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Abstract 

Urban populations rely on infrastructure for basic services like water supply, energy, and 

transport, whose disruption can have important implications for health, society, and the 

economy. While there are now strategies to reduce disruption from single hazards, few 

strategies take into account the exposure of systems to multiple different hazards. Failing to 

account for multiple hazards can lead to maladaptation of infrastructure in two important ways: 

first, mitigation measures for one hazard could increase the risk of another hazard; and second, 

infrastructure systems could be under-prepared for combined (i.e. coinciding, compound, or 

cascading) hazard events. This research explores how integrating existing methods for single 

hazard resilience can help address maladaptation in the face of multiple hazards, focusing on 

urban water and road networks. 

In the first part, global hazard datasets are assembled and used to assess urban exposure to 

combinations of five damaging hazards (river and coastal flood, tropical cyclone wind, 

earthquake, and landslide). Results show that overall, there is high variability in hazard 

conditions across urban areas. Significant hazard combinations are found to include flooding 

and tropical cyclone wind (particularly in Asia and North America); river and coastal flooding 

(particularly in Europe and Asia); and low levels of seismic and wind hazards. The diversity 

of hazard conditions across cities may be a barrier to transferring solutions aimed at a specific 

combination of hazards. Therefore, a similarity-based approach is proposed for finding cities 

with comparable hazard conditions. The hazard data is also evaluated at the city scale by using 

qualitative information from the Rockefeller Foundation network of 100 resilient cities. 

The second part looks at understanding the impacts of consecutive hazard events. Specifically, 

it investigates whether consecutive impacts may be greater than the sum of impacts of the single 
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events. This is done by simulating the disruption (in person-hours of service loss) due to a 

consecutive earthquake and cyclone event on a water supply system (for the hypothetical city 

of C-Town). The simulation uses the open source hydraulic model WNTR (Water Network 

Tool for Resilience). Earthquake damage is modelled using fragility curves from HAZUS-MH. 

Monte Carlo simulation is used to account for uncertainties in damage and to stochastically 

vary the timing of the two events over a five day period. Results show that on average (across 

multiple equally likely instances of damage), the increase in disruption is not significant, 

however, in individual instances, disruption can increase by more than 50% when the events 

happen consecutively, relative to the sum of the single hazards. The amount of increase is found 

to depend on the interval between hazards (a decrease is seen for intervals of less than 5 hours, 

a significant increase is seen for intervals between 5 and 25 hours, and for intervals of more 

than 25 hours, consecutive event disruption is equivalent the sum).  

The third part explores the feasibility, and possible benefits, of analysing multi-hazard 

consequences in practice. a case study is carried out in the flood-prone city of Jingdezhen in 

China. The functionality of the road network is assessed under single and combined hazard 

scenarios of river flooding and debris flows. Hazard information is generated using two openly 

available hazard models: river flooding is modelled using LISFLOOD-FP, a two-dimensional 

hydrodynamic model; and debris flow is modelled using Flow-R, an empirical susceptibility 

model. Road network functionality is represented using efficiency and betweenness metrics 

from graph theory. Results show potential value from combined hazard assessments even with 

limited data availability. 

The thesis demonstrates some of the limitations of a single hazard approach to infrastructure 

resilience, and shows how an integrated approach across hazards might help reduce future 

disruptions to service. As data and methods for single hazards continue to steadily improve, 

there is significant potential for multi-hazard approach to help increase the resilience of cities.
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Plain language summary 

In a disaster, people living in urban areas can face interruptions to water supply, electricity 

supply, transport, and other services, sometimes with severe consequences (e.g. closure of 

hospitals, impacts on vulnerable populations, social unrest). The difficulty is that in many 

cities, interruptions can be caused by various hazards (e.g. river floods, storm surges, 

earthquakes, storms, landslides). Therefore, infrastructure services need to be made resilient 

not just to one type of hazard, but to the multiple hazards that could affect them. If the 

infrastructure is designed specifically for one type of hazard, it may become more vulnerable 

to another hazard (e.g. placing a facility on a hill to avoid flooding might expose it to 

landslides). Focusing on a single type of hazard could also means the services are not 

sufficiently prepared if multiple hazards happen at the same.  

To address this, the research starts by addressing the lack of awareness of exposure of cities to 

multiple hazards. Indeed, hazards like floods or earthquakes are often dealt with by different 

people or institutions, with data often held separately, which limits understanding of exposure 

to multiple hazards. Therefore, this study collects, processes, and analyses data across five 

different hazards (river and coastal flood, earthquakes, storms, and landslides). The analysis 

reveals that cities in North America and Asia are more likely than cities on other continents to 

face two or more of the hazards. Also, it shows that globally, many of the same cities face both 

flood and storm events, as well as both storm and earthquake events. 

A crucial concern is that if hazards happen at the same time, they could have disproportionately 

larger consequences than if they had happened separately. Yet there is a lack of methods for 

measuring and mitigating the consequences of hazards happening together. The next part of 

the work addresses this issue, by proposing a way of measuring the consequences on service 
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of two hazards occurring together. The method is applied to a hypothetical scenario where an 

earthquake and storm happen in a city within the same week. The event is assumed to cause 

limited overall damage, but to affect the supply of water by damaging underground pipes and 

pumping stations. The consequences of the events are measured in terms of the number of 

people affected and duration of interruption to water supply. The scenario is modelled for a 

hypothetical city using real information on the damage that the hazards cause to the water 

supply infrastructure. The results show that there could be up to 50% more disruption when the 

earthquake and storm happen within a day of each other, compared to if the same two events 

had happening separately, simply because of the timing of the events. The results demonstrate 

the importance of better understanding the effects of combined events. The method used also 

helps to identify some of the causes of increased disruption. 

The third part explores how we can analyse disruption from combined hazards in an actual city 

given limited data availability. A case study is carried out in the flood-prone city of Jingdezhen 

in China. The analysis looks at the disruption to the road network of the city, as road data is 

generally less prone to security concerns than other infrastructure data and more likely to be 

available. Disruption to travel is analysed under river flooding, and under combined river 

flooding and debris flows. The analysis helps to identify roads that are important for the city to 

operate under different hazard scenarios, showing the value of analysing combined hazard 

events even with limited data availability. 

Overall, the work reveals limitations in a single hazard approach to infrastructure resilience, 

and shows that bringing together existing data and methods for single hazards can provide 

valuable understanding of multi-hazard impacts to infrastructure services.   



 

vii 

Acknowledgements 

Looking back at the highs and lows of the last few years, I have learnt some unforgettable 

lessons and feel grateful to have had this opportunity into research. Clearly, this thesis could 

not have happened without the many people who inspired, supported, and guided me 

throughout the years, and I would like express my gratitude to them. 

Thanks first of all to my supervisors, Dawei Han and Alan Champneys. I am grateful for your 

input, availability, patience, and kindness throughout the years. You gave me an incredible 

opportunity to follow my curiosity across a broad field of knowledge, while guiding me and 

giving me the confidence to continue. I would have been lost without our frequent meetings, 

and without your enthusiasm and encouragements. I am very grateful for your open-

mindedness and for the support you gave me.  

Thanks to Thorsten Wagener for creating the WISE-CDT, forming a great research 

environment and holding the group together, and to the University of Bristol, and the EPSRC, 

for funding the project. Thanks also to the NERC funded RESIST project for financial support. 

Thanks to Francesca Pianosi and to Katsu Goda for your input, and to Lorenzo Campo, Weihua 

Fang, Gabriel Bernal, Omar Cardona, Mattia Amadio, and Jeffrey Neal for kindly replying to 

my e-mails and sharing data. 

Thanks to Jing Huang, Qiang Dai, Qiqi and Zheqiang for hosting me in Nanjing. Jing, thanks 

for introducing me to the work you were doing in Jingdezhen, without you Chapter 5 would 

not have been possible. Qiqi and Zheqiang, thanks for taking me under your wing and helping 

me uncover a bit of the amazing Chinese culture.  



 

viii 

Thanks to the other early career researchers working on multi-hazards, for connecting me to a 

wider research community, and for making conferences such a fun and fulfilling experience, 

including Faith Taylor, Stefano Terzi, Silvia De Angeli, Anais Couasnon, Alois Tilloy, and 

Joel Gill. 

