φ̄(2)ū3,0

)
− ū0,3

(
ū0,1 + 3

4
φ̄(2)ū0,3

)]]
;

(3.51)

1
4Re

∂

∂z̄

[
φ̄(4)

(
∂ū0,1

∂z̄
+ 2φ̄(2)

3
∂ū0,3

∂z̄

)]
+ φ̄(2)τ̄h

(
1+

(
∂φ̄

∂z̄

)(2))(1/2)

= φ̄(4)

4

[
∂ū0,1

∂t̄
+ ∂ū0,1

∂z̄

(
w̄0,0 +

2φ̄(2)w̄2,0

3

)
+ 2

Re
ū0,1

(
ū1,0 +

2φ̄(2)ū3,0

3

)
2φ̄(2)

3

(
∂ū0,3

∂t̄
+ ∂ū0,3

∂z̄

(
w̄0,0 +

3φ̄(2)w̄2,0

4

)
+ 4

Re
ū0,3

(
ū1,0 +

3φ̄(2)ū3,0

4

))]
;

(3.52)

π

2
∂

∂z̄

[
φ̄(4)

(
∂w̄0,0

∂z̄
+ 2φ̄(2)

3
∂w̄2,0

∂z̄

)]
−πφ̄(4)w̄2,0

− πφ̄(4)

2Re

(
∂ū1,0

∂z̄
+ 2φ̄(2)

3
∂ū3,0

∂z̄

)
+πφ̄(3)

(
τ̄a + p̄e

∂φ̄

∂z̄

)
= ∂q̄I

∂z̄
+ πReφ̄(4)

4

[
∂w̄0,0

∂t̄
+ ∂w̄0,0

∂z̄

(
w̄0,0 +

2φ̄(2)w̄2,0

3

)
2φ̄(2)

3

(
∂w̄2,0

∂t̄
+ ∂w̄2,0

∂z̄

(
w̄0,0 +

3φ̄(2)w̄2,0

4

)
+ 2

Re
w̄2,0

(
ū1,0 +

2φ̄(2)ū3,0

4

))]
;

(3.53)
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π

Re
∂

∂z̄

[
φ̄(6)

(
∂ū1,0

∂z̄
+ 3φ̄(2)

4
∂ū3,0

∂z̄

)]
+ π

12
∂

∂z̄
(φ̄(6)w̄2,0)

− πφ̄(4)

2Re

(
ū1,0 +

5φ̄(2)ū3,0

3

)
+ πφ̄(4)

4

(
τ̄a
∂φ̄

∂z̄
− p̄e

)

=−q̄I + πφ̄(6)

24

[
∂ū1,0

∂t̄
+ ∂ū1,0

∂z̄

(
w̄0,0 +

3φ̄(2)w̄2,0

4

)
+ 1

Re
ū1,0

(
ū1,0 +

3φ̄(2)ū3,0

4

)

− 1
Re

ū0,1

(
ū0,1 +

3φ̄(2)ū0,3

4

)
+ 3φ̄(2)

4

(
∂ū3,0

∂t̄
+ ∂ū3,0

∂z̄

(
w̄0,0 +

4φ̄(2)w̄2,0

5

)

+ 3
Re

ū3,0

(
ū1,0 +

4φ̄(2)ū3,0

5

)
− 1

Re
ū0,3

(
ū0,1 +

4φ̄(2)ū0,3

5

))]
;

(3.54)

1
24Re

∂

∂z̄

[
φ̄(6)

(
∂ū0,1

∂z̄
+ 3φ̄(2)

4
∂ū0,3

∂z̄

)]
− φ̄(6)ū0,3

6Re
+ φ̄(4)τ̄h

4

(
1+

(
∂φ̄

∂z̄

)(2))(1/2)

= φ̄(6)

24

[
∂ū0,1

∂t̄
+ ∂ū0,1

∂z̄

(
w̄0,0 +

3φ̄(2)w̄2,0

4

)
+ 2

Re
ū0,1

(
ū1,0 +

3φ̄(2)ū3,0

4

)

+3φ̄(2)

4

(
∂ū0,3

∂t̄
+ ∂ū0,3

∂z̄

(
w̄0,0 +

4φ̄(2)w̄2,0

5

)
+ 4

Re
ū0,3

(
ū1,0 +

4φ̄(2)ū3,0

5

))]
.

(3.55)

Similarly, the dimensionless system of partial differential equations for K = 5 is given

by:

2
3
πφ̄(6)∂

(2)w̄4,0

∂z̄(2) +πφ̄(4)∂
(2)w̄2,0

∂z̄(2) +2πφ̄(2)∂
(2)w̄0,0

∂z̄(2) − 1
3
πReφ̄(6)∂w̄4,0

∂t̄
− 1

2
πReφ̄(4)∂w̄2,0

∂t̄
−πReφ̄(2)∂w̄0,0

∂t̄

− 1
5
πReφ̄(10)w̄4,0

∂w̄4,0

∂z̄
− 4

5
πφ̄(10)w̄4,0ū5,0 − 1

4
πReφ̄(8)w̄4,0

∂w̄2,0

∂z̄
− 1

4
πReφ̄(8)w̄2,0

∂w̄4,0

∂z̄
−πφ̄(8)w̄4,0ū3,0

− 1
2
πφ̄(8)w̄2,0ū5,0 − 1

3
πReφ̄(6)w̄4,0

∂w̄0,0

∂z̄
− 1

3
πReφ̄(6)w̄0,0

∂w̄4,0

∂z̄
− 4

3
πφ̄(6)ū1,0w̄4,0 − 2

3
πφ̄(6)w̄2,0ū3,0

− 1
2
πReφ̄(4)w̄2,0

∂w̄0,0

∂z̄
− 1

2
πReφ̄(4)w̄0,0

∂w̄2,0

∂z̄
−πφ̄(4)ū1,0w̄2,0 −πReφ̄(2)w̄0,0

∂w̄0,0

∂z̄
+4πφ̄(3)∂φ̄

∂z̄
∂w̄2,0

∂z̄

+4πφ̄
∂φ̄

∂z̄
∂w̄0,0

∂z̄
+4πφ̄(5)∂φ̄

∂z̄
∂w̄4,0

∂z̄
− ∂p̄I

∂z̄
+2πφ̄

(
τ̄a + p̄e

∂φ̄

∂z̄

)
= 0;

(3.56)
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2
3
πφ̄(6)∂w̄4,0

∂z̄
+ 1

2
πφ̄(4)∂w̄2,0

∂z̄
+ p̄I + 1

5Re
πφ̄(10)ū0,3ū0,5 − 2

Re
πφ̄(6)ū5,0 − 2

Re
πφ̄(4)ū3,0 − 2

Re
πφ̄ū1,0

− 1
8
πφ̄(8)∂ū5,0

∂t̄
− 3

8Re
πφ̄(8)ū(2)

3,0 −
1
6
πφ̄(6)∂ū3,0

∂t̄
+ 1

12Re
πφ̄(12)ū(2)

0,5 −
5

12Re
πφ̄(12)ū(2)

5,0

− 1
4Re

πφ̄(4)ū(2)
1,0 −

1
4
πφ̄(4)∂ū1,0

∂t̄
−πφ̄(2) p̄e +4πφ̄(5)w̄4,0

∂φ̄

∂z̄
+ 1

Re
πφ̄(3)∂φ̄

∂z̄
∂ū1,0

∂z̄
+2πφ̄(3)w̄2,0

∂φ̄

∂z̄

+ 1
Re

πφ̄(7)∂φ̄

∂z̄
∂ū5,0

∂z̄
+ 1

Re
piφ̄(5)∂φ̄

∂z̄
∂ū3,0

∂z̄
+ 1

4
πφ̄(4)w̄0,0

∂ū1,0

∂z̄
− 3

4Re
πφ̄(8)ū1,0ū5,0 − 1

8
πφ̄(8)w̄0,0

∂ū5,0

∂z̄

− 1
8
πφ̄(8)w̄4,0

∂ū1,0

∂z̄
− 1

8
πφ̄(8)w̄2,0

∂ū3,0

∂z̄
+ 1

8Re
πφ̄(8)ū(2)

0,3 −
1
10
πφ̄(10)w̄4,0

∂ū3,0

∂z̄
− 4

5Re
πφ̄(10)ū3,0ū5,0

− 1
10
πφ̄(10)w̄2,0

∂ū5,0

∂z̄
− 2

3Re
πφ̄(6)ū1,0ū3,0 − 1

6
πφ̄(6)w̄0,0

∂ū3,0

∂z̄
− 1

6
πφ̄(6)w̄2,0

∂ū1,0

∂z̄
− 1

12
πφ̄(12)w̄4,0

∂ū5,0

∂z̄

+πφ̄(2)τ̄a
∂φ̄

∂z̄
+ 1

8Re
πφ̄(8)∂

(2)ū5,0

∂z̄(2) + 1
6Re

πφ̄(6)∂
(2)ū3,0

∂z̄(2) + 1
4Re

πφ̄(4)∂
(2)ū1,0

∂z̄(2) = 0;

(3.57)

1
Re

πφ̄(5)∂φ̄

∂z̄
∂ū0,3

∂z̄
+ 1

Re
πφ̄(3)∂φ̄

∂z̄
∂ū0,1

∂z̄
+ 1

8Re
πφ̄(8)∂

(2)ū0,5

∂z̄(2) + 1
6Re

πφ̄(6)∂
(2)ū0,3

∂z̄(2) + 1
4Re

πφ̄(4)∂
(2)ū0,1

∂z̄(2)

+ 1
Re

πφ̄(7)∂φ̄

∂z̄
∂ū0,5

∂z̄

+πφ̄(2)τ̄h

(
1+

(
∂φ̄

∂z̄

)(2))(1/2)

− 1
4
πφ̄(4)w̄0,0

∂ū0,1

∂z̄
− 1

6
πφ̄(6)w̄0,0

∂ū0,3

∂z̄
− 1

2Re
πφ̄(8)ū0,3ū3,0 − 1

6
πφ̄(6)w̄2,0

∂ū0,1

∂z̄

− 1
8
πφ̄(8)w̄2,0

∂ū0,3

∂z̄
− 2

5Re
πφ̄(10)ū0,3ū5,0 − 1

8
πφ̄8w̄4,0

∂ū0,1

∂z̄
− 1

10
πφ̄(10)w̄4,0

∂ū0,3

∂z̄
− 2

3Re
πφ̄(6)ū0,3ū1,0

− 1
8
πφ̄(8)∂ū0,5

∂t̄
− 1

12
πφ̄(12)w̄4,0

∂ū0,5

∂z̄
− 1

2Re
πφ̄(12)ū5,0ū0,5 − 3

4Re
πφ̄(8)ū1,0ū0,5 − 1

8
πφ̄(8)w̄0,0

∂ū0,5

∂z̄

− 1
6Re

πφ̄(6)ū0,3
∂ū0,1

∂t̄
− 1

6Re
πφ̄(6)ū0,1

∂ū0,3

∂t̄
− 1

10
πφ̄(10)w̄2,0

∂ū0,5

∂z̄
− 3

5Re
πφ̄(10)ū3,0ū0,5 = 0;

(3.58)
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πφ̄(3)τ̄a − Re
12

πφ̄(12)w̄4,0
∂w̄4,0

∂z̄
− 1

3
πφ̄(12)ū5,0w̄4,0 − Re

6
πφ̄(6)w̄2,0

∂w̄0,0

∂z̄

− Re
6
πφ̄(6)w̄0,0

∂w̄2,0

∂z̄
− 1

3
πφ̄(6)ū1,0w̄2,0 − Re

10
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∂z̄
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10
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∂w̄4,0

∂z̄

− 2
5
πφ̄(10)ū3,0w̄4,0 − 1

5
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8
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∂w̄0,0

∂z̄

− Re
8
πφ̄(8)w̄2,0
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∂z̄
− Re

8
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∂z̄
− 1

2
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4
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4
πφ̄(4)w̄0,0
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∂z̄

− 1
4Re

πφ̄(8)∂ū5,0

∂z̄
+2πφ̄(5)∂φ̄

∂z̄
∂w̄2,0

∂z̄
+2πφ̄(3)∂φ̄

∂z̄
∂w̄0,0

∂z̄
− ∂q̄I

∂z̄
+ 1

4
πφ̄(8)∂

(2)w̄4,0

∂z̄(2)

+ 1
3
πφ̄(6)∂

(2)w̄2,0

∂z̄(2) + 1
2
πφ̄(4)∂

(2)w̄0,0

∂z̄(2) +πφ̄(3) p̄e
∂φ̄

∂z̄
− 1

3Re
πφ̄(6)∂ū3,0

∂z̄
− 4

3
πφ̄(6)w̄4,0

− 1
2Re

πφ̄(4)∂ū1,0

∂z̄
−πφ̄(4)w̄2,0 +2πφ̄(7)∂φ̄

∂z̄
∂w̄4,0

∂z̄
− Re

4
πφ̄(4)∂w̄0,0

∂t̄
− Re

8
πφ̄(8)∂w̄4,0

∂t̄
− Re

6
πφ̄(6)∂w̄2,0

∂t̄
= 0;

(3.59)

3q̄I + 1
8Re

πφ̄(12)ū0,3ū0,5 − 3
4
πφ̄(4) p̄e − 3

Re
πφ̄(8)ū5,0 − 5
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πφ̄(6)ū3,0

− 3
2Re

πφ̄(4)ū1,0 − 1
16
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∂z̄
− 1

16
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∂z̄
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2Re
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8
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∂ū1,0

∂z̄
− 3

56
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∂z̄
− 3

32
πφ̄(8)w̄0,0
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∂z̄

− 3
32
πφ̄(8)w̄2,0

∂ū1,0

∂z̄
− 3

8Re
πφ̄(8)ū1,0ū3,0 − 3

40
πφ̄(10)w̄4,0

∂ū1,0

∂z̄
− 3

40
πφ̄(10)w̄2,0

∂ū3,0

∂z̄
+ 3

40Re
πφ̄(10)ū(2)

0,3

− 9
20Re

πφ̄(10)ū1,0ū5,0 − 3
40
πφ̄(10)w̄0,0

∂ū5,0

∂z̄
+ 1

8Re
πφ̄(6)∂

(2)ū1,0

∂z̄(2) + 3
8
πφ̄(8)∂w̄4,0

∂z̄
+ 1

4
πφ̄(6)∂w̄2,0

∂z̄

− 9
40Re

πφ̄(10)ū(2)
3,0 −

3
40
πφ̄(10)∂ū5,0

∂t̄
− 3

32
πφ̄(8)∂ū3,0

∂t̄

− 15
56Re

πφ̄(14)ū(2)
5,0 +

3
56Re

πφ̄(14)ū(2)
0,5 −

1
8Re

πφ̄(6)ū(2)
1,0 −

1
8
πφ̄(6)∂ū1,0

∂t̄
+ 3

4Re
πφ̄(9)∂φ̄

∂z̄
∂ū5,0

∂z̄

+ 3
4Re

πφ̄(7)∂φ̄

∂z̄
∂ū3,0

∂z̄
+3πφ̄(7)w̄4,0

∂φ̄

∂z̄
+ 3

4Re
πφ̄(5)∂φ̄

∂z̄
∂ū1,0

∂z̄

+ 3
2
πφ̄(5)w̄2,0

∂φ̄

∂z̄
+ 3

4
πφ̄(4)τ̄a

∂φ̄

∂z̄
+ 3

40Re
πφ̄(10)∂

(2)ū5,0

∂z̄(2) + 3
32Re

πφ̄(8)∂
(2)ū3,0

∂z̄(2) = 0;

(3.60)
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3
4
φ̄(4)τ̄h

(
1+

(
∂φ̄

∂z̄

)(2))(1/2)

+ 3
4Re

πφ̄(9)∂φ̄

∂z̄
∂ū0,5

∂z̄
+ 3

40Re
πφ̄(10)∂

(2)ū0,5

∂z̄(2) + 3
32Re

πφ̄(8)∂
(2)ū0,3

∂z̄(2)

+ 1
8Re

πφ̄(6)∂
(2)ū0,1

∂z̄(2) + 3
4Re

πφ̄(7)∂φ̄

∂z̄
∂ū0,3

∂z̄
+ 3

4Re
πφ̄(5)∂φ̄

∂z̄
∂ū0,1

∂z̄
− 3

32Re
πφ̄(8)ū0,3

∂ū0,1

∂t̄
− 3

32Re
πφ̄(8)ū0,1

∂ū0,3

∂t̄

− 3
40
πφ̄(10)w̄0,0

∂ū0,5

∂z̄
− 9

20Re
πφ̄(10)ū1,0ū0,5 − 9

28Re
πφ̄(14)ū5,0ū0,5 − 3

56
πφ̄(14)w̄4,0

∂ū0,5

∂z̄

− 3
8Re

πφ̄(12)ū3,0ū0,5 − 1
16
πφ̄(12)w̄2,0

∂ū0,5

∂z̄
− 3

40
πφ̄(10)∂ū0,5

∂t̄
− 3

4Re
πφ̄(8)ū0,5 − 1

2Re
πφ̄(6)ū0,3

− 3
40
πφ̄(10)w̄4,0

∂ū0,1

∂z̄
− 1

16
πφ̄(12)w̄4,0

∂ū0,3

∂z̄
− 1

4Re
πφ̄(12)ū0,3ū5,0 − 3

8Re
πφ̄(8)ū0,3ū1,0 − 1

8
πφ̄(6)w̄0,0

∂ū0,1

∂z̄

− 3
32
πφ̄(8)w̄0,0

∂ū0,3

∂z̄
− 3

10Re
πφ̄(10)ū0,3ū3,0 − 3

32
πφ̄8w̄2,0

∂ū0,1

∂z̄
− 3

40
πφ̄(10)w̄2,0

∂ū0,3

∂z̄
= 0;

(3.61)

−πφ̄(6)w̄2,0 + 3
4
πφ̄(5)τ̄a − 3

10Re
πφ̄(10)∂ū5,0

∂z̄
− 3

8Re
πφ̄(8)∂ū3,0

∂z̄
− 3

2
πφ̄(8)w̄4,0 − 1

2Re
πφ̄(6)∂ū1,0

∂z̄

− 3Re
40

πφ̄(10)∂w̄4,0

∂t̄
− 3Re

32
πφ̄(8)∂w̄2,0

∂t̄
− Re

8
πφ̄(6)∂w̄0,0

∂t̄
− 3Re

56
πφ̄(14)w̄4,0

∂w̄4,0

∂z̄
− 3

14
πφ̄(14)ū5,0w̄4,0

− Re
16

πφ̄(12)w̄4,0
∂w̄2,0

∂z̄
− Re

16
πρφ̄(12)w̄2,0

∂w̄4,0

∂z̄
− 1

4
πφ̄(12)ū3,0w̄4,0 − 1

8
πφ̄(12)ū5,0w̄2,0

− 3Re
40

πφ̄(10)w̄4,0
∂w̄0,0

∂z̄
− 3Re

40
πφ̄(10)w̄2,0

∂w̄2,0

∂z̄
− 3Re

40
πφ̄(10)w̄0,0

∂w̄4,0

∂z̄
− 3

10
πφ̄(10)ū1,0w̄4,0

− 3
20
πφ̄(10)ū3,0w̄2,0 − 3Re

32
πφ̄(8)w̄2,0

∂w̄0,0

∂z̄
− 3Re

32
πφ̄(8)w̄0,0

∂w̄2,0

∂z̄
− 3

16
πφ̄(8)ū1,0w̄2,0
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πφ̄(6)w̄0,0
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+ 3

4
πφ̄(5) p̄e
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(2)w̄4,0

∂z̄(2) + 3
16
πφ̄(8)∂

(2)w̄2,0

∂z̄(2) + 1
4
πφ̄(6)∂

(2)w̄0,0

∂z̄(2)

+ 3
2
πφ̄(9)∂φ̄

∂z̄
∂w̄4,0
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− ∂h̄I
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∂z̄
+ 3
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∂z̄
= 0;

(3.62)
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16Re

πφ̄(12)ū1,0ū5,0 − 5
64
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= 0;

(3.63)
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112
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+ 5
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8Re
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8Re
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96
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(3.64)

In the rest of this chapter, the overbars will be omitted for convenience, where it is

understood that all variables hence forth are in dimensionless form.
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ϕ

H(x1,x2,x3)

x3

x1

x2

Figure 3.2: A straight axisymmetric pipe constant radius φ with lateral surface H.

3.4 Results: Constant Radius

Taking the special case where φ is a constant, as shown in Fig. 3.2, a no-slip condition

can be imposed requiring the velocity to vanish identically on the boundary, given by

Eq. (3.5). From Eq. (3.13), this implies that

(3.65) u1,0 +φ(2)u3,0 = 0;

(3.66) u0,1 +φ(2)u0,3 = 0;

(3.67) w0,0 +φ(2)w2,0 = 0.

Then the kinematic condition Eq. (3.15) is satisfied exactly. Using Eqs. (3.65) - (3.67),

then the incompressibility conditions Eq. (3.17) and Eq. (3.18) can be reduced as follows:

0= ∂w2,0

∂z
+4u3,0

= ∂

∂z

(
−w0,0

φ(2)

)
+4

(
−u1,0

φ(2)

)
=− 1

φ(2)

∂w0,0

∂z
+ 2
φ(2)

∂w0,0

∂z

= 1
φ(2)

∂w0,0

∂z

= ∂w0,0

∂z
.
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This in turn implies from Eqs. (3.17) and (3.65) that u1,0 = u3,0 = 0. Simplifying the six

partial differential equations derived in the previous section and making the substitu-

tions u0,1 =−φ(2)u0,3 and w2,0 =− v
φ(2) , from Eqs. (3.66) and (3.67), leads to the following

simplified equations

(3.68) 2πφτa = ∂pI

∂z
+ πReφ(2)

2
dw0,0

dt
;

(3.69) pI =πφ(2) pe −
πφ(8)u(2)

0,3

24Re
;

(3.70)
φ(4)

24

(
2
∂u0,3

∂t
+w0,0

∂u0,3

∂z

)
− φ(4)

12Re
∂(2)u0,3

∂z(2) +τh = 0;

(3.71) πφ(2)w0,0 +πφ(3)τa = ∂qI

∂z
+ πφ(4)Re

12
dw0,0

dt
;

(3.72) qI = πφ(4) pe

4
−
πφ(10)u(2)

0,3

240Re
;

(3.73)
φ(4)

24

(
1
4
∂u0,3

∂t
+ w0,0

10
∂u0,3

∂z

)
+ τh

4
= φ(4)

96Re
∂(2)u0,3

∂z(2) + φ(2)u0,3

6Re
.

3.4.1 Poiseuille flow

Making the simplifications consistent with Poiseuille flow, taking the velocity given by

Eq. (3.13), set u1,0,u3,0,u0,1,u0,3 = 0, the velocity simply takes the form

v= (w0,0 + (x(2)
1 + x(2)

2 )w2,0)e3,

or in cylindrical polar coordinates

(3.74) v= (w0,0 + r(2)w2,0)ez.

Also, looking for a steady solution, Eqs. (3.68) - (3.73) reduce to

(3.75) 2πφτa = dpI

dz
;

(3.76) pI =πφ(2) pe;
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(3.77) τh = 0;

(3.78) πφ(2)w0,0 +πφ(3)τa = dqI

dz
;

(3.79) qI = πφ(4) pe

4
;

(3.80)
τh

4
= 0.

Rearranging Eq. (3.76) and substituting into Eq. (3.79) gives

qI = φ(2) pI

4
.

Differentiating with respect to z gives

(3.81)
dqI

dz
= φ(2)

4
dpI

dz
.

Rearranging and substituting Eqs. (3.75) and (3.81) into Eq. (3.78) and rearranging

gives

(3.82) w0,0 =− 1
4π

dpI

dz
.

Then from Eq. (3.67),

w2,0 =−w0,0

φ(2) = 1
4πφ(2)

dp
dz

.

Then, substituting into Eq (3.74), the velocity is given by

v=− 1
4π

dpI

dz

(
1− r(2)

φ(2)

)
ez.

Simplifying Eqs. (3.30), (3.31) and (3.32) based on this example gives

T1 =−p e1 +2 x1 w2,0 e3;

T2 =−p e2 +2 x2 w2,0 e3;

T3 = 2 x1 w2,0 e1 +2 x2 w2,0 e2 − p e3.

Due to the constant radius, the components of the outward unit normal to the surface

are simply

ν1 = x1

φ
;
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ν2 = x2

φ
;

ν3 = 0.

Then, from Eq. (3.4),

t= x1

φ
(−pe1 +2x1w2,0e3)+ x2

φ
(−pe2 +2x2w2,0e3)

=− px1

φ
e1 − px2

φ
e2 +2φw2,0e3.

Simplifying Eq. (3.29) for this example gives

t=− pex1

φ
e1 − pex2

φ
e2 +τae3.

Equating these two expressions for the stress vector gives

p = pe.

Then from Eq. (3.76),

p = pI

πφ(2) .

Given that w0,0 does not depend on z, Eq. (3.82) implies

dpI

dz
= A,

where A is a constant. Then, integrating with respect to z gives

pI = Az+B,

where B is a constant. Therefore

(3.83) p = 8
φ(2) (B− z)

and

(3.84) v= 2
(
1− r(2)

φ(2)

)
ez.

where the value of A has been suitably chosen considering the non-dimensional scale and

B takes on a different value to immediately above to simplify the notation. Eqs. (3.83)

and (3.84) represent the classical Poiseuille flow. If a higher order of velocity expansion

is taken, such as K = 5, the additional terms come out to be zero as Poiseuille flow is an

exact solution. A plot of the solution using Maple is shown in Fig 3.3.
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Figure 3.3: Different views of the 3D plot of the Poiseuille flow, given by Eq. (3.84)
(multiplied by Re), with coefficients φ= 1, Re = 1/8.

3.4.2 Steady swirling flow

Now looking for a steady swirling flow within a pipe of constant radius, dropping the

time dependence, for K = 3, Eqs (3.68) - (3.73) reduce to

(3.85) 2πφτa = dpI

dz
;

(3.86) pI =πφ(2) pe −
πφ(8)u(2)

0,3

24Re
;

(3.87)
φ(4)w0,0

24
du0,3

dz
− φ(4)

12Re
d(2)u0,3

dz(2) +τh = 0;

(3.88) πφ(2)w0,0 +πφ(3)τa = dqI

dz
;

(3.89) qI = πφ(4) pe

4
−
πφ(10)u(2)

0,3

240
;

(3.90)
φ(4)w0,0

240Re
du0,3

dz
+ τh

4
= φ(4)

96
d(2)u0,3

dz(2) + φ(2)u0,3

6
.

Rearranging Eq. (3.87) and substituting into Eq. (3.90) multiplied by 4 and collecting

terms gives

(3.91)
φ(4)

24Re
d(2)u0,3

dz(2) − φ(4)w0,0

40
du0,3

dz
− 2φ(2)u0,3

3Re
= 0.
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Noting that from above w0,0 does not depend on z and now a steady solution is being

sought so w0,0 does not depend on t, therefore w0,0 = v0, a constant. Considering the

non-dimensional scaling, set v0 = 2 Hence Eq. (3.91) is an ODE with constant coefficients.

So a solution is sought of the form

(3.92) u0,3 = Aekz,

where A and k are constants. Substituting this into Eq. (3.91) gives

Aekz
(
φ(4)

24
k(2) − 2Reφ(4)

40
k− 2φ(2)

3

)
= 0.

So

k =
Reφ(4)

20 ±
(

Re(2)φ(8)

400 + φ(6)

9

)(1/2)

φ(4)

12

.

For a physically realistic solution, u0,3 should decay rather than grow with z, so the

solution with the + sign is to be disregarded. After some tidying up this gives

k = 3φ− (9Re(2)φ(2) +400)(1/2)

5φ
.

Substituting this expression into Eq. (3.92) gives

u0,3 = A exp

(
3φ− (9Re(2)φ(2) +400)(1/2)

5φ
z

)
.

Then from Eq. (3.66),

u0,1 =−φ(2)A exp

(
3φ− (9Re(2)φ(2) +400)(1/2)

5φ
z

)

and from Eq. (3.67),

w2,0 =− 2
φ(2) .

Then, substituting into Eq. (3.13), the velocity is given by

v= (φ(2) − (x(2)
1 + x(2)

2 ))x2A exp

(
3φ− (9Re(2)φ(2) +400)(1/2)

5φ
x3

)
e1

− (φ(2) − (x(2)
1 + x(2)

2 ))x1A exp

(
3φ− (9Re(2)φ(2) +400)(1/2)

5φ
x3

)
e2

+2

(
1− x(2)

1 + x(2)
2

φ(2)

)
e3,
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or in cylindrical polar coordinates by

v=−(φ(2) − r(2))rA exp

(
3φ− (9Re(2)φ(2) +400)(1/2)

5φ
z

)
eθ

+2
(
1− r(2)

φ(2)

)
ez.

(3.93)

Plots of this solution, using Maple, are shown in Fig. 3.4 where the affect of varying the

Reynold’s on the swirling motion can be seen.

Now, the pressure solution is sought. Simplifying Eqs. (3.30), (3.31) and (3.32) based

on this case, the equations become

T1 = (−p− 4
Re

x1x2u0,3)e1 + 2
Re

(x(2)
1 − x(2)

2 )u0,3e2 +
(
2x1w2,0 −

(du0,1

dx3

)
x2

Re

)
e3;

T2 = 2
Re

(x(2)
1 − x(2)

2 )u0,3e1 + (−p+ 4
Re

x1x2u0,3)e2 +
(
2x2w2,0 +

(du0,1

dx3
+ (x(2)

1 + x(2)
2 )

du0,3

dx3

)
x1

Re

)
e3;

T3 =
(
2x1w2,0 −

(du0,1

dx3
+ (x(2)

1 + x(2)
2 )

du0,3

dx3

)
x2

Re

)
e1 +µ

(
2x2w2,0 +

(du0,1

dx3
+ (x(2)

1 + x(2)
2 )

du0,3

dx3

)
x1

Re

)
e2 − pe3.

Then, from Eq. (3.4),

t= x1

φ
T1 + x2

φ
T2

= −px1 − 4
Re x1(2)x2u0,3 + 2

Re x2(x(2)
1 − x(2)

2 )u0,3

φ
e1 +

2
Re x1(x(2)

1 − x(2)
2 )− px2 + 4

Re x1x(2)
2 u0,3

φ
e2

+
(
2x(2)

1 w2,0 −
(

du0,1
dx3

+ (x(2)
1 + x(2)

2 ) du0,3
dx3

)
x1x2
Re

)
+

(
2x(2)

2 w2,0 +
(

du0,1
dx3

+ (x(2)
1 + x(2)

2 ) du0,3
dx3

)
x1x2
Re

)
φ

e3

= −px1 − 2
Reφ

(2)x2u0,3

φ
e1 +

−px2 + 2
Reφ

(2)x1u0,3

φ
e2 +2φw2,0e3.

Simplifying Eq. (3.29) based on this case gives

t= −pex1 −τhx2

φ
e1 + −pex2 +τhx1

φ
e2 +τae3.

Equating the two expressions for the stress vector above gives pe = p∗. Then substituting

into Eq. (3.86) gives

pI =πφ(2) p−
πφ(8)u(2)

0,3

24Re
.

Differentiating with respect to z gives

dpI

dz
=πφ(2) dp

dz
− πφ(8)u0,3

12Re
du0,3

dz
.
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Substituting this into Eq. (3.85) gives

(3.94) τa = φ

2
dp
dz

− φ(7)u0,3

24Re
du0,3

dz
.

From Eq. (3.89),

qI = πφ(4) p
4

−
πφ(10)u(2)

0,3

240Re
.

Differentiating with respect to z gives

(3.95)
dqI

dz
= πφ(4)

4
dp
dz

− πφ(10)u0,3

120Re
du0,3

dz
.

Substituting Eqs. (3.94) and (3.95) into Eq. (3.88) gives

πφ(2)w0,0 +πφ(3)

(
φ

2
dp
dz

− φ(7)u0,3

24Re
du0,3

dz

)
= πφ(4)

4
dp
dz

− πφ(10)u0,3

120Re
du0,3

dz
.

Rearranging gives
dp
dz

= 2φ(6)u0,3

15Re
du0,3

dz
− 4w0,0

φ(2) .

Substituting in the expressions for u0,3 and w0,0 gives

dp
dz

= 2
φ(6)A(2)

15

(
3Reφ− (9Re(2)φ(2) +400)(1/2)

5φ

)
exp2

(
3Reφ− (9Re(2)φ(2) +400)(1/2)

5φ
z

)
− 8
φ(2) .

Integrating with respect to z gives

(3.96) p = 2φ(6)A(2)

15
exp

(
3Reφ− (9Re(2)φ(2) +400)(1/2)

5φ
z

)
− 8z
φ(2) +B,

where B is a constant. The pressure drop along the pipe, at varying Reynold’s numbers,

is shown in Fig. 3.5.

3.5 Results: Radius Depends Only on z

This section will consider the case where the radius can vary along the pipe. First we

will be considered the case where the order of the velocity expansion is K = 3. As for the

case of a constant radius, in the case where the radius depends only on z, the no-slip

condition leads to Eqs. (3.65) - (3.67). Then Eq. (3.15) is satisfied exactly. Then using
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Figure 3.4: Different views of the steady swirling flow, given by Eq. (3.93), with coeffi-
cients φ= 1 and A = 5 for Re = 1 (top), Re = 50 (middle), Re = 100 (bottom).
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Figure 3.5: The pressure drop along the pipe, given by Eq. (3.96) with coefficients φ= 1,
A = 5 and B set so the outlet pressure is zero for Re = 1 (red), Re = 50 (blue) and Re = 100
(green).

Eqs. (3.17), (3.65) and (3.67) to manipulate Eq. (3.18) gives

∂

∂x3

(
−w0,0

φ(2)

)
− 4u1,0

φ(2) = 0;

∂

∂x3

(
−w0,0

φ(2)

)
+ 2
φ(2)

∂w0,0

∂x3
= 0;

− 1
φ(2)

∂w0,0

∂x3
+ 2w0,0

φ(3)
dφ
dx3

+ 2
φ(2)

∂w0,0

∂x3
= 0;

1
φ(2)

∂w0,0

∂x3
+ 2w0,0

φ(3)
dφ
dx3

= 0;

1
φ(4)

(
φ(2)∂w0,0

∂x3
+2w0,0φ

dφ
dx3

)
= 0;

1
φ(4)

∂

∂x3
(φ(2)w0,0)= 0.

As the radius is finite, this implies that

(3.97)
∂

∂x3
(φ(2)w0,0)= 0

and hence w0,0 takes the form

(3.98) w0,0 = A
φ(2) ,

where A depends only on time and is related to the magnitude of the bulk flow.

Then from the no-slip condition, given by Eqs. (3.65) - (3.67), and the incompressibility

condition, given by Eqs. (3.47),(3.48), the forms of the following variables can be found:

(3.99) u1,0 =−ReA
φ(3)

dφ
dz

;
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(3.100) u3,0 = ReA
φ(5)

dφ
dz

;

(3.101) w2,0 =− A
φ(4) ;

(3.102) u0,1 =−φ(2)u0,3.

Then simplifying Eqs. (3.36) - (3.41) for this case gives

(3.103) 2πφ
(
τa + pe

dφ
dz

)
= ∂pI

∂z
+πRe

(
1
2

dA
dt

− A(2)

φ(3) +
4A(2)

3φ(5)

)
;

(3.104)

−πA
4

[
dφ
dz

d(2)φ

dz(2) +φ
d(3)φ

dz(3)

]
+πφ(2)

(
τa

dφ
dz

− pe

)
=−pI−Reπ

12

(
φ

dA
dt

dφ
dz

+ 5A(2)

2φ(2)

(
dφ
dz

)(2)
+ A(2)

2φ
d(2)φ

dz(2)

)
;

−φ(4)

[
5

2Re

(
dφ
dz

)(2)
u0,3 + φ

Re
dφ
dz

∂u0,3

∂z
+ φ(2)

12Re
∂(2)u0,3

∂z(2)

]
+φ(2)τh

(
1+

(
dφ
dz

)(2)
)(1/2)

=−Reφ(3)

6

(
φ(3)

2Re
∂u0,3

∂z
− A

Re
u0,3

dφ
dz

− A
4Re

∂u0,3

∂z

)
;

(3.105)

(3.106)
πA
2

[(
dφ
dz

)(2)
+φd(2)φ

dz(2)

]
+πA+πφ(3)

(
τa + pe

dφ
dz

)
= ∂qI

∂z
+ πRe

4

(
φ(2) dA

dt
− 7A(2)

3φ
dφ
dz

)
;

−πAφ
24

[
3
2

(
dφ
dz

)(3)
+ 9

2
φ

dφ
dz

d(2)φ

dz(2) +φ
(2) d(3)φ

dz(3)

]
− πAφ

2
dφ
dz

+ πφ(4)

4

(
τa

dφ
dz

− p3

)
=−qI

− πRe
24

(
φ(3)

4
dA
dt

dφ
dz

+ A(2)

5

(
dφ
dz

)(2)
+ A(2)φ

d(2)φ

dz(2) +
φ(10)

10Re
u(2)

0,3

)
;

(3.107)

− φ(6)

12

[
7

Re

(
dφ
dz

)(2)
u0,3 + φ

Re
d(2)φ

dz(2) u0,3 + 2φ
Re

dφ
dz

∂u0,3

∂z
+ φ(2)

8Re
∂(2)u0,3

∂z(2)

]
− φ(6)

6Re
u0,3 + φτh

4

(
1+

(
dφ
dz

)(2)
)(1/2)

=−Reφ(6)

8

(
φ(2)

12Re
∂u0,3

∂t
+ A

30Re
∂u0,3

∂z
+ A
φRe

dφ
dz

u0,3

)
.

(3.108)

For K = 5, the corresponding no-slip conditions are given by

(3.109) w1,0 +φ(2)w3,0 +φ(4)w5,0 = 0;

(3.110) w0,1 +φ(2)w0,3 +φ(4)w0,5;

(3.111) w0,0 +φ(2)w2,0 +φ(4)w4,0.
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ϕ(x3)

H(x1,x2,x3)

x3

x1

x2

Figure 3.6: A straight axisymmetric uniformly tapering pipe with radius φ(z) given by
Eq. (3.112), with lateral surface H.

3.5.1 Tapered pipe

This subsection will consider the case where the radius is decreasing uniformly along

the pipe, as shown in Fig. 3.6. Specific orders of the velocity expansion of K = 3 and K = 5

will be considered.

3.5.1.1 Order K=3

For a tapered pipe, the radius is given by

(3.112) φ(z)= 1−εz,

where ε on a constant term representing the rate of change of the radius along the pipe.

Substituting Eq. (3.112) into Eqs. (3.98)-(3.102) gives

(3.113) w0,0 = A
(1−εz)(2) ;

(3.114) u1,0 = −ReεA
(1−εz)(3) ;
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(3.115) u3,0 = ReεA
(1−εz)(5) ;

(3.116) u0,1 =−(1−εz)(2)u0,3;

(3.117) w2,0 = −A
(c2 − c2z)(4) .

With these substitutions, Eqs. (3.103) - (3.108) become:

2π(1−εz)(τa −εpe)=πRe
[

1
2

dA
dt

+ 2εA(2)

3(1−εz)(3)

]
+ ∂pI

∂z
;

π(1−εz)(2)(ετa + pe)=πRe

 u(2)
0,3

24Re(2) (1−εz)(8) − ε(1−εz)
12

dA
dt

+ ε(2)A
12

+ pI ;

1
12Re

(1−εz)(2)

[
(1−εz)(2)∂

(2)u0,3

∂z(2) −12ε(1−εz)
∂u0,3

∂z
+30ε(2)u0,3

]
−τh(ε(2) +1)(1/2)

= 1
24

(1−εz)
[

A(1−εz)
∂u0,3

∂z
+2(1−εz)(3)∂u0,3

∂t
−4εAu0,3

]
;

π

6

[
A(6+ε(2))−6εpe(1−εz)(3) +6τa(1−εz)(3)

]
= πRe

12
(εz−1)(2)

[
−dA

dt
−εA(2)

]
+ ∂qI

∂z
;

π

48
(1−εz)

[
3ε(3)A+8εA+12ετa(1−εz)(3) +12pe(1−εz)(3)

]
= πRe

960
(1−εz)(4)

[
8ε(2)A(2) +10ε(1−εz)(3) dA

dt
+4(1−εz)(10)

]
+ qI ;

1
96Re

(1−εz)(2)

[
∂(2)u0,3

∂z(2) (1−εz)(2) −16ε
∂u0,3

∂z
(1−εz)+56ε(2)u0,3

]
− τh

4
(ε(2) +1)(1/2)

= 1
480

(1−εz)
[
2A(1−εz)

∂u0,3

∂z
−8εAu0,3 +5

∂u0,3

∂t
(1−εz)(3)

]
.

If a steady solution is sought, these equations reduce to:

(3.118) 2π(1−εz)(τa −εpe)= 2πReεA(2)

3(1−εz)(3) +
∂pI

∂z
;
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(3.119) π(1−εz)(2)(ετa + pe)=πRe

 u(2)
0,3

24Re(2) (1−εz)(8) + ε(2)A
12

+ pI ;

1
12Re

(1−εz)(2)

[
(1−εz)(2)∂

(2)u0,3

∂z(2) −12ε(1−εz)
∂u0,3

∂z
+30ε(2)u0,3

]
−τh(ε(2) +1)(1/2)

= 1
24

(1−εz)
[

A(1−εz)
∂u0,3

∂z
−4εAu0,3

]
;

(3.120)

(3.121)
π

6

[
A(6+ε(2))−6εpe(1−εz)(3) +6τa(1−εz)(3)

]
=−πReεA(2)

12(1−εz)
+ ∂qI

∂z
;

π

48
(1−εz)

[
3ε(3)A+8εA+12ετa(1−εz)(3) +12pe(1−εz)(3)

]
= πRe

960

[
8ε(2)A(2) +4(1−εz)(10)

]
+ qI ;

(3.122)

1
96Re

(1−εz)(2)

[
∂(2)u0,3

∂z(2) (1−εz)(2) −16ε
∂u0,3

∂z
(1−εz)+56ε(2)u0,3

]
− τh

4
(ε(2) +1)(1/2)

= 1
480

(1−εz)
[
2A(1−εz)

∂u0,3

∂z
−8εAu0,3

]
.

(3.123)

Substituting Eq. (3.112) into Eq. (3.29) gives

t= −1
1−εz

(
x1(ετa + pe)
(1+ε(2))(1/2) + x2τh

)
e1 + 1

1−εz
(
x1τh −

x2(ετa + pe)
(1+ε(2))(1/2)

)
e2 +

(
τa −εpe

(1+ε(2))(1/2)

)
e3.

For the tapered pipe, the components of the outward unit normal to the surface are given

by

ν1 = x1

(1−εz)(1+ε(2))(1/2) ;

ν2 = x2

(1−εz)(1+ε(2))(1/2) ;

ν3 = −ε
(1+ε(2))(1/2) .
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Then substituting Eqs .(3.30)- (3.32) into Eq. (3.4) gives

t= x1

(1−εz)(1+ε(2))(1/2)

(
−p+ 2

Re
(u1,0 + (3x(2)

1 + x(2)
2 )u3,0 −2x1x2u0,3)

)
e1

+ x1

Re(1−εz)(1+ε(2))(1/2)

(
4x1x2u3,0 +2(x(2)

1 − x(2)
2 )u0,3

)
e2

+ x1

Re(1−εz)(1+ε(2))(1/2)

((du1,0

dz
+ (x(2)

1 + x(2)
2 )

du3,0

dz

)
x1 −

(du0,1

dz
+ (x(2)

1 + x(2)
2 )

du0,3

dz

)
x2 +2Rex1w2,0

)
e3

+ x2

Re(1−εz)(1+ε(2))(1/2)

(
4x1x2u3,0 +2(x(2)

1 − x(2)
2 )u0,3

)
e1

+ x2

(1−εz)(1+ε(2))(1/2)

(
−p+2Re(u1,0 + (x(2)

1 +3x(2)
2 )u3,0 +2x1x2u0,3)

)
e2

+ x2

Re(1−εz)(1+ε(2))(1/2)

((du1,0

dz
+ (x(2)

1 + x(2)
2 )

du3,0

dz

)
x2 +

(du0,1

dz
+ (x(2)

1 + x(2)
2 )

du0,3

dz

)
x1 +2Rex2w2,0

)
e3

− ε

Re(1+ε(2))(1/2)

((du1,0

dz
+ (x(2)

1 + x(2)
2 )

du3,0

dz

)
x1 −

(du0,1

dz
+ (x(2)

1 + x(2)
2 )

du0,3

dz

)
x2 +2Rex1w2,0

)
e1

− ε

Re(1+ε(2))(1/2)

((du1,0

dz
+ (x(2)

1 + x(2)
2 )

du3,0

dz

)
x2 +

(du0,1

dz
+ (x(2)

1 + x(2)
2 )

du0,3

dz

)
x1 +2Rex2w2,0

)
e2

− ε

(1+ε(2))(1/2)

(
−p+2µ

(dw0,0

dz
+ (x(2)

1 + x(2)
2 )

dw2,0

dz

))
e3.

Collecting together the unit vectors and using the boundary definition given by Eq. (3.5)

leads to

t= 1
(1+ε(2))(1/2)

(−px1

1−εz + 2
Re(1−εz)

(u1,0x1 +3u3,0x1(1−εz)(2) −u0,3x(3)
2 )

+ ε

Re

(
x2

du0,1

dz
− x1

du1,0

dz
−2Rew2,0x1 + (1−εz)(2)

(
x2

du0,3

dz
− x1

du3,0

dz

)))
e1

+ 1
(1+ε(2))(1/2)

(
2

Re(1−εz)
(3u3,0x2(1−εz)(2) +u0,3x(3)

1 + x2u1,0)− px2

1−εz
− ε

Re

(
x2

du1,0

dz
+ x1

du0,1

dz
+2Rex2w2,0 + (1−εz)(2)

(
x1

du0,3

dz
+ x2

du3,0

dz

)))
e2

+ 1
(1+ε(2))(1/2)

(
εp+ 1

Re
(1−εz)

(du1,0

dz
+ du3,0

dz
(1−εz)+2Rew2,0

)
−2ε

(dw0,0

dz
+ dw2,0

dz
(1−εz)(2)

))
e3.

Then substituting in Eqs.(3.113)-(3.117) leads to

t= 1
(1+ε(2))(1/2)

(
−px1

1−εz +2

(
3Aεx1

(1−εz)(4) −
ε(3)Ax1

(1−εz)(4) −
u0,3x(3)

2

Re(1−εz)
+ ε(2)

Re
x2u0,3(1−εz)

))
e1

+ 1
(1+ε(2))(1/2)

(
−px2

1−εz +2

(
3Aεx2

(1−εz)(4) −
ε(3)Ax2

(1−εz)(4) +
u0,3x(3)

1

Re(1−εz)
− ε(2)

Re
u0,3x1(1−εz)

))
e2

+ 1
(1+ε(2))(1/2)

(
εp+2

(
3ε(2)A

(1−εz)(3) −
A

(1−εz)(4)

))
e3.
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Equating the two expressions for the stress vector gives

−1
1−εz

(
x1(ετa + pe)
(1+ε(2))(1/2) + x2τh

)
= 1

(1+ε(2))(1/2)

(−px1

1−εz

+2

(
3Aεx1

(1−εz)(4) −
ε(3)Ax1

(1−εz)(4) −
u0,3x(3)

2

Re(1−εz)
+ ε(2)

Re
x2u0,3(1−εz)

))
;

(3.124)

1
1−εz

(
x1τh −

x2(ετa + pe)
(1+ε(2))(1/2)

)
= 1

(1+ε(2))(1/2)

(−px2

1−εz

+2

(
3Aεx2

(1−εz)(4) −
ε(3)Ax2

(1−εz)(4) +
u0,3x(3)

1

Re(1−εz)
− ε(2)

Re
u0,3x1(1−εz)

))
;

(3.125)

(3.126)
(

τa −εpe

(1+ε(2))(1/2)

)
= 1

(1+ε(2))(1/2)

(
εp+2

(
3ε(2)A

(1−εz)(3) −
A

(1−εz)(3)

))
.

Then Eq. (3.126) can be rearranged to give

p = −(1−εz)(3)τa +ε(1−εz)(3) pe −2A(ε(2) +1)
ε(1−εz)(3) .

This expression for p can be substituted back into Eqs. (3.124) and (3.125), then the

following expressions can be found for τa and τh:

τa = −2A(ε(2) +1)
(1−εz)(3) ;

τh = 2
Re

u0,3(ε+1)(1/2)(1−εz)(2).

Substituting the expression for τa back into the expression for p gives p = pe. Sub-

stituting the derived expressions back into the partial differential equations (PDEs),

Eqs. (3.120) and (3.123) simplify to ordinary differential equations (ODEs) for u0,3.

Rearranging Eq. (3.120) gives an expression for the second order differential of u0,3.

Substituting this into Eq. (3.123) gives a first order ODE for u0,3 which can be solved to

give

u0,3 = B(−40ε(1−εz)+ ARe)
7ε(2)+4

2ε(2)

(1−εz)(4) ,

where B is a constant of integration. Then u0,1 is given by

u0,1 = B(−40ε(1−εz)+ ARe)
7ε(2)+4

2ε(2)

(1−εz)(2) .
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Substituting the expression for u0,3 into the expression for τh gives

τh = 2B(ε(2) +1)(1/2)(−40ε(1−εz)+ ARe)
7ε(2)+4

2ε(2)

(1−εz)(2) .

Substituting everything back into Eq. (3.120), it is found that for the equation to balance

it is required that B = 0, which gives u0,3 = u0,1 = τh = 0. With the current expressions

for the velocity, pressure and stress terms, Eq. (3.118) takes the form

−2π(ε(1−εz)(3) pe +2Aµ(ε(2) +1))
(1−εz)(2) = dpI

dz
+ 2A(2)Reεπρ

3(1−εz)(3) .

This can be rearranged to give the follow expression for pe:

pe =−3 dpI
dz −2A(2)επR+12Aπ(ε(2) +1)

6επ(1−εz)(3) .

Using the substitutions pe = p and Eq. (3.42) (in Appendix A) in this expression and

rearranging gives
∂p
∂z

= −4A(6(ε(2) +1)(1−εz)+ AR
6(1−εz)(5) .

Integrating gives

p =−4A
(

(ε(2) +1)
3ε(1−εz)(3) +

ARe
24(1−εz)(4)

)
+k,

where k is a constant of integration. Then from Eq. (3.42),

(3.127) pI =−Aπ
(

4(ε(2) +1)
3ε(1−εz)

+ ARe
6(1−εz)(2)

)
+kπ(1−εz)(2)

and from Eq. (3.43),

(3.128)

qI = kz(4)ε(4)π

4
−kz(3)ε(3)π+ 3kz(2)ε(2)π

2
−kzεπ+ Azε(2)π

3
+ kπ

4
− Aεπ

3
− ReA(2)

24
+ Az

3
− 3A

ε
.

Substituting the expressions for the velocity form (Eqs. (3.113)-(3.117)) into Eq. (3.13)

gives

v=
[( −εA

(1−εz)(3) + (x(2)
1 + x(2)

2 )
εA

(1−εz)(5)

)
x1

]
e1 +

[( −εA
(1−εz)(3) + (x(2)

1 + x(2)
2 )

εA
(1−εz)(5))

)
x2+

]
e2

+
[

A
(1−εz)(2) − (x(2)

1 + x(2)
2 )

A
(1−εz)(4)

]
e3.

(3.129)

A plot of this is shown in Fig. 3.7.
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Figure 3.7: Plot of flow through a tapered pipe, given by Eq. (3.129) with Re = 2, ε= 0.1.

Note that as this is the non-dimensionalised velocity, it must be the case that A = 1

for unity. Then the true velocity will be Eq. (3.129) multiplied by Re. The solution is

plotted in Fig. 3.7 for Re = 2 and ε = 0.1. This 1D solution is compared with the 3D

finite volume solution, as shown in Figs. 3.8-3.9, and the solution errors are presented in

Fig. 3.10. This shows a good agreement between the simulation and the director theory

model, with a maximum relative error of approximately 3% for the Re = 2 case and 5%

for the Re = 4 case. In the finite volume simulation, µ and ρ are set to 1 and the inlet

condition (at z = 0) is a flow rate of π, and the tapered pipe geometry has length 8m. The

Reynolds number for the model is calculated by setting the flow rate at z = 0 to π and

finding Re to satisfy this condition. While the solutions for the 1D model represent a

fully developed flow, those obtained from the 3D finite volume simulations require the

solution to develop from a uniform velocity (Dirichlet) boundary condition prescribed on

the inflow section. It is expected therefore that some comparison errors which appear

will be due to this. Finally the finite volume mesh had a base size of 0.02m with 5 prism

layers around the boundary.

Figs. 3.8-3.10 show good agreement between the director theory solution and the CFD

simulation, considering the low order of expansion used in the director theory approach.

3.5.1.2 Order K=5

Increasing the order to K=5 and seeking a steady non-swirling solution involves solving

the PDE system given by Eqs (3.56)-(3.64) with u0,1,u0,3,u0,5 set to 0. Motivated by
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e1 e2 e3

Figure 3.8: Contour plots of flow through a tapered pipe cross-section, given by Eq. (3.129)
for K = 3 (top) and from a corresponding simulation using STAR-CCM+ (bottom), at
location z = 4, with Re = 2 at the inflow section, ε= 0.1, in the e1, e2 and e3 directions
respectively.

Figure 3.9: Contour plots of coaxial flow (e3 direction) along a tapered pipe cross-section,
given by Eq. (3.129) for K = 3 (left) and from a corresponding simulation using STAR-
CCM+ (right), with Re = 2 at the inflow section.

75



CHAPTER 3. STRAIGHT AXISYMMETRIC PIPE

e1 e2 e3

Figure 3.10: Plots of the relative error, calculated by Eq. (2.18), in a cross-section of the
tapered pipe, between the 3D finite volume simulation and the 1D solution given by
Eq. (3.145) for K = 3. Solution are obtained for Re = 2 (top) and Re = 4 (bottom), ε= 0.1,
in the e1, e2 and e3 directions respectively.

Poiseuille flow, it is assumed that the zeroth order term takes the following form

(3.130) w0,0 = A
(1−εz)(2) ,

where A is a constant related to the bulk flow rate. Then from Eqs (3.47)-(3.49),(3.65)

and (3.67) the form of the following velocity terms are found:

(3.131) w2,0 =− A+4B
(1−εz)(4) ;

u5,0 =−εRe(3A+B)
(1−εz)(7) ;

u3,0 = εRe(4A+B)
(1−εz)(5) ;

(3.132) w4,0 = 3A+B
(1−εz)(6) ;
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(3.133) u1,0 =− εReA
(1−εz)(3) .

Equating the expressions for the stress tensor gives

(3.134)
x2τa

1−εz = x1

(1+ε(2))(1/2)(1−εz)(4)

(
(p− pe −ετa)(1−εz)(3) +2ε(1+ε(2))(2A+B)

)
;

− x1τh

1−εz
(4) = x2

(1+ε(2))(1/2)(1−εz)(4)

(
(p− pe −ετa)(1−εz)(3) +2ε(1+ε(2))(2A+B)

)
;

(3.135)
1

(1+ε(2))(1/2)(1−εz)(3)

(
(τa +εp−εpe +2(ε(2) +1)(2A+B)

)
.

Rearranging Eq. (3.135) gives

(3.136) p = (εpe −τa)(1−εz)(3) +2(1+ε(2))(2A+B)
(1−εz)(3)(1+ε(2))(1/2) .

Substituting this into Eq. (3.134) and equating the coefficients of x1 gives τh = 0. Com-

paring the coefficients of x2 gives

τa = 2(1+ε(2))(2A+B)
(1−εz)(3) .

Then substituting this expression back into Eq. (3.136), it is found that p = pe. Recalling

the expressions for pI and qI for the case of the tapered pipe given by Eqs. (3.127) and

(3.128) and also considering from Eq. (3.44) that for a tapered pipe hI is given by

(3.137) hI = πpe(1−εz)(6)

8
.

Substituting the velocity and pressure terms into Eq. (3.56) and rearranging gives an

expression for dpe
dz which can be integrated to give the following

(3.138) pe = 4(2A+B)(1+ε(2))
3ε(1−εz)(3) − Re(4A(2) +B(2) + AB)

60(1−εz)(4) +k,

where k is a constant of integration. Substituting this into Eqs. (3.127), (3.128), (3.137)

gives

pI = 4π(2A+B)(1+ε(2))
3ε(1−εz)

− Reπ(4A(2) +B(2) + AB)
60(1−εz)(2) +kπ(1−εz)(2);

qI = π(2A+B)(1+ε(2))(1−εz)
3ε

− Reπ(4A(2) +B(2) + AB)
240

+ kπ(1−εz)(4)

4
;

hI = π(2A+B)(1+ε(2))(1−εz)(3)

6ε
− Reπ(4A(2) +B(2) + AB)(1−εz)

480
+ kπ(1−εz)(6)

8
.
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Substituting the velocity and pressure terms into Eq. (3.59) and bringing everything to

one side gives

(3.139)

− π

60(1−εz)
(55z(B−23

11
A)ε(3)−(55B+115A)ε(2)+(−2ReA(2)+(ReB+120z)A+40Bz)ε−40B−120A)= 0.

Expressing B as an ε expansion of the form

B = b0 +b1ε+O(ε(2)),

where b0 and b1 are coefficients to be found so as to minimise the error in Eq. (3.139), it

is found that b0 =−3A and b1 =−ReA(2)

8 . That is

(3.140) B =−3A− ReA(2)

8
ε.

Further terms do not reduce the order of the error due to the approximation of other

terms already introducing an error of O(ε(2)). Substituting Eq. (3.140) into Eqs. (3.131)-

(3.132) gives

(3.141) u5,0 = ε(2)Re(2)A(2)

8(1−εz)(7) ;

(3.142) w4,0 =− εReA(2)

8(1−εz)(6) ;

(3.143) u3,0 = εReA(8−εReA)
8(1−εz)(5) ;

(3.144) w2,0 = A(AεRe−8)
8(1−εz)(4) .

So substituting Eqs. (3.130),(3.133),(3.141),(3.144) back into Eq. (3.14) gives the velocity

form

v= εAx
[
− 1

(1−εz)(3) +
(8−εReA)(x(2) + y(2))

8(1−εz)(5) + εReA(x(2) + y(2))
8(1−εz)(7)

]
e1

+εA y
[
− 1

(1−εz)(3) +
(8−εReA)(x(2) + y(2))

8(1−εz)(5) + εReA(x(2) + y(2))
8(1−εz)(7)

]
e2

+ A
[

1
(1−εz)(2) +

A(εReA−8)(x(2) + y(2))
8(1−εz)(4) − εReA(2)(x(2) + y(2))(2)

8(1−ε)(6)

]
e3.

(3.145)

Given that p = pe, from Eq. (3.138), the pressure is given by

p =−A(1+ε(2))(4+ εReA
2 )

3ε(1−εz)(3) − A(2)(10+ ε(2)Re(2) A(2)

64 + 5εReA
8 )

60(1−εz)(4) .
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e1 e2 e3

Figure 3.11: Contour plots of flow through a tapered pipe cross-section, given by
Eq. (3.145) for K = 5 (top) and from a corresponding simulation using STAR-CCM+
(bottom), at z = 4, with Re = 2, ε= 0.1, in the e1, e2 and e3 directions respectively.

Figure 3.12: Contour plots of coaxial flow (e3 direction) along a tapered pipe cross-section,
given by Eq. (3.129) for K = 5 (left) and from a simulation in STAR-CCM+ (right), with
Re = 2 at the inflow section.
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e1 e2 e3

Figure 3.13: Plots of the relative error, calculated by Eq. (2.18), in a cross-section of the
tapered pipe, between the 3D finite volume simulation and the 1D solution given by
Eq. (3.145) for K = 5, with Re = 2 (top) and Re = 4 (bottom), ε= 0.1, in the e1, e2 and e3
directions respectively.

As was the case with order K = 3, at order K = 5 the results from the director theory

model agree well with the CFD simulation, the comparison of the velocity contours can

be seen in Figs. 3.11 and 3.12. There is a maximum relative error of approximately 3%,

as can be seen in Fig. 3.13. The error of the in-plane velocity looks very similar at both

orders, but the error of the coaxial velocity appears to reduce slightly with the higher

order case. Some higher error close to the walls of the pipe remains present for all cases

investigated. However as the velocity tends to zero close to the wall, it is unsurprising

that the magnitude of the relative error may be larger at these points. There could also

be factors from the simulation settings, such as the number of prism layers, affecting how

well the solution is resolved close to the wall. Additionally, artificially thicker boundary

layers are known to be the result of using the segregated solver (based on the projection

method). Note also the finite volume setup requires the solution to develop fully from the

artificial inflow boundary (uniform velocity is prescribed), and this may not be entirely

achieved at the location the cross section was investigated. Apart from the error apparent
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ϕ(x3)
x3

x1

x2

Figure 3.14: A straight axisymmetric sinusoidal pipe with radius φ(z) given by
Eq. (3.146), with lateral surface H.

closer to the no-slip wall, we observe a profile which contains two peaks within the free-

stream domain. This error appears due to the low order expansion assumed the solution

would take, hence the basis functions of the 1D director theory solution. Higher order

expansions will result in more accurate 1D solutions.

3.5.2 Sinusoidal pipe

This subsection will consider the case of a sinusoidal (wavy walled) pipe, as shown in

Fig. 3.14. Specific orders of the velocity expansion of orders K = 3 and K = 5 will be

considered. For a sinusoidal pipe, the radius is given by

(3.146) φ(z)= 1−εsin(cz),

where ε and c are constants, with ε relating to the amplitude and c relating to the

wavelength of the sinusoidal wall.

3.5.2.1 K=3

With the description of the wall given by Eq. (3.146), Eqs (3.103) - (3.108) now become:

2π(1−εsin(cz)) (τa − peεccos(cz))= ∂p
∂z

+πRe
(
1
2

dA
dt

− A(2)

(1−εsin(cz))(3) +
4A(2)

3(1−εsin(cz))(5)

)
;

− πA
4

[
−ε(2)c(3) cos(cz)sin(cz)+εc(3) cos(cz)(1−εsin(cz))

]
+π(1−εsin(cz))(2) (−εccos(cz)τa − pe)

=−pI − Reπ
12

(
−εccos(cz)(1−εsin(cz))

dA
dt

− 5A(2)ε(3)c(3) cos(3)(cz)
2(1−εsin(cz))(2) + A(2)εc(2) sin(cz)

2(1−εsin(cz))

)
;
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−φ(4)

[
5

2Re
(−εccos(cz))(2) u0,3 + −εccos(cz)(1−εsin(cz))

Re
∂u0,3

∂z
+ (1−εsin(cz))(2)

12Re
∂(2)u0,3

∂z(2)

]

+φ(2)τh

(
1+ε(2)c(2) cos(2)(cz)

)(1/2) =−Re(1−εsin(cz))(3)

6

(
(1−εsin(cz))(3)

2Re
∂u0,3

∂z
+ Aεccos(cz)

Re
u0,3

− A
4Re

∂u0,3

∂z

)
;

πA
2

[
ε(2)c(2) cos(2)(cz)+εc(2) sin(cz)(1−εsin(cz))

]
+πA+π(1−εsin(cz))(3) (τa −εcpe cos(cz))= ∂qI

∂z

+ πRe
4

(
φ(2) dA

dt
+ 7A(2)εccos(cz)

3(1−εsin(cz))

)
;

−πA(1−εsin(cz))
24

[
−3ε(3)c(3) cos(3)(cz)

2

−9ε(2)c(3) cos(cz)sin(cz)
2

(1−εsin(cz))+εc(3) cos(cz)(1−εsin(cz))(2)
]

+ πAεccos(cz)(1−εsin(cz))
2

+ π(1−εsin(cz))(4)

4
(−εcτa cos(cz)− pe)

=−qI − πRe
24

(−εccos(cz)(1−εsin(cz))(3)

4
dA
dt

+A(2)ε(2)c(2) cos(2)(cz)
5

+ A(2)εc(2) sin(cz)(1−εsin(cz))+ (1−εsin(cz))(10)

10Re
u(2)

0,3

)
;

− (1−εsin(cz))(6)

12

[
7ε(2)c(2) cos(2)(cz)

Re
u0,3 + εc(2) sin(cz)(1−εsin(cz))

Re
u0,3

−2εccos(cz)(1−εsin(cz))
Re

∂u0,3

∂z
+ (1−εsin(cz))(2)

8Re
∂(2)u0,3

∂z(2)

]

− (1−εsin(cz))(6)

6Re
u0,3 + (1−εsin(cz))τh

4

(
1+ε(2)c(2) cos(2)(cz)

)(1/2)

=−Re(1−εsin(cz))(6)

8

(
(1−εsin(cz))(2)

12Re
∂u0,3

∂t
+ A

30Re
∂u0,3

∂z
− Aεccos(cz)

(1−εsin(cz))Re
u0,3

)
.

If a steady solution is sought, these equations reduce to:

(3.147)

2π(1−εsin(cz)) (τa − peεccos(cz))= ∂pI

∂z
+πRe

(
− A(2)

(1−εsin(cz))(3) +
4A(2)

3(1−εsin(cz))(5)

)
;

− πA
4

[
−ε(2)c(3) cos(cz)sin(cz)+εc(3) cos(cz)(1−εsin(cz))

]
+π(1−εsin(cz))(2) (−εccos(cz)τa − pe)

=−pI − Reπ
12

(
−5A(2)ε(3)c(3) cos(3)(cz)

2(1−εsin(cz))(2) + A(2)εc(2) sin(cz)
2(1−εsin(cz))

)
;
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−φ(4)

[
5

2Re
(−εccos(cz))(2) u0,3 + −εccos(cz)(1−εsin(cz))

Re
∂u0,3

∂z
+ (1−εsin(cz))(2)

12Re
∂(2)u0,3

∂z(2)

]

+φ(2)τh

(
1+ε(2)c(2) cos(2)(cz)

)(1/2) =−Re(1−εsin(cz))(3)

6

(
(1−εsin(cz))(3)

2Re
∂u0,3

∂z
+ Aεccos(cz)

Re
u0,3

− A
4Re

∂u0,3

∂z

)
;

πA
2

[
ε(2)c(2) cos(2)(cz)+εc(2) sin(cz)(1−εsin(cz))

]
+πA+π(1−εsin(cz))(3) (τa −εcpe cos(cz))= ∂qI

∂z

+ πRe
4

(
+7A(2)εccos(cz)

3(1−εsin(cz))

)
;

−πA(1−εsin(cz))
24

[
−3ε(3)c(3) cos(3)(cz)

2
− 9ε(2)c(3) cos(cz)sin(cz)

2
(1−εsin(cz))+εc(3) cos(cz)(1−εsin(cz))(2)

]
+ πAεccos(cz)(1−εsin(cz))

2
+ π(1−εsin(cz))(4)

4
(−εcτa cos(cz)− pe)=−qI

− πRe
24

(
A(2)ε(2)c(2) cos(2)(cz)

5
+ A(2)εc(2) sin(cz)(1−εsin(cz))+ (1−εsin(cz))(10)

10Re
u(2)

0,3

)
;

− (1−εsin(cz))(6)

12

[
7ε(2)c(2) cos(2)(cz)

Re
u0,3 + εc(2) sin(cz)(1−εsin(cz))

Re
u0,3 − 2εccos(cz)(1−εsin(cz))

Re
∂u0,3

∂z

+ (1−εsin(cz))(2)

8Re
∂(2)u0,3

∂z(2)

]
− (1−εsin(cz))(6)

6Re
u0,3 + (1−εsin(cz))τh

4

(
1+ε(2)c(2) cos(2)(cz)

)(1/2)

=−Re(1−εsin(cz))(6)

8

(
(1−εsin(cz))(2)

12Re
∂u0,3

∂t
+ A

30Re
∂u0,3

∂z
− Aεccos(cz)

(1−εsin(cz))Re
u0,3

)
.

Substituting Eq. (3.146) into Eq. (3.98) gives

(3.148) w0,0 = A
(1−εsin(cz))(2) .

Then from Eq. (3.17),

(3.149) u1,0 =− ARεccos(cz)
(1−εsin(cz))(3) .

From Eq. (3.65),

(3.150) u3,0 = ARεccos(cz)
(1−εsin(cz))(5) .
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From Eq. (3.66),

(3.151) u0,1 =−u0,3(1−εsin(cz))(2).

From Eq. (3.67),

(3.152) w2,0 =− A
(1−εsin(cz))(4) .

Substituting Eq. (3.146) into Eq. (3.29) gives

t=
 1

1−εsin(cz)

 x1 (τaεccos(cz)− pe)(
1+ (εccos(cz))(2))(1/2) − x2τh

e1

+
 1

1−εsin(cz)

 x2 (τaεccos(cz)− pe)(
1+ (εccos(cz))(2))(1/2) + x1τh

e2 +
 τa + peεccos(cz)(

1+ (εccos(cz))(2))(1/2)

e3.