Thanks to everyone at Woodland Road, especially Wouter, Barney, Moonhuyk, Yiheng, Lu, 

for answering my questions while I was still taking my first steps in research and making me 

feel cool in the process; Vale and Will, for reminding us that changing the world starts locally; 

Sebastian, Charlie, Lina, Giulia, Melike, Elisa, Giorgios, and others for the good vibes while 

also questioning my (sometimes unfounded) ideas for changing the world. Thanks also to the 

wise friends, especially Olivia, Cain, Arthur, Paul, for the memories created and others still to 

come. Thanks to everyone else who has kept me sane and cheered me up when things got 

tough.  

A huge thanks to my housemates Elisa and Ludo, for keeping me grounded, listening to my 

ideas, and sharing the good and bad times throughout the years (to name just a few). It would 

definitely not have been the same without you.  

Thanks most of all to my eclectic and wonderful family, Mama, Papa, Steph, Martha, Mak, 

Baka, Deda, Mamie, for shaping who I am, for your insight, and for your support. Among other 

things, Mama (for your wisdom), Steph (pour ta discipline qui inspire); Papa (pour nos 

discussions mathématiques); Mak, (for proofreading the work); and everyone else (including 

Ruby) for being a joy in my life. A special thought goes out to Deda and Mamie, both of whom 

gave me stability and taught me a lot about rigour, hard work, and perseverance, and will 

remain role models for me going forward. 



 

ix 

Author’s declaration 

 

I declare that the work in this dissertation was carried out in accordance with the requirements 

of the University’s Regulations and Code of Practice for Research Degree Programmes and 

that it has not been submitted for any other academic award. Except where indicated by specific 

reference in the text, the work is the candidate’s own work. Work done in collaboration with, 

or with the assistance of, others, is indicated as such. Any views expressed in the dissertation 

are those of the author.  

 

SIGNED: 

 

 

 

Date: 

06/11/2020 

 

 



 

x 

 



Table of contents 

 

 

 

xi 

Table of contents 

  

Chapter 1. Introduction .............................................................................................................. 1 

1.1 Context ........................................................................................................................ 1 

1.2 Problem analysis ....................................................................................................... 10 

1.3 Aim and research questions....................................................................................... 12 

1.4 Thesis outline ............................................................................................................ 13 

Chapter 2. Reviewing methods for infrastructure resilience ..................................................... 1 

2.1 Background and definitions of resilience .................................................................... 1 

2.2 Resilience of what to what .......................................................................................... 4 

2.2.1 The city and its infrastructure........................................................................... 4 

2.2.2 Multi-hazard events .......................................................................................... 6 

2.3 Measuring resilience capacities in infrastructure systems .......................................... 9 

2.3.1 Absorbing ......................................................................................................... 9 

2.3.2 Recovering ..................................................................................................... 12 

2.3.3 Adapting ......................................................................................................... 14 

2.4 Overview and research needs .................................................................................... 16 

Chapter 3. Assessing the exposure of urban systems to earthquakes, floods, wind, and 

landslides.................................................................................................................................. 21 

3.1 Introduction ............................................................................................................... 21 

3.2 Data and methods ...................................................................................................... 24 

3.2.1 Urban areas data ............................................................................................. 24 

3.2.2 Hazard data ..................................................................................................... 25 

3.2.3 Hazard severity levels .................................................................................... 27 

3.2.4 Data processing .............................................................................................. 31 

3.3 Results ....................................................................................................................... 32 

3.3.1 Exposure to combinations of hazards............................................................. 33 

3.3.2 Multi-hazard exposure by continent ............................................................... 36 

3.3.3 Multi-hazard exposure by area exposed to specific hazards .......................... 39 

3.3.4 Evaluating the hazard data ............................................................................. 41 

3.3.5 Sensitivity of the classification ...................................................................... 51 

3.4 Discussion ................................................................................................................. 53 



Table of contents 

 

 

 

xii 

3.4.1 Common multi-hazard environments ............................................................. 54 

3.4.2 A dataset of combined hazard levels .............................................................. 57 

3.4.3 Towards collaboration networks based on city similarity .............................. 59 

3.4.4 Study limitations ............................................................................................ 66 

3.5 Conclusions ............................................................................................................... 68 

Chapter 4. Modelling disruption to water supply from a consecutive earthquake and cyclone

.................................................................................................................................................. 71 

4.1 Introduction ............................................................................................................... 71 

4.2 Measuring disruption to water supply ....................................................................... 73 

4.3 Model of a water distribution system ........................................................................ 77 

4.3.1 Demand-driven and pressure-driven modelling ............................................. 80 

4.3.2 Modelling damage to components ................................................................. 82 

4.4 Modelling earthquake damage and restoration ......................................................... 85 

4.4.1 Earthquake attenuation ................................................................................... 87 

4.4.2 Damage states ................................................................................................. 88 

4.4.3 Probability of reaching a damage state .......................................................... 90 

4.4.4 Earthquake restoration time ........................................................................... 93 

4.5 Modelling cyclone damage and restoration .............................................................. 94 

4.6 Application to a case study........................................................................................ 95 

4.6.1 C-Town........................................................................................................... 96 

4.6.2 Hazard scenario and mitigation measures ...................................................... 98 

4.7 Results ..................................................................................................................... 100 

4.7.1 Disruption from single and combined hazards ............................................. 100 

4.7.2 Analysing the cause of increase in disruption .............................................. 103 

4.7.3 Explanatory factors for the increase ............................................................. 105 

4.7.4 Mitigation measures ..................................................................................... 107 

4.8 Discussion ............................................................................................................... 109 

4.8.1 Measuring the change in total service deficit ............................................... 109 

4.8.2 Distinguishing three cases of consecutive events ........................................ 109 

4.8.3 Study limitations .......................................................................................... 110 

4.9 Conclusions ............................................................................................................. 111 

Chapter 5. Exposure of roads to flooding and debris flow in a case study city in China ...... 113 

5.1 Introduction ............................................................................................................. 113 



Table of contents 

 

 

 

xiii 

5.2 Measuring the performance of the road network .................................................... 116 

5.2.1 Modelling the roads as a graph of nodes and links ...................................... 116 

5.2.2 Using graph theory to describe network performance ................................. 119 

5.3 Modelling hazards ................................................................................................... 123 

5.3.1 River flooding .............................................................................................. 123 

5.3.2 Debris flows ................................................................................................. 127 

5.4 Results ..................................................................................................................... 129 

5.4.1 Network damage .......................................................................................... 129 

5.4.2 Impacts on network performance ................................................................. 133 

5.5 Discussion ............................................................................................................... 137 

5.5.1 Data availability ........................................................................................... 137 

5.5.2 Sensitivity of the results to uncertainties in the data .................................... 141 

5.5.3 Towards multi-hazard analysis in practice ................................................... 146 

5.6 Conclusions ............................................................................................................. 147 

Chapter 6. Conclusions and recommended future work ........................................................ 149 

6.1 Conclusions ............................................................................................................. 149 

6.1.1 Global hazard exposure ................................................................................ 149 

6.1.2 Consecutive impacts to water supply ........................................................... 150 

6.1.3 Road network assessment in a real city ........................................................ 151 

6.2 Recommended future work ..................................................................................... 152 

6.2.1 Short term: building an evidence base for increased impacts ...................... 152 

6.2.2 Long term: towards interdisciplinary, problem-driven research .................. 154 

Appendix ................................................................................................................................ 157 

A. Supplements to Chapter 3 ............................................................................................. 157 

A.1 Exposure results .................................................................................................. 157 

A.2 Additional sensitivity analysis results ................................................................. 162 

A.3 Comparison with other global hazard datasets ................................................... 165 

Bibliography .......................................................................................................................... 168 

 

  



Table of contents 

 

 

 

xiv 

This page was intentionally left blank 

 



Chapter 1. Introduction 

 

 

 

1 

Chapter 1. Introduction 

1.1 Context 

Disasters happen when a hazard (natural or man-made) affects a community or society that is 

not adequately prepared for the event (Smith, 2013). Disasters can be defined as events that 

overwhelm the local capacity to cope, resulting in the community or society requiring external 

assistance (e.g. people, resources, or funds) to recover from an undesirable state (CRED, 2020). 

A hazard (e.g. an earthquake or flood) only causes a disaster if it overwhelms the systems that 

the society depends on; a given hazard event could, but may not, result in a disaster. For 

example societies throughout history have benefitted from river floods; in Egypt and China, 

floods were valued as they deposited sediment on agricultural land (De Bruijn, 2005). 

Similarly, earthquake engineers use the phrase “earthquakes don’t kill people, buildings do” to 

reflect the role of people in the devastation caused by earthquakes (Pokharel & Goldsworthy, 

2017). Also, natives from Pacific Islands affected by the tsunami of 2004 survived thanks to a 

tradition of moving to high ground when the ocean recedes, while many tourists who did not 

understand these natural patterns were killed (Munasinghe, 2007). These examples highlight 

that the built environment and human behaviours of a place need to adequately account for the 

natural extremes of that location. Of course, not all disasters are caused by nature; some 

disasters, such as terrorist attacks, traffic accidents, or chemical explosions, are man-made 

(Smith, 2013). Nevertheless, disaster records suggest that natural events (particularly 

earthquakes, floods, and storms) have been by far responsible for the largest disaster impacts 

over the last three decades (Figure 1.1).  
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The Hyogo Framework for Action was the first coordinated international agreement that set 

out to tackle and address disasters caused by natural hazards (UNISDR, 2005), but despite 

significant progress since its implementation, natural hazards continue to be a burden for 

communities and the economy (UNISDR, 2015b). In 2017 alone, natural hazards caused an 

estimated 340 billion US$ in losses, and more than 10,000 deaths (MunichRE, 2018). Also, 

data from the EM-DAT database, the largest freely available database of disasters, shows that 

over 4.2 billion people have been affected since 1990 by earthquakes, floods, storms, and 

landslides (CRED, 2020). Globally, storms have been the most costly hazard, floods have affect 

the greatest number of people, and earthquakes have been responsible for the highest number 

of deaths (Figure 1.1). The EM-DAT database is known to underestimate the importance of 

small and frequent events (UNISDR, 2015b); for example Petley et al. (2005) has recorded 

nearly twice as many deaths from landslides as the number reported by the database. The 

database also only reports the number of people directly affected, and does not reflect the 

population affected through indirect impacts, such as loss of livelihoods, poverty, anxiety, 

discomfort, or inconveniences as a result of hazards (CRED, 2020; UNISDR, 2015b). 

While significant progress has been made towards reducing the number of lives lost in 

disasters, trends show that disruptions to society and the economy have been increasing over 

time (MunichRE, 2018). Activities such as enforcing building codes, providing early warning, 

building storm shelters and flood defences has contributed to lower death rates; for example, 

almost 10,000 people were killed in Odisha, India, in 1999 due to a cyclone, but an equivalent 

cyclone in 2013 caused fewer than 50 deaths (UNISDR, 2015b). However, disruption to 

communities and livelihoods, and the cost of destruction, continues to increase (MunichRE, 

2018; UNISDR, 2015b). An important driver of increasing impacts is the growth of population, 

particularly in cities in Asia and Africa, resulting in more people living in hazard prone areas 
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(UNDRR, 2019). The population in seismic areas has nearly doubled in less than 50 years, and 

today, 1 in 3 people live in an area prone to earthquakes (Pesaresi et al., 2017). Also, many of 

the largest and fastest growing cities are located in coastal areas and face hazards like tropical 

cyclones, river flooding and coastal flooding (Jongman et al., 2012). Furthermore, the storms 

and floods affecting these cities are projected to become more severe in the future, as human 

activities affect mean surface temperatures, leading to sea level rise and changes in rainfall 

patterns (Field et al., 2012). Another driver of a rise in impacts is the increasing 

interdependency between economic, social, and physical systems (Godschalk, 2003). 

Interdependencies can take many forms and amplify impacts both locally and over larger areas 

(Rinaldi et al., 2001). For example, a loss of electricity can also affect access to water, as seen 

during recent power outages in various places, with consequences for healthcare, businesses, 

and vulnerable urban populations (Chang et al., 2007). Global supply chains are also 

responsible for increasing impacts; for example Hurricane Maria in the Caribbean affected the 

supply of medical equipment in hospitals throughout the US (UNDRR, 2019).  

Increasingly, disasters are being amplified by disruptions to critical infrastructure services such 

as water, energy, and transport. The 2007 summer floods in the UK left 350,000 people without 

water for almost three weeks, and caused widespread disruptions to transport and power, with 

the majority of those affected living outside of the immediately flooded area (Pitt, 2008). 

Hurricane Sandy made landfall in New York in 2012 and caused loss of power to millions of 

people while flooding the subway system, bringing the entire city to a standstill for days 

(Haraguchi & Kim, 2016). This resulted in one of the most expensive disasters to date 

(Kaufman et al., 2012). In Japan, the Hanshin earthquake that struck the city of Kobe in 1995 

caused over a million people to lose access to water, gas, electricity, drainage and transport 

(Edgington, 2016). An insufficient water supply exacerbated the spread of fires that ignited 
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through the city as a result of damage to the gas network (Edgington, 2016). Recent earthquake 

events around the world have also caused widespread damage to infrastructure hampering 

recovery efforts, in Chile, New Zealand, and China (Cimellaro et al., 2010; Cimellaro et al., 

2014; Curinovski et al., 2014; Dueñas-Osorio & Kwasinski, 2012; Lekkas et al., 2011; 

Mostafavi et al., 2018; Zhao & Taucer, 2010). In New Orleans, violent, armed robberies, both 

of essential and non-essential items, were seen following Hurricane Katrina in 2005 

(Munasinghe, 2007). The event was an example of how the loss of essential infrastructure 

services, and the subsequent undermining of law enforcement, government, or banks, can result 

in social unrest. Those most affected by the loss of water supply during the 2007 UK floods 

were the elderly and vulnerable, who struggled to collect water from alternative sources (Pitt, 

2008). Indeed, the consequences of disasters are often disproportionately felt by the most 

vulnerable (UNDRR, 2019). 

 

Figure 1.1 The total economic loss, number of people affected, and deaths from hazards 

between 1980 and 2019. Includes all events that caused at least one of the following: 10 or 

more people dead; 100 or more people affected; the declaration of a state of emergency; 

a call for international assistance. Data from the EM-DAT database (CRED, 2020). 
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In response to the challenges faced, policies are emphasising the need for infrastructure to be 

made resilient to various hazards. The Sendai Framework for Disaster Risk Reduction has set 

a target to “substantially reduce disaster damage to critical infrastructure and disruption of basic 

services, (…), including through developing their resilience by 2030” (UNISDR, 2015a). The 

Coalition for Disaster Resilient Infrastructure was set up at the 2019 Climate Action Summit 

of the United Nations, with the aim of promoting “the resilience of new and existing 

infrastructure systems to climate and disaster risks, thereby ensuring sustainable development”. 

Resilience is used in the context of the European Union Global Strategy (European Union, 

2016) to reflect the need for a holistic approach to risk: “the concept of resilience brings under 

the same umbrella different short- and long-term approaches to risk management, which deal 

not only with imminent disasters (i.e. flooding, fires) but also with (…) risk trends (i.e. climate 

change, environmental degradation, demographic changes)” (Pawlak, 2016). In their report 

“Disaster resilience: a national imperative”, the US National Research Council emphasise “the 

importance of an “all-hazards” approach to resilience” and state that upgrades are needed to 

“nationwide infrastructure (…) to encompass disaster-resilient designs” (National Research 

Council, 2012). 

Currently, efforts to address disruptions to critical services mostly focus on preventing damage 

through various forms of protection (De Bruijn, 2004; Gardoni & LaFave, 2016; Golz, 2015; 

Rogers & Grigg, 2008; Serre, 2018). Protective measures include placing infrastructure out of 

reach of the hazards (e.g. moving facilities away from the floodplain, raising structures above 

the flood line, burying pipes or cables underground to prevent wind damage), constructing 

protective walls or barriers (e.g. sea walls, flood embankments, dams, landslide barriers), or 

designing infrastructure components that can withstand hazard forces. Protective measures 

make an important contribution to mitigating hazard impacts, and there has been impressive 
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engineering progress in protecting from, and resisting, hazards. It is now possible to design 

buildings or road bridges to withstand some of the strongest earthquakes ever recorded 

(Monfared, 2020; Kitagawa, 2004), and protect cities from a 1-in-10,000 year flood (Kwadijk 

et al., 2010). Often, the design of protective measures will take into account the relevant 

combinations of hazard forces (e.g. combined earthquakes and flooding on bridges, winds and 

storm surge for coastal infrastructure; Gehl & D’Ayala, 2018; Kameshwar & Padgett, 2014; 

McCullough et al., 2013). 