For the sinusoidal pipe, the components of the outward unit normal to the surface are

given by

v1 = x1

(1−εsin(cz))[1+ (εccos(cz))(2)](1/2) ;

v2 = x2

(1−εsin(cz))[1+ (εccos(cz))(2)](1/2) ;

v3 = εccos(cz)
[1+ (εccos(cz))(2)](1/2) .
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Then substituting Eqs. (3.30) - (3.32) into Eq. (3.4) gives

t= x1

(1−εsin(cz))[1+ (εccos(cz))(2)](1/2) [−p+ 2
R

(u1,0 + (3x(2)
1 + x(2)

2 )u3,0 −2x1x2u0,3)]e1

+ x1

Re(1−εsin(cz))[1+ (εccos(cz))(2)](1/2) [4x1x2u3,0 + (2x(2)
1 −2x(2)

2 )u0,3]e2

+ x1

Re(1−εsin(cz))[1+ (εccos(cz))(2)](1/2)

[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
x1 −

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3

)
x2

+2Rex1w2,0
]
e3 + x2

Re(1−εsin(cz))[1+ (εccos(cz))(2)](1/2) [4x1x2u3,0 + (2x(2)
1 −2x(2)

2 )u0,3]e1

+ x2

(1−εsin(cz))[1+ (εccos(cz))(2)](1/2) [−p+ 2
Re

(u1,0 + (x(2)
1 +3x(2)

2 )u3,0 +2x1x2u0,3)]e2

+ x2

Re(1−εsin(cz))[1+ (εccos(cz))(2)](1/2)

[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
x2 +

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3

)
x1

+2Rex2w2,0
]
e3

+ εccos(cz)
R[1+ (εccos(cz))(2)](1/2)

[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
x1 −

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3

)
x2

+2Rex1w2,0
]
e1

+ εccos(cz)
Re[1+ (εccos(cz))(2)](1/2)

[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
x2 +

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3

)
x1

+2Rex2w2,0
]
e2 + εccos(cz)

[1+ (εccos(cz))(2)](1/2)

[
−p+2

(
∂v
∂x3

+ (x(2)
1 + x(2)

2 )
∂w2,0

∂x3

)]
e3.

Collecting together the unit vectors and using the boundary condition given by

Eq. (3.5) leads to

t= 1
(1−εsin(cz))(1+ε(2)c(2) cos(2)(cz))(1/2)

(
−px1 + 2

Re
x1u1,0 + 6

Re
x1(1−εsin(cz))(2)u3,0

− 2
Re

(1−εsin(cz))(2)u0,3 + εc
Re

cos(cz)(1−εsin(cz))
((
∂u1,0

∂z
+ (1−εsin(cz))(2)∂u3,0

∂z

)
x1

−
(
∂u0,1

∂z
+ (1−εsin(cz))(2)∂u0,3

∂z

)
x2 +2Rex1w2,0

))
e1

+ 1
(1−εsin(cz))(1+ε(2)c(2) cos(2)(cz))(1/2)

(
6

Re
x2(1−εsin(cz))(2)u3,0 + 2

Re
x1(1−εsin(cz))(2)u0,3 − px2

− 2
Re

x2u1,0 + εc
Re

cos(cz)(1−εsin(cz))
((
∂u1,0

∂z
+ (1−εsin(cz))(2)∂u3,0

∂z

)
x2

+
(
∂u0,1

∂z
+ (1−εsin(cz))(2)∂u0,3

∂z

)
x1 +2Rex2w2,0

))
e2

+ 1
(1−εsin(cz))(1+ε(2)c(2) cos(2)(cz))(1/2)

(
1

Re
(1−εsin(cz))(2)∂u1,0

∂z
+ 1

Re
(1−εsin(cz))(4)∂u3,0

∂z

+2(1−εsin(cz))(2)w2,0 +εccos(cz)(1−εsin(cz))
(
−p+2

(
∂v
∂z

+ (1−εsin(cz))(2)∂w2,0

∂z

)))
e3.
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Then substituting in Eqs. (3.148) - (3.152) gives

t= 1
(1−εsin(cz))(1+ε(2)c(2) cos(2)(cz))(1/2)

(
−px1 −2x1

Aεccos(cz)
(1−εsin(cz))(3)

+6x1
Aεccos(cz)

(1−εsin(cz))(3)

− 2
Re

(1−εsin(cz))(2)u0,3 +εccos(cz)
((

Aεc(2) sin(cz)
(1−εsin(cz))(2) −

Aε(2)c(2) cos(2)(cz)
(1−εsin(cz))(3)

+
(
− Aεc(2) sin(cz)

(1−εsin(cz))(2) +
5Aε(2)c(2) cos(2)(cz)

1−εsin(cz))(3)

))
x1

− 1
Re

(
−∂u0,3

∂z
(1−εsin(cz))(2) +2u0,3εccos(cz)(1−εsin(cz))+ (1−εsin(cz))(2)∂u0,3

∂z

)
x2

−2x1
A

(1−εsin(cz))(4)

))
e1

+ 1
(1−εsin(cz))(1+ε(2)c(2) cos(2)(cz))(1/2)

(
6x2

Aεccos(cz)
(1−εsin(cz))(3)

+ 2
Re

x1(1−εsin(cz))(2)u0,3 − px2

+2x2
Aεccos(cz)

(1−εsin(cz))(3) +εccos(cz)
((

Aεc(2) sin(cz)
(1−εsin(cz))(2) −

Aε(2)c(2) cos(2)(cz)
(1−εsin(cz))(3)

+
(
− Aεc(2) sin(cz)

(1−εsin(cz))(2) +
5Aε(2)c(2) cos(2)(cz)

(1−εsin(cz))(3)

))
x2

+ 1
Re

(
−∂u0,3

∂z
(1−εsin(cz))(2) +u0,3εccos(cz)(1−εsin(cz))+ (1−εsin(cz))(2)∂u0,3

∂z

)
x1

−2x2
A

(1−εsin(cz))(4)

))
e2

+ 1
(1−εsin(cz))(1+ε(2)c(2) cos(2)(cz))(1/2)

((
Aεc(2) sin(cz)
(1−εsin(cz))

− Aε(2)c(2) cos(2)(cz)
(1−εsin(cz))(2)

)
+

(
−Aεc(2) sin(cz)

(1−εsin(cz))
+ 5Aε(2)c(2) cos(2)(cz)

(1−εsin(cz))(2)

)
−2

A
(1−εsin(cz))(2) +εccos(cz)(1−εsin(cz)) (−p

+2
(

2Aεccos(cz)
(1−εsin(cz))(3) −

4Aεccos(cz)
(1−εsin(cz))(3)

)))
e3.
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Equating the two expressions for the stress vector gives

 1
1−εsin(cz)

 x1 (τaεccos(cz)− pe)(
1+ (εccos(cz))(2))(1/2) − x2τh


= 1

(1−εsin(cz))(1+ε(2)c(2) cos(2)(cz))(1/2)

(
−px1 −2x1

Aεccos(cz)
(1−εsin(cz))(3) +6x1

Aεccos(cz)
(1−εsin(cz))(3)

− 2
Re

(1−εsin(cz))(2)u0,3 +εccos(cz)
((

Aεc(2) sin(cz)
(1−εsin(cz))(2) −

Aε(2)c(2) cos(2)(cz)
(1−εsin(cz))(3)

+
(
− Aεc(2) sin(cz)

(1−εsin(cz))(2) +
5Aε(2)c(2) cos(2)(cz)

1−εsin(cz))(3)

))
x1

− 1
Re

(
−∂u0,3

∂z
(1−εsin(cz))(2) +2u0,3εccos(cz)(1−εsin(cz))+ (1−εsin(cz))(2)∂u0,3

∂z

)
x2

−2x1
A

(1−εsin(cz))(4)

))
;

(3.153)

 1
1−εsin(cz)

 x2 (τaεccos(cz)− pe)(
1+ (εccos(cz))(2))(1/2) + x1τh


= 1

(1−εsin(cz))(1+ε(2)c(2) cos(2)(cz))(1/2)

(
6x2

Aεccos(cz)
(1−εsin(cz))(3) +

2
Re

x1(1−εsin(cz))(2)u0,3 − px2

+2x2
Aεccos(cz)

(1−εsin(cz))(3) +εccos(cz)
((

Aεc(2) sin(cz)
(1−εsin(cz))(2) −

Aε(2)c(2) cos(2)(cz)
(1−εsin(cz))(3)

+
(
− Aεc(2) sin(cz)

(1−εsin(cz))(2) +
5Aε(2)c(2) cos(2)(cz)

(1−εsin(cz))(3)

))
x2

+ 1
Re

(
−∂u0,3

∂z
(1−εsin(cz))(2) +u0,3εccos(cz)(1−εsin(cz))+ (1−εsin(cz))(2)∂u0,3

∂z

)
x1

−2x2
A

(1−εsin(cz))(4)

))
;

(3.154)

87



CHAPTER 3. STRAIGHT AXISYMMETRIC PIPE

 τa + peεccos(cz)(
1+ (εccos(cz))(2))(1/2)


= 1

(1−εsin(cz))(1+ε(2)c(2) cos(2)(cz))(1/2)

((
Aεc(2) sin(cz)
(1−εsin(cz))

− Aε(2)c(2) cos(2)(cz)
(1−εsin(cz))(2)

)
+

(
−Aεc(2) sin(cz)

(1−εsin(cz))
+ 5Aε(2)c(2) cos(2)(cz)

(1−εsin(cz))(2)

)
−2

A
(1−εsin(cz))(2) +εccos(cz)(1−εsin(cz)) (−p

+2
(

2Aεccos(cz)
(1−εsin(cz))(3) −

4Aεccos(cz)
(1−εsin(cz))(3)

)))
.

(3.155)

Then rearranging Eq. (3.155) and simplifying gives

p = 1
εccos(cz)(1−ε(2) sin(cz))(3)

(
ε(7)cpe cos(7)(cz)−ε(6)τa cos(6)(cz)+3ε(5)cpe(1−ε(2))cos(5)(cz)

+ε(4)(6Ac(2) +2εc(2) sin(cz)−3τa +3ε(2)τa)cos(4)(cz)+3ε(3)cpe(ε(2) −1)(2) cos(3)(cz)

−ε(2)
(
2εA(ε(2)c(2) +3c(2) −1)sin(cz)+3τa(ε(2) −1)(2) +2A(2ε(2)c(2) + c(2) −3)

)
cos(2)(cz)

−εcpe(ε(2) −1)(3) cos(cz)−2Aε(ε(2) +3)sin(cz)+τa(ε(2) −1)(3) −2A(3ε(2) −1)
)
.

(3.156)

Substituting this back into Eqs. (3.153) and (3.154) and setting u0,3 = 0, the following

expressions for τa and τh can be obtained:

τa =−2A(1+ε(2)c(2) cos(2)(cz))
(1−εsin(cz))(3) ;

τh = 0.

Substituting these into Eq. (3.156) and simplifying gives

(3.157) p = pe.

From Eq. (3.42),

(3.158) pI =πpe(1−εsin(cz))(2).

From Eq. (3.43),

(3.159) qI = π

4
pe(1−εsin(cz))(4).
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Substituting into Eq. (3.147) and rearranging, then integrating with respect to z, an

expression for pe can be found as follows:

pe =
A

[
2(−18−εc(2) sin(cz)−13ε(2)c(2) +14ε(2)c(2) sin(2)(cz))(1−εsin(cz))−7ReAεccos(cz)

]
36εccos(cz)(1−εsin(cz))(4) .

This can be substituted into Eq. (3.157) to give the expression for the pressure p. Substi-

tuting Eqs. (3.148)-(3.152) into Eq. (3.45) gives the velocity as

v=
((
−Aεccos(cz)((−ε(3) sin(cz)−3ε(2))cos(2)(cz)+ (3ε+ε(3))sin(cz)+1+3ε(2))

(ε(2) cos(2)(cz)+1−ε(2))(3)

+ 1
(ε(2) cos(2)(cz)+1−ε(2))(5) ((x(2) + y(2))Aεccos(cz)((ε(5) sin(cz)+5ε(4))cos(4)(cz)

+ ((−10ε(3) −2ε(5))sin(cz)−10ε2−10ε(4))cos(2)(cz)+ (5ε+10ε(3) +ε(5))sin(cz)

+(1+10ε(2) +5ε(4))))
)
x
)
e1

+
((
−Aεccos(cz)((−ε(3) sin(cz)−3ε(2))cos(2)(cz)+ (3ε+ε(3))sin(cz)+1+3ε(2))

(ε(2) cos(2)(cz)+1−ε(2))(3)

+ 1
(ε(2) cos(2)(cz)+1−ε(2))(5) ((x(2) + y(2))Aεccos(cz)((ε(5) sin(cz)+5ε(4))cos(4)(cz)

+ ((−10ε(3) −2ε(5))sin(cz)−10ε(2) −10ε(4))cos(2)(cz)+ (5ε+10ε(3) +ε(5))sin(cz)

+(1+10ε(2) +5ε(4))))
)

y
)
e2

+
(
− 2A

4εsin(cz)+ε(2) cos(2cz)−2−ε(2)

+ 2A(x(2) + y(2))
4εsin(cz)+ε(2) cos(2cz)−2−ε(2))(1−εsin(cz))(2)

)
e3.

(3.160)

As can be seen from Fig. 3.15, the shape of the velocity contours matches well between

the K = 3 director theory solution and the STAR-CCM+ simulation. Comparisons of the

contours of the coaxial velocity are given in Fig. 3.16. In the case of a sinusoidal flow, a

periodic condition could be set at the inlet for the simulation, rather than having to wait

for the flow to become fully developed. In the finite volume simulation, µ and ρ were set

to 1. The pipe had an inlet diameter of 2m and the finite volume mesh base size was set

to 0.03m

The error plots in Fig. 3.17 show reasonably good agreement between the order K = 3

solution and the simulation with a maximum relative error of approximately 6.5% in the

Re = 2 case and 4.5% in the Re = 4 case.
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e1 e2 e3

Figure 3.15: Contour plots of flow through a sinusoidal pipe cross-section, given by
Eq. (3.160) for order K = 3 (top) and from a corresponding simulation in STAR-CCM+
(bottom), at location z = 4.3768, with Re = 2 at the inflow section, ε= 0.1, c = 2π/5, in the
e1, e2 and e3 directions respectively.

Figure 3.16: Contour plots of the coaxial flow (e3 direction) along a sinusoidal pipe
cross-section, given by Eq. (3.160) for K = 3 (left) and from a corresponding simulation in
STAR-CCM+ (right), with Re = 2 at the inflow section.
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e1 e2 e3

Figure 3.17: Plots of the relative error, calculated by Eq. (2.18), in a cross-section of the
sinusoidal pipe, between the 3D finite volume simulation using a periodic boundary
condition and the solution given by Eq. (3.160) for K = 3. Solution are obtained for Re = 2
(top) and Re = 4 (bottom), ε= 0.1, c = 2π/5 in the e1, e2 and e3 directions respectively.

3.5.2.2 K=5

By assuming there is no swirling flow, u0,1, u0,3 and u0,5 are set to 0. The radius for the

sinusoidal pipe is given by Eq. (3.146). Motivated by Poiseuille flow, it is assumed that

(3.161) w0,0 = A
(1−εsin(cz))(2) ,

where A is a constant. Then, substituting Eq. (3.161) into Eq. (3.47) and rearranging

gives

(3.162) u1,0 =− AεcRecos(cz)
(1−εsin(cz))(3) .

Then substituting in Eqs. (3.146), (3.161), (3.162) and solving Eqs.(3.48), (3.49), (3.109),

(3.111) simultaneously gives

(3.163) u3,0 = εcRe(A+B)cos(sz)
(1−εsin(cz))(5) ;
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(3.164) u5,0 =− εcReA cos(cz)
(1−εsin(cz))(7) ;

(3.165) w2,0 =− A+B
(1−εsin(cz))(4) ;

(3.166) w4,0 = B
(1−εsin(cz))(6) ;

where B is a constant of integration. Then equating the expressions for the stress tensor

gives

1
(1+ε(2)c(2) cos(2)(cz))(1/2)(1−εsin(cz))(6)

(
−(1−εsin(cz))(5)(1+ε(2)c(2) cos(2)(cz))(1/2)τh y

+
(
cε(5)(τaεsin(cz)−5τa +2(A−B)c(2))cos(5)(cz)

+ε(4)(pe − p)(εsin(cz)−5)cos(4)(cz)+2sε(3)
(
ε
(
−(ε(2) +5)τa +2(A−B)c(2)

)
sin(cz)+5(ε(2) +1)τa

−(ε(2)c(2) + c(2) −1)(A−B)
)
cos(3)(cz)−2(pe − p)ε(2)

(
(ε(3) +5ε)sin(cz)−5(ε(2) +1)

)
cos(2)(cz)

+ cε
(
ε
(
(ε(4) +10ε(2) +5)τa +4(A−B)

)
sin(cz)− (5ε(4) −10ε(2) −1)τa −2(ε(2) +1)(A−B)

)
cos(cz)

+
(
(ε(5) +10ε(3) +5ε)sin(cz)−5ε(4) −10ε(2) −1

)
(pe − p)

)
x
)
= 0;

(3.167)

1
(1+ε(2)c(2) cos(2)(cz))(1/2)(1−εsin(cz))(6)

(
−(1−εsin(cz))(5)(1+ε(2)c(2) cos(2)(cz))(1/2)τhx

+
(
cε(5)(τaεsin(cz)−5τa +2(A−B)c(2))cos(5)(cz)

+ε(4)(pe − p)(εsin(cz)−5)cos(4)(cz)+2cε(3)
(
ε
(
−(ε(2) +5)τa +2(A−B)c(2)

)
sin(cz)+5(ε(2) +1)τa

−(ε(2)c(2) + c(2) −1)(A−B)
)
cos(3)(cz)−2(pe − p)ε(2)

(
(ε(3) +5ε)sin(cz)−5(ε(2) +1)

)
cos(2)(cz)

+ cε
(
ε
(
(ε(4) +10ε(2) +5)τa +4(A−B)

)
sin(cz)− (5ε(4) −10ε(2) −1)τa −2(ε(2) +1)(A−B)

)
cos(cz)

+
(
(ε(5) +10ε(3) +5ε)sin(cz)−5ε(4) −10ε(2) −1

)
(pe − p)

)
y
)
= 0;

(3.168)

1

(1+ε(2)c(2) cos(2)(cz))(1/2)(1−ε(2) sin(2)(cz))(3)

(
−cε(7)(pe − p)cos(7)(cz)+τaε

(6) cos(6)(cz)

+3ε(5)c(ε(2) −1)(pe − p)cos(5)(cz)−
(
2εc(2)(A−B)sin(cz)+3(ε(2) −1)τa +6(A−B)c(2)

)
ε(4) cos(4)(cz)

−3cε(3)(ε(2) −1)(2)(pe − p)cos(3)(cz)+2
(
ε(ε(2)c(2) +3c(3) −1)(A−B)sin(cz)+ (3ε(4) −6ε(2) +3)τa

+2(A−B)(3ε(2)c(2) + c(2) −3)
)
ε(2) cos(2)(cz)+εc(ε(2) −1)(3)(pe − p)cos(cz)+2ε(ε(2) +3)(A−B)sin(cz)

−(ε(2) −1)(3)τa +2((3ε(2) +1)(A−B)
)
= 0.

(3.169)
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Rearranging Eq. (3.169) gives the following expression:

p = 1

εccos(cz)(1−ε(2) sin(2)(cz))(3)

(
cε(7) pe)cos(7)(cz)−τaε

(6) cos(6)(cz)

−3ε(5)c(ε(2) −1)pe cos(5)(cz)+
(
2εc(2)(A−B)sin(cz)+3(ε(2) −1)τa +6(A−B)c(2)

)
ε(4) cos(4)(cz)

+3cε(3)(ε(2) −1)(2) pe cos(3)(cz)−2
(
ε(ε(2)c(2) +3c(3) −1)(A−B)sin(cz)+ (3ε(4) −6ε(2) +3)τa

+2(A−B)(3ε(2)c(2) + c(2) −3)
)
ε(2) cos(2)(cz)−εc(ε(2) −1)(3) pe cos(cz)−2ε(ε(2) +3)(A−B)sin(cz)

+(ε(2) −1)(3)τa −2((3ε(2) +1)(A−B)
)
.

Substituting this back into Eq. (3.167) and equating the coefficients of y gives τh = 0.

Substituting back into Eq. (3.167) and equating the coefficients of x gives

(3.170) τa =− (A−B)(1+ε(2)c(2) cos(2)(cz))
(1−εsin(cz))(3) .

Substituting Eq. (3.170) back into the expression for p and simplifying gives p = pe. The

expressions for pI and qI for a sinusoidal pipe are given by Eqs (3.158) and (3.159). The

expression for hI , defined by Eq. (3.44), for a sinusoidal pipe is given by

hI = πpe

8
(1−εsin(cz))(6).

Substituting the velocity terms and pressure terms into Eq. (3.56) and rearranging gives

dpe

dz
=−60(A−B)(1−εsin(cz))(1+ε(2)c(2) cos(2)(cz))+εcRe(10A(2) −5AB+B(2))cos(cz)

15(1−εsin(cz))(5) .

Integrating gives a complicated expression for pe. Substituting the velocity and pressure

terms into Eq. (3.62) and simplifying gives

8ε(4)
(
A− 7

5
B

)
c(2) cos(8)(cz/2)−16ε(4)

(
A− 7

5

)
c(2) cos(6)(cz/2)+ε(3)

(
−53

5
B+7A

)
c(2) sin(cz/2)cos(5)(cz/2)

+ 3
2

(
c(2)

(
7A− 143

15
B

)
ε(2) +

(
−2

3
A+ 22

15
B

)
c(2) − 4

3
B

)
ε(2) cos(4)(cz/2)

−
((
−53

5
B+7A

)
cε+ 1

30
(7A−B)(2)Re

)
ε(2)csin(cz/2)cos(3)(cz/2)

+ε
((
−

(
5
2

A− 31
10

B
)

c(2)ε(3) +
(
A− 11

5
B

)
c(2) +2B

)
ε+ 1

60
(7A−B)(2)Res

)
cos(2)(cz/2)

+ε
((

5
2

A− 31
10

B
)

c(2)ε(2) + 1
60

(7A−B)(2)Recε+
(
1
4

A− 9
60

B
)

c(2) −2B
)
sin(cz/2)cos(cz/2)

−
(
5
8

A− 31
40

B
)

c(2)ε(2) − 1
120

(7A−B)(2)Recε+ 1
2

B = 0.

(3.171)
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The left hand side is the expression for the error in this equation. Now, express B in the

form

(3.172) B = c0 + c1ε+ c2ε
(2) +O(ε(3)),

where c0,c1,c2 etc are constants to be chosen such that the error if Eq. (3.171) in min-

imised.

Then, to eliminate the error at first order in Eq. (3.171), it is required that c0 = 0. To

minimise the error at order ε, it is required that

c1 = 7A(2)Rec
60

.

As there is an error of order ε and ε is small, coefficients of orders of higher powers of ε

will have minimal effect on the error in Eq. (3.171). So the expression for B is now given

by

(3.173) B = 7εA(2)Rec
60

.

Substituting Eq.(3.173) back into Eqs. (3.162) - (3.166) gives

u3,0 = εcRe(60A+7εA(2)Rec)cos(cz)
60(1−εsin(cz))(5) ;

u5,0 =−7c(2)ε(2)Re(2)A(2) cos(cz)
60(1−εsin(cz))(7) ;

w2,0 =− 60A+7A(2)Recε
60(1−εsin(cz))(4) ;

w4,0 = 7A(2)Recε
60(1−εsin(cz))(6) .

Then substituting into the expression for the velocity at order K = 5, given by Eq. (3.3)

gives the velocity as

v= x1

[
− Aεccos(cz)

(1−εsin(cz))(3) + (x(2)
1 + x(2)

2 )
εc(60A+7εA(2)Rec)cos(cz)

60(1−εsin(cz))(5)

−(x(2)
1 + x(2)

2 )(2) 7c(2)ε(2)ReA(2) cos(cz)
60(1−εsin(cz))(7)

]
e1

+ x2

[
− Aεccos(cz)

(1−εsin(cz))(3) + (x(2)
1 + x(2)

2 )
εc(60A+7εA(2)Rec)cos(cz)

60(1−εsin(cz))(5)

−(x(2)
1 + x(2)

2 )(2) 7c(2)ε(2)ReA(2) cos(cz)
60(1−εsin(cz))(7)

]
e2

+
[

A
(1−εsin(cz))(2) − (x(2)

1 + x(2)
2 )

60A+7A(2)Recε
60(1−εsin(cz))(4) + (x(2)

1 + x(2)
2 )(2) 7A(2)Recε

60(1−εsin(cz))(6)

]
e3.

(3.174)
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e1 e2 e3

Figure 3.18: Contour plots of flow through a sinusoidal pipe cross-section, given by
Eq. (3.174) for K = 5 (top) and from a corresponding simulation using STAR-CCM+
(bottom) using a periodic boundary condition, at location z = 4.3768, with Re = 2 at the
inflow section, ε= 0.1, c = 2π/5 in the e1, e2 and e3 directions respectively.

Figure 3.19: Contour plots of coaxial flow (e3 directions) along a sinusoidal pipe cross-
section, given by Eq. (3.174) for K = 5 (left) and from a corresponding simulation using
STAR-CCM+ (right), with Re = 2 at the inflow section.
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e1 e2 e3

Figure 3.20: Plots of the relative error, calculated by Eq. (2.18), in a cross-section of the
sinusoidal pipe, between the 3D finite volume simulation using a periodic boundary
condition and the solution given by Eq. (3.174) for K = 5. Solutions are obtained for Re = 2
(top) and Re = 4 (bottom), ε= 0.1, c = 2π/5 in the e1, e2 and e3 directions respectively.

The similarity in the velocity contours can be seen in Figs. 3.18 and 3.20. It can be

seen that the error of the coaxial velocity (e3) direction is reduced when the velocity

expansion order is increased from K = 3 (Fig. 3.17) to K = 5 (Fig. 3.20). In the Re = 2 case,

the maximum relative error decreases from approximately 6.5% to 3.5%. In the Re = 4

case, the maximum relative error decreases from approximately 4.5% to 2.5%. There is

also an error close to the wall, as was seen and discussed in the case of the tapered pipe.

3.6 Summary of Chapter

This chapter presented a director theory approach for modelling fluid flow in a straight

axisymmetrical pipe. This was done by starting from the standard equations of motion of

incompressible and Newtonian fluid flow (Navier-Stokes, continuity), and then assuming

that the fluid velocity could be approximated by a summation of weighting function
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(polynomials of the in-plane coordinates) multiplied by directors (vector functions of

the coaxial coordinate and time). By assuming axisymmetry, the number of unknown

directors can be reduced. In this case, this was done by converting to cylindrical polar

coordinates, assuming the velocity was independent of θ, which put restrictions on the

values of some of the directors. Other conditions assumed include zero velocity at the

wall.

Then the conservation of momentum equations are integrated over the cross-section

of the pipe rather than solved for point-wise. The equations are multiplied by each

respective weighting function and integrated. This results in a system of partial differ-

ential equations in terms of the coaxial coordinate and time. The number of equation

depends on the order K chosen for the velocity expansion. In principle the expansion

can be carried out to higher orders of K, however only the cases K=3 and K=5 have

been included here. Additional equations arising from boundary and incompressibility

conditions complete the system. At this point, the radius of the pipe is only considered a

generic function of the coaxial coordinate and time. For specific geometries, the system

can be simplified and solved.

Results are presented in this chapter for some specific geometries. First a pipe of

constant radius is considered, and it is shown that Poiseuille flow can be recovered if

consistent assumptions are made. Then a steady decaying swirling flow is obtained. Then

the case where the radius varies along the pipe is considered. Solutions are recovered for

flow in a tapered and sinusoidal pipe and compared with results from three-dimensional

finite volume simulations. In both cases the director theory solutions matched the

simulations well, with typical maximum relative errors of around 5%. Two orders of

velocity expansion were considered in these cases, it would be interesting to see results

at higher orders and to see whether the error decreases and if flow separation occurs,

although the difficulty of obtaining an analytic solution increases with higher orders.

The higher relative errors close to the wall due to the velocity tending to zero at these

points, it would also be interesting to see if there is any change in the near wall error at

higher orders.

This work could be extended by considering a pipe radius that varies with time

as well as along the pipe. At the point that system of partial differential equations is

derived, this model allows a radius that depends on time, but some of the simplifications

that followed in the geometries that were solved in this chapter would not apply, leaving

a more complicated system to solve, however this should be possible with numerical

techniques. Another extension would be to have a non-circular cross-section, in which
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case the simplifications made based on axisymmetry would not apply. Considering a

non-Newtonian fluid would also be of interest, and again is possible in the approach but

would lead to more complex algebraic equations.
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4
TOROIDALLY CURVED PIPE

4.1 Introduction

Having investigated flow in straight axisymmetric pipes, the attention is now turned

to curved pipes. To gain an understanding of how director theory can be applied to

curved pipes, the work of Green et al [7] was studied, where director theory is applied

to fluid flow in a toroidally curved pipe. The same approach is taken in the setup of the

relevant local coordinate system, but a different approach is taken in the determination

of the equations of motion which are to be solved for. In [7] the equations of motion are

expressed in terms of various kinetic variables representing, for example force vectors.

It was decided to take a different approach and work directly from the Navier-Stokes

equations in terms of the usual variables of velocity and pressure, as this seemed more

appropriate and intuitive.

The first step is to consider a coordinate system that followes the centreline of the

pipe and then to derive the relevant boundary and incompressibility conditions and

equations of motion in this coordinate system. The fluid velocity is again assumed to

be well approximated by a series of weighting function (polynomials of the in-plane

coordinates) multiplied by directors. The directors are in general vector functions of the

coaxial coordinate and time, but in this case of a pipe of constant radius and curvature, a

fully developed steady flow was assumed, so they reduce to constants. The number of

unknown directors are reduced through condition of planar symmetry, incompressibility

and boundary conditions. The equations of motion are multiplied by each weighting
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a1
a2a3

g2

g1g3

a1

a2

a3

a

e2

e3
e1

R

a2

a3

a

e2

e3

R

θ

Figure 4.1: Setup for a toroidal pipe, with Cartesian basis (e1,e2,e3), curvilinear co-
variant basis (g1,g2,g3) and corresponding orthonormal basis (a1,a2,a3), where a is the
radius of the pipe and R is the distance from the centre of curvature to the centreline of
the pipe [7].

function in turn and integrated over the cross-section of the pipe, to form a system of

quadratic equations where the unknown directors are solved for. Putting these values

back in the velocity expansion then gives the velocity profile. The results from the director

theory model is compared with that from 3D finite volume simulations at a range of

Reynolds numbers.

4.2 Setup

Consider a torus pipe with its centre at the origin, its centreline about x1 = 0 and R is

the constant radius from the centre of the torus to the centreline. The first step is to find

the curvilinear coordinates (ζ1,ζ2,ζ3) for this case.

Choose the coordinates such that the centreline of the torus is always in the ζ3 direc-

tion and that the ζ1,ζ2 coordinates are in the cross-section. With the stated configuration,

choosing ζ1 = x1, ζ1 always points upwards in the cross section, as can be seen from Fig

4.1. Choose ζ3 = Rθ, θ is the angle between the e2 and a2 vectors in a clockwise direction,
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as shown in Fig 4.1. Then the centreline of the torus follows the ζ3 direction. From this,

tan(ζ3/R)= x3/x2.

So

ζ3 = R arctan(x3/x2).

Then from Fig 4.1,

ζ2 = (x(2)
2 + x(2)

3 )(1/2) −R.

This gives a set of orthogonal curvilinear coordinates. The inverse is given by

x1 = ζ1;

x2 = (R+ζ2)cos(ζ3/R);

x3 = (R+ζ2)sin(ζ3/R).

The position vector to any point in the fluid is given by

r= xiei

= ζ1e1 + (R+ζ2)cos(ζ3/R)e2 + (R+ζ2)sin(ζ3/R)e3.

The covariant base vectors, given by Eq. (2.5), are found to be

(4.1) g1 = e1;

(4.2) g2 = cos(ζ3/R)e2 +sin(ζ3/R)e3;

(4.3) g3 =−R+ζ2

R
sin(ζ3/R)e2 + R+ζ2

R
cos(ζ3/R)e3;

and the contravariant base vectors, defined by Eq. (2.6), to be

g1 = e1;

g2 = cos(ζ3/R)e2 +sin(ζ3/R)e3;

g3 =− R
R+ζ2 sin(ζ3/R)e2 + R

R+ζ2 cos(ζ3/R)e3.
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From Eq. (2.7)

g(1/2) =

∣∣∣∣∣∣∣∣
1 0 0

0 cos(ζ3/R) −R+ζ2

R sin(ζ3/R)

0 sin(ζ3/R) R+ζ2

R cos(ζ3/R)

∣∣∣∣∣∣∣∣
= R+ζ2

R
cos(2)(ζ3/R)+ R+ζ2

R
sin(2)(ζ3/R)

= R+ζ2

R
.

A set of orthonormal basis vectors ai, as shown in Fig. 4.1, are given by

(4.4) a1 = e1;

(4.5) a2 = cos(ζ3/R)e2 +sin(ζ3/R)e3;

(4.6) a3 =−sin(ζ3/R)e2 +cos(ζ3/R)e3.

Let φ be the fixed radius of the pipe. Then the lateral surface can be represented by

φ(2) −ζ12 −ζ22 = 0.

The fluid velocity, given by Eq. (2.8), can rewritten as

(4.7) v(ζ1,ζ2,ζ3, t)= v∗(ζ3, t)+
K∑

N=1
λi

N(ζ1,ζ2)wi
N(ζ3, t),

recalling that the wi
N are the director velocities and the λi

N (ζ1,ζ2) could be considered as

shape functions. In this case v∗(ζ3, t) is the velocity along the centreline of the toroidal

pipe and wi
N(ζ3, t) = wi

N(ζ3, t)gi. Expressing this in terms of the orthonormal basis ai,

with v∗ = v∗i ai and wi
N = wi

N ja j (To expand on this, wi
N = wi

Ngi, so wi
N for each i = 1,2,3

is the component of the Nth director in the gi direction. Now each of these gi components

of the Nth director are being split into their respective a j components for j = 1,2,3, so

wi
N j is the component of the Nth director which is in the gi direction which is in the a j

direction.), gives

(4.8) v= v∗j (ζ3, t)a j +
K∑

N=1
λi

N(ζ1,ζ2)wi
N j(ζ

3, t)a j.

Assuming an incompressible flow, the incompressibility condition is given by

∂v
∂xi ·ei = 0.
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To express this in terms of the curvilinear coordinates ζi, consider that

∂v
∂xi =

∂v
∂ζ j

∂ζ j

∂xi

and the Cartesian basis ei can be expressed in terms of the basis ai as

e1 = a1;

e2 = cos(ζ3/R)a2 −sin(ζ3/R)a3;

e3 = sin(ζ3/R)a2 +cos(ζ3/R)a3.