However, protection alone is considered to be insufficient to offset the increase in impacts  

(Aven, 2015; Rogers et al., 2012). There are many ways infrastructure components could be 

damaged by hazards (Figure 1.2). Protecting from each of the effects incurs additional costs in 

design, construction and maintenance, and the money is not always available or justifiable 

(Hudson et al., 2012). Also, regardless of the protection level provided, there will be an event 

sooner or later that will exceed it, with potentially dramatic consequences (Aven, 2015). For 

example, the Wenchuan earthquake in China in 2008 exceeded the ground motion stipulated 

by the Chinese design codes, and resulted in extensive damage to dams, roads, and bridges 

(Zhao & Taucer, 2010). Protection can also create a false sense of security that leads to 

counterproductive behaviours and further increases the consequences when protection levels 

are exceeded, for example construction on a floodplain protected by embankments (Di 

Baldassarre et al., 2013). In addition, decisions on the appropriate level of protection are 

sensitive to uncertainties about the hazards (Di Baldassarre & Montanari, 2009). Another 

concern is that protection cannot effectively address all the possible combinations of events, 

many having a very low probability but potentially high consequences, and may not have 

occurred before (Aven, 2015).  
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Figure 1.2 Hazards and their effects on physical infrastructure components. Figure from 

Zaghi et al. (2016). 
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Therefore, researchers have been looking for new ways of understanding and reducing the 

impacts of hazards on infrastructure services. Infrastructure can be seen as mediating between 

the environment and society (Figure 1.3). From that perspective, there are different stages 

through which a hazard affects society, starting with physical damage to infrastructure 

components, followed by a loss of service, through to consequences on the population. There 

are therefore also multiple opportunities for intervention. Protecting the system from damage 

addresses the first stage in the impact chain. Other opportunities exist that instead address the 

second and third stages of impact (i.e. reducing loss of service once damage occurs, and making 

the population less vulnerable to a loss of service). The second stage in particular, reducing the 

loss of service once damage occurs, has been a focus area of infrastructure research. One way 

of preventing damage from spreading across large areas is by ensuring that services are sourced 

and provided locally, and that communities, or even households, are self-sufficient. 

Technologies that support local self-sufficiency include for example rainwater harvesting (for 

water supply), and rooftop solar panels (for electricity). However, local self-sufficiency is not 

always possible (i.e. resources may be not be present locally in sufficient quantity to meet the 

needs of a dense population), making networks that can distribute resources over larger areas 

necessary, and in some cases beneficial to the resilience of a community. Therefore, 

understanding the best way to become resilient in a given setting is not straight forward. 

Research has been taking inspiration from other systems with characteristics comparable to 

those of infrastructure systems, looking for generalisable properties that make these systems 

resilient. The study of ecosystems, that inspired the modern notion of resilience (Holling, 

1973), provides interesting lessons for resilience, showing the value of system properties such 

as redundancy, modularity, or diversity. Inspiration for resilience is also seen to come from 

fields such as physics or mathematics, including research areas such as graph theory or 

percolation theory. 
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Figure 1.3 A framework for infrastructure resilience, showing how hazards events 

propagate through infrastructure systems to affect society, based on Butler et al. (2014) 

and Zaghi et al. (2016). 

There is a rapidly growing array of methods and tools (see for example 

https://www.resilienceshift.org/tools) to help infrastructure professionals and other 

stakeholders adapt infrastructure systems based on principles of resilience (Hickford et al., 

2018). Broadly speaking, methods and tools for resilience aim to integrate elements not 

previously considered together (e.g. infrastructure, society, politics, environment), and to 

understand the connections between these elements. These methods and tools can take many 

forms, such as frameworks or models. Optimisation, while powerful in finding the best or most 

adapted solution among a multitude of solutions, does not feature strongly within methods and 

tools for resilience. Optimisation is a powerful way of making a system highly adapted to a set 

of predefined constraints and objectives. However, it is limited to constraints and objectives 

that are knowable or foreseen. As discussed by Meerow et al. (2016), high adaptedness can 

limit adaptability. Indeed, optimising a system for a specific threat or set of threats can 

undermine the redundancy, flexibility, diversity, and ‘alertness’ (i.e.  readiness to respond) of 

the system (Meerow et al., 2016). Given that infrastructure in many countries is reaching the 

end of its design life and needing replacement (Dunn et al., 2017), and that the infrastructure 

that will support the future population in growing cities still needs to be built (Godfrey & 

Savage, 2012), methods and tools for making infrastructure system more resilient play a crucial 

role in reducing future hazard impacts. 
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1.2 Problem analysis 

While resilience principles have been shown to be useful for analysing and reducing 

consequences from single hazards (e.g. Chang et al., 2002; Klise et al., 2017; Pregnolato et al., 

2016), there is still a lack of studies accounting for multiple hazards (Zaghi et al., 2016). Events 

like Hurricane Sandy in New York suggest that urban systems like transport, energy, and 

healthcare may be under-prepared for combined hazard events (Haraguchi & Kim, 2016). The 

consequences of combined hazard events on infrastructure are still poorly understood and often 

not addressed because of their low probability of occurrence (Aven, 2015). Yet disasters are 

not necessarily the result of extreme events, but could occur because a number of small, 

localised, independent hazards combine to produce consequences that are more than the sum 

of the parts (Perrow, 2011). For example, a flash flood and a landslide could damage different 

sections of a road network and leave people trapped on the road. Studies of combined failures 

on infrastructure systems seem to mostly consider generic failures (e.g. assigning an equal 

probability of failure to all parts of the system), without accounting for the spatial and temporal 

characteristics of real hazards (Diao et al., 2016; Mugume et al., 2015). 

Several reasons may explain the lack of modelling of real hazard combinations on 

infrastructure systems. Some reasons are common to both single and multi-hazard studies, such 

as the difficulty in modelling how a system performs when damaged. Models that are used in 

the design and operation of infrastructure (e.g. traffic models, water distribution system 

models) are generally not intended to represent the system during a disaster (e.g. Rossman, 

2000), and the post-disaster period involves unique processes such as population movements 

and repairs that are often not included within those models. Other reasons are specific to 

modelling of multi-hazard events. One possible reason is a lack of awareness of exposure to 

multiple hazards by infrastructure operators and designers, due to hazard information often still 
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being held by different agencies or organisations (Kappes et al., 2012). While stakeholders 

often have a reasonably good understanding of possible scenarios within their own sector 

(Ciurean et al., 2018), there is a lack of oversight of challenges affecting different sectors, that 

could combine to cause disruption at the city scale. Another reason is insufficient 

understanding of the extent to which impacts could be amplified as a result of two hazards 

occurring together (De Ruiter et al., 2019). Risk assessments sometimes assume a simple sum 

of impacts, yet many highlight that the combined impacts could differ from the sum of impacts 

of single hazards (Ciurean et al., 2018; Gallina et al., 2016; Kappes et al., 2012; Terzi et al., 

2019; Zaghi et al., 2016). Yet there is still a lack of evidence of the extent to which impacts 

might increase (or decrease) when hazards interact, and a lack of methods for comparing single 

and multi-hazard impacts on infrastructure performance. Finally, insufficient studies apply 

multi-hazard methods in actual geographic contexts rather than in simulated environments 

(Ciurean et al., 2018).  

Recently, improvements have been made in understanding infrastructure performance for 

single hazards. Approaches based on simplified representations of the system, for example 

using graph theory, provide an efficient an rapid way of estimating performance, as well as to 

model different infrastructure types and their interactions (Buldyrev et al., 2010). The use of 

pressure-driven demand models for water supply makes it possible to represent their 

performance when damaged (Dawson et al., 2011; Dueñas-Osorio et al., 2007; Klise et al., 

2017; Miles & Chang, 2011). Significant work has also been done on modelling and improving 

the recovery process after a disaster (Tabucchi et al., 2010). Furthermore, data on hazards is 

becoming increasingly available (Ward et al., 2020). Also, emphasis at the policy level of the 

importance of an all-hazards approach is helping to overcome silos (UNISDR, 2015a). 