As a2 and a3 depend on ζ3, they will be affected by differentiation with respect to ζ3 as

follows:

∂a2

∂ζ3 =− 1
R

sin(ζ3/R)e2 + 1
R

cos(ζ3/R)e3

= 1
R

a3;

∂a3

∂ζ3 =− 1
R

cos(ζ3/R)e2 − 1
R

sin(ζ3/R)e3

=− 1
R

a2.

Then

∂v
∂x1 ·e1 =

(
1
∂v
∂ζ1 +0

∂v
∂ζ2 +0

∂v
∂ζ3

)
·a1

= ∂v
∂ζ1 ·a1

=
(

K∑
N=1

∂λi
N

∂ζ1 wi
N ja j

)
·a1

=
K∑

N=1

∂λi
N

∂ζ1 wi
N1;
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∂v
∂x2 ·e2 =

(
0
∂v
∂ζ1 +cos(ζ3/R)

∂v
∂ζ2 − R

R+ζ2 sin(ζ3/R)
∂v
∂ζ3

)
· (cos(ζ3/R)a2 −sin(ζ3/R)a3

)
=

(
cos(ζ3/R)

K∑
N=1

∂λi
N

∂ζ2 wi
N ja j − R

R+ζ2 sin(ζ3/R)

[
∂v∗j
∂ζ3 a j +

v∗2
R

a3 −
v∗3
R

a2 +
K∑

N=1
λi

N

∂wi
N j

∂ζ3 a j

+
K∑

N=1

λi
Nwi

N2

R
a3 −

K∑
N=1

λi
Nwi

N3

R
a2

])
· (cos(ζ3/R)a2 −sin(ζ3/R)a3

)
= cos(2)(ζ3/R)

K∑
N=1

∂λi
N

∂ζ2 wi
N2 −cos(ζ3/R)sin(ζ3/R)

K∑
N=1

∂λi
N

∂ζ2 wi
N3 −

R
R+ζ2 cos(ζ3/R)sin(ζ3/R)

∂v∗2
∂ζ3

+ R
R+ζ2 sin(2)(ζ3/R)

∂v∗3
∂ζ3 + v∗2

R+ζ2 sin(2)(ζ3/R)+ v∗3
R+ζ2 cos(ζ3/R)sin(ζ3/R)

− R
R+ζ2 cos(ζ3/R)sin(ζ3/R)

K∑
N=1

λi
N
∂wi

N2

∂ζ3 + R
R+ζ2 sin(2)(ζ3/R)

K∑
N=1

λi
N
∂wi

N3

∂ζ3

+ 1
R+ζ2 cosζ3/R sinζ3/R

K∑
N=1

λi
Nwi

N3 +
1

R+ζ2 sin(2)(ζ3/R)
K∑

N=1
λi

Nwi
N2;

∂v
∂x3 ·e3 =

(
0
∂v
∂ζ1 +sin(ζ3/R)

∂v
∂ζ2 + R

R+ζ2 cos(ζ3/R)
∂v
∂ζ3

)
· (sin(ζ3/R)a2 +cos(ζ3/R)a3

)
=

(
sin(ζ3/R)

K∑
N=1

∂λi
N

∂ζ2 wi
N ja j + R

R+ζ2 cos(ζ3/R)

[
∂v∗j
∂ζ3 a j +

v∗2
R

a3 −
v∗3
R

a2 +
K∑

N=1
λi

N

∂wi
N j

∂ζ3 a j

+
K∑

N=1

λi
Nwi

N2

R
a3 −

K∑
N=1

λi
Nwi

N3

R
a2

])
· (sin(ζ3/R)a2 +cos(ζ3/R)a3

)
= sin(2)(ζ3/R)

K∑
N=1

∂λi
N

∂ζ2 wi
N2 +cos(ζ3/R)sin(ζ3/R)

K∑
N=1

∂λi
N

∂ζ2 wi
N3 +

R
R+ζ2 cos(ζ3/R)sin(ζ3/R)

∂v∗2
∂ζ3

+ R
R+ζ2 cos(2)(ζ3/R)

∂v∗3
∂ζ3 + v∗2

R+ζ2 cos(2)(ζ3/R)− v∗3
R+ζ2 cos(ζ3/R)sin(ζ3/R)

+ R
R+ζ2 cos(ζ3/R)sin(ζ3/R)

K∑
N=1

λi
N
∂wi

N2

∂ζ3 + R
R+ζ2 cos(2)(ζ3/R)

K∑
N=1

λi
N
∂wi

N3

∂ζ3

+ 1
R+ζ2 cos(2)(ζ3/R)

K∑
N=1

λi
Nwi

N2 −
1

R+ζ2 cos(ζ3/R)sin(ζ3/R)
K∑

N=1
λi

Nwi
N3.
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So, ∂v
∂xi ·ei = 0 gives

K∑
N=1

∂λi
N

∂ζ1 wi
N1 +cos(2)(ζ3/R)

K∑
N=1

∂λi
N

∂ζ2 wi
N2 −cos(ζ3/R)sin(ζ3/R)

K∑
N=1

∂λi
N

∂ζ2 wi
N3

− R
R+ζ2 cos(ζ3/R)sin(ζ3/R)

∂v∗2
∂ζ3

+ R
R+ζ2 sin(2)(ζ3/R)

∂v∗3
∂ζ3 + v∗2

R+ζ2 sin(2)(ζ3/R)+ v∗3
R+ζ2 cos(ζ3/R)sin(ζ3/R)

− R
R+ζ2 cos(ζ3/R)sin(ζ3/R)

K∑
N=1

λi
N
∂wi

N2

∂ζ3 + R
R+ζ2 sin(2)(ζ3/R)

K∑
N=1

λi
N
∂wi

N3

∂ζ3

+ 1
R+ζ2 cosζ3/R sinζ3/R

K∑
N=1

λi
Nwi

N3 +
1

R+ζ2 sin(2)(ζ3/R)
K∑

N=1
λi

Nwi
N2

+sin(2)(ζ3/R)
K∑

N=1

∂λi
N

∂ζ2 wi
N2 +cos(ζ3/R)sin(ζ3/R)

K∑
N=1

∂λi
N

∂ζ2 wi
N3 +

R
R+ζ2 cos(ζ3/R)sin(ζ3/R)

∂v∗2
∂ζ3

+ R
R+ζ2 cos(2)(ζ3/R)

∂v∗3
∂ζ3 + v∗2

R+ζ2 cos(2)(ζ3/R)− v∗3
R+ζ2 cos(ζ3/R)sin(ζ3/R)

+ R
R+ζ2 cos(ζ3/R)sin(ζ3/R)

K∑
N=1

λi
N
∂wi

N2

∂ζ3 + R
R+ζ2 cos(2)(ζ3/R)

K∑
N=1

λi
N
∂wi

N3

∂ζ3

+ 1
R+ζ2 cos(2)(ζ3/R)

K∑
N=1

λi
Nwi

N2 −
1

R+ζ2 cos(ζ3/R)sin(ζ3/R)
K∑

N=1
λi

Nwi
N3 = 0.

Simplifying using trigonometric identities gives

v∗2
R+ζ2 + R

R+ζ2

∂v∗3
∂ζ3 +

K∑
N=1

[
∂λi

N

∂ζ1 wi
N1 +

∂λi
N

∂ζ2 wi
N2 +

λi
Nwi

N2

R+ζ2 + Rλi
N

R+ζ2

∂wi
N3

∂ζ3

]
= 0.

Multiplying by R+ζ2 gives

v∗2 +R
∂v3

∂ζ3 +
K∑

N=1

[(
R+ζ2) ∂λi

N

∂ζ1 wi
N1 +

∂

∂ζ2

((
R+ζ2)λi

N

)
wi

N2 +Rλi
N
∂wi

N3

∂ζ3

]
= 0.

It is noted that this differs from the corresponding equation representing the incom-

pressibility condition in [7], this is specifically Eq. 2.15 in Green et al’s paper. However,

that equation was found to be dimensionally inconsistent, so the present result provides

more confidence. The dimensional inconsistently of Eq. 2.15 in [7] was discovered within

the work of this thesis, by performing a dimensionality check, after extensive effort and

checks failed to derive the same equation, and continued to yield the equation above.

A fully developed flow would satisfy

∂

∂ζ3 (v ·ai)= 0.
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The satisfaction of this condition can be readily guaranteed by insisting on the vanishing

of the gradient with respect to ζ3 of the velocity v∗ and the director velocities wi
N [7].

The velocity components in the cross-flow directions should be equal, so there is no

flow out of the walls, so set w1
N1 = w2

N2. From Eqs. (4.1) - (4.6)

g1 = a1;

g2 = a2;

g3 = R+ζ2

R
a3.

As wi
N j is the a j component of the gi vector, this implies that

w1
N2 = w1

N3 = w2
N1 = w2

N3 = w3
N1 = w3

N2 = 0.

It is noted that a different justification is offered for why these terms are set to zero in

[7], namely that setting some of the director velocities equal to zero still allows for the

specification on a fairly general set of weighting function in the velocity expansion and

at the same time will result in a simple system of equations of motion.

Given that a term such as v∗(ζ3, t) can be represented by any one of the series terms

(when ζ1 and ζ2 are 0), without loss of generality, set v∗ = 0 [7]. Note that, for a steady

flow and with the previous simplifications, the expression for velocity can now be written

in the reduced form

(4.9) v=
K∑

N=1
λi

N(ζ1,ζ2)wi
Niai.

4.3 Choice of Weighting Functions

Now the focus is on choosing the weighting functions λi
N(ζ1,ζ2). Green et al [7] suggest

considering a particular polynomial form for the velocity of the form

(4.10) v=
H∑

j=0

j∑
i=0

(ζ1)(i)(ζ2)( j−i)ak
i jak

for k = 1,2,3, where H is the hierarchical order of the theory. So the ak
i j coefficients

represent magnitudes of each polynomial term, in the ak direction, for i = 1,2,3 in the

velocity expansion.

This clearly already satisfies the conditions for a steady and fully developed flow,

as the expression is independent of t and ζ3. Restrictions for the coefficients ak
i j are
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found through the requirements of satisfying other conditions such as no-slip and

incompressibility. Another condition that Green et al [7] suggest should be satisfied

is flow symmetry about the ζ2 −ζ3 plane (i.e. the osculating plane). This means v(ζ1,ζ2)

must satisfy the following:

v(ζ1,ζ2) ·a1 =−v(−ζ1,ζ2) ·a1;

v(ζ1,ζ2) ·a2 = v(−ζ1,ζ2) ·a2;

v(ζ1,ζ2) ·a3 = v(−ζ1,ζ2) ·a3.

For Eq. (4.10) to satisfy these conditions, it is required that

• a1
i j = 0 when i is even;

• a2
i j = 0 when i is odd;

• a3
i j = 0 when i is odd.

Given this, the expression given by Eq. (4.10) can be rewritten as

v= 1
2

H∑
j=0

j∑
i=0

((ζ1)i − (−ζ1)i)(ζ2)( j−i)a1
i ja1 + 1

2

H∑
j=0

j∑
i=0

((ζ1)i + (−ζ1)i)(ζ2)( j−i)a2
i ja2

+ 1
2

H∑
j=0

j∑
i=0

((ζ1)i + (−ζ1)i)(ζ2)( j−i)a3
i ja3.

(4.11)

This will be borne in mind when satisfying the no-slip and incompressibility conditions.

The incompressibility condition is given by

∂v
∂xi ·ei = ∂v

∂ζ j
∂ζ j

∂xi

= ∂v
∂ζ1 ·a1 + ∂v

∂ζ2
∂ζ2

∂x2 · (cos(ζ3/R)a2 −sin(ζ3/R)a3)+ ∂v
∂ζ2

∂ζ2

∂x3 · (sin(ζ3/R)a2 +cos(ζ3/R)a3)

= ∂v1

∂ζ1 +cos(2)(ζ3/R)
∂v2

∂ζ2 −cos(ζ3/R)sin(ζ3/R)
∂v3

∂ζ2 + v2

R+ζ2 sin(2)(ζ3/R)+ v3

R+ζ2 cos(ζ3/R)sin(ζ3/R)

+ ∂v2

∂ζ2 sin(2)(ζ3/R)+ ∂v3

∂ζ2 sin(ζ3/R)cos(ζ3/R)+ v2

R+ζ2 cos(2)(ζ3/R)− v3

R+ζ2 cos(ζ3/R)sin(ζ3/R)

= ∂v1

∂ζ1 + ∂v2

∂ζ2 + v2

R+ζ2 = 0.

So, in curvilinear coordinates, the incompressibility condition is

(4.12)
∂v1

∂ζ1 + ∂v2

∂ζ2 + v2

R+ζ2 = 0.

The no-slip condition is given by v(ζ1,ζ2)= 0 on the surface (ζ1)(2) + (ζ2)(2) = r(2).
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It is not easy to identify the restrictions that need to be made on ak
i j in order for

Eq. (4.10) to satisfy these conditions for a general H. So to proceed, these conditions are

satisfied for specific values of H to see if a pattern emerges. This has been done with the

aid of Maple for H = 1,2,3,4,5.

First substitute Eq. (4.11) into Eq. (4.12). To satisfy Eq. (4.12), set the coefficients of

each of the terms in the resulting polynomial to 0. This gives a system of simultaneous

equations for a1
i j and a2

i j terms. Reduce the number of unknown terms by expressing

some of them in terms of others. Once this has been done, substitute the terms that there

are expressions for back into Eq. (4.11). Next, satisfy the no-slip condition by setting

v(ζ1, (r(2) − (ζ1)(2))(1/2))= 0, or equivalently v((r(2) − (ζ2)(2))(1/2),ζ2)= 0. Taylor expand the

resulting expression, in order to be able to equate powers of ζ1. Set the coefficients of

the powers of ζ1 to 0 in each direction. Again, this creates more simultaneous equations,

through which the number of unknown ak
i j terms can be reduced. The remaining un-

known terms will need to be later solved for by substituting into the equations of motion.

For now, an expression for v has been obtained with fewer numbers of unknown terms.

This process will be shown for the case H = 2.

Substituting H = 2 into Eq. (4.11) gives

(4.13)

v= (a1
11ζ

1+a1
12ζ

1ζ2)a1+(a2
00+a2

01ζ
2+a2

02(ζ2)(2)+a2
22(ζ1)(2))a2+(a3

00+a3
01ζ

2+a3
02(ζ2)(2)+a3

22(ζ1)(2))a3.

Substituting this into Eq. (4.12) gives

∂

∂ζ1 (a1
11ζ

1+a1
12ζ

1ζ2)+ ∂

∂ζ2 (a2
00+a2

01ζ
2+a2

02(ζ2)(2)+a2
22(ζ1)(2))+a2

00 +a2
01ζ

2 +a2
02(ζ2)(2) +a2

22(ζ1)(2)

R+ζ2 = 0.

Carrying out the differentiation gives

a1
11 +a1

12ζ
2 +a2

01 +2a2
02ζ

2 + a2
00 +a2

01ζ
2 +a2

02(ζ2)(2) +a2
22(ζ1)(2)

R+ζ2 = 0.

As (R+ζ2)> 0, this can be rewritten as

(R+ζ2)(a1
11 +a1

12ζ
2 +a2

01 +2a2
02ζ

2)+a2
00 +a2

01ζ
2 +a2

02(ζ2)(2) +a2
22(ζ1)(2) = 0;

or equivalently as

Ra1
11 +Ra2

01 +a2
00 + (a1

11 +Ra1
12 +2a2

01 +2Ra2
02)ζ2 + (a1

12 +3a2
02)(ζ2)(2) +a2

22(ζ1)(2) = 0.
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This can be satisfied by setting the coefficients of each power of ζ1 and ζ2 to 0, giving the

following:

Ra1
11 +Ra2

01 +a2
00 = 0;

a1
11 +Ra1

12 +2a2
01 +2Ra2

02 = 0;

a1
12 +3a2

02 = 0;

a2
22 = 0.

Hence the following relations can be deduced:

a1
12 =−3a2

02;

a1
11 = Ra2

02 −2a2
01;

a2
00 = R(3a2

01 −Ra2
02).

Now substituting these expressions, along with a2
22 = 0 back into Eq. (4.13) gives

v= ((R+a2
02 −2a2

01)ζ1 −2a2
02ζ

1ζ2)a1 + (R(3a2
01 −Ra2

02)+a2
01ζ

2 +a2
02(ζ2)(2))a2

+ (a3
00 +a3

01ζ
2 +a3

02(ζ2)(2) +a3
22(ζ1)(2))a3.

(4.14)

Now, satisfy the no-slip condition by setting v((r(2) − (ζ2)(2))(1/2),ζ2)= 0. This gives

v1((r(2) − (ζ2)(2))(1/2),ζ2)= (r(2) − (ζ2)(2))(1/2)[Ra2
02 −3a2

02ζ
2 −2a2

01]= 0;

v2((r(2) − (ζ2)(2))(1/2),ζ2)= 3Ra2
01 +a2

01ζ
2 − r(2)a2

02 +a2
02(ζ2)(2) = 0;

v3((r(2) − (ζ2)(2))(1/2),ζ2)= a3
00 +a3

01ζ
2 +a3

02(ζ2)(2) +a3
22(r(2) − (ζ2)(2))= 0.

Using the expression for v2 gives

a2
01 =

R− (ζ2)(2)

3R+ζ2 a2
02.

Substituting this into the expression for v1 gives

(r(2) − (ζ2)(2))(1/2)

3R+ζ2 a2
02(3r(2) −2R+Rζ2 − (ζ2)(2) −9R(ζ2)(2) −3a2

02(ζ2)(3))= 0.

Therefore a2
02 = 0 and due to the above relations, a1

i j = 0 and a2
i j = 0 for all i and j. To

satisfy the expression for v3, set the coefficients of the powers of ζ2 to 0. This gives the

following:

a3
00 + r(2)a3

22 = 0;

a3
01 = 0;

a3
02 −a3

22 = 0.
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Hence the following relations are obtained:

a3
00 =−r(2)a3

22;

a3
02 = a3

22.

Substituting everything back into Eq. (4.14) gives

v= a3
22((ζ1)(2) + (ζ2)(2) − r(2))a3.

The following results were obtained by considering different H.

When H = 1,

v= 0.

When H = 2,

v= a3
22((ζ1)(2) + (ζ2)(2) − r(2))a3.

When H = 3,

v= (a3
22 +a3

03ζ
2)((ζ1)(2) + (ζ2)(2) − r(2))a3.

When H = 4,

v= [a3
22 +a3

44r(2) +a3
03ζ

2 +a3
04(ζ2)(2) +a3

44(ζ1)(2)]((ζ1)(2) + (ζ2)(2) − r(2))a3.

When H = 5,

v= a1
35ζ

1

4
(2Rζ2 − r(2) + (ζ1)(2) +3(ζ2)(2))((ζ1)(2) + (ζ2)(2) − r(2))a1

+ a1
35

8
(R+ζ2)(r(2) −5(ζ1)(2) − (ζ2)(2))((ζ1)(2) + (ζ2)(2) − r(2))a2

+ (a3
22 +a3

44r(2) + (a3
25r(2) −a3

45r(2) +a3
03)ζ2 +a3

04(ζ2)(2) +a3
44(ζ1)(2)

+ (a3
25 −a3

45)(ζ2)(3) +a45(ζ1)(2)ζ2)((ζ1)(2) + (ζ2)(2) − r(2))a3.

Note that for H = 1 to 4, a1
i j,a

2
i j = 0 for all i, j, hence there is no flow in the a1 and a2

directions. These expressions are consistent with the results of Green et al [7], who

provide forumule for the weighting functions λi
N . Green et al [7] state that after these

substitutions into the incompressibility and no-slip conditions, the velocity, for general

H is given by

(4.15) v=
L∑

N=1
(λ1

N c1
Na1 +λ2

N c2
Na2)+

K∑
N=1

λ3
N c3

Na3
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where L is the reduced number of directors in the cross-section and K is the number of

coaxial directors. The values for L and K are given by

L =


0 for H < 5
1
4 ((H−3)(2) −1) for even H
1
4 (H−3)(2) for odd H

and

K =


1
4 H2 for even H
1
4 (H2 −1) for odd H.

In [7], formulae are given for λi
N where iN and jN appear as exponents. An algorithm

is given for calculating the values of iN and jN from the value of N. Plots of these

weighting functions, from Maple, are given in Figs. 4.2 to 4.4, for N = 1 to 12. These

figures show the individual shapes of the weighting functions, which will be combined

together to form the velocity profile. To get back to the form of Eq. (4.9), Green et al [7]

set λ1
N =λ2

N = 0 for N > L and then c1
i = wi

Ni. Note however, that in using this approach,

the form of λ1
N and λ2

N , for each particular N will change based on the value of H. To

avoid this, it is instead proposed here that λ1
N =λ2

N = 0 for N < 6. Using this approach,

the forms of λi
N and wi

Ni for the velocity given above when H = 5 are shown in Table 4.1

for clarity, where ak
i j are the coeficients, as represented in Eq. (4.10).

Note that as the order of the expansion is increased in the representation of v, λi
N

has not changed, however w3
N3 has sometimes been adjusted by a term multiplied by

r(2), w3
13 for example, suggesting that for a thin tube, these additional terms represent a

minor adjustment.
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λ3
1 = (ζ1)(2) + (ζ2)(2) −a2; w3

13 = a3
22 +a3

44a2;

λ3
2 = ζ2((ζ1)(2) + (ζ2)(2) −a2); w3

23 = a3
03 +a3

25a2 −a3
45a2;

λ3
3 = (ζ2)(2)((ζ1)(2) + (ζ2)(2) −a2); w3

33 = a3
04;

λ3
4 = (ζ1)(2)((ζ1)(2) + (ζ2)(2) −a2); w3

43 = a3
44;

λ3
5 = (ζ2)(3)((ζ1)(2) + (ζ2)(2) −a2); w3

53 = a3
25 −a3

45;

λ3
6 = (ζ1)(2)ζ2((ζ1)(2) + (ζ2)(2) −a2); w3

63 = a3
45;

λ1
6 = 2ζ1(2Rζ2 −a2 + (ζ1)(2) +3(ζ2)(2))((ζ1)(2) + (ζ2)(2) −a2); w1

61 =
a1

35
8 ;

λ2
6 = (R+ζ2)(a2 −5(ζ1)(2) − (ζ2)(2))((ζ1)(2) + (ζ2)(2) −a2); w2

62 =
a1

35
8 .

Table 4.1: Forms of the weighting functions for order H = 5

4.4 Equations of motion

The equations of motion for fluid flow are generally comprised of the Navier-Stokes

equations, which represent conservation of linear momentum and the continuity equation,

which represents conservation of mass. The typical representation of the Navier-Stokes

equations in vector form is

∂v
∂t

+v ·∇v=−∇p
ρ

+ν∇2v,

where p is pressure, ρ is density and ν is kinematic viscosity. An integrated version, over

the cross-section, is generally taken in the director theory approach, as is the case here.

If an order of H = 7 is chosen for the velocity expansion, this corresponds to K = 12

and L = 4 in Eq. (4.15). The weighting functions for this order can be deduced in a similar

manner as was demonstrated above for lower orders. The velocity for order H = 7 is given
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N i = 1 i = 2 i = 3

1

2

3

4

Figure 4.2: Plots of the weighting functions λi
N in the representation given by Eq. (4.15),

for N = 1,2,3,4, with ζ1 along the bottom right axis, ζ2 along the bottom left axis and λi
N

along the vertical axis.
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N i = 1 i = 2 i = 3

5

6

7

8

Figure 4.3: Plots of the weighting functions λi
N in the representation given by Eq. (4.15),

for N = 5,6,7,8, with ζ1 along the bottom right axis, ζ2 along the bottom left axis and λi
N

along the vertical axis.
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N i = 1 i = 2 i = 3

9

10

11

12

Figure 4.4: Plots of the weighting functions λi
N in the representation given by Eq. (4.15),

for N = 9,10,11,12, with ζ1 along the bottom right axis, ζ2 along the bottom left axis and
λi

N along the vertical axis.
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by

v1(ζ1,ζ2)=
(
1− (ζ1)(2)

a2 − (ζ2)(2)

a2

)((
4
ζ1ζ2

a2

(
1+ ζ2

R

)
−2

ζ1

R

(
1− (ζ1)(2)

a2 − (ζ2)(2)

a2

))
u6 +

(
ζ1

a

(
1+ ζ2

R

)(
5

(ζ2)(2)

a2

−1+ (ζ1)(2)

a2

)
−2

ζ1ζ2

Ra

(
1− (ζ1)(2)

a2 − (ζ2)(2)

a2

))
u9 +

(
ζ1ζ2

a2

(
1+ ζ2

R

)(
6

(ζ2)(2)

a2 −2+2
(ζ1)(2)

a2

)
−2

ζ1(ζ2)(2)

Ra2

(
1− (ζ1)(2)

a2 − (ζ2)(2)

a2

))
u11

+
(
4

(ζ1)(3)ζ2

a(4)

(
1+ ζ2

R

)
−2

(ζ1)(3)

a2R

(
1− (ζ1)(2)

a2 − (ζ2)(2)

a2

))
u12

)
;

v2(ζ1,ζ2)=
(
1− (ζ1)(2)

a2 − (ζ2)(2)

a2

)((
−

(
1+ ζ2

R

)(
5

(ζ1)(2)

a2 −1+ (ζ2)(2)

a2

))
u6

+
(
−ζ

2

a

(
1+ ζ2

R

)(
5

(ζ1)(2)

a2 −1+ (ζ2)(2)

a2

))
u9

+
(
− (ζ2)(2)

a2

(
1+ ζ2

R

)(
5

(ζ1)(2)

a2 −1+ (ζ2)(2)

a2

))
u11

+
(
− (ζ1)(2)

a2

(
1+ ζ2

R

)(
7

(ζ1)(2)

a2 −3+3
(ζ2)(2)

a2

))
u12

)
;

v3(ζ1,ζ2)=
(
1− (ζ1)(2)

a2 − (ζ2)(2)

a2

)(
w1 + ζ2

a
w2 + (ζ2)(2)

a2 w3 + (ζ1)(2)

a2 w4+ (ζ2)(3)

a3 w5 + (ζ1)(2)ζ2

a3 w6

+ (ζ2)(4)

a(4) w7 + (ζ1)(2)(ζ2)(2)

a(4) w8 + (ζ1)(4)

a(4) w9 + (ζ2)(5)

a(5) w10 + (ζ1)(2)(ζ2)(3)

a(5) w11 + (ζ1)(4)ζ2

a(5) w12

)
.

The a1,a2 and a3 components of the momentum equation are given respectively by

v1
∂v1

∂ζ1 +v2
∂v1

∂ζ2 =−1
ρ

∂p
∂ζ1 + µ

ρ

(
∂(2)v1

∂(ζ1)(2) +
1

R+ζ2
∂v1

∂ζ2 + ∂(2)v2

∂(ζ2)(2)

)
;

v1
∂v2

∂ζ1 +v2
∂v2

∂ζ2 − v2
3

R+ζ2 =−1
ρ

∂p
∂ζ2 + µ

ρ

(
− v2

(R+ζ2)(2) +
∂(2)v2

∂(ζ2)(2) +
1

R+ y
∂v2

∂ζ2 + ∂(2)v2

∂(ζ1)(2)

)
;

v1
∂v3

∂ζ1 +v2
∂v3

∂ζ2 + v2v3

R+ζ2 =− R
ρ(R+ζ2)

∂p
∂ζ3 + µ

ρ

(
(R+ζ2)(2)

r(2)
∂(2)v3

∂(ζ1)(2) +
2
R
∂v3

∂ζ2 − 4v3

R(R+ζ2)

+R+ζ2

r(2)
∂v3

∂ζ2 + (R+ζ2)(2)

r(2)
∂(2)v3

∂(ζ2)(2)

)
.
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4.5 Nondimensionalisation

Before carrying out the integration over the cross-section and solving for the director

velocities, first the equations are nondimensionalised. The following dimensionless

variables are introduced:

X = ζ1/a; Y = ζ2/a; Z = ζ3/a;

V1 = Re0v1

2c
; V2 = Re0v2

2c
; V3 = v3

2c
;

P = ap
2µc

; δ= a
R

; Re0 = 2acρ
µ

;

where c represents the average coaxial velocity and Re0 the Reynolds number for flow in

a corresponding straight pipe, subject to the same coaxial pressure gradient, δ represents

the curvature ratio. These choice of scales are chosen with foresight to simplify the

algebra that follows.

The nondimensionalised velocities are expressed by

V1(X ,Y )= (1− X (2) −Y (2))
(
U6

(
4XY (1+δY )−2δX (1− X (2) −Y (2))

)
+U9

(
X (1+δY ) (X (2) +5Y (2) −1)

−2δX (1− X (2) −Y (2))
)
+U11

(
XY (1+δY ) (2X (2) +6Y (2) −2)−2δXY (2)(1− X (2) −Y (2))

)
+U12

(
4X (3)Y (1+δY )−2δX (3)(1− X (2) −Y (2))

))
;

V2(X ,Y )=−(1− X (2) −Y (2))
(
U6

(
(1+δY ) (5X (2) +Y (2) −1)

)
+U9

(
Y (1+δY ) (5X (2) +Y (2) −1)

)
+U11

(
Y (2) (1+δY ) (5X (2) +Y (2) −1)

)
+U12

(
X (2) (1−δY ) (7X (2) +3Y (2) −3)

))
;

V3(X ,Y )= (1− X (2) −Y (2))(1+W2Y +W3Y (2) +W4X (2) +W5Y (3) +W6X (2)Y +W7Y (4) +W8X (2)Y (2)

+W9X (4) +W10Y (5) +W11X (2)Y (3) +W12X (4)Y ).

The a1,a2 and a3 components of the momentum equation are expressed respectively

in terms of the dimensionless variables by

(4.16)
1

Re0
V1
∂V1

∂X
+ 1

Re0
V2
∂V1

∂Y
=− ∂P

∂X
+ 1

Re0

∂(2)V1

∂X (2) +
δ

Re0(1+δY )
∂V1

∂Y
+ 1

Re0

∂(2)V2

∂Y (2) ;

1
Re0

V1
∂V2

∂X
+ 1

Re0
V2
∂V2

∂Y
−Re0

δ

(1+δY )
V 2

3 =−∂P
∂Y

− δ(2)

Re0(1+δY )(2) V2 + 1
Re0

∂(2)V2

∂Y (2)

+ δ

Re0(1+δY )
∂V2

∂Y
+ 1

Re0

∂(2)V2

∂X (2) ;

(4.17)
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(4.18)

V1
∂V3

∂X
+V2

∂V3

∂Y
+ δ

1+δY
V2V3 =− 1

1+δY
∂P
∂Z

+ ∂V3

∂X (2) +
∂V3

∂Y (2) +
δ

1+δY
∂V3

∂Y
− δ(2)

(1+δY )(2) V3.

Multiplying by each respective weighting function λi
N and integrating over the cross-

section on the pipe A, the integrated equations of motion are
ˆ ˆ

A
λ1

N

[
(1+δY )

(
V1
∂V1

∂X
+V2

∂V1

∂Y
− ∂(2)V1

∂X (2) −
∂(2)V2

∂Y (2)

)
−δ∂V1

∂Y

]
dX dY

=−Re0

ˆ ˆ
A
λ1

N(1+δY )
∂P
∂X

dX dY ;

ˆ ˆ
A
λ2

N

[
(1+δY )

(
V1
∂V2

∂X
+V2

∂V2

∂Y
− ∂(2)V2

∂Y (2) − ∂(2)V2

∂X (2)

)
−Re(2)

0 δV 2
3 + δ(2)

(1+δY )
V2 −δ∂V2

∂Y

]
dX dY

=−Re0

ˆ ˆ
A
λ2

N(1+δY )
∂P
∂Y

dX dY ;

ˆ ˆ
A
λ3

N

[
(1+δY )

(
V1
∂V3

∂X
+V2

∂V3

∂Y
− ∂V3

∂X (2) −
∂V3

∂Y (2)

)
+δV2V3 −δ∂V3

∂Y
+ δ(2)

(1+δY )
V3

]
dX dY

=−
ˆ ˆ

A
λ2

N
∂P
∂Z

dX dY .

Writing in summation form with the i = 1 and i = 2 component equations added together,

these become

(4.19)
L∑

M=1

L∑
R=1

ENMRUMUR −
L∑

M=1
CNMUM −Re(2)

0

K∑
M=1

K∑
R=1

DNMRWMWR = Re0QN ;

(4.20)
L∑

M=1

K∑
R=1

FNMRUMWR −
K∑

M=1
GNMWM = PN ;

where Ui and Wi are the non-dimensionalised cross-sectional and coaxial director ve-

locities respectively, N is the order of the equation (i.e. which weighting function has

multiplied the equation) and shorthand for integral terms has been introduced which

are defined as follows:

(4.21)

ENMR =
ˆ ˆ

A

[
(1+δY )

(
λ1

Nλ
1
M
∂λ1

R

∂X
+λ1

Nλ
2
M
∂λ1

R

∂Y
+λ2

Nλ
1
M
∂λ(2)

r

∂X
+λ2

Nλ
2
M
∂λ(2)

r

∂Y

)]
dX dY ;

CNM =
ˆ ˆ

A

[
(1+δY )

(
λ1

N
∂(2)λ1

M

∂X (2) +λ1
N
∂(2)λ1

M

∂Y (2) +λ2
N
∂(2)λ2

M

∂X (2) +λ2
N
∂(2)λ2

M

∂Y (2)

)

+δ
(
λ1

N
∂λ1

M

∂Y
+λ2

N
∂λ2

M

∂Y

)
− δ(2)λ2

Nλ
2
M

1+δY

]
dX dY ;

(4.22)
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(4.23) DNMR =
ˆ ˆ

A
δλ2

Nλ
3
Mλ

(3)
r dX dY ;

QN =
ˆ ˆ

A

[
(1+δY )

(
λ1

N
∂P
∂X

+λ2
N
∂P
∂Y

)]
dX dY ;

(4.24) FNMR =
ˆ ˆ

A

[
(1+δY )

(
λ3

Nλ
1
M
∂λ(3)

r

∂X
+λ3

Nλ
2
M
∂λ(3)

r

∂Y

)
+δλ3

Nλ
2
Mλ

(2)
r

]
dX dY ;

(4.25) GNM =
ˆ ˆ

A

[
(1+δY )

(
λ3

N
∂(2)λ3

M

∂X (2) +λ3
N
∂(2)λ3

M

∂Y (2)

)
+δλ3

N
∂λ3

M

∂Y
− δ(2)λ3

Nλ
3
M

1+δY

]
dX dY ;

PN =
ˆ ˆ

A
λ3

N
∂P
∂Z

dX dY .

4.6 Dealing with the pressure

After substituting the velocity expansion into the integrated equations of motion, the

only unknowns appearing in the system of equations besides the velocity directors are

the pressure gradients. This model will solve the velocity field for the same coaxial

pressure gradient as Poiseuille flow in that of a corresponding straight pipe, as carried

out by Green et al [7]. By considering Eq. (4.20) for Poiseuille flow in a straight pipe, the

cross-sectional velocity directors Ui would all equal zero and the only non-zero coaxial

velocity director would be W1 which would be equal to 1 due to how Wi was defined in

the non-dimensionalisation. So Eq. (4.20) for a straight pipe would be

PN =−GN1.