Meanwhile, significant improvements are being made in understanding how natural hazards 
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interact (Couasnon et al., 2020; Gill & Malamud, 2014; Matthews et al., 2019; Wahl et al., 

2015; Zscheischler et al., 2018). Given the context and opportunities discussed, it is both timely 

and necessary to begin to better understand multi-hazard events and their effects on 

infrastructure performance. 

1.3 Aim and research questions 

The overall aim of this thesis is to contribute to increasing city resilience, through improving 

our understanding of infrastructure response to multi-hazard events. The thesis is centred on 

urban water challenges, and is primarily addressed at water engineers. However, the problem 

of loss of service during a disaster concerns, and involves, other disciplines as well, making 

parts of the work also relevant to policy makers, disaster risk reduction experts and hazard 

scientists. Specifically, the thesis aims to make progress in the consideration of multiple 

hazards by addressing three identified gaps: (1) the lack of awareness of exposure to multiple 

hazards, (2) insufficient understanding of combined impacts, and (3) the lack of case studies 

on real systems. The work is structured around the following research questions: 

1. What combinations of hazards are urban infrastructure systems exposed to? 

2. Can the response of a system to single hazards be used to predict the response to a 

combined hazard event? 

3. Can the consequences of multi-hazard events be assessed at the city scale given limited 

data availability, and what are some of the challenges? 

Regarding (1), the aim is to use existing global hazard maps, along a recent dataset of urban 

areas, to analyse the exposure of urban areas across five damaging hazards. The analysis will 

look for trends across combinations of hazards and aim to identify common combinations of 
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hazards. The data used will also be evaluated to determine its accuracy. Possible further uses 

of the data will then be considered and discussed, taking into account data quality.  

To address question (2), the aim is to simulate the performance of a water supply system during 

a consecutive event, and to compare it to the performance during single events. It will be done 

by modelling a (realistic but low-probability) scenario of an earthquake and tropical cyclone 

occurring consecutively within the same week. The simulations will be carried out within a 

Monte Carlo framework to account for hazard uncertainty, using the Water Network Tool for 

Resilience (WNTR) (Klise et al., 2017). 

Regarding (3), the aim is to look at  multi-hazard challenges in the rapidly growing and flood-

prone city of Jingdezhen in China. Specifically, the plan is to analyse the loss of functionality 

under different hazard scenarios, for the current and future network. To incorporate realistic 

hazard information into the assessment, the intention is to use two open source models, 

LISFLOOD-FP (Bates et al., 2013) and Flow-R (Horton et al., 2013), to model scenarios of 

river flooding and debris flows, respectively. Metrics from graph theory will be used to 

represent the network functionality. 

1.4 Thesis outline 

The structure of the thesis is shown in Figure 1.4.  

Chapter 2 provides a review of the literature on infrastructure resilience. It starts by looking 

at how resilience is interpreted across different disciplines, and at the types of events that 

infrastructure systems need to be resilient against. Practical methods that apply resilience to 

infrastructure systems, in particular water and transport networks, are identified. Insights from 

previous studies that address impacts to infrastructure from multiple hazards are also discussed. 
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Figure 1.4 The structure of the work presented in this thesis. The text in italics shows the 

questions addressed in each case study. The green text shows the hazards included in each 

part.  

 

Chapter 3 combines global hazard datasets to understand patterns of exposure to multiple 

hazards in cities. 

Chapter 4 investigates how disruption due to consecutive hazards compares to disruption from 

single hazards, by modelling a consecutive event (an earthquake and cyclone occurring within 

the same week) and its impact on the water supply in a hypothetical city (C-Town). 

Chapter 5 uses open source models and data to analyse the impact of river flooding and debris 

flows on the road network in the city of Jingdezhen in China. The functionality of the road 

network is quantified using graph theory. 

Chapter 6 summarises the findings and contributions of the thesis and proposes some 

directions for future research.
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Chapter 2. Reviewing methods for infrastructure 

resilience 

2.1 Background and definitions of resilience 

Resilience as a concept has a long and diverse history. Alexander (2013) traced back uses of 

the word and suggested that it originally comes from ‘resilire’ in Latin, which means “to 

bounce”. The concept of resilience re-emerged from ecology where it refers to the ability of 

ecosystems to absorb change and disturbance and still persist (Holling, 1973). In mechanical 

engineering, resilience has been used to mean the amount of strain energy which can be stored 

in a structure without causing permanent damage to it (Gordon, 1978). Resilience has also been 

used in environmental sciences, for example Timmerman (1981) used it to describe the 

capacity of societies to absorb and recover from the occurrence of a hazardous event. 

Hashimoto (1982) proposed resilience as a property of reservoir systems, referring to the 

average time needed to recover from a water deficit. A sample of definitions of resilience can 

be found in Table 2.1.  

Recently, resilience has re-emerged as a strategy for addressing the effects of hazards in cities 

(Godschalk, 2003). The concept has been discussed in different disciplines that play a role in 

addressing hazards in cities, such as urban planning, engineering, and disaster risk reduction 

(Bruneau et al., 2003; Manyena, 2006; Meerow et al., 2016). The concept has also developed 

both in the context of earthquake engineering (Chang & Shinuzoka, 2004) and flood risk 

management (De Bruijn, 2004). Some consider that its value might be as a bridging concept 

for increased collaboration between disciplines (Davidson, 2015). Table 2.1 lists some of the 

influential definitions of resilience from different disciplines.  
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Table 2.1 Definitions of resilience. 

Source Definition 

Ecology (Holling, 

1973) 

A measure of the persistence of systems and of their ability to absorb change and disturbance 

and still maintain the same relationships between populations or state variables 

Ecology (Folke, 2006) The capacity of a system to absorb disturbance and reorganize while undergoing change so 

as to retain essentially the same function, structure, identity, and feedbacks 

Psychology (Tugade & 

Fredrickson, 2004) 

The ability to bounce back from negative emotional experiences and flexible adaptation to 

the changing demands of stressful experiences 

Water resources 

(Hashimoto, 1982) 

How quickly a system is likely to recover or bounce back from failure once failure has 

occurred 

Earthquake engineering 

(Bruneau et al., 2003) 

The ability of the system to reduce the chances of a shock, absorb a shock if it occurs, and 

recover quickly after a shock 

Urban hazard mitigation 

(Godschalk, 2003) 

Local resiliency with regard to disasters means that a locale is able to withstand an extreme 

natural event without suffering devastating losses, damage, diminished productivity, or 

quality of life and without a large amount of assistance from outside the community 

Water engineering 

(Butler et al., 2014) 

The degree to which the system minimises level of service failure magnitude and duration 

over its design life when subject to exceptional conditions 

Transport engineering  

(Mattsson & Jenelius, 

2015) 

The property of a material of springing back into shape, position, etc. after being stretched, 

bent or compressed 

Management (Vogus & 

Sutcliffe, 2007) 

The maintenance of positive adjustment under challenging conditions such that the 

organization emerges from those conditions strengthened and more resourceful 

Geography (Cutter et 

al., 2010) 

A system’s ability to absorb disturbance and re-organize into a fully functioning system 

Disaster risk reduction 

(Manyena, 2006) 

The intrinsic capacity of a system, community or society predisposed to a shock or stress to 

adapt and survive by changing its non-essential attributes and rebuilding itself. 

Computer science 

(Sterbenz et al., 2010) 

The ability of the network to provide and maintain an acceptable level of service in the face 

of various faults and challenges to normal operation 

Urban planning  

(Meerow et al., 2016) 

The ability of an urban system-and all its constituent socio-ecological and socio-technical 

networks across temporal and spatial scales-to maintain or rapidly return to desired functions 

in the face of a disturbance, to adapt to change, and to quickly transform systems that limit 

current or future adaptive capacity 

Sustainability (Elmqvist 

et al., 2019) 

The capacity of an urban system to absorb disturbance, reorganize, maintain essentially the 

same functions and feedbacks over time and continue to develop along a particular trajectory 

Intergovernmental 

Panel on Climate 

Change (Field et al., 

2012)  

The ability of a system and its component parts to anticipate, absorb, accommodate, or 

recover from the effects of a hazardous event in a timely and efficient manner, including 

through ensuring the preservation, restoration, or improvement of its essential basic 

structures and functions 

The Rockefeller 

Foundation (Spaans & 

Waterhout, 2017) 

The capacity of cities to function, so that the people living and working in cities – 

particularly the poor and vulnerable – survive and thrive no matter what stress or shocks they 

encounter 

United Nations 

(UNDRR, 2015) 

The capacity of a system, community or society potentially exposed to hazards to adapt, by 

resisting or changing in order to reach and maintain an acceptable level of functioning and 

structure. This is determined by the degree to which the social system is capable of 

organizing itself to increase this capacity for learning from past disasters for better future 

protection and to improve risk reduction measures. 