Substituting this back into Eq. (4.20) for a curved pipe gives

(4.26)
L∑

M=1

K∑
R=1

FNMRUMWR −
K∑

M=1
GNMWM =−GN1.

So, for N = 1,

G11 =−
ˆ ˆ

A
(1− X (2) −Y (2))

[
−4(1+δY )−2δY − δ(2)

1+δY
(1− X (2) −Y (2))

]
dX dY .

For N = 2,

G21 =−
ˆ ˆ

A
Y (1− X (2) −Y (2))

[
−4(1+δY )−2δY − δ(2)

1+δY
(1− X (2) −Y (2))

]
dX dY .

119



CHAPTER 4. TOROIDALLY CURVED PIPE

N λ3
N GN1

1 (1− X (2) −Y (2)) 6.28
2 Y (1− X (2) −Y (2)) 1.57×10−1

3 Y (2)(1− X (2) −Y (2)) 1.05
4 X (2)(1− X (2) −Y (2)) 1.05
5 Y (3)(1− X (2) −Y (2)) 5.89×10−3

6 X (2)Y (1− X (2) −Y (2)) 1.96×10−3

7 Y (4)(1− X (2) −Y (2)) 3.93×10−1

8 X (2)Y (2)(1− X (2) −Y (2)) 1.31×10−1

9 X (4)(1− X (2) −Y (2)) 3.93×10−1

10 Y (5)(1− X (2) −Y (2)) 2.95×10−3

11 X (2)Y (3)(1− X (2) −Y (2)) 5.89×10−4

12 X (4)Y (1− X (2) −Y (2)) 5.89×10−4

13 Y (6)(1− X (2) −Y (2)) 1.96×10−1

14 X (2)Y (4)(1− X (2) −Y (2)) 3.93×10−2

15 X (4)Y (2)(1− X (2) −Y (2)) 3.93×10−2

16 X (6)(1− X (2) −Y (2)) 1.96×10−1

17 Y (7)(1− X (2) −Y (2)) 1.72×10−3

18 X (2)Y (5)(1− X (2) −Y (2)) 2.45×10−4

19 X (4)Y (3)(1− X (2) −Y (2)) 1.47×10−4

20 X (6)Y (1− X (2) −Y (2)) 2.45×10−4

21 Y (8)(1− X (2) −Y (2)) 1.15×10−1

22 X (2)Y (6)(1− X (2) −Y (2)) 1.64×10−2

23 X (4)Y (4)(1− X (2) −Y (2)) 9.82×10−3

24 X (6)Y (2)(1− X (2) −Y (2)) 1.64×10−2

Table 4.2: Values of the integrated coaxial pressure gradient term GN1, for δ= 0.01, for
N = 1 to 24.

For N = 3,

G31 =−
ˆ ˆ

A
Y (2)(1− X (2) −Y (2))

[
−4(1+δY )−2δY − δ(2)

1+δY
(1− X (2) −Y (2))

]
dX dY .

It is observed that the first term is changing, and a table summarising this is given

in Table 4.2. The first 24 GN1 terms are plotted in Fig. 4.5, showing how they varying

with the curvature ratio δ. These terms give the magnitude of the driving force of each

director in the velocity profile. Generally the magnitude decreases as N is increased.

This still leaves unknown pressure gradients in the cross-section, in Eq. (4.19).

Consider Green’s theorem which can be written as

(4.27)
‰

C
[−LdX +MdY ]=

ˆ ˆ
D

[
∂M
∂X

+ ∂L
∂Y

]
dX dY .

120



4.6. DEALING WITH THE PRESSURE

for N = 1 to 6 for N = 7 to 12

for N = 13 to 18 for N = 19 to 24

Figure 4.5: Figure showing how the value of GN1 varies with δ for N = 1 to N = 24.

If L and M are set as L = (1+δY )λ2
NP and M = (1+δY )λ1

NP, then Green’s theorem gives
‰

C

[−(1+δY )λ2
NPdX + (1+δY )λ1

NPdY
]= ˆ ˆ

A

[
δλ2

NP

+ (1+δY )

(
∂λ2

N

∂Y
P +λ2

N
∂P
∂Y

+ ∂λ1
N

∂X
P +λ1

N
∂P
∂X

)]
dX dY .

The line integral is around the circumference of the cross-section where r(2) = X (2)+Y (2) =
1, λi

N = 0 at r = 1 ∀N as λi
N = (1− X (2) −Y (2)) f i

N(X ,Y ). Therefore

(4.28)ˆ ˆ
A

[
(1+δY )

(
λ1

N
∂P
∂X

+λ2
N
∂P
∂Y

)]
dX dY =−

ˆ ˆ
A

[
P

(
δλ2

N +
(
∂λ1

N

∂X
+ ∂λ2

N

∂Y

))]
dX dY .

However, the right hand side of Eq. (4.28) equals zero due to the incompressibility

121



CHAPTER 4. TOROIDALLY CURVED PIPE

condition. Therefore Eq. (4.19) becomes

(4.29)
L∑

M=1

L∑
R=1

ENMRUMUR −
L∑

M=1
CNMUM −Re(2)

0

K∑
M=1

K∑
R=1

DNMRWMWR = 0,

and the system of equations is now closed.

The friction loss ratio f is defined as the ratio of the friction factor in the curved pipe

to the corresponding friction factor in a straight pipe of the same cross-section and for

the same pressure gradient [7]. This can be expressed as a ratio of the Reynolds numbers

in the straight (Re0) and curved pipes (Re). That is

f = Re0

Re
= 1

V3
= 1

K∑
N=1

λ3
NWN

This gives a relation between the two Reynolds numbers. It is possible to reformulate

Eq. (4.29) with Re rather Re0, and this is similarly done by Green et al [7], however this

changes the equation from a quadratic to a quartic, in terms of the director velocities

(UN ,WN). So for the ease of solving, in this model Eq. (4.29) is kept in its current form,

however when presenting results, the Reynolds number Re related to the curved pipe

will be used, as this is the true Reynolds number of the flow.

Equations (4.26) and (4.29) form a square system of equations in which the cross-

sectional pressure gradients have been eliminated from Eqs. (4.29) through algebraic

manipulation, taking advantage of the symmetry conditions of this model, and in which

the coaxial pressure gradient is prescribed in Eqs. (4.26). This sets the system of equation

on a good form to solve for the unknown directors, the method of which is detailed in the

next section. In a more general case where such manipulation is not available, it is much

harder to set the system of equations in a form that can be readily solved for.

4.7 Comparisons and Solutions

A square system of K+L equations is formed from Eq. (4.26) for N = 1 to K and Eq. (4.29)

for N = 1 to L. The unknowns to solve for are the director velocities WN , for N = 1 to K ,

and UN for N = 1 to L. Maple was used to solve this system. Numerical integration (the

evalf command in Maple) was used to evaluate Eqs. (4.26) and (4.29) at each order due to

the complexities of symbolic integration of the functions involved. Numerical integration

does introduce numerical error into the equations, although this will have negligible

effect on the solution to the system due to the small magnitudes of error introduced.
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Once the equations were evaluated, the system was solved with the fsolve command in

Maple. Then the values for the director velocities are substituted back into the velocity

expansion to recover the velocity field. Increasing the order H of the system increases

the accuracy of the model, however it also increases the computational time required to

numerically integrate the equations. Solutions from the model were produced at orders

H = 7 (corresponding to K = 12 and L = 4), H = 8 (corresponding to K = 16 and L = 6) and

H = 12 (corresponding to K = 36 and L = 20). The basis for this model originally came

from the work of Green et al [7] whose model also solves for fluid flow in a toroidally

curved pipe, with the same choice of coordinate system. However different methods were

used for deriving the equations of motion to solve for. Whereas the equations in this

model were derived directly from the Navier-Stokes equations, Green et al derive the

equations of motions through definitions of various kinematic variables. Comparing the

integral expressions of the two models, the equations initially appear to differ from each

other. However, it can be shown analytically through the use of Green’s theorem and the

use of the incompressibility condition that these models turn out to be equivalent.

4.7.1 Comparison of model with Green et al [7]

The model developed by Green et al, as given by Eqs. (4.8) and (4.9) in [7] is

(4.30)
K∑

M=1
ANMBM +

L∑
M=1

K∑
R=1

CNMR XMBR = AN1;

(4.31) −
L∑

M=1
DNM XM =

L∑
M=1

L∑
R=1

ENMR XM XR +κ0

K∑
M=1

K∑
R=1

FNMRBMBR ;

where

• κ0 is the Dean number of flow through the corresponding straight pipe subject to

the same pressure gradient;

• Bi is the ith coaxial velocity director;

• X i is the ith cross-sectional velocity director;

• K is the number of coaxial directors at the given order;

• L is the number of cross-sectional directors at the given order.

The remaining terms in Eqs. (4.30) and (4.31) are integral expressions defined in Ap-

pendix A of [7] as follows:

(4.32) FNMR =−
ˆ ˆ

A

[
λ2

Nλ
3
Mλ

(3)
r

]
dxdy;
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(4.33)

ANM =−
ˆ ˆ

A

[
− δ(2)

1+δy
λ3

Nλ
3
M +δλ3

N
∂λ3

M

∂y
− (1+δy)

λ3
N

∂x
∂λ3

M

∂x
+δ∂λ

3
N

∂y
λ3

M − (1+δy)
λ3

N

∂y
∂3

M

∂y

]
dxdy;

(4.34) CNMR =−
ˆ ˆ

A

[
δλ3

Nλ
2
Mλ

(3)
r + (1+δy)

(
λ3

Nλ
1
M
∂λ(3)

r

∂x
+λ3

Nλ
2
M
∂λ(3)

r

∂y

)]
dxdy;

DNM =−
ˆ ˆ

A

[
2δ(2)

1+δy
λ2

Nλ
2
M + (1+δy)

(
2
∂λ1

N

∂x
∂λ1

M

∂x
+ ∂λ1

N

∂y
∂λ1

M

∂y
+ ∂λ1

N

∂y
∂λ2

M

∂x

+∂λ
2
N

∂x
∂λ2

M

∂x
+ ∂λ2

N

∂x
∂λ1

M

∂y
+2

∂λ2
N

∂y
∂λ2

M

∂y

)]
dxdy;

(4.35)

(4.36) ENMR =
ˆ ˆ

A
(1+δy)

(
λ1

N

(
∂λ1

M

∂x
λ1

R + ∂λ1
M

∂y
λ(2)

r

)
+λ2

N

(
λ2

M

∂x
λ1

R + λ2
M

∂y
λ(2)

r

))
dxdy;

where

• δ is the ratio between the radius of the pipe and the radius of curvature;

• λ
j
i is the weighting function of the ith director in the a j direction.

Eq. (4.30) and Eq. (4.26) each correspond to conservation of momentum in the coaxial

(a3) direction. Eq. (4.31) and Eq. (4.29) each correspond to conservation of momentum in

the cross-section.

• Eq. (4.33) corresponds to Eq. (4.25);

• Eq. (4.34) corresponds to Eq. (4.24);

• Eq. (4.35) corresponds to Eq. (4.22);

• Eq. (4.36) corresponds to Eq. (4.21);

• Eq. (4.32) corresponds to Eq. (4.23).

While it can be seen that Eq. (4.24) is equivalent to Eq. (4.34), Eq. (4.21) is equivalent

to Eq. (4.36) and Eq. (4.23) is equivalent to Eq. (4.32), there initially appears to be

differences between Eqs. (4.25) and (4.33) and Eqs. (4.22) and (4.35). However the

following will show that they are mathematically equivalent.

Making use of Green’s Theorem, given by Eq. (4.27), with L and M set as

L = (1+δY )λ1
N
∂λ1

M

∂Y
;
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M = (1+δY )λ1
N
∂λ1

M

∂X
;

then, taking C to be the circumference of the cross-section of the pipe, Eq. (4.27) gives

‰
C

(1+δY )λ1
N

(
∂λ1

M

∂Y
− ∂λ1

M

∂X
dY

)
=
ˆ ˆ

A

[
(1+δY )

(
∂λ1

N

∂X
∂λ1

M∂X +λ1
N
∂(2)λ1

M

∂X (2) + ∂λ1
N

∂Y
∂λ1

M

∂Y
+λ1

N
∂λ1

M

∂Y (2)

)

+δλ1
N
∂λ1

M

∂Y

]
dX dY .

Rearranging gives

ˆ ˆ
A

(1+δY )

(
λ1

N
∂(2)λ1

M

∂X (2) +λ1
N
∂(2)λ1

M

∂Y (2)

)
dX dY =

‰
C

(1+δY )λ1
N

(
∂λ1

M

∂Y
− ∂λ1

M

∂X
dY

)

−
ˆ ˆ

A

[
(1+δY )

(
∂λ1

N

∂X
∂λ1

M

∂X
+ ∂λ1

N

∂Y
∂λ1

M

∂Y

)
+δλ1

N
∂λ1

M

∂Y

]
dX dY .

However, over the closed curved C, r = 1 and as r(2) = X (2) +Y (2), λ1
N = 0 at r = 1 ∀N

because λi
N = (1− X (2) −Y (2)) f i

N(X ,Y ). Therefore the line integrals around C will equal

zero and the above simplifies to

ˆ ˆ
A

(1+δY )

(
λ1

N
∂(2)λ1

M

∂X (2) +λ1
N
∂(2)λ1

M

∂Y (2)

)
dX dY =−

ˆ ˆ
A

[
(1+δY )

(
∂λ1

N

∂X
∂λ1

M

∂X
+ ∂λ1

N

∂Y
∂λ1

M∂Y

)

+δλ1
N
∂λ1

M

∂Y

]
dX dY .

Substituting this into Eq. (4.22) gives

CNM =−
ˆ ˆ

A

[
δ(2)λ2

Nλ
2
M

1+δY

+(1+δY )

(
∂λ1

N

∂X
∂λ1

M

∂X
+ ∂λ1

N

∂Y
∂λ1

M∂Y + ∂λ2
N

∂X
∂λ2

M

∂X
+ ∂λ2

N

∂Y
∂λ2

M∂Y

)]
dX dY .

(4.37)

Comparing Eq. (4.35) with Eq. (4.37), it appears that Eq. (4.35) has more terms. The

additional terms in Eq. (4.35) compared with Eq. (4.37) are

(4.38)

−
ˆ ˆ

A

[
δ(2)

1+δY
λ2

Nλ
2
M + (1+δY )

(
∂λ1

N

∂X
∂λ1

M

∂X
+ ∂λ1

N

∂Y
∂λ2

M

∂X
+ ∂λ2

N

∂X
∂λ1

M

∂Y
+ ∂λ2

N

∂Y
∂λ2

M

∂Y

)]
dX dY .

However, it will be shown that this expression equates to zero.
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Through the application of Green’s Theorem, and considering the closed line integrals

will equal zero due to the λi
N term, Eq. (4.38) can be converted to

ˆ ˆ
A

[
λ1

N

(
δ
∂λ2

M

∂X
+ (1+δY )

(
∂(2)λ1

M

∂X (2) + ∂(2)λ2
M

∂X∂Y

))

+λ2
N

(
δ
∂λ2

M

∂Y
− δ(2)

1+δY
λ2

M + (1+δY )

(
∂(2)λ1

M

∂X∂Y
+ ∂(2)λ2

M

∂Y (2)

))]
dX dY .

Considering these terms as they appear in the equations, multiplied by the corresponding

velocity director UN and M summed from 1 to L then this can be written in terms of

velocity components Vi, where Vi is the velocity in the ai direction, as follows:
ˆ ˆ

A

[
λ1

N

(
δ
∂V2

∂X
+ (1+δY )

(
∂(2)V1

∂X (2) +
∂(2)V2

∂X∂Y

))
+λ2

N

(
δ
∂V2

∂Y
− δ(2)

1+δY
V2 + (1+δY )

(
∂(2)V1

∂X∂Y
+ ∂(2)V2

∂Y (2)

))]
dX dY .

(4.39)

The non-dimensionalised incompressibility condition is

(4.40)
∂V1

∂X
+ ∂V2

∂Y
+ δ

1+δY
V2 = 0.

Differentiating Eq. (4.40) with respect to X and multiplying by (1+δY ) gives

(4.41) (1+δY )
(
∂(2)V1

∂X (2) +
∂(2)V2

∂X∂Y

)
+δ∂V2

∂X
= 0.

Differentiating Eq. (4.40) with respect to Y and multiplying by (1+δY ) gives

(4.42) (1+δY )
(
∂(2)V1

∂X∂Y
+ ∂(2)V2

∂Y (2)

)
+δ∂V2

∂Y
− δ(2)

1+δY
V2 = 0.

Hence by Eqs. (4.41) and (4.42), Eq. (4.39) equates to zero and hence Eq. (4.22) and

Eq. (4.35) are equivalent. Also, by applying Green’s Theorem, it is found that Eq. (4.25)

and Eq. (4.33) are equivalent. Hence the systems of equations from the model presented

in this chapter, represented by Eqs. (4.26) and (4.29), and the model presented by Green

et al [7], represented by Eqs. (4.30) and (4.31), are equivalent. The model of Green et

al was also implemented in Maple and solved for to confirm that the two models did

produce the same solutions.

4.7.2 Computational fluid dynamics simulations

The models in this chapter were compared to 3D finite volume simulations using STAR-

CCM+. A curved pipe of constant radius and constant curvature was created for the
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finite volume solver, with the pipe extending 120◦ around the centre of curvature. For

comparisons with the δ= 0.01 case, the radius of the pipe was set to 1 m and the radius

of curvature to 100 m, while for comparisons with the δ = 0.1 case, the radius of the

pipe was set to 1 m and the radius of curvature to 10 m. The boundary conditions

were specified to as periodic on the artificial sections, while the no-slip velocity and a

zero Neumann pressure condition were assigned to the pipe walls. The average coaxial

velocity was set to match that of the director theory model given the prescribed coaxial

pressure gradient. The density and dynamic viscosity of the fluid were set to 1 kg m−3

and 1 Pa s respectively.

The mesh and solution data was exported as an Ensight Gold File. Subsequently

the data was saved as a CSV spreadsheet with the use of ParaView. To create the error

plots in Figs. 4.8, 4.10, 4.13 and 4.14, and calculate the error means shown in Figs. 4.15

and 4.16, the simulation data was imported into Maple and the velocity from the director

theory model was evaluated at each data point taken from the mesh in the simulation. To

create the velocity contour plots of the simulation solutions, shown in Figs. 4.6 and 4.11,

interpolation was used on the simulation data and then plotted. Although velocity

contours can be viewed directly in Simcentre STAR-CCM+, this method was used so

that the contour style was the same as those shown for the director theory model in

Figs. 4.7, 4.9 and 4.12, for ease of visual comparison.

4.7.3 Solutions

Solutions will be shown from the model presented in this chapter and compared with

those produced with 3D finite volume solver STAR-CCM+. Comparisons of friction loss

against Dean number were also found to agree with those presented by Green et al [7].

As can be seen from Fig. 4.15, for a slightly curved pipe (curvature ratio of δ =
0.01, it was found that while the error between the director model and the simulation

initially decreases as the order of the assumed velocity expansion in the director model

is increased, after around order of H = 8, the error remains approximately constant

with increasing orders. It can also be seen that the magnitude of the constant error is

higher when compared to the simulation with a coarser mesh, suggesting that at least

some error comes from the simulation and its mesh discretisation. Another error source

could be with how the Reynolds number are compared between the simulation and the

director model. In the simulation, an appropriate value of the mass flow rate is set for

the required Reynolds number. However, the director theory model, the value of Re0

(the Reynolds number for the corresponding flow through a straight pipe) is set rather
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that the true value of Re. The value of Re0 is calculated by finding the coaxial pressure

gradient from the simulation and then calculating Re0 from this bases of Poiseuille

flow. Some error is likely to be introduced when finding the pressure gradient from the

simulation. These factors are believed to account for the remaining error.

As can be seen from Fig. 4.16, for a more steeply curved pipe (curvature ratio of

δ = 0.1), the magnitude of the error does not settle until after order H = 11 and the

magnitude of the error is higher compared with the slightly curved pipe (curvature ratio

of δ= 0.01) with a simulation using the same mesh base size. The error also does not

uniformly decrease at lower orders in this case. This could be related to the truncations

at particular orders not satisfying the system of equations as well as others. Turning our

attention to the the higher resolution of finite volume solution, it appears that the error

at lower orders is due to error in the model, but some of the error at higher orders may

be attributed to the finite volume simulation.

Fig. 4.17 shows the error at each order compared with the solution at the highest

order of the director theory model that was calculated, which is H = 15 for the δ= 0.01

case and H = 14 for the δ= 0.1 case. It can be seen that for the δ= 0.01 case, the model

appears to be converging, while for the δ= 0.1 case, convergence is less clear. It appears

as though their maybe be a periodic pattern. It would be interesting to run the model at

higher orders to see if a clear pattern emerges, or if there is a uniform convergence past

a certain order, unfortunately this is computationally difficult.
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Figure 4.6: Contour plots of flow through a toroidally curved pipe cross-section from a
simulation using STAR-CCM+, with curvature ratio δ= 0.01, pipe radius a = 1m and a
mesh base size of 0.025m, at varying Reynolds numbers, in the a1, a2 and a3 directions
respectively.
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Figure 4.7: Contour plots of flow through a toroidally curved pipe cross-section given
by the director theory model for order H = 8, with curvature ratio δ= 0.01, at varying
Reynolds numbers, in the a1, a2 and a3 directions respectively.
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Re v1 v2 v3

1

100

500

1000

Figure 4.8: Plots of the relative error of the velocity in a cross-section of the toroidally
curved pipe, between the 3D finite volume simulation with mesh base size 0.025m and
the solution form the director theory model represented by Eqs. (4.26), (4.29), for order
H = 8. Solutions are obtained for curvature ration δ= 0.01 at varying Reynolds numbers,
in the a1, a2 and a3 directions respectively.
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Figure 4.9: Contour plots of flow through a toroidally curved pipe cross-section given
by the director theory model for order H = 12 with curvature ration δ= 0.01, at varying
Reynolds numbers, in the a1, a2, a3 directions respectively.
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Figure 4.10: Plots of the relative error of the velocity in a cross-section of the toroidally
curved pipe, between the 3D finite volume simulation with mesh base size 0.025m and
the solution from the director theory model represented by Eqs. (4.26), (4.29), for order
H = 12. Solutions are obtained for curvature ratio δ= 0.01 at varying Reynolds numbers,
in the a1, a2 and a3 directions respectively.
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Figure 4.11: Contour plots of flow through a toroidally curved pipe cross-section from
a simulation using STAR-CCM+, with curvature ratio δ= 0.1, pipe radius a = 1m and
mesh base size of 0.025m, at varying Reynolds numbers, in the a1, a2 and a+3 directions
respectively.
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Figure 4.12: Contour plots of flow through a toroidally curved pipe cross-section given
by the director theory model for order H = 12 with curvature ration δ= 0.1, at varying
Reynolds numbers, in the a1, a2, a3 directions respectively.

4.8 Summary of Chapter

This chapter presented a director theory approach to modelling fluid flow in a toroidally

curved pipe of constant radius. This was done by setting up a curvilinear coordinate

system that followed along the centreline of the pipe and subsequently deriving the equa-

tions of motion in this coordinate system. The velocity was assumed to be approximated

by a series expansion of weighting functions,which depend on the cross-sectional coordi-

nates multiplied by directors, which are vectors that in general depend on the coaxial

coordinate and time (however in this specific case they are independent of both). The

weighting functions were assumed to be polynomials of the in-plane coordinates, then
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Figure 4.13: Plots of the relative error of the velocity in a cross-section of the toroidally
curved pipe, between the 3D finite volume simulation with mesh base size 0.025m
and the solution from the director theory model represented by Eqs. (4.26), (4.29) at
varying orders H. Solutions are obtained for curvature ratio δ= 0.1 at Reynolds number
Re = 1000, in the a1, a2 and a3 directions respectively.
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Figure 4.14: Plots of the relative error of the velocity in a cross-section of the toroidally
curved pipe, between the 3D finite volume simulation with mesh base size 0.025m
and the solution from the director theory model represented by Eqs. (4.26), (4.29) at
varying orders H. Solutions are obtained for curvature ratio δ= 0.1 at Reynolds number
Re = 1000, in the a1, a2 and a3 directions respectively.
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base size 0.05m base size 0.025m

Figure 4.15: Graph of the mean error of the velocity for Re = 1000 and δ= 0.01, in the ai
direction for i = 1,2,3 of the solutions from the model presented in this chapter compared
with a 3D simulation, for different mesh base sizes, in STAR-CCM+ normalised by the
mean velocity, against the order H of the model for H = 7−15.

base size 0.05m base size 0.025m

Figure 4.16: Graph of the mean error of the velocity for Re = 1000 and δ= 0.1, in the ai
direction for i = 1,2,3 of the solutions from the model presented in this chapter compared
with a 3D simulation, for different mesh base sizes, in STAR-CCM+ normalised by the
mean velocity, against the order H of the model for H = 7−14.

δ= 0.01, order H = 7−14 compared to H = 15 δ= 0.1, orders H = 7−13 compared to H = 14

Figure 4.17: Graph of the mean error of the velocity for Re = 1000, in the ai direction for
i = 1,2,3 of the solution from the model presented in this chapter for varying orders and
is compared with the solution at the highest order.
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boundary, incompressibility and symmetry conditions were applied to further restrict

their form.

The equations of motion are then multiplied by each respective weighting function

and integrated over the cross-section to give a system of algebraic nonlinear equations

(with the i = 1,2 components added together), where the unknowns are the director

velocities. Through the use of Green’s theorem and the incompressibility condition,

the in-plane pressure gradients are eliminated from the equations. The coxial pressure

gradient is prescribed to be the same as that of Poiseuille flow in a corresponding straight

pipe. The equations were then solved numerically in Maple for chosen values of the

curvature ratio δ and Reynolds number Re.

The solutions from the director theory approach were compared with the results

from corresponding CFD simulations created in STAR-CCM+. The solutions matched

reasonably well, although increasing the value of the Reynolds number or the radius of

curvature (hence increasing the Dean number) tended to result in a higher relative error

between the solutions.

This work could be extended by considering a pipe of varying radius, a pipe with

varying curvature or torsion and time dependent or non-Newtonian flows. Some of these

cases will be considered in the next chapter.
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5
CURVED PIPES WITH DEPENDENCE ON THE COAXIAL

DIRECTION

5.1 Introduction

This chapter will be an extension of the work in Chapter 4, in which fluid flow in a

toroidally curved pipe of constant radius was modelled. In the present chapter, first will

be considered the case where the radius of the pipe varies. Then will be considered the

case where the radius of curvature R varies. The big change from the previous chapters

is that here, not only will be allowed geometries that vary along the centreline of the pipe,

but also unsteady flow will be allowed for. Thus the equations describing the fluid motion

will now have a dependence in the co-axial direction (ζ3) and time (t), generalising the

previous derivations.

5.2 Varying Pipe Radius

5.2.1 Equations of motion

Consider the equations of motion for a toroidally curved pipe, using the coordinate basis

defined in the previous chapter, but in this case the radius of the pipe can vary, so at

this stage no coaxial or time independence will be assumed. In this more general case,

the Navier-Stokes equations, corresponding to Eqs. (4.16), (4.17), (4.18) in the previous
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chapter, are given by

∂V1

∂T
+ 1

Re0
V1
∂V1

∂X
+ 1

Re0
V2
∂V1

∂Y
+ V3

1+δY
∂V1

∂Z
=− ∂P

∂X
+ 1

Re0

∂(2)V1

∂X (2) +
1

Re0

∂(2)V1

∂Y (2) + 1
Re0

δ

1+δY
∂V1

∂Y

+ 1
Re0

1
(1+δY )(2)

∂(2)V1

∂Z(2) ;

(5.1)

∂V2

∂T
+ 1

Re0
V1
∂V2

∂X
+ 1

Re0
V2
∂V2

∂Y
+ V3

1+δY
∂V2

∂Z
− Re0δ

1+δY
V (2)

3 =−∂P
∂Y

+ 1
Re0

∂(2)V2

∂X (2) +
1

Re0

∂(2)V2

∂Y (2)

+ 1
Re0

δ

1+δY
∂V2

∂Y
+ 1

Re0

1
(1+δY )(2)

∂(2)V2

∂Z(2) − 1
Re0

δ(2)

(1+δY )(2) V2 − δ

(1+δY )(2)
∂V3

∂Z
;

(5.2)

Re0
∂V3

∂T
+V1

∂V3

∂X
+V2

∂V3

∂Y
+ δ

1+δY
V2V3 +Re0

V3

1+δY
∂V3

∂Z
=− 1

1+δY
∂P
∂Z

+ 1
Re 0

δ

(1+δY )(2)
∂V2

∂Z

+ ∂(2)V3

∂X (2) +
∂(2)V3

∂Y (2) + δ

1+δY
∂V3

∂Y
+ 1

(1+δY )(2)
∂(2)V3

∂Z(2) − δ(2)

(1+δY )(2) V3;

(5.3)

where T is non-dimensionalised time given by

T = 2U
a

,

recalling that a is the radius of the pipe.

By integrating Eqs. (5.1) - (5.3) over the cross-section of the pipe and adding together

Eq. (5.1) and Eq. (5.2), a more general form of the integrated equations of motion, given

by Eqs. (4.19), (4.20), where the radius of the pipe can vary along the pipe and with time

(in this case UN =UN(Z, t), WN =WN(Z, t) is given by

Re
L∑

M=1
GNM

∂UM

∂T
+

L∑
M=1

L∑
R=1

HNMRUMUR +Re
L∑

M=1

K∑
R=1

INMR
∂UM

∂Z
WR −Re(2)

K∑
M=1

K∑
R=1

JNMRWMWR

=−ReQN +
L∑

M=1
SNMUM +

L∑
M=1

ONM
∂(2)UM

∂Z(2) −Re
K∑

M=1
TNM

∂WM

∂Z
;

Re
K∑

M=1
ANM

∂WM

∂T
+

L∑
M=1

K∑
R=1

BNMRUMWR +
K∑

M=1

K∑
R=1

CNMRWM
∂WR

∂Z

=−PN +
L∑

M=1
DNM

∂UM

∂Z
+

K∑
M=1

ENMWM +
K∑

M=1
FNM

∂(2)WM

∂Z(2) ;

where

ANM =
ˆ ˆ

A
(1+δY )λ3

Nλ
3
MdX dY ;
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BNMR =
ˆ ˆ

A
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(
λ2

M
∂λ3

R

∂X
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M
∂λ3

R
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R
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ˆ ˆ

A
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∂Z
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A

δ
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Nλ
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3
M
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M
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ˆ ˆ

A
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M
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R
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λ1

N
∂P
∂X

+λ2
N
∂P
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A
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(
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N
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M

∂X (2) +λ1
N
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M
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∂λ2
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1
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(
λ1
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1
M +λ2

Nλ
2
M

)
dX dY ;

TNM =
ˆ ˆ

A

2δ
1+δY

λ2
Nλ

2
MdX dY .

This is the case with the two cross-flow velocities sharing the same director velocities

UN . If the relevant simplifications are made to these equations, the Eqs. (4.19) and

(4.20) from the previous chapter can be recovered. The equation for the incompressibility

condition for the toroidally curved pipe of constant radius, namely, Eq. (4.12), provided

a simple expression between V1 and V2 and it was a simple matter to express them in
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terms of the same velocity directors. However, in this case with a varying pipe radius,

the incompressibility condition now includes V3, its non-dimensional form being given by

(5.4)
∂V1

∂X
+ ∂V2

∂Y
+ δV2

1+δY
+Re

1
1+δY

∂V3

∂Z
= 0,

and it is not trivial to find weighting functions such that V1 and V2 can be expressed

in terms of the same velocity directors. If the velocity is expressed as a more general

expansion, akin to Eq. (4.11), where the cross-flow velocities do not share the same

weighting functions, the integrated equations of motion can be expressed as three

separate equations, with UN , CN and WN the respective director velocities in the a1, a2

and a3 directions, for the a1, a2 and a3 components respectively as
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(5.5)
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(5.6)
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(5.7)
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dX dY ;
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F3NM =
ˆ ˆ

A

[
(1+δY )

(
λ3

N
∂(2)λ3

M

∂X (2) +λ3
N
∂(2)λ3

M

∂Y (2)

)
+δλ3

N
∂λ3

M

∂Y
− δ(2)λ3

Nλ
3
M

1+δY

]
dX dY ;

H3NM =
ˆ ˆ

A

λ3
Nλ

3
M

1+δY
dX dY .

The equation of motion given by Eqs. (5.5)-(5.7) can be summarised in operator notation

as

M (
∂Ψ

∂T
)=A (Ψ)+B(Ψ,Ψ)+C

(
∂Ψ

∂Z

)
+E

(
Ψ,

∂Ψ

∂Z

)
+F

(
∂(2)Ψ

∂Z(2)

)
−Q(Z, t),

where Ψ= (U1(Z,T), ...,UL(Z,T),C1(Z,T), ...,CK (Z,T),W1(Z,T), ...WK (Z,T)), A is a lin-

ear operator, B is a homogeneous quadratic operator, M and C are linear first order

differential operators, E is a homogeneous quadratic first order differential operator, F

is a linear second order operator and Q is the operator denoting the integrated pressure

gradient.