National Research 

Council (2012) 

The ability to prepare and plan for, absorb, recover from, or more successfully adapt to 

actual or potential adverse events 
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Table 2.1 shows that resilience generally refers to the ability of a systems absorb disturbances, 

recover from failure, and adapt, however its meaning varies with the context in which it is 

being used. Figure 2.1 shows word clouds produced from the titles of the most cited 

publications on resilience from eight different disciplines. Some words emerge as common 

themes, for example the word ‘community’ is strongly featured in the resilience literature from 

ecology, water resources, psychology, environmental sciences, and geosciences. Climate 

change can be seen most in environmental sciences, ecology, and geosciences, and to a lesser 

extent in water resources, but is not closely associated with resilience in civil engineering or 

telecommunications. The word ‘urban’ can be seen in environmental sciences, water resources, 

and geosciences, while ‘infrastructure’ is most prominent in civil engineering.  

 

Figure 2.1 World cloud of the titles of the 500 most cited articles from Web of Science 

under the search term “resilience” for each discipline. 
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2.2 Resilience of what to what  

Given that resilience has a broad meaning and can be interpreted in multiple ways, it is 

important to specify the context in which it is being used, both in terms of the system being 

considered and of the threats to the system (Carpenter et al., 2001; MacAskill & Guthrie, 2014). 

Carpenter summarises this as “resilience of what and to what” (Carpenter et al., 2001).  

2.2.1 The city and its infrastructure 

The town of Dunwich in the UK used to be a major port, and has been gradually eroded away 

by the sea, yet the UK as a country has successfully absorbed the change, by gradually adapting 

and shifting capacity to other ports (Hudson et al., 2012). The example shows that resilience 

can exist at different scales; what may look like failure at the city scale may be a necessity for 

resilience at larger scales. A look at history shows that cities have tend to recover sooner or 

later from a disaster, though perhaps to a different form than before the event (Vale & 

Campanella, 2005). Furthermore, some states are highly resilient, for example poverty, a 

dictatorship, or dependence on fossil fuels, and are difficult to change, and yet are not desirable 

(Martin-Breen & Anderies, 2011; Meerow et al., 2016). Therefore, assessments need to specify 

what is being resilient.  

This thesis focuses on the resilience of urban infrastructure services. Ensuring provision of 

basic services in cities has been identified as a priority nationally and internationally (Cabinet 

Office, 2011; UNISDR, 2015a), and people living in cities are highly dependent on 

infrastructure services such as water, transport, power, and communications (Godschalk, 

2003). Those infrastructure services are generally provided in cities through infrastructure 

systems. The focus is primarily on civil infrastructure networks including water and transport 
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systems, but a holistic approach is taken to account for interdependencies between 

infrastructure systems. 

An infrastructure system is defined as an “integrated socio-technical system that delivers a 

service to society” (Di Mauro et al., 2010). The boundaries of infrastructure systems are 

challenging to define, as infrastructure extends over large areas, and involve not just physical 

assets, but also operators, maintenance and repair processes, supply chains, and the customers 

themselves (Di Mauro et al., 2010). A useful framework for representing infrastructure was 

proposed by Butler et al. (2014), and a similar framework was also proposed by Zaghi et al. 

(2016). Both frameworks distinguish: 

1. The hazard, or forces caused by an event (e.g. ground shaking, flood waves, wind) 

2. The damage, or physical impairment of a component (e.g. a broken pipe, damaged tank) 

3. The loss of service, or decrease in performance of the system (e.g. lack of water supply) 

4. The consequences for people and businesses (e.g. closure of a hospital) 

Given that infrastructure systems are interdependent (i.e. failure in one system can cause failure 

in another), there has been a lot of research on cascading failures among infrastructure sectors 

(Ouyang, 2014; Rinaldi et al., 2001). Electricity networks are most likely to cause cascading 

failures in other systems (Pescaroli & Alexander, 2016), but civil infrastructure including water 

supply, drainage, and roads also need to consider their interdependence with other systems. 

Reiner and McElvaney (2017) suggest that all systems are dependent on roads for their 

operation (e.g. operators travelling to site, carrying out maintenance), as well as when 

recovering from a hazard. Dong et al. (2020) for example model how disruption to roads affects 

can affect drainage systems. Other studies have modelled the dependence of water supply on 

electricity, showing that the consequences of a hazard (e.g. an earthquake or flood) are greater 
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when this interdependency is taken into account (Adachi & Ellingwood, 2008; Guidotti et al., 

2016; McDaniels et al., 2007; Rinaldi et al., 2001).  

2.2.2 Multi-hazard events 

Infrastructure systems need to manage a variety of hazards, from both natural and human 

sources (Butler et al., 2014; Flax et al., 2016; Spaans & Waterhout, 2017). It is useful to 

distinguish shock and stress type hazards (Butler et al., 2014; Spaans & Waterhout, 2017). 

Shocks refer to acute, infrequent and severe events (e.g. earthquakes, storms, terrorist attack), 

while stresses represent chronic, frequent and low impact events, that can take a toll on the 

system over time (e.g. asset deterioration). Specifically, stresses are used here to mean damage 

that does not lead to a loss of service (e.g. a small pipe leak in a water supply network, or a 

single traffic accident in a road network), while shocks refer to damaging events that lead to a 

loss of service Butler et al. (2014) distinguishes acute shocks and chronic stresses.  

Reliability standards in infrastructure systems generally account for stresses (Butler et al., 

2014; Mattsson & Jenelius, 2015), but other strategies (e.g. resilience) are needed for 

addressing shocks (Butler et al., 2014). In particular, there is an interest in the possibility of 

using resilience strategies to address surprise events (Aven, 2015). Surprises may occur 

because a shock exceeds the magnitude of previously experienced shocks, but are more often 

the result of interactions between events. For example, the Fukushima disaster was the result 

of an unprecedented magnitude earthquake that triggered a tsunami, and also damaged a 

nuclear power plant (Lekkas et al., 2011). 

Disasters are increasingly seen to result from complex interactions between events (Pescaroli 

& Alexander, 2016). Studies have discussed different types of interactions. The idea of ‘normal 

accidents’ was introduced by Perrow (2011) to refer to an alignment of multiple low 
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consequence events, that together create a disaster. Perrow (2011) mainly discussed normal 

accidents in the context of industrial risk, and suggested that such events are a feature of tightly-

coupled complex systems, such as nuclear power plants. Similar to normal accidents is the 

Swiss Cheese model (Ayyub, 2014), which views disasters as events that occur when multiple 

layers of defence are breached at the same time by random chance. While normal accidents 

and the Swiss Cheese model refer to an alignment of events that are not individually damaging, 

a ‘perfect storm’ is often thought of as a combination of multiple extreme or damage events 

occurring at the same time (Aven, 2015). Similarly, De Ruiter et al. (2019) describes 

‘consecutive disasters’, as two damaging events that affect a system in sequence, before the 

system has had time to recover. Studies are also increasingly referring to ‘compound hazards’, 

to mean combinations of hazards that have a common root cause. Compound events are 

especially studied in relation to climatic hazards (Couasnon et al., 2020;  Leonard et al., 2014; 

Matthews et al., 2019; Wahl et al., 2015; Zscheischler et al., 2018), such as compound river 

and coastal flooding. Compound events generally involve some level of statistical dependence 

between hazards (Leonard et al., 2014). Distinct from compound events are hazard cascades, 

where one hazard triggers another, for example and earthquake triggering a landslide or a 

tsunami, which are more commonly studied through physically based modelling (Tilloy et al., 

2019). Pescaroli and Alexander (2018) distinguish compound, interacting, interconnected, and 

cascading hazard types, by stating that “while interconnected risk can be seen as one of the 

preconditions for the manifestation of cascades, compound and interacting dynamics can 

influence its magnitude”. These examples from the literature show the range of events that 

could affect the resilience of a system.  

For clarity, the hazards described in the literature are summarised here as different 

combinations of shocks and stresses. Normal accidents are considered to be a combination of 
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multiple stresses (i.e. high-probability low-magnitude events) occurring at the same time; 

perfect storms are considered to be two or more shocks (i.e. low-probability high-magnitude 

events) occurring at the same time; and consecutive disasters are considered to be two or more 

shocks occurring one after the other. Other combinations are also possible, for example a shock 

occurring at the same time as a stress and leading to amplified consequences. 

 

Figure 2.3 The difference between shocks and stresses. Stresses generally refer to 

frequent, low magnitude events, while shocks refer to low frequency high magnitude 

events. 

The events described so far do not address the relation between hazards in space. Yet for 

infrastructure systems that extend over large areas, distinguishing where the damage occurs is 

also important. Kappes et al. (2012) identify four cases, each with different implications, based 

on whether the hazards occur in the same place or in different places, and at the same or at a 

different time (Table 2.2). 

Table 2.2 Implications of different combinations of events for infrastructure systems, 

adapted from (Kappes et al., 2012). 

 Same time Different time 

Same 

place 

Implications for damage to components, for 

example a combination of wind and storm 

surge could damage a tank that would resist 

the events happening individually (Bernier 

& Padgett, 2019). 

Implications for design, for example a building 

with a lightweight roof structure is a better 

choice for earthquakes, but the building would 

be more vulnerable to wind (Li et al., 2012).  

Different 

place 

Implications for performance, through 

interactions at the system or network level 

(Zaghi et al., 2016). 

Possible implications for long term decisions, 

relating to adaptation, supply chains. 
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For infrastructure networks, same place is taken to mean that the two affect the same 

component or set of components (e.g. same node or link in a network), while same time is taken 

to mean that there is an overlap between the impacts of the two events (i.e. the second event 

occurs before the system has recovered from the first event).  

There are a few examples where hazards have combined to affect infrastructure systems in 

complex ways. In 2010, the Pacaya volcanic eruption in Guatemala was closely followed by 

storm Agatha. The ash from the volcano blocked drains, and exacerbated flooding caused by 

the subsequent storm (Gill & Malamud, 2014). In another example, the Christchurch 

earthquake in New Zealand in 2011, was followed by widespread damage to drainage systems 

resulted in increased severity of rainfall flooding, years after the event (Cavalieri et al., 2016). 

2.3 Measuring resilience capacities in infrastructure 

systems 

Section 2.1 showed that resilient infrastructure services means having the capacity to absorb, 

recover, and adapt to various events. This section discusses examples of studies that measure 

and address these resilience capacities in urban water and transport systems. The aim is to 

provide an overview of how resilience concepts can be implemented in practice. Where 

possible, studies are identified that consider multiple hazards. 

2.3.1 Absorbing 

Absorptive capacity can be considered to be the ability of an infrastructure system to undergo 

damage and still provide adequate levels of performance. There are many studies on the 

absorptive capacity of systems, although studies may refer to it with different names (e.g. 

vulnerability analysis, global resilience assessment, stress testing) (Diao et al., 2016; Galvan 

& Agarwal, 2020; Hu et al., 2016; Mugume et al., 2015; Murdock et al., 2018; Shiraki et al., 
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2007; Wang et al., 2019). Generally speaking, systems with high absorptive capacity can 

provide good performance even after being severely damaged, while systems with low 

absorptive capacity show large losses in performance under limited damage.  

Often, absorptive capacity is represented using a system response curve, obtained through 

modelling the system response to incremental numbers of failures (Diao et al., 2016; Mugume 

et al., 2015; Murdock et al., 2018; Shiraki et al., 2007; Wang et al., 2019). The system response 

curve relates the number of failures (or hazard magnitude) to the level of performance of the 

damaged system. Figure 2.4 shows some example response curves for water supply and 

wastewater networks (Diao et al., 2016; Mugume et al., 2015). Diao et al. (2016) for example 

assessed the absorptive capacity of water distribution networks to four different failure modes, 

including pipe break, pump failure, changes in demand, and substance intrusion. For each 

failure mode, failures were applied stochastically to the system. The curves in Figure 2.4 show 

the minimum and maximum performance recorded across multiple stochastic failure scenarios. 

By analysing the absorptive capacity of water supply systems to different hazards (or failure 

modes), Diao et al. (2016) identified a design trade-off at the system level between two types 

of hazards. Specifically, they found that increasing storage capacity in a water distribution 

system makes the system perform better in the event of pipe breaks, but perform worse in the 

event of substance intrusion (i.e. contaminants entering the water supply).  

Some studies have tried to identify general system properties that correlate with absorptive 

capacity. For example, diversity of function makes ecosystems better able to absorb shocks 

(Elmqvist et al., 2003), and can also be beneficial in water supply services subject to shocks 

(Mostafavi et al., 2018). Specifically, Mostafavi et al. (2018) shows that following the Ghorka 

earthquake in Nepal, there was no severe water shortage in Kathmandu despite damage to the 

centralised water supply network. The reason was that a diversity of water sources were readily 
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available at the time of the earthquake, including water trucks ready to be dispatched, and water 

storage tanks in houses -the result of an unreliable centralised water supply pre-earthquake, 

that made alternatives necessary-. Assessing the level of diversity in a system is therefore one 

possible indication of its ability to absorb a shock. Todini (2000) looks for properties of 

absorptive capacity specifically in water distribution networks, and proposes the total amount 

of extra pressure at nodes as a good indication of the ability of the network to maintain 

performance under pipe breaks. According to Dunn (2014), identifying properties that tend to 

correlate with better performance in response to shocks in networks, and increasing those 

properties in existing networks, is an effective strategy for managing risks from surprise events. 

 

Figure 2.4 Examples of system response curves for (a) – (d) water supply and (e) 

wastewater. Figures (a) to (d) from Diao et al. (2016) and Figure (e) from Mugume et al. 

(2015). 

 

In graphs, a relation exists between the node degree distribution, and the ability to absorb 

shocks (Dunn et al., 2013). Generally, nodes with broader degree distributions (i.e. a few highly 

connected nodes) perform better under random failures (Dunn et al., 2013). However, Buldyrev 

et al. (2010) demonstrates that the same properties that improve the ability of single networks 

to absorb random failures (i.e. a broad degree distribution), instead lead to a less absorptive 
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capacity in interdependent networks. Networks can also show different levels of performance 

depending on where in the network damage occurs. For example, Bozza et al. (2017) model 

the road network performance of a small city in Italy to two hazards (a landslide and 

earthquake). The earthquake caused damage throughout the city, while the landslide damage is 

focused in one part of the city. Although a similar number of roads are damaged by each of the 

hazards, the pattern of damage caused by the earthquake is more severe for the performance of 

the network. Others also try to identify parts of networks (i.e. nodes or links) that are most 

critical for the performance Lhomme et al., 2013). 

2.3.2 Recovering 

In some systems, recovery happens naturally after a shock or stress. For example drainage 

networks recover naturally from excess rainfall, as water eventually drains away; similarly, 

road networks recover naturally from a snow event when the snow melts (Hu et al., 2016; 

Mugume et al., 2015). In those cases, the process of recovery is relatively simple to model. 

However in other cases, recovery is an intentional process which requires strategic planning 

and involves decisions on prioritisation and allocation of resources. 

Kammouh et al. (2018) collects restoration times for water, gas, energy, and communications 

from multiple earthquakes events, and uses the information to estimate average time needed to 

restore systems after an earthquake. The time to recovery is shown to be very variable between 

events, and not necessarily related to the magnitude of the earthquake. On average, energy 

systems are often  the fastest to recover.  

Others develop models of the recovery process which can be used to compare different 

recovery strategies (Cavallaro et al., 2014; Miles & Chang, 2011; Tabucchi et al., 2010). For 

example, Cavallaro et al. (2014) compares post-earthquake reconstruction strategies for the 
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city of Acerra in Italy. Kong et al. (2019) models a consecutive hurricane and flood scenario 

on the energy system (electricity, oil, and gas) for the city of Toronto in Canada. The scenario 

is based on a historical event, Hurricane Hazel, that affected the city in 1954. The study 

compares two restoration strategies, one where restoration begins immediately after the 

hurricane damage, and another where it begins after both hazards have occurred. Interestingly, 

the consequences are lower if restoration begins immediately after the first event (Kong et al., 

2019). The study also demonstrates that the consecutive event affects disproportionately more 

people than the individual events. Some studies try to identify general strategies for networks 

that result in the most effective recovery process. For example, Hu et al. (2016) compare 

strategies for recovering from localised failures, including reconnecting the largest population 

to the network, or reconnecting edges.  