To illustrate more clearly what the system of equations look like, taking the order

H = 3 which corresponds to L = 2 and K = 4, the a1 component of the equations are

Re
(
A111

∂U1

∂T
+ A112

∂U2

∂T

)
= F111U1 +F112U2 −B1111U (2)

1 −B1112U1U2 −B1121U2U1 −B1122U (2)
2

−D1111C1U1 −D1112C1U2 −D1121C2U1 −D1122C2U2 −D1131C3U1 −D1132C3U2

−D1141C4U1 −D1142C4U2 −Re
(
E1111W1

∂U1

∂Z
+E1112W1

∂U2

∂Z
+E1121W2

∂U1

∂Z

+E1122W2
∂U2

∂Z
+E1131W3

∂U1

∂Z
+E1132W3

∂U2

∂Z
+E1141W4

∂U1

∂Z
+E1142W4

∂U2

∂Z

)
+H111

∂(2)U1

∂Z(2) +H112
∂(2)U2

∂Z(2) −ReP11;

Re
(
A121

∂U1

∂T
+ A122

∂U2

∂T

)
= F121U1 +F122U2 −B1211U (2)

1 −B1212U1U2 −B1221U2U1 −B1222U (2)
2

−D1211C1U1 −D1212C1U2 −D1221C2U1 −D1222C2U2 −D1231C3U1 −D1232C3U2

−D1241C4U1 −D1242C4U2 −Re
(
E1211W1

∂U1

∂Z
+E1212W1

∂U2

∂Z
+E1221W2

∂U1

∂Z

+E1222W2
∂U2

∂Z
+E1231W3

∂U1

∂Z
+E1232W3

∂U2

∂Z
+E1241W4

∂U1

∂Z
+E1242W4

∂U2

∂Z

)
+H121

∂(2)U1

∂Z(2) +H122
∂(2)U2

∂Z(2) −ReP12.
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The a2 component of the equations are

Re
(
A211

∂C1

∂T
+ A212

∂C2

∂T
+ A213

∂C3

∂T
+ A214

∂C4

∂T

)
= F211C1 +F212C2 +F213C3 +F214C4

−B2111U1C1 −B2112U1C2 −B2113U1C3 −B2114U1C4 −B2121U2C1 −B2122U2C2

−B2123U2C3 −B2124U2C4 −D2111C(2)
1 −D2112C1C2 −D2113C1C3 −D2114C1C4

−D2121C2C1 −D2122C(2)
2 −D2123C2C3 −D2124C2C4 −D2131C3C1 −D2132C3C2 −D2133C(2)

3

−D2134C3C4 −D2141C4C1 −D2142C4C2 −D2143C4C3 −D2144C(2)
4 −Re(2)

(
J2111W (2)

1

+ J2112W1W2 + J2113W1W3 + J2114W1W4 + J2121W2W1 + J2122W (2)
2 + J2123W2W3

+ J2124W2W4 + J2131W3W1 + J2132W3W2 + J2133W (2)
3 + J2134W3W4 + J2141W4W1

+J2142W4W2 + J2143W4W3 + J2144W (2)
4

)
−2Re

(
S211

∂W1

∂Z
+S212

∂W2

∂Z
+S213

∂W3

∂Z
+S214

∂W4

∂Z

)
−E2111W1

∂C1

∂Z
−E2112W1

∂C2

∂Z
−E2113W1

∂C3

∂Z
−E2114W1

∂C4

∂Z
−E2121W2

∂C1

∂Z
−E2122W2

∂C2

∂Z

−E2123W2
∂C3

∂Z
−E2124W2

∂C4

∂Z
−E2131W3

∂C1

∂Z
−E2132W3

∂C2

∂Z
−E2133W3

∂C3

∂Z
−E2134W3

∂C4

∂Z

−E2141W4
∂C1

∂Z
−E2142W4

∂C2

∂Z
−E2143W4

∂C3

∂Z
−E2144W4

∂C4

∂Z
+H211

∂(2)C1

∂Z(2) +H212
∂(2)C2

∂Z(2)

+H213
∂(2)C3

∂Z(2) +H214
∂(2)C4

∂Z(2) −ReP21;
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Re
(
A221

∂C1

∂T
+ A222

∂C2

∂T
+ A223

∂C3

∂T
+ A224

∂C4

∂T

)
= F221C1 +F222C2 +F223C3 +F224C4

−B2211U1C1 −B2212U1C2 −B2213U1C3 −B2214U1C4 −B2221U2C1 −B2222U2C2

−B2223U2C3 −B2224U2C4 −D2211C(2)
1 −D2212C1C2 −D2213C1C3 −D2214C1C4

−D2221C2C1 −D2222C(2)
2 −D2223C2C3 −D2224C2C4 −D2231C3C1 −D2232C3C2 −D2233C(2)

3

−D2234C3C4 −D2241C4C1 −D2242C4C2 −D2243C4C3 −D2244C(2)
4 −Re(2)

(
J2211W (2)

1

+ J2212W1W2 + J2213W1W3 + J2214W1W4 + J2221W2W1 + J2222W (2)
2 + J2223W2W3

+ J2224W2W4 + J2231W3W1 + J2232W3W2 + J2233W (2)
3 + J2234W3W4 + J2241W4W1

+J2242W4W2 + J2243W4W3 + J2244W (2)
4

)
−2Re

(
S221

∂W1

∂Z
+S222

∂W2

∂Z
+S223

∂W3

∂Z
+S224

∂W4

∂Z

)
−E2211W1

∂C1

∂Z
−E2212W1

∂C2

∂Z
−E2213W1

∂C3

∂Z
−E2214W1

∂C4

∂Z
−E2221W2

∂C1

∂Z
−E2222W2

∂C2

∂Z

−E2223W2
∂C3

∂Z
−E2224W2

∂C4

∂Z
−E2231W3

∂C1

∂Z
−E2232W3

∂C2

∂Z
−E2233W3

∂C3

∂Z
−E2234W3

∂C4

∂Z

−E2241W4
∂C1

∂Z
−E2242W4

∂C2

∂Z
−E2243W4

∂C3

∂Z
−E2244W4

∂C4

∂Z
+H221

∂(2)C1

∂Z(2) +H222
∂(2)C2

∂Z(2)

+H223
∂(2)C3

∂Z(2) +H224
∂(2)C4

∂Z(2) −ReP22;
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Re
(
A231

∂C1

∂T
+ A232

∂C2

∂T
+ A233

∂C3

∂T
+ A234

∂C4

∂T

)
= F231C1 +F232C2 +F233C3 +F234C4

−B2311U1C1 −B2312U1C2 −B2313U1C3 −B2314U1C4 −B2321U2C1 −B2322U2C2

−B2323U2C3 −B2324U2C4 −D2311C(2)
1 −D2312C1C2 −D2313C1C3 −D2314C1C4

−D2321C2C1 −D2322C(2)
2 −D2323C2C3 −D2324C2C4 −D2331C3C1 −D2332C3C2 −D2333C(2)

3

−D2334C3C4 −D2341C4C1 −D2342C4C2 −D2343C4C3 −D2344C(2)
4 −Re(2)

(
J2311W (2)

1

+ J2312W1W2 + J2313W1W3 + J2314W1W4 + J2321W2W1 + J2322W (2)
2 + J2323W2W3

+ J2324W2W4 + J2331W3W1 + J2332W3W2 + J2333W (2)
3 + J2334W3W4 + J2341W4W1

+J2342W4W2 + J2343W4W3 + J2344W (2)
4

)
−2Re

(
S231

∂W1

∂Z
+S232

∂W2

∂Z
+S233

∂W3

∂Z
+S234

∂W4

∂Z

)
−E2311W1

∂C1

∂Z
−E2312W1

∂C2

∂Z
−E2313W1

∂C3

∂Z
−E2314W1

∂C4

∂Z
−E2321W2

∂C1

∂Z
−E2322W2

∂C2

∂Z

−E2323W2
∂C3

∂Z
−E2324W2

∂C4

∂Z
−E2331W3

∂C1

∂Z
−E2332W3

∂C2

∂Z
−E2333W3

∂C3

∂Z
−E2334W3

∂C4

∂Z

−E2341W4
∂C1

∂Z
−E2342W4

∂C2

∂Z
−E2343W4

∂C3

∂Z
−E2344W4

∂C4

∂Z
+H231

∂(2)C1

∂Z(2) +H232
∂(2)C2

∂Z(2)

+H233
∂(2)C3

∂Z(2) +H234
∂(2)C4

∂Z(2) −ReP23;
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Re
(
A241

∂C1

∂T
+ A242

∂C2

∂T
+ A243

∂C3

∂T
+ A244

∂C4

∂T

)
= F241C1 +F242C2 +F243C3 +F244C4

−B2411U1C1 −B2412U1C2 −B2413U1C3 −B2414U1C4 −B2421U2C1 −B2422U2C2

−B2423U2C3 −B2424U2C4 −D2411C(2)
1 −D2412C1C2 −D2413C1C3 −D2414C1C4

−D2421C2C1 −D2422C(2)
2 −D2423C2C3 −D2424C2C4 −D2431C3C1 −D2432C3C2 −D2433C(2)

3

−D2434C3C4 −D2441C4C1 −D2442C4C2 −D2443C4C3 −D2444C(2)
4 −Re(2)

(
J2411W (2)

1

+ J2412W1W2 + J2413W1W3 + J2414W1W4 + J2421W2W1 + J2422W (2)
2 + J2423W2W3

+ J2424W2W4 + J2431W3W1 + J2432W3W2 + J2433W (2)
3 + J2434W3W4 + J2441W4W1

+J2442W4W2 + J2443W4W3 + J2444W (2)
4

)
−2Re

(
S241

∂W1

∂Z
+S242

∂W2

∂Z
+S243

∂W3

∂Z
+S244

∂W4

∂Z

)
−E2411W1

∂C1

∂Z
−E2412W1

∂C2

∂Z
−E2413W1

∂C3

∂Z
−E2414W1

∂C4

∂Z
−E2421W2

∂C1

∂Z
−E2422W2

∂C2

∂Z

−E2423W2
∂C3

∂Z
−E2424W2

∂C4

∂Z
−E2431W3

∂C1

∂Z
−E2432W3

∂C2

∂Z
−E2433W3

∂C3

∂Z
−E2434W3

∂C4

∂Z

−E2441W4
∂C1

∂Z
−E2442W4

∂C2

∂Z
−E2443W4

∂C3

∂Z
−E2444W4

∂C4

∂Z
+H241

∂(2)C1

∂Z(2) +H242
∂(2)C2

∂Z(2)

+H243
∂(2)C3

∂Z(2) +H244
∂(2)C4

∂Z(2) −ReP24.

The a3 component of the equations are

Re
(
A311

∂W1

∂T
+ A312

∂W2

∂T
+ A313

∂W3

∂T
+ A314

∂W4

∂T

)
= F311W1 +F312W2 +F313W3 +F314W4

−B3111U1W1 −B3112U1W2 −B3113U1W3 −B3114U1W4 −B3121U2W1 −B3122U2W2

−B3123U2W3 −B3124U2W4 −D3111C1W1 −D3112C1W2 −D3113C1W3 −D3114C1W4

−D3121C2W1 −D3122C2W2 −D3123C2W3 −D3124C2W4 −D3131C3W1 −D3132C3W2

−D3133C3W3 −D3134C3W4 −D3141C4W1 −D3142C4W2 −D3143C4W3 −D3144C4W4

+S311
∂C1

∂Z
+S312

∂C2

∂Z
+S313

∂C3

∂Z
+S314

∂C4

∂Z
−Re

(
E3111W1

∂W1

∂Z
+E3112W1

∂W2

∂Z

+E3113W1
∂W3

∂Z
+E3114W1

∂W4

∂Z
+E3121W2

∂W1

∂Z
+E3122W2

∂W2

∂Z
+E3123W2

∂W3

∂Z

+E3124W2
∂W4

∂Z
−E3131W3

∂W1

∂Z
−E3132W3

∂W3

∂Z
+E3133W3

∂W3

∂Z
+E3134W3

∂W4

∂Z
+E3141W4

∂W1

∂Z

−E3142W4
∂W2

∂Z
+E3143W4

∂W3

∂Z
+E3144W4

∂W4

∂Z

)
+H311

∂(2)W1

∂Z(2) +H312
∂(2)W2

∂Z(2) +H313
∂(2)W3

∂Z(2)

+H314
∂(2)W4

∂Z(2) −P31;

150



5.2. VARYING PIPE RADIUS

Re
(
A321

∂W1

∂T
+ A322

∂W2

∂T
+ A323

∂W3

∂T
+ A324

∂W4

∂T

)
= F321W1 +F322W2 +F323W3 +F324W4

−B3211U1W1 −B3212U1W2 −B3213U1W3 −B3214U1W4 −B3221U2W1 −B3222U2W2

−B3223U2W3 −B3224U2W4 −D3211C1W1 −D3212C1W2 −D3213C1W3 −D3214C1W4

−D3221C2W1 −D3222C2W2 −D3223C2W3 −D3224C2W4 −D3231C3W1 −D3232C3W2

−D3233C3W3 −D3234C3W4 −D3241C4W1 −D3242C4W2 −D3243C4W3 −D3244C4W4

+S321
∂C1

∂Z
+S322

∂C2

∂Z
+S323

∂C3

∂Z
+S324

∂C4

∂Z
−Re

(
E3211W1

∂W1

∂Z
+E3212W1

∂W2

∂Z

+E3213W1
∂W3

∂Z
+E3214W1

∂W4

∂Z
+E3221W2

∂W1

∂Z
+E3222W2

∂W2

∂Z
+E3223W2

∂W3

∂Z

+E3224W2
∂W4

∂Z
−E3231W3

∂W1

∂Z
−E3232W3

∂W3

∂Z
+E3233W3

∂W3

∂Z
+E3234W3

∂W4

∂Z
+E3241W4

∂W1

∂Z

−E3242W4
∂W2

∂Z
+E3243W4

∂W3

∂Z
+E3244W4

∂W4

∂Z

)
+H321

∂(2)W1

∂Z(2) +H322
∂(2)W2

∂Z(2) +H323
∂(2)W3

∂Z(2)

+H324
∂(2)W4

∂Z(2) −P32;

Re
(
A331

∂W1

∂T
+ A332

∂W2

∂T
+ A333

∂W3

∂T
+ A334

∂W4

∂T

)
= F331W1 +F332W2 +F333W3 +F334W4

−B3311U1W1 −B3312U1W2 −B3313U1W3 −B3314U1W4 −B3321U2W1 −B3322U2W2

−B3323U2W3 −B3324U2W4 −D3311C1W1 −D3312C1W2 −D3313C1W3 −D3314C1W4

−D3321C2W1 −D3322C2W2 −D3323C2W3 −D3324C2W4 −D3331C3W1 −D3332C3W2

−D3333C3W3 −D3334C3W4 −D3341C4W1 −D3342C4W2 −D3343C4W3 −D3344C4W4

+S331
∂C1

∂Z
+S332

∂C2

∂Z
+S333

∂C3

∂Z
+S334

∂C4

∂Z
−Re

(
E3311W1

∂W1

∂Z
+E3312W1

∂W2

∂Z

+E3313W1
∂W3

∂Z
+E3314W1

∂W4

∂Z
+E3321W2

∂W1

∂Z
+E3322W2

∂W2

∂Z
+E3323W2

∂W3

∂Z

+E3324W2
∂W4

∂Z
−E3331W3

∂W1

∂Z
−E3332W3

∂W3

∂Z
+E3333W3

∂W3

∂Z
+E3334W3

∂W4

∂Z
+E3341W4

∂W1

∂Z

−E3342W4
∂W2

∂Z
+E3343W4

∂W3

∂Z
+E3344W4

∂W4

∂Z

)
+H331

∂(2)W1

∂Z(2) +H332
∂(2)W2

∂Z(2) +H333
∂(2)W3

∂Z(2)

+H334
∂(2)W4

∂Z(2) −P33;
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Re
(
A341

∂W1

∂T
+ A342

∂W2

∂T
+ A343

∂W3

∂T
+ A344

∂W4

∂T

)
= F341W1 +F342W2 +F343W3 +F344W4

−B3411U1W1 −B3412U1W2 −B3413U1W3 −B3414U1W4 −B3421U2W1 −B3422U2W2

−B3423U2W3 −B3424U2W4 −D3411C1W1 −D3412C1W2 −D3413C1W3 −D3414C1W4

−D3421C2W1 −D3422C2W2 −D3423C2W3 −D3424C2W4 −D3431C3W1 −D3432C3W2

−D3433C3W3 −D3434C3W4 −D3441C4W1 −D3442C4W2 −D3443C4W3 −D3444C4W4

+S341
∂C1

∂Z
+S342

∂C2

∂Z
+S343

∂C3

∂Z
+S344

∂C4

∂Z
−Re

(
E3411W1

∂W1

∂Z
+E3412W1

∂W2

∂Z

+E3413W1
∂W3

∂Z
+E3414W1

∂W4

∂Z
+E3421W2

∂W1

∂Z
+E3422W2

∂W2

∂Z
+E3423W2

∂W3

∂Z

+E3424W2
∂W4

∂Z
−E3431W3

∂W1

∂Z
−E3432W3

∂W3

∂Z
+E3433W3

∂W3

∂Z
+E3434W3

∂W4

∂Z
+E3441W4

∂W1

∂Z

−E3442W4
∂W2

∂Z
+E3443W4

∂W3

∂Z
+E3444W4

∂W4

∂Z

)
+H341

∂(2)W1

∂Z(2) +H342
∂(2)W2

∂Z(2) +H343
∂(2)W3

∂Z(2)

+H344
∂(2)W4

∂Z(2) −P34.

5.2.2 Pressure relation

In the present coordinate system, which was set up in Chapter 4, the differential operator

∇ is given by

∇=a1
∂

∂X
+a2

∂

∂Y
+a3

1
1+δY

∂

∂Z
.
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Then taking the divergence of the Navier-Stokes equation, given by Eqs. (5.1) - (5.3)

gives

Re0
∂

∂T

[
∂V1

∂X
+ ∂V2

∂Y
+ δV2

1+δY
+ Re0

1+δY
∂V3

∂Z

]
+V1

∂

∂X

[
∂V1

∂X
+ ∂V2

∂Y
+ δV2

1+δY
+ Re0

1+δY
∂V3

∂Z

]
+V2

∂

∂Y

[
∂V1

∂X
+ ∂V2

∂Y
+ δV2

1+δY
+ Re0

1+δY
∂V3

∂Z

]
+ δ(2)V (2)

2

(1+δY )(2) +
Re0δV2

(1+δY )(2)
∂V3

∂Z
+ 2Re0

1+δY
∂V3

∂X
∂V1

∂Z

+2
∂V2

∂X
∂V1

∂Y
+ Re0V3

1+δY
∂

∂Z

[
∂V1

∂X
+ ∂V2

∂Y
+ δV2

1+δY
+ Re0

1+δY
∂V3

∂Z

]
+

(
∂V1

∂X

)(2)
+

(
∂V2

∂Y

)(2)

− 2Re(2)
0 δV3

1+δY
∂V3

∂Y
+ Re0δV3

(1+δY )(2)
∂V2

∂Z
+ 2Re0

1+δY
∂V3

∂Y
∂V2

∂Z
+ Re(2)

0

(1+δY )(2)

(
∂V3

∂Z

)(2)

=−Re0

[
∂(2)P
∂X (2) +

∂(2)P
∂Y (2) +

δ

1+δY
∂P
∂Y

+ 1
(1+δY )(2)

∂(2)P
∂Z(2)

]
+ ∂(2)

∂X (2)

[
∂V1

∂X
+ ∂V2

∂Y
+ δV2

1+δY
+ Re0

1+δY
∂V3

∂Z

]
+ ∂(2)

∂Y (2)

[
∂V1

∂X
+ ∂V2

∂Y
+ δV2

1+δY
+ Re0

1+δY
∂V3

∂Z

]
+ δ

1+δY
∂

∂Y

[
∂V1

∂X
+ ∂V2

∂Y
+ δV2

1+δY
+ Re0

1+δY
∂V3

∂Z

]
+ 1

(1+δY )(2)
∂(2)

∂Z(2)

[
∂V1

∂X
+ ∂V2

∂Y
+ δV2

1+δY
+ Re0

1+δY
∂V3

∂Z

]
+ 2δ(2)

(1+δY )(2)
∂V2

∂Y

− Re0δ

(1+δY )(2)
∂(2)V3

∂Y∂Z
+ δ

(1+δY )(3)
∂(2)V2

∂Z(2) .

(5.8)

In this coordinate system, the Laplacian operator is

∇(2) = ∂(2)

∂X (2) +
∂(2)

∂Y (2) +
δ

1+δY
∂

∂Y
+ 1

(1+δY )(2)
∂(2)

∂Z(2) .

Hence, recalling the incompressibility condition given by Eq. (5.4), Eq. (5.8) simplifies

and after rearrangement gives

Re0∇(2)P = 2δ(2)

(1+δY )(2)
∂V2

∂Y
− Re0δ

(1+δY )(2)
∂(2)V3

∂Y∂Z
+ δ

(1+δY )(3)
∂(2)V2

∂Z(2) − δ(2)V (2)
2

(1+δY )(2) −
Re0δV2

(1+δY )(2)
∂V3

∂Z

− 2Re0

1+δY
∂V3

∂X
∂V1

∂Z
−2

∂V2

∂X
∂V1

∂Y
−

(
∂V1

∂X

)(2)
−

(
∂V2

∂Y

)(2)
+ 2Re(2)

0 δV3

1+δY
∂V3

∂Y
− Re0δV3

(1+δY )(2)
∂V2

∂Z

− 2Re0

1+δY
∂V3

∂Y
∂V2

∂Z
− Re(2)

0

(1+δY )(2)

(
∂V3

∂Z

)(2)
.

(5.9)

Eq. (5.9) is known as the pressure Poisson equation and can be coupled with Eqs. (5.5)

- (5.7) in an iterative solver where the velocity and pressure is updated in turn.
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5.2.3 Solution strategies for the reduced equations

In the case of a toroidally curved pipe with constant curvature and constant radius,

the coaxial pressure gradients appearing in the equations of motion could be removed

from the system of equations to solve for through the use of Green’s Theorem and the

incompressibility equation (see Section 4.6 in Chapter 4). However, in this case where

the directors in the two cross-sectional directions are no longer assumed to be the same,

this approach can no longer be taken. Therefore an explicit expression for the pressure

is required to be able to solve the system. Hence the pressure Poisson equation, in this

case given by Eq. (5.9), is used.

One strategy for solving the coupled system (Eqs. (5.5) - (5.7) and Eq. (5.9)) that has

been investigated is to assume a polynomial expansion for the pressure, in terms of the

cross-sectional coordinates, at each point along the pipe. Then discretising along the pipe

and in time, the system of integrated equations, represented by Eqs. (5.5) - (5.7), along

with equations representing the no-slip boundary condition, is firstly solved for with a

trivial pressure. Then the Laplacian of the pressure is calculated from the velocity terms

by Eq. (5.9). (Here, any number of different solution methods could be used, as well as

an explicit analytical solution based on Green’s functions. This is used to calculate the

coefficients of the pressure expansion. Finally the system of equations is resolved with

the pressure terms included to update the velocity. This is done for each Z-step within

each T-step, first going along the pipe and then moving forward in time.

A method using simple finite differences in time and space has been investigated

for this system. Another approach would be to do the spatial discretisation using finite

differences and then use a stiff ODE solver in time. One of the difficulties of this approach

is that the 3D pressure equation and the system of 1D equations for the director weights

for the fluid velocity live in different domains and have to be solved in the iterative

coupled manner. A simple implementation of the finite difference approach has been set

up in Matlab. The results are promising in the representation of the initial data, however

it suffers from numerical instability problems. A complete numerical implementation is

beyond the scope of this thesis.
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5.3 Varying Curvature

5.3.1 Setup

Consider the case where the radius of curvature varies along the pipe. In this case a

similar coordinate transformation to that described in Chapter 4 can be used, that is

ζ1 = x1;

ζ2 = (x(2)
2 + x(2)

3 )(1/2) −R;

ζ3 = R arctan(x3/x2);

where (x1, x2, x3) are the Cartesian coordinates and (ζ1,ζ2,ζ3) are a set of orthogonal

curvilinear coordinates. The inverse is given by

x1 = ζ1;

x2 = (R+ζ1)cos(ζ3/R);

x3 = (R+ζ2)sin(ζ3/R).

The difference with Chapter 4 is that R is no longer assumed to be a constant, specifically

R now admits the representation R = R(ζ3). The covariant base vectors for (ζ1,ζ2,ζ3) are

defined by

gi = ∂x1

∂ζi e1 + ∂x2

∂ζi e2 + ∂x3

∂ζi e3,

for i = 1,2,3, where e1,e2,e3 are the Cartesian unit base vectors. Hence

g1 = e1;

g2 = cos(ζ3/R)e2 +sin(ζ3/R)e3;

g3 =
[
∂R
∂ζ3 cos(ζ3/R)− (R+ζ2)

(
1
R

− ζ3

R(2)
dR
dζ3

)
sin(ζ3/R)

]
e2

+
[
∂R
∂ζ3 sin(ζ3/R)+ (R+ζ2)

(
1
R

− ζ3

R(2)
dR
dζ3

)
cos(ζ3/R)

]
e3.

The contravariant base vectors gi are defined by

gi ·g j = δi
j.

The determinant, as defined in Eq. (2.7) is given by

g(1/2) =

∣∣∣∣∣∣∣∣∣
1 0 0

0 cos(ζ3/R) ∂R
∂ζ3 cos(ζ3/R)− (R+ζ2)

(
1
R − ζ3

R(2)
dR
dζ3

)
sin(ζ3/R)

0 sin(ζ3/R) ∂R
∂ζ3 sin(ζ3/R)+ (R+ζ2)

(
1
R − ζ3

R(2)
dR
dζ3

)
cos(ζ3/R)

∣∣∣∣∣∣∣∣∣= (R+ζ2)
(

1
R

− ζ3

R(2)
dR
dζ3

)
.
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Consider the set of orthonormal basis ai given by

a1 = e1;

a2 = cos(ζ3/R)e2 +sin(ζ3/R)e3;

a3 =−sin(ζ3/R)e2 +cos(ζ3/R)e3.

5.3.2 Equations of motion

The incompressibility condition is given by

∂v
∂xi

·ei = 0,

for i = 1,2,3. This can be expressed in terms of the curvilinear coordinates (ζ1,ζ2,ζ3)

considering that
∂v
∂xi

= ∂v
∂ζ1

∂ζ1

∂xi
+ ∂v
∂ζ2

∂ζ2

∂xi
+ ∂v
∂ζ3

∂ζ3

∂xi
.

The derivation of the incompressibility condition is similar to that carried out in Section

4.2 of Chapter 4, but with the added complexity that the radius of curvature R is no

longer a constant but a function of ζ3. The derivatives of R with respect to x2 and x3 will

appear in the derivation, and their calculations are presented as follows:

∂R
∂x2

= ∂R
∂ζ3

∂ζ3

∂x2

= ∂R
∂ζ3

(
∂R
∂x2

arctan x3/x2 − Rx3

x(2)
2 + x(2)

3

)

= ∂R
∂ζ3

(
∂R
∂x2

ζ3

R
− R sinζ3/R

ζ2 +R

)
;

rearranging gives
∂R
∂x2

=− ∂R
∂ζ3

R sinζ3/R

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

) .

Similarly,

∂R
∂x3

= ∂R
∂ζ3

∂ζ3

∂x3

= ∂R
∂ζ3

(
∂R
∂x3

arctan x3/x2 + Rx2

x(2)
2 + x(2)

3

)

= ∂R
∂ζ3

(
∂R
∂x3

ζ3

R
+ R cosζ3/R

R+ζ2

)
;
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rearranging gives
∂R
∂x3

= ∂R
∂ζ3

R cosζ3/R

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

) .

Expressing the velocity as v= v1a1+v2a2+v3a3, carrying out the calculations, it is found

that
∂v
∂x1

·e1 = ∂v1

∂ζ1 ;

∂v
∂x2

·e2 = cos(2) ζ3/R
∂v2

∂ζ2 + ∂R
∂ζ3

∂v2

∂ζ2
R cosζ3/R sinζ3/R

(R+ζ2)
(
1− ∂R

∂ζ2
ζ3

R

) − ∂R
∂ζ3

∂v2

∂ζ3
ζ3 cosζ3/R sinζ3/R

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

)
− ∂v2

∂ζ3
R cosζ3/R sinζ3/R

R+ζ2 + v3

R
∂R
∂ζ3

ζ3 cosζ3/R sinζ3/R
(R+ζ2)

+ v3 cosζ3/R sinζ3/R
R+ζ2

(
1− ∂R

∂ζ3
ζ3

R

)
− ∂v3

∂ζ2 cosζ3/R sinζ3/R− ∂v3

∂ζ2
∂R
∂ζ3

R sin(2) ζ3/R

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

) + ∂R
∂ζ3

∂v3

∂ζ3
ζ3 sin(2) ζ3/R

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

)
+ ∂v3

∂ζ3
R sin(2) ζ3/R

R+ζ2 + ∂R
∂ζ3

v2

R
ζ3 sin(2) ζ3/R

(R+ζ2)
+ v2 sin(2) ζ3/R

R+ζ2

(
1− ∂R

∂ζ3
ζ3

R

)
;

∂v
∂x3

·e3 = sin(2) ζ3/R
∂v2

∂ζ2 − ∂R
∂ζ3

∂v2

∂ζ2
R sinζ3/R cosζ3/R

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

) +cosζ3/R sinζ3/R
∂v3

∂ζ2

− ∂R
∂ζ3

∂v3

∂ζ2
R cos(2) ζ3/R

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

) + ∂R
∂ζ3

∂v2

∂ζ3
ζ3 cosζ3/R sinζ3/R

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

) − ∂R
∂ζ3

v3

R
ζ3 cosζ3/R sinζ3/R

(R+ζ2)

+ ∂v2

∂ζ3
R cosζ3/R sinζ3/R

R+ζ2 − v3 cosζ3/R sinζ3/R
R+ζ2

(
1− ∂R

∂ζ3
ζ3

R

)
+ ∂R
∂ζ3

∂v3

∂ζ3
ζ3 cos(2) ζ3/R

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

)
+ ∂R
∂ζ3

v2

R
ζ3 cos(2) ζ3/R

(R+ζ2)
+ ∂v3

∂ζ3
R cos(2) ζ3/R

R+ζ2 + v2 cos(2) ζ3/R
R+ζ2

(
1− ∂R

∂ζ3
ζ3

R

)
.

Therefore the incompressibility condition is given by

∂v1

∂ζ1 + ∂v2

∂ζ2 + v2

R+ζ2 +
R ∂v3
∂ζ3 −R ∂R

∂ζ3
∂v3
∂ζ2

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

) = 0.

This can be written in non-dimensional form as

1
Re0

∂V1

∂X
+ 1

Re0

∂V2

∂Y
+ δV2

Re0(1+δY )
+ 1

δ(1+δY )
(
δ+Z ∂δ

∂Z
) ∂V3

∂Y
∂δ

∂Z

+ δ

(1+δY )
(
δ+Z ∂δ

∂Z
) ∂V3

∂Z
= 0.

(5.10)
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The incompressible and Newtonian Navier-Stokes equation is given in vector form by

∂v
∂t

+v ·∇v=−∇p
ρ

+ν∇(2)v.

In this coordinate system, it is found that the differential operator ∇ is given by

(5.11) ∇=a1
∂

∂ζ1 +a2
∂

∂ζ2 +a3

−∂R
∂ζ3

R

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

) ∂

∂ζ2 + R

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

) ∂

∂ζ3

 .

After carrying out the algebra and simplifying, it is found that

v ·∇v=
v1

∂v1

∂ζ1 +v2
∂v1

∂ζ2 − ∂R
∂ζ3

Rv3

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

) ∂v1

∂ζ2 + Rv3

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

) ∂v1

∂ζ3

a1

+
v1

∂v2

∂ζ1 +v2
∂v2

∂ζ2 − ∂R
∂ζ3

Rv3

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

) ∂v2

∂ζ2 + Rv3

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

) ∂v2

∂ζ3 − v(2)
3

R+ζ2

a2

+
v1

∂v3

∂ζ1 +v2
∂v3

∂ζ2 − ∂R
∂ζ3

Rv3

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

) ∂v3

∂ζ2 + Rv3

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

) ∂v3

∂ζ2 + v2v3

R+ζ2

a3;
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∇(2)v=

∂(2)v1

∂ζ1(2) +

1+
(
∂R
∂ζ3

)(2) R(2)

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(2)

 ∂(2)v1

∂ζ2(2) −2
∂R
∂ζ3

R(2)

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(2)
∂(2)v1

∂ζ2ζ3

+

 ∂(2)R

∂ζ3(2)
R(2)

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(3) −2
(
∂R
∂ζ3

)(2) R

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(2) +
1
R

(
1− ∂R

∂ζ3
ζ3

R

) ∂v1

∂ζ2

+ 1

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(3)

(
ζ3R

∂(2)R

∂ζ3(2) +2R
∂R
∂ζ3 −3ζ3

(
∂R
∂ζ3

)(2)
)
∂v1

∂ζ3 + R(2)

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(2)
∂(2)v1

∂ζ3(2)

a1

+

∂(2)v2

∂ζ1(2) +

1+
(
∂R
∂ζ3

)(2) R(2)

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(2)

 ∂(2)v2

∂ζ2(2) −2
∂R
∂ζ3

R(2)

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(2)
∂(2)v2

∂ζ2∂ζ3

+

 ∂(2)R

∂ζ3(2)
R(2)

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(3) −2
(
∂R
∂ζ3

)(2) R

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(2) +
1
R

(
1− ∂R

∂ζ3
ζ3

R

) ∂v2

∂ζ2

+ 1

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(3)

(
ζ3R

∂(2)R

∂ζ3(2) +2R
∂R
∂ζ3 −3ζ3

(
∂R
∂ζ3

)(2)
)
∂v2

∂ζ3 + R(2)

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(2)
∂(2)v2

∂ζ3(2)

+2
∂R
∂ζ3

R

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

) ∂v3

∂ζ2 +
(
∂R
∂ζ3

)(2) v3ζ
3

R(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(2) −
v2

(R+ζ2)(2)

a2

+

∂(2)v3

∂ζ1(2) +

1+
(
∂R
∂ζ3

)(2) R(2)

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(2)

 ∂(2)v3

∂ζ2(2) −2
∂R
∂ζ3

R(2)

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(2)
∂(2)v3

∂ζ2∂ζ3

+

 ∂(2)R

∂ζ3(2)
R(2)

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(3) −2
(
∂R
∂ζ3

)(2) R

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(2) +
1
R

(
1− ∂R

∂ζ3
ζ3

R

) ∂v3

∂ζ2

+ 1

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(3)

(
ζ3R

∂(2)R

∂ζ3(2) +2R
∂R
∂ζ3 −3ζ3

(
∂R
∂ζ3

)(2)
)
∂v3

∂ζ3 + R(2)

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(2)
∂(2)v3

∂ζ3(2)

− ∂R
∂ζ3

R

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

) ∂v2

∂ζ2 − v2ζ
3

R(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(2) −
v3

(R+ζ2)(2)

a3.
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Hence the a1, a2 and a3 components of the equation of motion are given respectively by

∂v1

∂t
+v1

∂v1

∂ζ1 +v2
∂v1

∂ζ2 − ∂R
∂ζ3

Rv3

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

) ∂v1

∂ζ2 + Rv3

(R+ζ2)
(
1− ∂R

∂ζ3
ζ3

R

) ∂v1

∂ζ3 =−1
ρ

∂p
∂ζ1

+ν

∂(2)v1

∂ζ1(2) +

1+
(
∂R
∂ζ3

)(2) R(2)

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R

)(2)

 ∂(2)v1

∂ζ2(2) −2
∂R
∂ζ3

R(2)

(R+ζ2)(2)
(
1− ∂R

∂ζ3
ζ3

R
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These can be written in dimensionless form as
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(5.12)
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(5.14)

Considering Eq. (5.11), the differential operator ∇ is given, in this coordinate system,
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in dimensionless form by

∇=a1δ
∂

∂X
+a2δ

∂

∂Y
+a3

(
∂δ

∂Z
1
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δ+Z ∂δ

∂Z
) ∂
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+ δ(2)

(1+δY )
(
δ+Z ∂δ

∂Z
) ∂

∂Z

)
.

An expression for the Laplacian of the pressure could then be obtained by taking the

divergence of the equation of motion and then simplifying with the incompressibility

condition, similar to as was done for the varying pipe radius case. The expression of the

Laplacian of the pressure in this case however will be more complicated than Eq. (5.9)

due to the curvature ratio δ now having dependence on z. In principal, the numerical

solution strategy will then be the same as discussed in Section 5.2.3.

5.4 Summary of Chapter

In this chapter, the modelling of pipes with more complicated geometry was considered.

The particular cases presented were a pipe of constant curvature with a radius that

can vary along the pipe and in time, and a pipe of varying planar curvature, where the

curvature varies a long the pipe and with time. In these cases, the systems of equations

were derived, along with a proposed method for numerically solving them.

It was found that in these cases of more complicated geometry, it was not trivial to

reduce the number of directors and relate the directors in the two cross-sectional coordi-

nates together through the equations arising through the conditions of incompressibility

and no-slip on the boundary, as was done in Chapter 4. This was due to the directors now

having co-axial dependence. This also meant that the cross-sectional pressure gradient

terms could not be removed from system of equations through the use of Green’s theorem

and the equation for incompressibility. This resulted in a different approach to solving

the system of equations being considered, of discretising along the pipe and in time and

using the pressure Poisson equation to calculate the pressure and update the velocity

at each step. While tentative work was put into the solving the system in this way, the

numerical solutions require further investigation and this is left as future work.

Another avenue for future work would be to see if a relationship, although more

complicated, could be derived between the weighting functions which would allow the

directors in the a1 and a2 directions to be considered equal and then allow the the

coaxial pressure gradients to be taken out of the system of equations through algebraic

manipulation. Whether this is possible for more complex geometries than the model

presented in Chapter 4 remains an open question.
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CONCLUSION

6.1 Contributions

The first chapter of this thesis gave an overview of cardiovascular modelling, its uses

and the current challenges in producing accurate models. A review of literature on the

subjects of director theory and cardiovascular modelling was conducted and the aims of

this thesis were presented.

The second chapter gave an introduction to and outline of the development of director

theory. This included the setup of the relevant coordinate systems and deriving the

relations between the equations of conservation laws in Eulerian and Lagrangian form.

It also gave a background to the computational fluid dynamics simulations that would

be used in later chapters to compare with the results produced by the director theory

models, the subject of this thesis. The next three substantive chapters then work out

the detail of the theory for geometries of increasing complexity, starting with steady

flows and straight pipes, building up to the general problem of unsteady flows in pipes of

arbitrary curvature and cross-sectional variation.

The third chapter focused on using director theory to model flow in a straight pipe,

following a similar approach to Caulk and Naghdi [18]. The novelty in this chapter,

was also developing the model for K = 5 in addition to K = 3 and producing solutions

for geometries such as a tapering pipe and a wavy walled (sinusoidal) pipe, as well as

swirling flow in a cylindrical pipe. The solutions produced were found to match well

with 3D simulations carried out using STAR-CCM+ [45], with maximum relative errors
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between the two of around 5%.

The fourth chapter looked at using director theory to model fluid flow through

a toroidally curved pipe, similar to the work of Green et al [7]. The novelty in this

chapter was the way the system of equations (integrated equations of motion) were

derived, in this case directly from the Navier-Stokes equations, as opposed to in terms

of kinetical quantities defined by Green and Naghdi [6]. While the two methods result

in the derivation of equivalent systems of equations, the novel approach presented in

this thesis is considered a more intuitive approach within the field of fluid dynamics.

Solutions were found for orders ranging from H = 7 to H = 15, for Reynolds numbers

ranging from Re = 1 to Re = 1000 and for two different curvature ratios, namely δ= 0.01

and δ = 0.1. The results were found to compare well with 3D simulations carried out

using STAR-CCM+ and comparisons of friction loss against Dean number were found

to agree with those presented by Green et al [7] for curvature ratio 0.01 and varying

Reynolds number.

The fifth chapter further generalises the application of director theory to the case of

non-steady internal flows. Here, equations were derived for unsteady flow in pipes of

varying radius and curvature. The numerical implementation to solve these equations

was beyond the reach of this thesis and is left as future work.

Another contribution of this thesis has been to modernise the topic of director theory

in the application of fluid mechanics and present the method in a more accessible

way. It has also been demonstrate that the derivation of the integrated equations of

motion can be presented in the form of a rational asymptotic expansion of the Navier-

Stokes equations directly, rather than indirectly from conservation laws. Also, explicit

expressions have been derived for the various equations that are suitable for future

researchers to implement as part of new, efficient numerical schemes for 1D pipe flow in

arbitrary geometries.

6.2 Limitations

One limitation of this work applying director theory to fluid flow modelling is that

the higher the order of expansion used for the velocity series approximation, the more

computationally expensive the model becomes. This primarily effects the computational

time taken to derive the coefficients of the system of equations themselves rather than

the solving of the system. This is due to the numeric integration over the cross-section of

the pipe that is carried out after multiplying each equation of motion component by each
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respective weighting function. This impacted on how high the order could be reasonably

taken for the models, which could have provided further insights, such as whether the

magnitude of error between the director theory models and the 3D simulations continues

to decrease as the order is increased.

A major limitation of the theory is how to deal with pressure, which appears as a

Lagrange multiplier in the Navier-Stokes equations. A difficulty within this thesis has

been to find a consistent strategy for incorporating pressure in each of the asymptotic

expansions.

Another limitation was the lack of exact solution to compare the director theory

models to for most geometries considered in this thesis. For validation, 3D finite volume

simulations carried out in STAR-CCM+ were used. However these simulations are likely

to have errors themselves, particularly close to the boundaries, despite the finely resolved

meshes adopted. This can make it difficult to be sure where the error in the differences

in solutions between the director theory model and the simulation is originating from.

Although, there are methods to help look into this, such as looking at how the error is

effected by different mesh resolutions in the simulations and different orders of velocity

in the director theory model.

Another weakness of the present work is that, even the general formulation in

Chapter 5 does not consider arbitrary geometries with curvature and torsion. So far

only the case of arbitrary planar curvature has been considered. In theory the director

theory approach allows for modelling of flow through complicated geometries such as

pipes with curvature and torsion and movement in time. However, the more complicated

the geometry, the more complicated the initial setup of the model is, with the coordinate

system being based on the centreline of the pipe and the more complicated the derivation

of the equations of motion become in the appropriate coordinate system. Also it is likely

that the more complicated the geometry, the higher the order of velocity expansion

that is required to accurately model the flow, which, as mentioned above, becomes

more computationally expensive. This could be a barrier for applying director theory to

practical uses such as cardiovascular modelling.

In summary, the main challenges with the use of director theory for flow in curved

pipes of arbitrary geometry only appear in the setup of the model. As such, with more

work and developments, the modelling of more complicated geometries should be feasible,

although larger computer resources may be required. Generally, there is an expensive

pre-processing stage to obtain the equations for a specific setup. However, this should

only need to be done once for a given geometry setup and then solving the system and
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obtained a CFD results should be comparatively straight forward.

6.3 Future Research Directions

There are a number of directions future research into the application of director theory to

fluid flow modelling could be taken. A more in depth study of the error and convergence of

solutions as the order of the velocity expansions increases would be of interest. Particular

points that could be examined include whether there is an order at which the error

no longer reduces/the solutions produced do not change as the order is increased and

whether/how this depends on the geometry and dependencies of the pipe. Similarly, a

more in-depth study of how the 3D simulation solutions, to which the director theory

models were compared, are affected by the meshing, such as whether there is a point at

which further refining of the mesh no longer affects the solutions/differences with the

director theory solutions. Also whether changing meshing properties such as the number

of prism layers affects the solution close to the wall, as an error between the simulations

and director theory solutions is often seen close to the wall, which was assumed to be

likely originated from the simulations.

Another interesting research direction would be to look at how well director theory

can be used to model fluid flow through more complicated geometries. This could in

particular include pipes that have torsion in addition to curvature and pulsing or elastic

walls. Other considerations could be the modelling of non-circular sections of pipe and of

non-Newtonian compressible fluids. It would also be of interest to investigate branching

of vessels (pipe networks). The main challenge as the model becomes more complex is

dealing with the pressure. It is possible that this may be resolved with a projection

approach or by reformulating the equations with the vorticity transport equations. As

mentioned above, the main difficulty of such approaches is the increasing complexity in

setting up the model, so it would be interesting to look into to whether this initial setup

stage of deriving the coordinate system and equations of motion could be approached in a

more automated form. If this could be addressed and the model was capable of producing

accurate solutions for these more complicated geometries, then this approach could have

practical uses such as in the modelling of cardiovascular, lymphatic and pulmonary

systems, or other real-world piping networks such as ventilation systems or city water

mains, improving accuracy over classical 1D models.
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A.1 Derivation of Integrated Equations of Motion for
a Straight Axisymmetric Pipe

This Appendix details the steps involved in evaluating Eqs. (3.23) and (3.24) to obtain

Eqs. (3.36) to (3.41).

Substituting Eqs. (3.32), (3.29) and (3.13) into Eq. (3.23) and evaluating this equa-

tion in component form gives the following in the e1 direction:
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Rewriting this equation in cylindrical polar coordinates (r,θ, z) gives

∂

∂z

ˆ φ

0

ˆ 2π

0
µ

[(
∂u1,0

∂z
+ r(2)∂u3,0

∂z

)
r cosθ−

(
∂u0,1

∂z
+ r(2)∂u0,3

∂z

)
rsinθ+2rw2,0 cosθ

]
rdθdr

+
ˆ 2π

0
φ−1

τ1
∂φ

∂z
φcosθ− peφcosθ−w0,0τ2

(
1+

(
∂φ

∂z

)(2)
)(1/2)

rsinθ

φdθ

=
ˆ φ

0

ˆ 2π

0
ρ

[(
∂u1,0

∂t
+ r(2)∂u3,0

∂t

)
r cosθ−

(
∂u0,1

∂t
+ r(2)∂u0,3

∂t

)
rsinθ

+ ((u1,0 + r(2)u3,0)r cosθ− (u0,1 + r(2)u0,3)rsinθ)(u1,0 + r(2)u3,0(1+2cos(2)θ)−2r(2)u0,3 cosθsinθ)

+ ((u1,0 + r(2)u3,0)rsinθ+ (u0,1 + r(2)u0,3)r cosθ)(2r(2)u3,0 cosθsinθ− (u0,1 − r(2)u0,3(1+2sin(2)θ)))

+(w0,0 + r(2)w2,0)
((
∂u1,0

∂z
+ r(2)∂u3,0

∂z

)
cosθ−

(
∂u0,1

∂z
+ r(2)∂u0,3

∂z

)
rsinθ

)]
rdθdr.

As every term in this equation will cancel out when integrated over 0 to 2π. This is

similarly the case when evaluating Eq. (3.23) in the e2 direction.

Finally, evaluating Eq. (3.23) in the e3 direction gives

∂

∂x3

ˆ
A

[
−p+2µ

(
∂w0,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂w2,0

∂x3

)]
da

+
ˆ
∂A

(
1+

(
∂φ

∂x3

(2)
))(1/2)

 τ1 + pe
∂φ

∂x3(
1+

(
∂φ

∂x3

)(2)
)(1/2)

ds

=
ˆ

A
ρ

[
∂w0,0

∂t
+ (x(2)

1 + x(2)
2 )

∂w2,0

∂t
+2x1w2,0((u1,0 + (x(2)

1 + x(2)
2 )u3,0)x1 − (u0,1 + (x(2)

1 + x(2)
2 )u0,3)x2)

+2x2w2,0((u1,0 + (x(2)
1 + x(2)

2 )u3,0)x2 + (u0,1 + (x(2)
1 + x(2)

2 )u0,3)x1)

+(w0,0 + (x(2)
1 + x(2)

2 )w2,0)
(
∂w0,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂w2,0

∂x3

)]
da.

Simplifying, this becomes

∂

∂x3

ˆ
A

[
−p+2µ

(
∂w0,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂w2,0

∂x3

)]
da

+
ˆ
∂A

(
τ1 + pe

∂φ

∂x3

)
ds

=
ˆ

A
ρ

[
∂w0,0

∂t
+ (x(2)

1 + x(2)
2 )

∂w2,0

∂t
+ (w0,0 + (x(2)

1 + x(2)
2 )w2,0)

(
∂w0,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂w2,0

∂x3

)
+2w2,0(x(2)

1 + x(2)
2 )(u1,0 +φ(2)u3,0)

]
da.
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Converting this equation into cylindrical polar coordinates gives

− ∂pI

∂z
+ ∂

∂z

ˆ 2π

0

ˆ φ

0
2µ

(
∂w0,0

∂z
+ r(2)∂w2,0

∂z

)
rdrdθ+

ˆ 2π

0

(
τ1 + pe

∂φ

∂z

)
φdθ

=
ˆ 2π

0

ˆ φ

0
ρ

[
∂w0,0

∂t
+ r(2)∂w2,0

∂t
+ (w0,0 + r(2)w2,0)

(
∂w0,0

∂z
+ r(2)∂w2,0

∂z

)
+2w2,0r(2)(u1,0 + r(2)u3,0)

]
rdrdθ,

where pI is the pressure resultant defined by

(A.1) pI =
ˆ

A
pda.

Carrying out the integration with respect to r gives

− ∂pI

∂z
+ ∂

∂z

ˆ 2π

0
2µ

(
φ(2)

2
∂w0,0

∂z
+ φ(4)

4
∂w2,0

∂z

)
dθ+

ˆ 2π

0
φ

(
τ1 + pe

∂φ

∂z

)
dθ

=
ˆ 2π

0
ρ

(
φ(2)

2
∂w0,0

∂t
+ φ(4)

4
∂w2,0

∂t
+ φ(2)

2
w0,0

∂w0,0

∂z
+ φ(4)

4
w0,0

∂w2,0

∂z
+ φ(4)

4
w2,0

∂w0,0

∂z
+ φ(6)

6
w2,0

∂w2,0

∂z

+2w2,0
φ(4)

4
u1,0 +2w2,0

φ(6)

6
u3,0

)
dθ.

After carrying out the integration with respect to θ, the equation can be expressed in the

following form:

2πµ
∂

∂z

[
φ(2)

(
∂w0,0

∂z
+ φ(2)

2
∂w2,0

∂z

)]
+2πφ

(
τ1 + pe

∂φ

∂z

)
= ∂pI

∂z
+πρφ(2)

[
∂w0,0

∂t

+∂w0,0

∂z

(
w0,0 + φ(2)

2
w2,0

)
+ φ(2)

2

(
∂w2,0

∂t
+ ∂w2,0

∂z

(
w0,0 + 2

3
φ(2)w2,0

)
+2w2,0

(
u1,0 + 2

3
φ(2)u3,0

))]
.

(A.2)

This is Eq. (3.36) in the main text.

Now examining Eq. (3.25) and taking the case when α1 = 1, substituting in Eqs. (3.32),

(3.29), (3.30) and (3.13) gives
∂

∂x3

ˆ
A
µ

[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
x1 −

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3

)
x2 +2x1w2,0

]
x1da

+
ˆ
∂A
φ−1

x(2)
1

(
τ1

∂φ

∂x3
− pe

)
− x1x2τ2

(
1+

(
∂φ

∂x3

)(2)
)(1/2)

ds

=
ˆ

A
(−p+2µ(u1,0 +3x(2)

1 u3,0 + x(2)
2 u3,0 −2x1x2u0,3))da

+
ˆ

A
ρ

[(
∂u1,0

∂t
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂t

)
x1 −

(
∂u0,1

∂t
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂t

)
x2

+((u1,0 + (x(2)
1 + x(2)

2 )u3,0)x1 − (u0,1 + (x(2)
1 + x(2)

2 )u0,3)x2)(2x(2)
1 u3,0 +u1,0 + (x(2)

1 + x(2)
2 )u3,0 −2x1x2u0,3)

+((u1,0 + (x(2)
1 + x(2)

2 )u3,0)x2 + (u0,1 + (x(2)
1 + x(2)

2 )u0,3)x1)(2x1x2u3,0 −2x(2)
2 u0,3 −u0,1 − (x(2)

1 + x(2)
2 )u0,3)

+(w0,0 + (x(2)
1 + x(2)

2 )w2,0)
((
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
x1 −

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3

)
x2

)]
x1da.
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Rewriting this equation in cylindrical polar coordinates (r,θ, z) gives

∂

∂z

ˆ 2π

0

ˆ φ

0
µr(2) cosθ

[(
∂u1,0

∂z
+ r(2)∂u3,0

∂z

)
r cosθ−

(
∂u0,1

∂z
+ r(2)∂u0,3

∂z

)
rsinθ+2w2,0r cosθ

]
drdθ

+
ˆ 2π

0

(
τ1
∂φ

∂z
− pe

)
φ(2) cos(2)θ−τ2

(
1+

(
∂φ

∂z

)(2)
)(1/2)

φ(2) cosθsinθ

dθ

=−pI +
ˆ 2π

0

ˆ φ

0
2µr(u1,0 + r(2)u3,0(2cos(2)θ+1)−2r(2)u0,3 cosθsinθ)drdθ

+
ˆ 2π

0

ˆ φ

0
ρr(2) cosθ

[(
∂u1,0

∂t
+ r(2)∂u3,0

∂t

)
r cosθ−

(
∂u0,1

∂t
+ r(2)∂u0,3

∂t

)
rsinθ

+ ((u1,0 + r(2)u3,0)r cosθ− (u0,1 + r(2)u0,3)rsinθ)(2u3,0r(2) cos(2)θ+u1,0 + r(2)u3,0 −2u0,3r(2) cosθsinθ)

+ ((u1,0 + r(2)u3,0)rsinθ+ (u0,1 + r(2)u0,3)r cosθ)(2u3,0r(2) cosθsinθ−2u0,3r(2) sin(2)−u0,1 − r(2)u0,3)

(w0,0 + r(2)w2,0)
((
∂u1,0

∂z
+ r(2)∂u3,0

∂z

)
r cosθ−

(
∂u0,1

∂z
+ r(2)∂u0,3

∂z

)
rsinθ

)]
drdθ.

By reducing powers of the trigonometric functions, this can be rewritten as

∂

∂z

ˆ 2π

0

ˆ φ

0

µ

2

[
r(5)∂u3,0

∂z
cos2θ− r(5)∂u0,3

∂z
sin2θ+ r(5)∂u3,0

∂z
+2r(3)w2,0 cos2θ

+r(3)∂u1,0

∂z
cos2θ− r(3)∂u0,1

∂z
sin2θ+2r(3)w2,0 + r(3)∂u1,0

∂z

]
drdθ

+
ˆ 2π

0

(
τ1
∂φ

∂z
− pe

)
φ(2)

2
(cos2θ+1)−τ2

(
1+

(
∂φ

∂z

)(2)
)(1/2)

φ(2)

2
sin2θ

dθ

=−pI +
ˆ 2π

0

ˆ φ

0
2µ

(
ru1,0 + r(3)u3,0 + r(3)u3,0(cos2θ+1)− r(3)u0,3 sin2θ

)
drdθ

+
ˆ 2π

0

ˆ φ

0

ρ

2

[
−4u3,0u0,3r(7) sin2θ+w2,0r(7)∂u3,0

∂z
cos2θ−w2,0r(7)∂u0,3

∂z
sin2θ−4u1,0u0,3r(5) sin2θ

−2u0,1u0,3r(5) cos2θ+4u1,0u3,0r(5) cos2θ−2u3,0u0,1r(5) sin2θ

+w0,0r(5)∂u3,0

∂z
cos2θ−w0,0r(5)∂u0,3

∂z
sin2θ+w2,0r(5)∂u1,0

∂z
cos2θ

−w2,0r(5)∂u0,1

∂z
sin2θ−u(2)

0,3r(7) cos2θ+3u(2)
3,0r(7) cos2θ+w2,0r(7)∂u3,0

∂z
−2u0,1u0,3r(5)

+4u1,0u3,0r(5) +w0,0r(5)∂u3,0

∂z
+ r(5)∂u3,0

∂t
cos2θ− r(5)∂u0,3

∂t
sin2θ+w2,0r(5)∂u1,0

∂z
−2u1,0u0,1r(3) sin2θ

+w0,0r(3)∂u1,0

∂z
cos2θ−w0,0r(3)∂u0,1

∂z
sin2θ+u(2)

1,0r(3) −u(2)
0,1r(3) + r(3)∂u1,0

∂t
−u(2)

0,3r(7) +3u(2)
3,0r(7)

+u(2)
1,0r(3) cos2θ−u(2)

0,1r(3) cos2θ+ r(5)∂u3,0

∂t
+ r(3)∂u1,0

∂t
cos2θ− r(3)∂u0,1

∂t
sin2θ+w0,0r(3)∂u1,0

∂z

]
drdθ.

The terms containing cos2θ or sin2θ will cancel when integrated over 0 to 2π. Dropping
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these terms now, for simplification, gives

∂

∂z

ˆ 2π

0

ˆ φ

0

µ

2

(
2w2,0r(3) + r(3)∂u1,0

∂z
+ r(5)∂u3,0

∂z

)
drdθ

+
ˆ 2π

0

φ(2)

2

(
τ1
∂φ

∂z
− pe

)
dθ

=−pI +
ˆ 2π

0

ˆ φ

0
2µ

(
u1,0r+2r(3)u3,0

)
drdθ

+
ˆ 2π

0

ˆ φ

0

ρ

2

[
w2,0r(7)∂u3,0

∂z
−2u0,1u0,3r(5) +4u1,0u3,0r(5) +w0,0r(5)∂u3,0

∂z
+w2,0r(5)∂u1,0

∂z
+u(3)

1,0r(3)

−u(2)
0,1r(3) + r(3)∂u1,0

∂t
−u(2)

0,3r(7) +2u(2)
3,0r(7) + r(5)∂u3,0

∂t
+w0,0r(3)∂u1,0

∂z

]
drdθ.

Carrying out the integration with respect to r gives

∂

∂z

ˆ 2π

0

µ

2

(
φ(4)

2
w2,0 + φ(4)

4
∂u1,0

∂z
+ φ(6)

6
∂u3,0

∂z

)
dθ

ˆ 2π

0

φ(2)

2

(
τ1
∂φ

∂z
− pe

)
dθ

=−pI +
ˆ 2π

0
2µ

(
φ(2)

2
u1,0 + φ(4)

2
u3,0

)
dθ

ˆ 2π

0

ρ

2

[
φ(4)

4
∂u1,0

∂t
+ φ(6)

3
u3,0u1,0 + φ(8)

4
u(2)

3,0 +
φ(6)

6
∂u3,0

∂t
+ φ(4)

4
u(2)

1,0 +
φ(6)

3
u1,0u3,0 + φ(8)

8
u(2)

3,0 −
φ(4)

4
u(2)

0,1

−φ
(6)

3
u0,1u0,3 − φ(8)

8
u(2)

0,3 +
φ(4)

4
w0,0

∂u1,0

∂z
+ φ(6)

6
w2,0

∂u1,0

∂z
+ φ(6)

6
w0,0

∂u3,0

∂z
+ φ(8)

8
w2,0

∂u3,0

∂z

]
dθ.

Carrying out the integration with respect to θ gives

∂

∂z

[
µπφ(4)

4

(
2w2,0 +

∂u1,0

∂z
+ 2

3
φ(2)∂u3,0

∂z

)]
+πφ(2)

(
τ1
∂φ

∂z
− pe

)
=−pI +2πµφ(2)(u1,0 +φ(2)u3,0)

+ ρπφ(4)

4

[
∂u1,0

∂t
+ ∂u1,0

∂z

(
w0,0 + 2

3
w2,0φ

(2)
)
+u1,0

(
u1,0 + 8

3
φ(2)u3,0

)
−u0,1

(
u0,1 + 4

3
u0,3φ

(2)
)

+2
3
φ(2)

(
∂u3,0

∂t
+ ∂u3,0

∂z

(
w0,0 + 3

4
φ(2)w2,0

)
+3u3,0

(
3
4
φ(2)u3,0

)
−u0,3

(
3
4
φ(2)u0,3

))]
.

After some manipulation, the equation can be rewritten in the form

πµ

4
∂

∂z

[
φ(4)

(
∂u1,0

∂z
+ 2

3
φ(2)∂u3,0

∂z

)]
+ πµ

2
∂

∂z
(w2,0φ

(4))−2πµφ(2)(u1,0 +φ(2)u3,0)+πφ(2)
(
τ1
∂φ

∂z
− pe

)
=−pI + ρπφ(4)

4

[
∂u1,0

∂t
+ ∂u1,0

∂z

(
w0,0 + 2

3
φ(2)w2,0

)
+u1,0

(
u1,0 + 2

3
φ(2)u3,0

)
−u0,1

(
u0,1 + 2

3
u0,3φ

(2)
)

+2
3
φ(2)

[
∂u3,0

∂t
+ ∂u3,0

∂z

(
w0,0 + 3

4
φ(2)w2,0

)
+3u3,0

(
u1,0 + 3

4
φ(2)u3,0

)
−u0,3

(
u0,1 + 3

4
φ(2)u0,3

)]]
.

(A.3)
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This is Eq. (3.37) in the main text.

Due to symmetry of the flow, the e2 component should yield the same equation. Now,

examining the e3 component of the equation gives

∂

∂x3

ˆ
A

[
−pI +2µ

(
∂w0,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂w2,0

∂x3

)]
x1da+

ˆ
∂A

(
τ1 + pe

∂φ

∂x3

)
x1ds

=
ˆ

A
µ

[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
x1 −

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3

)
x2

]
da

+
ˆ

A
ρ

[
∂w0,0

∂t
+ (x(2)

1 + x(2)
2 )

∂w2,0

∂t
+2x1w2,0((w2,0 + (x(2)

1 + x(2)
2 )u3,0)x1 − (u0,1 + (x(2)

1 + x(2)
2 )u0,3)x2)

+2x2w2,0((u1,0 + (x(2)
1 + x(2)

2 )u3,0)x2 + (u0,1 + (x(2)
1 + x(2)

2 )u0,3)x1)+

(w0,0 + (x(2)
1 + x(2)

2 )w2,0)
(
∂w0,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂w2,0

∂x3

)]
x1da.

After being converted to cylindrical polar coordinates, every term in this equation will

contain either cosθ, sinθ, cos(3)θ, cos(2)θsinθ or cosθsin(2)θ. Noting that

cos(3)θ = 1
4

(cos3θ+3cosθ);

cos(2)θsinθ = 1
4

(sin3θ+sinθ);

cosθsin(2)θ = 1
4

(cosθ−cos3θ);

all terms will cancel when integrated from 0 to 2π. Now, taking the case for Eq. (3.25)

where α1 = 2, substituting in Eqs. (3.32), (3.29), (3.31) and (3.13) gives the following in

the e1 direction

∂

∂x3

ˆ
A
µ

[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
x1 −

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3

)
x2 +2x1w2,0

]
x2da

+
ˆ
∂A
φ−1

x1x2

(
τ1

∂φ

∂x3
− pe

)
− x(2)

2 τ2

(
1+

(
∂φ

∂x3

)(2)
)(1/2)

ds

=
ˆ

A
µ[4x1x2u3,0 + (2x(2)

1 −2x(2)
2 )u0,3]da

+
ˆ

A
ρ

[(
∂u1,0

∂t
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂t

)
x1 −

(
∂u0,1

∂t
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂t

)
x2

+((u1,0 + (x(2)
1 + x(2)

2 )u3,0)x1 − (u0,1 + (x(2)
1 + x(2)

2 )u0,3)x2)(2x(2)
1 u3,0 +u1,0 + (x(2)

1 + x(2)
2 )u3,0 −2x1x2u0,3)

+((u1,0 + (x(2)
1 + x(2)

2 )u3,0)x2 + (u0,1 + (x(2)
1 + x(2)

2 )u0,3)x1)(2x1x2u3,0 −2x(2)
2 u0,3 −u0,1 − (x(2)

1 + x(2)
2 )u0,3)

+(w0,0 + (x(2)
1 + x(2)

2 )w2,0)
((
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
x1 −

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3

)
x2

)]
x2da.
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Converting to cylindrical polar coordinates gives

∂

∂z

ˆ 2π

0

ˆ φ

0
µr(3)

[
r(2)∂u3,0

∂z
cosθ− r(2)∂u0,3

∂z
sinθ+ ∂u1,0

∂z
cosθ+2w2,0 cosθ− ∂u0,1

∂z
sinθ

]
sinθdrdθ

+
ˆ 2π

0

(
τ1
∂φ

∂z
− pe

)
φcosθ−τ2

(
1+

(
∂φ

∂z

)(2)
)(1/2)

sinθ

φsinθdθ

=
ˆ 2π

0

ˆ φ

0
µ

[
4u3,0r(3) cosθsinθ+2u0,3r(3)(cos(2)θ−sin(2)θ)

]
drdθ

+
ˆ 2π

0

ˆ φ

0
ρr(3)

[
w2,0r(4)∂u3,0

∂z
cosθ−w2,0r(2)∂u0,1

∂z
sinθ

−2u3,0u0,1r(2) sinθ−u0,1r(2)∂u0,3

∂z
sinθ+u(2)

1,0 cosθ−u(2)
0,1 cosθ+ ∂u1,0

∂t
cosθ

− ∂u0,1

∂t
sinθ+ r(2)∂u3,0

∂t
cosθ− r(2)∂u0,3

∂t
sinθ−4u1,0u0,3r(2) sinθ+w0,0r(2)∂u3,0

∂z
cosθ

+w2,0r(2)∂u1,0

∂z
cosθ−2u0,1u0,3r(2) cosθ−w2,0r(4)∂u0,3

∂z
sinθ+4u1,0u3,0r(2) cosθ−4u3,0u0,3r(4) sinθ

+w0,0
∂u1,0

∂z
cosθ−2u1,0u0,1 sinθ−w0,0

∂u0,1

∂z
sinθ+2u(2)

3,0r(4) cosθ−u(2)
0,3r(4) cosθ

]
sinθdrdθ.

Reducing powers of the trigonometric functions gives

∂

∂z

ˆ 2π

0

ˆ φ

0

µr(3)

2

[
r(2)∂u3,0

∂z
sin2θ+ r(2)∂u0,3

∂z
cos2θ− r(2)∂u0,3

∂z
+ ∂u1,0

∂z
sin2θ+ ∂u0,1

∂z
cos2θ+2w2,0 sin2θ

−∂u0,1

∂z

]
drdθ+

ˆ 2π

0

φ(2)

2

(
τ1
∂φ

∂z
− pe

)
sin2θ+τ2

(
1+

(
∂φ

∂z

)(2)
)(1/2)

(cos2θ−1)

dθ

=
ˆ 2π

0

ˆ φ

0
2µ(u3,0r(3) sin2θ+u0,3r(3) cos2θ)drdθ+

ˆ 2π

0

ˆ φ

0

ρr(3)

2

[
4u3,0u0,3r(4) cos2θ

+w2,0r(4)∂u3,0

∂z
sin2θ+w2,0r(4)∂u0,3

∂z
cos2θ+4u1,0u3,0r(2) sin2θ+2u3,0u0,1r(2) cos2θ−2u0,1u0,3r(2) sin2θ

+4u1,0u0,3r(2) cos2θ+w0,0r(2)∂u3,0

∂z
sin2θ+w0,0r(2)∂u0,3

∂z
cos2θ+w2,0r(2)∂u1,0

∂z
sin2θ+w2,0r(2)∂u0,1

∂z
cos2θ

+3u(2)
3,0r(4) sin2θ−u(2)

0,3r(4) sin2θ−4u3,0u0,3r(4) −w2,0r(4)∂u0,3

∂z
−2u3,0u0,1r(2) −4u1,0u0,3r(2) −w0,0r(2)∂u0,3

∂z

−w2,0r(2)∂u0,1

∂z
+ r(2)∂u3,0

∂t
sin2θ+ r(2)∂u0,3

∂t
cos2θ+w0,0

∂u1,0

∂z
sin2θ+w0,0

∂u0,1

∂z
cos2θ+2u1,0u0,1 cos2θ

−∂u0,1

∂t
+u(2)

1,0 sin2θ−u(2)
0,1 sin2θ− ∂u0,3

∂t
r(2) −w0,0

∂u0,1

∂z
+ ∂u1,0

∂t
sin2θ+ ∂u0,1

∂t
cos2θ−2u1,0u0,1

]
drdθ.

Dropping the terms containing cos2θ and sin2θ, as they will cancel when integrated
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from 0 to 2π gives

− ∂

∂z

ˆ 2π

0

ˆ φ

0

µ

2

[
r(5)∂u0,3

∂z
+ r(3)∂u0,1

∂z

]
drdθ

−
ˆ 2π

0

τ2φ
(2)

2

(
1+

(
∂φ

∂z

)(2)
)(1/2)

dθ

=−
ˆ 2π

0

ˆ φ

0

ρ

2

[
4u3,0u0,3r(7) +w2,0r(7)∂u0,3

∂z
+2u3,0u0,1r(5) +4u1,0u0,3r(5) +w0,0r(5)∂u0,3

∂z

+w2,0r(5)∂u0,1

∂z
+ r(3)∂u0,1

∂t
+ r(5)∂u0,3

∂t
+w0,0r(3)∂u0,1

∂z
+2u1,0u0,1r(3)

]
drdθ.

Carrying out the integration with respect to r gives

∂

∂z

ˆ 2π

0

µ

2

[
φ(6)

6
∂u0,3

∂z
+ φ(4)

4
∂u0,1

∂z

]
dθ

+
ˆ 2π

0

τ2φ
(2)

2

(
1+

(
∂φ

∂z

)(2)
)(1/2)

dθ

=
ˆ 2π

0

ρ

2

[
u3,0u0,3φ

(8)

2
+ w2,0φ

(8)

8
∂u0,3

∂z
+ u3,0u0,1φ

(6)

3
+ 2u1,0u0,3φ

(6)

3
+ w0,0φ

(6)

6
∂u0,3

∂z

+w2,0φ
(6)

6
∂u0,1

∂z
+ φ(4)

4
∂u0,1

∂t
+ φ(6)

6
∂u0,3

∂t
+ w0,0φ

(4)

4
∂u0,1

∂z
+ u1,0u0,1φ

(4)

2

]
dθ.

Carrying out the integration with respect to θ and cancelling by π gives

µ

4
∂

∂z

[
φ(4)

(
∂u0,1

∂z
+ 2φ(2)

3
∂u0,3

∂z

)]
+φ(2)τ2

(
1+

(
∂φ

∂z

)(2)
)(1/2)

= ρφ(4)

4

[
∂u0,1

∂t
+ ∂u0,1

∂z

(
w0,0 +

2φ(2)w2,0

3

)
+2u0,1

(
u1,0 +

2φ(2)u3,0

3

)
2φ(2)

3

(
∂u0,3

∂t
+ ∂u0,3

∂z

(
w0,0 +

3φ(2)w2,0

4

)
+4u0,3

(
u1,0 +

3φ(2)u3,0

4

))]
.

(A.4)

This is Eq. (3.38) in the main text.

As with the α1 = 1 case, the equation in the e2 direction should be the same due to

symmetry and all the terms in the e3 direction should cancel.

Now examining Eq. (3.26) and firstly taking the case where α1 = α2 = 1, the e1
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component of the equation is given by

∂

∂x3

ˆ
A
µ

[(
∂u1,0

∂x3
+ (x1

1 + x(2)
2 )

∂u3,0

∂x3

)
x1 −

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3

)
x2

]
x(2)

1 da

+
ˆ
∂A
φ−1

x1

(
τ1

∂φ

∂x3
− pe

)
− x2τ2

(
1+

(
∂φ

∂x3

)(2)
)(1/2)

x(2)
1 ds

=
ˆ

A
2x1[−pI +2µ(u1,0 + (3x(2)

1 + x(2)
2 )u3,0 −2x1x2u0,3)]da

=
ˆ

A
ρ

[(
∂u1,0

∂t
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂t

)
x1 −

(
∂u0,1

∂t
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂t

)
x2

+ (u1,0 + (3x(2)
1 + x(2)

2 )u3,0 −2x1x2u0,3)((u1,0 + (x(2)
1 + x(2)

2 )u3,0)x1 − (u0,1 + (x(2)
1 + x(2)

2 )u0,3)x2)

+ (2x1x2u3,0 − (u0,1 + (x(2)
1 +3x(2)

2 )u0,3))((u1,0 + (x(2)
1 + x(2)

2 )u3,0)x2 + (u0,1 + (x(2)
1 + x(2)

2 )u0,3)x1)

+ (w0,0 + (x(2)
1 + x(2)

2 )w2,0)
((
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
x1 −

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3

)
x2

)]
.

When converted to cylindrical polar coordinates, every term in this equation will contain

cosnθsinmθ where n+m is odd. Therefore all terms will cancel when integrated from 0

to 2π. This should also be the case in the e2 direction. In the e3 direction, the equation is

∂

∂x3

ˆ
A

[
−p+2µ

(
∂w0,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂w2,0

∂x3

)]
x(2)

1 da

+
ˆ
∂A

(
τ1+ pe

∂φ

∂x3

)
x(2)

1 ds

=
ˆ

A
2µx1

[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
x1 −

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u1,0

∂x3

)
x2 +2w2,0x1

]
da

+
ˆ

A
ρx(2)

1

[
∂w0,0

∂t
+ (x(2)

1 + x(2)
2 )

∂w2,0

∂t
+2w2,0x1((u1,0 + (x(2)

1 + x(2)
2 )u3,0)x1 − (u0,1 + (x(2)

1 + x(2)
2 )u0,3)x2)

+2w2,0x2((u1,0 + (x(2)
1 + x(2)

2 )u3,0)x2 + (u0,1 + (x(2)
1 + x(2)

2 )u0,3)x1)

+(w0,0 + (x(2)
1 + x(2)

2 )w2,0)
(
∂w0,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂w2,0

∂x3

)]
da.
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Converting to cylindrical polar coordinates gives

− ∂qI

∂z
+ ∂

∂z

ˆ 2π

0

ˆ φ

0
2µr(3) cos(2)θ

[
∂w0,0

∂z
+ r(2)∂w2,0

∂z

]
drdθ

+
ˆ 2π

0

(
τ1 + pe

∂φ

∂z

)
φ(3) cos(2)θdθ

=
ˆ 2π

0

ˆ φ

0
2µr(3) cosθ

[
−r(2)∂u0,3

∂z
sinθ+ r(2)∂u3,0

∂z
cosθ+ ∂u1,0

∂z
cosθ− ∂u0,1

∂z
sinθ+2w2,0 cosθ

]
drdθ

+
ˆ 2π

0

ˆ φ

0
ρr(2) cos(2)θ

[
r(2)∂w2,0

∂t
+ ∂w0,0

∂t
+2u3,0w2,0r(4) +w2,0r(4)∂w2,0

∂z

2u1,0w2,0r(2) +w0,0r(2)∂w2,0

∂z
+w2,0r(2)∂w0,0

∂z
+w0,0

∂w0,0

∂z

]
drdθ,

where qI is the pressure resultant defined by

(A.5) qI =
ˆ ˆ

A
px(2)

1 da =
ˆ ˆ

A
px(2)

2 da.

Reducing the powers of the trigonometric functions gives

− ∂qI

∂z
+ ∂

∂z

ˆ 2π

0

ˆ φ

0
µr(3)(1+cos2θ)

[
∂w0,0

∂z
+ r(2)∂w2,0

∂z

]
drdθ

+
ˆ 2π

0

φ(3)

2
(1+cos2θ)

(
τ1 + pe

∂φ

∂z

)
dθ

=
ˆ 2π

0

ˆ φ

0
µ

[
−r(5)∂u0,3

∂z
sin2θ+ r(5)∂u3,0

∂z
cos2θ+ r(5)∂u3,0

∂z
− r(3)∂u0,1

∂z
sin2θ

+r(3)∂u1,0

∂z
cos2θ+2r(3)w2,0 cos2θ+ r(3)∂u1,0

∂z
+2r(3)w2,0

]
drdθ

+
ˆ 2π

0

ˆ φ

0

ρ

2
(1+cos2θ)

[
r(5)∂w2,0

∂t
+ r(3)∂w0,0

∂t
+2u3,0w2,0r(7) +w2,0r(7)∂w2,0

∂z

+2u1,0w2,0r(5) +w0,0r(5)∂w2,0

∂z
+w2,0r(5)∂w0,0

∂z
+w0,0

∂w0,0

∂z

]
drdθ.

Dropping the terms containing cos2θ or sin2θ, which will cancel when integrated from 0
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to 2π gives

− ∂qI

∂z
+ ∂

∂z

ˆ 2π

0

ˆ φ

0
µ

[
r(3)∂w0,0

∂z
+ r(5)∂w2,0

∂z

]
drdθ

+
ˆ 2π

0

φ(3)

2

(
τ1 + pe

∂φ

∂z

)
dθ

=
ˆ 2π

0

ˆ φ

0
µ

[
r(5)∂u3,0

∂z
+ r(3)∂u1,0

∂z
+2r(3)w2,0

]
drdθ

+
ˆ 2π

0

ˆ φ

0

ρ

2

[
r(5)∂w2,0

∂t
+ r(3)∂w0,0

∂t
+2u3,0w2,0r(7) +w2,0r(7)∂w2,0

∂z

+2u1,0w2,0r(5) +w0,0r(5)∂w2,0

∂z
+w2,0r(5)∂w0,0

∂z
+ r(3)c

∂w0,0

∂z

]
drdθ.

Carrying out the integration with respect to r gives

− ∂qI

∂z
+ ∂

∂z

ˆ 2π

0
µ

[
φ(4)

4
∂w0,0

∂z
+ φ(6)

6
∂w2,0

∂z

]
dθ

+
ˆ 2π

0

φ(3)

2

(
τ1 + pe

∂φ

∂z

)
dθ

=
ˆ 2π

0
µ

[
φ(6)

6
∂u3,0

∂z
+ φ(4)

4
∂u1,0

∂z
+ φ(4)w2,0

2

]
dθ

+
ˆ 2π

0

ρ

2

[
φ(6)

6
∂w2,0

∂t
+ φ(4)

4
∂w0,0

∂t
+ u3,0w2,0φ

(8)

4
+ w2,0φ

(8)

8
∂w2,0

∂z

w2,0u1,0φ
(6)

3
+ w0,0φ

(6)

6
∂w2,0

∂z
+ w2,0φ

(6)

6
∂w0,0

∂z
+ w0,0φ

(4)

4
∂w0,0

∂z

]
dθ.

Carrying out the integration with respect to θ gives

− ∂qI

∂z
+ ∂

∂z

[
µπφ(4)

(
1
2
∂w0,0

∂z
+ φ(2)

3
∂w2,0

∂z

)]
+πφ(3)

(
τ1 + pe

∂φ

∂z

)
=πµφ(4)

[
φ(2)

3
∂u3,0

∂z
+ 1

2
∂u1,0

∂z
+w2,0

]
+ πρφ(4)

4

[
2φ(2)

3
∂w2,0

∂t
+ ∂w0,0

∂t
+u3,0w2,0φ

(4) + w2,0φ
(4)

2
∂w2,0

∂z

+4w2,0u1,0φ
(2)

3
+ 2w0,0φ

(2)

3
∂w2,0

∂z
+ 2w2,0φ

(2)

3
∂w0,0

∂z
+w0,0

∂w0,0

∂z

]
.
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Some rearranging gives

πµ

2
∂

∂z

[
φ(4)

(
∂w0,0

∂z
+ 2φ(2)

3
∂w2,0

∂z

)]
−πµφ(4)w2,0

− πµφ(4)

2

(
∂u1,0

∂z
+ 2φ(2)

3
∂u3,0

∂z

)
+πφ(3)

(
τ1 + pe

∂φ

∂z

)
= ∂qI

∂z
+ πρφ(4)

4

[
∂w0,0

∂t
+ ∂w0,0

∂z

(
w0,0 +

2φ(2)w2,0

3

)
2φ(2)

3

(
∂w2,0

∂t
+ ∂w2,0

∂z

(
w0,0 +

3φ(2)w2,0

4

)
+2w2,0

(
u1,0 +

2φ(2)u3,0

4

))]
.

(A.6)

This is Eq. (3.39) in the main text.

Now examining Eq. (3.27) and taking the case where α1 =α2 =α3 = 1, after making

the usual substitutions, the equation in the e1 direction is given by

∂

∂x3

ˆ
A
µx(3)

1

[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
−

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u1,0

∂x3

)
x2 +2x1w2,0

]
da

+
ˆ
∂A

x(3)
1

x1

(
τ1

∂φ

∂x3
− pe

)
− x2τ2

(
1+

(
∂φ

∂x3

)(2)
)(1/2)

ds

=
ˆ

A
3x(2)

1 [−pI +2µ(u1,0 + (3x(2)
1 + x(2)

2 )u3,0 −2x1x2u0,3)]da

+
ˆ

A
ρx(3)

1

[(
∂u1,0

∂t
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂t

)
x1 −

(
∂u0,1

∂t
+ (x(2)

1 + x(2)
2 )

∂u1,0

∂t

)
x2

+ ((u1,0 + (x(2)
1 + x(2)

2 )u3,0)x1 − (u0,1 + (x(2)
1 + x(2)

2 )u0,3)x2)(u1,0 + (3x(2)
1 + x(2)

2 )u3,0 −2x1x2u0,3)

+ ((u1,0 + (x(2)
1 + x(2)

2 )u3,0)x2 + (u0,1 + (x(2)
1 + x(2)

2 )u0,3)x1)(2x1x2u3,0 − (u0,1 + (x(2)
1 +3x(2)

2 )u0,3))

+(w0,0 + (x(2)
1 + x(2)

2 )w2,0)
((
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
x1 −

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3

)
x2

)]
da.
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Converting to cylindrical polar coordinates gives

∂

∂z

ˆ 2π

0

ˆ φ

0
µr(4) cos(3)θ

[(
∂u1,0

∂z
+ r(2)∂u3,0

∂z

)
r cosθ−

(
∂u0,1

∂z
+ r(2)∂u1,0

∂z

)
rsinθ+2w2,0r cosθ

]
drdrθ

+
ˆ 2π

0
φ(4) cos(3)θ

(
∂φ

∂z
− pe

)
cosθ−τ2

(
1+

(
∂φ

∂z

)(2)
)(1/2)

sinθ

dθ

=−3qI +
ˆ 2π

0

ˆ φ

0
6µr(3) cos(2)θ[u1,0 + (r(2) +2r(2) cosθ)u3,0 −2u0,3 cosθsinθ]drdθ

+
ˆ 2π

0

ˆ φ

0
ρr(4) cos(3)θ

[(
∂u1,0

∂t
+ r(2)∂u3,0

∂t

)
r cosθ−

(
∂u0,1

∂t
+ r(2)∂u0,3

∂t

)
rsinθ

+ ((u1,0 + r(2)u3,0)r cosθ− (u0,1 + r(2)u0,3)rsinθ)(u1,0 + r(2)u3,0(1+2cos(2)θ)−2r(2)u0,3 cosθsinθ)

+ ((u1,0 + r(2)u3,0)rsinθ+ (u0,1 + r(2)u0,3)r cosθ)(2u3,0r(2) cosθsinθ− (u0,1 + r(2)(1+2sin(2)θ)u0,3))

(w0,0 + r(2)w2,0)
((
∂u1,0

∂z
+ r(2)∂u3,0

∂z

)
r cosθ−

(
∂u0,1

∂z
+ r(2)∂u0,3

∂z

)
rsinθ

)]
.
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Reducing the powers of the trigonometric functions gives

∂

∂z

ˆ 2π

0

ˆ φ

0

µr(5)

8

[
4r(2)∂u3,0

∂z
cos2θ+ r(2)∂u3,0

∂z
cos4θ− r(2)∂u0,3

∂z
sin4θ−2r(2)∂u0,3

∂z
sin2θ+3r(2)∂u3,0

∂z

+4
∂u0,3

∂z
cos2θ+8w2,0 cos2θ+ ∂u1,0

∂z
cos4θ+2w2,0 cos4θ− ∂u0,1

∂z
sin4θ−2

∂u0,1

∂z
sin2θ+3

∂u1,0

∂z

+6w2,0
]
drdθ+

ˆ 2π

0

φ(4)

8

4τ1
∂φ

∂z
cos2θ+τ1

∂φ

∂z
cos4θ−τ2

(
1+

(
∂φ

∂z

)(2)
)(1/2)

(sin4θ+sin2θ)

−4pe cos2θ− pe cos4θ+3τ1 −3pe]dθ =−3qI

ˆ 2π

0

ˆ φ

0

3µr(3)

2
[6r(2)u3,0 cos2θ

+u3,0r(2) cos4θ−u0,3r(2) sin4θ−2r(2)u0,3 sin2θ+4r(2)u3,0 +2u1,0 cos2θ

+2u1,0]drdθ+
ˆ 2π

0

ˆ φ

0

ρr(5)

8

[
3u(2)

1,0 −2u(2)
0,1 +3

∂u1,0

∂t
+4w2,0r(4)∂u3,0

∂z
cos2θ+w2,0r(4)∂u3,0

∂z
cos4θ

−w2,0r(4)∂u0,3

∂z
sin4θ−2w2,0r(4)∂u0,3

∂z
sin2θ−4r(4)u0,3u3,0 sin4θ−8u0,3u3,0r(4) sin2θ

+4r(2)w0,0
∂u3,0

∂z
cos2θ+ r(2)w0,0

∂u3,0

∂z
cos4θ

+4w2,0r(2)∂u1,0

∂z
−8r(2)u0,3u0,1 cos2θ+16r(2)u3,0u1,0 cos2θ+w2,0r(2)∂u1,0

∂z
cos4θ

−2r(2)u0,3u0,1 cos4θ+4r(2)u3,0u1,0 cos4θ− r(2)w0,0
∂u0,3

∂z
sin4θ−2r(2)w0,0

∂u0,3

∂z
sin2θ

−w2,0r(2)∂u0,1

∂z
sin4θ−2r(2)u3,0u0,1 sin4θ−4r(2)u0,3u1,0 sin4θ

−2w2,0r(2)∂u0,1

∂z
sin2θ−4r(2)u3,0u0,1 sin2θ−8r(2)u0,3u1,0 sin2θ

+9r(4)u(2)
3,0 −3r(4)u(2)

0,3 −4u(2)
0,1 cos2θ+4u(2)

1,0 cos2θ−u(2)
0,1 cos4θ+u(2)

1,0 cos4θ+3r(2)∂u3,0

∂t

+4
∂u1,0

∂t
cos2θ+ ∂u1,0

∂t
cos4θ− ∂u0,1

∂t
sin4θ−2

∂u0,1

∂t
sin2θ+3w0,0

∂u1,0

∂z

−6r(2)u0,3u0,1 +12r(2)u3,0u1,0 +4w0,0
∂u1,0

∂z
cos2θ+w0,0

∂u1,0

∂z
cos4θ−w0,0

∂u0,1

∂z
sin4θ

−2u1,0u0,1 sin4θ−2w0,0
∂u0,1

∂z
sin2θ−4u1,0u0,1 sin2θ+12r(4)u(2)

3,0 cos2θ

−4r(4)u(2)
0,3 cos2θ+3r(2)u(2)

3,0 cos4θ− r(4)u(2)
0,3 cos4θ+3w2,0r(4)∂u3,0

∂z
+3r(2)w0,0

∂u3,0

∂z

+4r(2)∂u3,0

∂t
cos2θ+ r(2)∂u3,0

∂t
cos4θ− r(2)∂u0,3

∂t
sin4θ−2r(2)∂u0,3

∂t
sin2θ+3w2,0r(2)∂u1,0

∂z

]
drdθ.

Dropping the terms containing cosnθ or sinnθ, as they will cancel when integrated from
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0 to 2π, gives

∂

∂z

ˆ 2π

0

ˆ φ

0

µr(5)

8

[
3r(2)∂u3,0

∂z
+3

∂u1,0

∂z
+6w2,0

]
drdθ

+
ˆ 2π

0

3φ(4)

8

[
τ1
∂φ

∂z
− pe

]
dθ

=−3qI +
ˆ 2π

0

ˆ φ

0

3µr(3)

2
[5r(2)u3,0 +2u1,0]drdθ

+
ˆ 2π

0

ˆ
0φ
ρr(5)

8

[
3u(2)

1,0 −3u(2)
0,1 +3

∂u1,0

∂t
+9r(4)u(2)

3,0 −3r(4)u(2)
0,3 +3r(2)∂u3,0

∂t
+3w0,0

∂u1,0

∂z

−6r(2)u0,3u0,1 +12r(2)u3,0u1,0 +3w2,0r(4)∂u3,0

∂z
+3r(2)w0,0

∂u3,0

∂z
+3w2,0r(2)∂u1,0

∂z

]
drdθ.

Integrating with respect to r gives

∂

∂z

ˆ 2π

0

µ

8

[
3φ(8)

8
∂u3,0

∂z
+ φ(6)

2
∂u1,0

∂z
+φ(6)w2,0

]
dθ

+
ˆ 2π

0

3φ(4)

8

[
τ1
∂φ

∂z
− pe

]
dθ

=−3qI +
ˆ 2π

0

2µ
2

[
5φ(6)u3,0

6
+ φ(4)u1,0

2

]
dθ

+
ˆ 2π

0

ρ

8

u(2)
1,0φ

(6)

2
−

u(2)
0,1φ

(6)

2
+ φ(6)

2
∂u1,0

∂t
+

9φ10u(2)
3,0

10
−

3φ10u(2)
0,3

10
+ 3φ(8)

8
∂u3,0

∂t
+ φ(6)w0,0

2
∂u1,0

∂z

−3φ(8)u0,3u0,1

4
+ 3φ(8)u3,0u1,0

2
+ 3φ10w2,0

10
∂u3,0

∂z
+ 3φ(8)

8
∂u3,0

∂z
+3φ(8)w2,08

∂u1,0

∂z

]
dθ.

Integrating with respect to θ gives

∂

∂z

[
πµ

8

(
3φ(8)

4
∂u3,0

∂z
+φ(6)∂u1,0

∂z
+2φ(6)w2,0

)]
+ 3φ(4)

4

[
τ1
∂φ

∂z
− pe

]
=−3qI +3µφ(4)

[
5φ(2)u3,0

6
+ u1,0

2

]

+ πρφ(6)

8

u(2)
1,0 −u(2)

0,1 +
∂u1,0

∂t
+

9φ(4)u(2)
3,0

5
−

3φ(4)u(2)
0,3

5
+ 3φ(2)

4
∂u3,0

∂t
+w0,0

∂u1,0

∂z
− 3φ(2)u0,3u0,1

2

+3φ(2)u3,0u1,0 +
3φ(4)w2,0

5
∂u3,0

∂z
+ 3φ(2)w0,0

4
∂u3,0

∂z
+ 3φ(2)w2,0

4
∂u1,0

∂z

]
.
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After some rearrangement and dividing through by 3, this becomes

πµ

24
∂

∂z

[
φ(6)

(
∂u1,0

∂z
+ 3φ(2)

4
∂u3,0

∂z

)]
+ πµ

12
∂

∂z
(φ(6)w2,0)

− πµφ(4)

2

(
u1,0 +

5φ(2)u3,0

3

)
+ πφ(4)

4

(
τ1
∂φ

∂z
− pe

)

=−qI + πρφ(6)

24

[
∂u1,0

∂t
+ ∂u1,0

∂z

(
w0,0 +

3φ(2)w2,0

4

)
+u1,0

(
u1,0 +

3φ(2)u3,0

4

)

−u0,1

(
u0,1 +

3φ(2)u0,3

4

)
+ 3φ(2)

4

(
∂u3,0

∂t
+ ∂u3,0

∂z

(
w0,0 +

4φ(2)w2,0

5

)

+3u3,0

(
u1,0 +

4φ(2)u3,0

5

)
−u0,3

(
u0,1 +

4φ(2)u0,3

5

))]
.

(A.7)

This is Eq. (3.40) in the main text.

Now taking the case where α1 =α2 =α3 = 2 in the e1 direction, the usual substitutions

give

∂

∂x3

ˆ
A
µx(3)

2

[(
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
−

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u1,0

∂x3

)
x2 +2x1w2,0

]
da

+
ˆ
∂A

x(3)
2

x1

(
τ1

∂φ

∂x3
− pe

)
− x2τ2

(
1+

(
∂φ

∂x3

)(2)
)(1/2)

ds

=
ˆ

A
3x(2)

2 µ[4x1x2u3,0 + (2x(2)
1 −2x(2)

2 )u0,3]da

+
ˆ

A
ρx(3)

2

[(
∂u1,0

∂t
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂t

)
x1 −

(
∂u0,1

∂t
+ (x(2)

1 + x(2)
2 )

∂u1,0

∂t

)
x2

+ ((u1,0 + (x(2)
1 + x(2)

2 )u3,0)x1 − (u0,1 + (x(2)
1 + x(2)

2 )u0,3)x2)(u1,0 + (3x(2)
1 + x(2)

2 )u3,0 −2x1x2u0,3)

+ ((u1,0 + (x(2)
1 + x(2)

2 )u3,0)x2 + (u0,1 + (x(2)
1 + x(2)

2 )u0,3)x1)(2x1x2u3,0 − (u0,1 + (x(2)
1 +3x(2)

2 )u0,3))

+(w0,0 + (x(2)
1 + x(2)

2 )w2,0)
((
∂u1,0

∂x3
+ (x(2)

1 + x(2)
2 )

∂u3,0

∂x3

)
x1 −

(
∂u0,1

∂x3
+ (x(2)

1 + x(2)
2 )

∂u0,3

∂x3

)
x2

)]
da.
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Converting to cylindrical polar coordinates gives

∂

∂z

ˆ 2π

0

ˆ φ

0
µr(4) sin(3)θ

[(
∂u1,0

∂z
+ r(2)∂u3,0

∂z

)
r cosθ−

(
∂u0,1

∂z
+ r(2)∂u1,0

∂z

)
rsinθ+2w2,0r cosθ

]
drdrθ

+
ˆ 2π

0
φ(4) sin(3)θ

(
∂φ

∂z
− pe

)
cosθ−τ2

(
1+

(
∂φ

∂z

)(2)
)(1/2)

sinθ

dθ

=
ˆ 2π

0

ˆ φ

0
3µr(3) sin(2)θ[4u3,0r(2) cosθsinθ+2r(2)u0,3(cos(2)θ−sin(2)θ)]drdθ

+
ˆ 2π

0

ˆ φ

0
ρr(4) sin(3)θ

[(
∂u1,0

∂t
+ r(2)∂u3,0

∂t

)
r cosθ−

(
∂u0,1

∂t
+ r(2)∂u0,3

∂t

)
rsinθ

+ ((u1,0 + r(2)u3,0)r cosθ− (u0,1 + r(2)u0,3)rsinθ)(u1,0 + r(2)u3,0(1+2cos(2)θ)−2r(2)u0,3 cosθsinθ)

+ ((u1,0 + r(2)u3,0)rsinθ+ (u0,1 + r(2)u0,3)r cosθ)(2u3,0r(2) cosθsinθ− (u0,1 + r(2)(1+2sin(2)θ)u0,3))

(w0,0 + r(2)w2,0)
((
∂u1,0

∂z
+ r(2)∂u3,0

∂z

)
r cosθ−

(
∂u0,1

∂z
+ r(2)∂u0,3

∂z

)
rsinθ

)]
.
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Reducing the powers of the trigonometric functions gives

∂

∂z

ˆ 2π

0

ˆ φ

0

µr(5)

8

[
2r(2)∂u3,0

∂z
sin2θ− r(2)∂u3,0

∂z
sin4θ+ r(2)∂u0,3

∂z
cos2θ−3r(2)∂u0,3

∂z
− ∂u1,0

∂z
sin4θ

+4r(2)∂u0,3

∂z
−2w2,0 sin4θ+2

∂u1,0

∂z
sin2θ− ∂u0,1

∂z
cos4θ+4

∂u0,1

∂z
cos2θ−3

∂u0,1

∂z

]
drdθ

+
ˆ 2π

0

φ(4)

8

2τ1
∂φ

∂z
−τ1

∂φ

∂z
sin4θ+

(
1+τ2

(
∂φ

∂z

)(2)
)(1/2)

(4cos2θ−cos4θ−3)

+pe sin4θ−2pe sin2θ]dθ =
ˆ 2π

0

ˆ φ

0

3µr(5)

2
[2u3,0 sin2θ−u3,0 sin4θ−u0,3 cos4θ+2u0,3 cos2θ

−u0,3]drdθ+ int2π
0

ˆ φ

0

ρr(5)

8

[
6r(4)u(2)

3,0 sin2θ−3r(2)u(2)
3,0 sin4θ+ r(2)u(2)

0,3 sin4θ−2r(4)u(2)
0,3 sin2θ

−12r(4)u3,0u0,3 −3r(4)w2,0
∂u0,3

∂z
−12r(2)u1,0u0,3 −6r(2)u0,1u3,0 −3r(2)w0,0

∂u0,3

∂z
− r(2)∂u3,0

∂t
sin4θ

+2r(2)∂u3,0

∂t
sin2θ− r(2)∂u0,3

∂t
cos4θ+4r(2)∂u0,3

∂t
cos2θ−3r(2)w2,0

∂u0,1

∂z
−2u1,0u0,1 cos4θ

+8u1,0u0,1 cos2θ−w0,0
∂u1,0

∂z
sin4θ+2w0,0

∂u1,0

∂z
sin2θ−w0,0

∂u0,1

∂z
cos4θ+4w0,0

∂u0,1

∂z
cos2θ

− r(2)w2,0
∂u1,0

∂z
sin4θ+2r(2)w2,0

∂u1,0

∂z
sin2θ− r(2)w2,0

∂u0,1

∂z
cos4θ+4r(2)w2,0

∂u0,1

∂z
cos2θ

−4r(2)u3,0u0,3 cos4θ+16r(2)u3,0u0,3 cos2θ− r(4)w2,0
∂u3,0

∂z
sin4θ+2r(4)w2,0

∂u3,0

∂z
sin2θ

− r(4)w2,0
∂u0,3

∂z
cos4θ+4r(4)w2,0

∂u0,3

∂z
cosθ−4r(2)u1,0u3,0 sin4θ+8r(2)u1,0u3,0 sin2θ

−4r(2)u1,0u0,3 cos4θ+16r(2)u1,0u0,3 cos2θ−2r(2)u0,1u3,0 cos4θ

+8r(2)u0,1u3,0 cos2θ+2r(2)u0,1u0,3 sin4θ−4r(2)u0,1u0,3 sin2θ

− r(2)w0,0
∂u3,0

sin
4θ+2r(2)w0,0

∂u3,0

∂z
sin2θ− r(2)w0,0

∂u0,3

∂z
cos4θ+4r(2)w0,0

∂u0,3

∂t
cos2θ

−3
∂u0,1

∂t
−u(2)

1,0 sin4θ+2u(2)
1,0 sin2θ+u(2)

0,1 sin4θ−2u(2)
0,1 sin2θ−3r(2)∂u0,3

∂t
−6u1,0u0,1 −3w0,0

∂u0,1

∂z

−∂u1,0

∂t
sin4θ+2

∂u1,0

∂t
sin2θ− ∂u0,1

∂t
cos4θ+4

∂u0,1

∂t
cos2θ

]
drdθ.

Dropping the terms containing cosnθ or sinnθ, as they will cancel when integrated from

0 to 2π, gives

− ∂

∂z

ˆ 2π

0

ˆ φ

0

3µr(5)

8

[
r(2)∂u0,3

∂z
+ ∂u0,1

∂z

]
drdθ−

ˆ 2π

0

3φ(4)τ2

8
dθ

=−
ˆ 2π

0

ˆ φ

0

3µr(5)u0,3

2
drdθ−

ˆ 2π

0

ˆ φ

0

ρr(5)

8

[
12r(4)u3,0u0,3 +3r(4)w2,0

∂u0,3

∂z
+12r(2)u1,0u0,3

+6r(2)u0,1u3,0 +3r(2)w0,0
∂u0,3

∂z
+3r(2)w2,0

∂u0,1

∂z
+3

∂u0,1

∂t
+3r(2)∂u0,3

∂t
+6u1,0u0,1 +3w0,0

∂u0,1

∂z

]
drdθ.
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Integrating with respect to r gives

− ∂

∂z

ˆ 2π

0

3µ
8

[
φ(8)

8
∂u0,3

∂z
+ φ(6)

6
∂u0,1

∂z

]
dθ−

ˆ 2π

0

3φ(4)τ2

8
dθ

=−
ˆ 2π

0

µφ(6)u0,3

4
dθ−

ˆ 2π

0

3ρ
8

[
2φ(10)u3,0u0,3

5
+ φ(10)w2,0

10
∂u0,3

∂z
+ φ(8)u1,0u0,3

2

+φ
(8)u0,1u3,0

4
+ φ(8)w0,0

8
∂u0,3

∂z
+ φ(8)w2,0

8
∂u0,1

∂z
+ φ(6)

6
∂u0,1

∂t
+ φ(8)

8
∂u0,3

∂t
+ u1,0u0,1φ

(6)

3
+ w0,0φ

(6)

6
∂u0,1

∂z

]
dθ.

Integrating with respect to θ gives

− ∂

∂z

[
3πµφ(6)

8

(
φ(2)

4
∂u0,3

∂z
+ 1

3
∂u0,1

∂z

)]
− 3πφ(4)τ2

4

(
1+

(
∂φ

∂z

)(2)
)(1/2)

= πµφ(6)u0,3

2
− 3πρφ(6)

4

[
2φ(4)u3,0u0,3

5
+ φ(4)w2,0

10
∂u0,3

∂z
+ φ(2)u1,0u0,3

2

φ(2)u0,1u3,0

4
+ φ(2)w0,0

8
∂u0,3

∂z
+ φ(2)w2,0

8
∂u0,1

∂z
+ 1

6
∂u0,1

∂t
+φ(2)8

∂u0,3

∂t
+ u1,0u0,1

3
+ w0,0

6
∂u0,1

∂z

]
.

After some rearranging and dividing through by 3 this becomes

µ

24
∂

∂z

[
φ(6)

(
∂u0,1

∂z
+ 3φ(2)

4
∂u0,3

∂z

)]
− µφ(6)u0,3

6
+ φ(4)τ2

4

(
1+

(
∂φ

∂z

)(2)
)(1/2)

= ρφ(6)

24

[
∂u0,1

∂t
+ ∂u0,1

∂z

(
w0,0 +

3φ(2)w2,0

4

)
+2u0,1

(
u1,0 +

3φ(2)u3,0

4

)

+3φ(2)

4

(
∂u0,3

∂t
+ ∂u0,3

∂z

(
w0,0 +

4φ(2)w2,0

5

)
+4u0,3

(
u1,0 +

4φ(2)u3,0

5

))]
.

(A.8)

This is Eq. (3.41) in the main text.
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B.1 Nomenclature

• (x1, x2, x3) or (x2, x2, x3) denote the Cartesian coordinates

• (e1,e2,e3) denote the Cartesian base vectors

• x or r denotes a position vector

• (θ1,θ2,θ3) denote convective coordinates

• t denotes time

• (g1,g2,g3) denote covariant base vectors

• (g1,g2,g3) denote contravariant base vectors

• (a1,a2,a3) denote the unit base vectors corresponding to (g1,g2,g3)

• δi
j denotes the Knronecker delta

• η̇ denotes a time derivative (Chapter 2)

• H denotes the lateral surface

• λN denotes the weighting function of the Nth director

• dN denotes the Nth director
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• wN denotes the Nth director velocity

• K denotes the order of expansion (number of director)

• v denotes fluid velocity

• ¯eta denotes that entity corresponds to the fixed curvilinear coordinate system as

opposed to the convective Langrangian coordinate system (Chapter 2)

• (ζ1,ζ2,ζ3) denote curvilinear coordinates

• F denotes an unspecified function associated with the body of fluid (Chapter 2)

• fN denotes the Nth function in the expansion for F (Chapter 2)

• ρ denotes the mass density of the fluid

• i, j Latin indices take the values 1,2,3

• α,β Greek indices take the values 1,2

• p denotes the pressure of the fluid

• Ti denotes the stress tensor (Chapter 3)

• t denotes the stress vector on the lateral surface (Chapter 3)

• ν denotes the unit outward normal on the lateral surface (Chapter 3)

• σi j denotes the deviatoric stress response

• φ denotes the radius of the pipe

• w j,N− j denotes the director velocity with weighting function x( j)
1 xN− j

2 (Chapter 3)

• (r,θ, z) denote the cylindrical polar coordinates

• r̂, θ̂, ẑ denote the cylindrical polar coordinate base vectors

• µ denotes the dynamic viscosity of the fluid

• Re denotes the Reynold’s number of the fluid

• Re0 denotes the Reynold’s number of a corresponding dlow in a straight pipe

subject to the same coaxial pressure gradient (Chapters 4, 5)
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• R denotes the radius of curvature (Chapters 4, 5)

• L denotes the number of cross-sectional director velocities (Chap 4)

• δ denotes the ratio of curvature (Chapters 4, 5)

• (X ,Y , Z) denote dimensionless coordinates (Chapters 4, 5)

• V denotes dimensionless velocity (Chapters 4, 5)

• P denotes dimensionless pressure (Chapters 4, 5)

• T denotes dimensionless time (Chapter 5)
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