 

Figure 2.5 framework for relating incremental damage to opportunities for change. 

Figure reproduced from MacAskill and Guthrie (2014). 

 

Some consider the ability to recover to a better state than before the failure (Fang & Sansavini, 

2017; MacAskill & Guthrie, 2014; Taleb, 2012). The property of being strengthened after a 

failure sometimes referred to as ‘antifragility’ (Taleb, 2012). Some industries, such as the space 

and airline industry, are considered antifragile because any failure generally leads to improving 

processes and procedures so that the same failure cannot be repeated (Taleb, 2012). Fang and 

Sansavini (2017) show that energy networks can be antifragile by incorporating changes to the 
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network after a failure. In the context of water infrastructure, MacAskill and Guthrie (2014) 

propose a framework that shows that incremental levels of damage also unlock increasing 

opportunities for change and improvement. 

Others show the importance of accounting for population behaviour in post-disaster recovery. 

Bagheri et al. (2010) show that the influx of reconstruction workers to the city after the Bam 

earthquake in Iran significantly increased water demand, and was the main reason for a water 

shortage. Guidotti et al. (2019) on the other hand shows that evacuation of the population 

following an earthquake in Seaside, Oregon, reduces water demand and means that 

performance was higher than what would be assumed if water demand stays constant. Didier 

et al. (2018) provide a comprehensive mathematical framework for measuring performance 

based on the relation between service supply and demand.  

2.3.3 Adapting 

Adaptability is the ability to change and evolve in order to maintain or improve the ability to 

absorb and recover from hazards under changing conditions (Meerow et al., 2016). According 

to Sage et al. (2015), adaptability is the ability of a system to adapt its structure, but not 

necessarily its function, in response to long term changes. Although adaptability is included 

within many definitions of resilience, few studies discuss how the adaptability of infrastructure 

can be measured and increased in practice (Sage et al., 2015). Some consider adaptability to 

mean the ability to find substitutes in the short term (Mostafavi et al., 2018; Rose, 2004). 

However, this ability is part of system properties that enable absorption. Instead, adaptability 

here refers to implementing long term and usually irreversible changes. 

Improvements to adaptive capacity can come from techniques for making decisions under 

uncertainty. Haasnoot et al. (2013) introduced the technique of adaptation pathways to support 
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policy making on flood risk management in the Netherlands. The technique of adaptation 

pathways provides a road map in time, showing when adaptation measures will need to be 

implemented in order to be effective in the context of long term change. The technique has 

been used mostly for flood risk management, but has also be trialled in planning transport 

infrastructure.  

Some studies model systems under long term changes (Makropoulos et al., 2018; Ning et al., 

2013), while others prefer to use narratives for describing the evolution of systems (Markolf et 

al., 2018; Tellman et al., 2018). Markolf et al. (2018) for example use a narrative approach to 

look at the issue of rising sea-levels in Miami. The government in the city of Miami recently 

invested in pumping systems that can pump out excess water from the city. However, pumping 

stations represent a significant cost for the city, which is recovered by collecting tax money. 

Yet to recover the high cost of implementing pumping stations, municipal authorities may be 

tempted to allow more commercial development in coastal areas, where economic benefit are 

high and could raise tax revenues. However, construction in coastal areas will in turn require 

higher levels of protection, which will increase costs, encourage more development to recover 

the cost, thus locking the city into a pathway where it is reliant on increasing investment into 

infrastructure to fight off rising sea levels, and where alternative options such as relocation 

become increasingly unviable (Markolf et al., 2018). Tellman et al. (2018) describes the 

evolution of the water system of the city of Mexico over multiple centuries, driven by an 

interplay between society, the natural environment, and technical developments.  

Sage et al. (2015) integrates absorption and recovery with adaptability, by exploring response 

to shocks under future scenarios. For example, in a future scenario where transport has largely 

shifted from cars to bicycle transport, flooding could lead to lower disruption to transport than 

under present conditions, but snowy days could lead to greater disruption to transport.  
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Although adaptability may appear to be a property of social systems, physical assets can also 

have adaptability. De Neufville & Scholtes (2011) show that making systems adaptable when 

designing for uncertain conditions is cost effective. They discuss five characteristics that can 

make physical systems adaptable: 

1. Phased design (building in small units as more information becomes available) 

2. Modular design (a plug-and-play approach),  

3. Design for expansion (designing the built in capacity to expand in size) 

4. Platform design (designing a common core that can accommodate multiple added parts) 

5. Shell design (including extra capacity without attributing it a function, for example 

extra rooms within a hospital building) 

Djalante et al. (2011) argues for the value of multi-stakeholder platforms as a method for 

adaptability. Multi-stakeholders platforms are essentially decision making bodies, either 

voluntary or statutory, that bring together stakeholders that perceive the same management 

problem, are aware of their interdependence in solving it, and come together to agree on 

strategies for solving the problem. Integrating knowledge from across disciplines is also 

considered valuable for resilience within engineering (Davidson, 2015; Pearson et al., 2018), 

and engineering education (Pearson et al., 2018).  

2.4 Overview and research needs 

The review aimed to show methods that are commonly used for addressing resilience in 

infrastructure systems. Methods are seen to range from conducting stress tests on infrastructure 

models, to understanding and modelling the infrastructure recovery process, all the way to 

exploring long term interactions between infrastructure, the natural environment and society. 

MacAskill and Guthrie (2014) highlighted that the meaning of resilience depends on the 
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context in which it is used. Arguably, the methods that are most appropriate for measuring and 

increasing resilience will also vary with context. Figure 2.6 shows an example of how resilience 

priorities may vary when considering the system at different levels (e.g. single physical 

component, physical network, complex system, complex adaptive system) and external 

conditions (e.g. stability, uncertainty, or rapid change).  

 

Figure 2.6 Resilience activities considered most relevant for different external conditions 

(e.g. stability, uncertainty, change) and system characteristics (e.g. single physical 

component, network, complex system, complex adaptive system).  

 

Risk management is generally considered to be most suitable at the level of single elements, 

and for addressing hazards that are well understood (Ayyub, 2014; De Bruijn, 2004). The 

objective of risk management is generally to accurately assess the probable losses, and reduce 
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those losses to a level that is at the same time tolerable and affordable (Ayyub, 2014; Hudson 

et al., 2012). However, for hazards that are more uncertain, such as extreme or combined 

events, probable losses can usually not be accurately determined and a risk approach is often 

not viable. 

To address uncertain events, an alternative to risk management is to focus on ways of 

maintaining the performance of the system even once parts of the system become damaged. 

Here, system response curves (i.e. relationships between the damage and performance of the 

system as a whole) are a useful tool. System response curves can quantify the amount of 

damage that the system can absorb. However, several limitations are also identified. First, 

modelling all possible failure combinations to produce comprehensive response curves, for 

example as in Diao et al. (2016), is computationally expensive, and the number of scenarios 

required for a comprehensive analysis increases rapidly with larger systems. According to 

Galvan and Agarwal (2020) “the number of disruption scenarios is necessarily smaller than the 

complete set of scenarios by orders of magnitude”. Second, the results can show a very large 

spread of possible outcomes (e.g. Figure 2.4 (b)), making it of limited value to support decision 

making. Third, Diao et al. (2016) shows that the same characteristics that allow a system to 

absorb one type of hazard can also decreases its ability to absorb another type of hazard.  

The limitations identified can be overcome when hazard information is included to narrow 

down the range of scenarios. By using information such as flood maps or landslide 

susceptibility maps, it might be possible to delimit the spatial extents, and therefore define a 

subset of components of the system likely to become damaged. This approach could still 

consider the hazards as uncertain and model a full range of plausible events. But by including 

characteristics of the hazard into the model, current limitations of response curve modelling, 

and the difficulty of extending the approach to multiple hazards, could be overcome. 
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To further reduce losses, absorption should be complemented with recovery measures, to 

minimise the downtime of the system when it fails. The recovery process may be influenced 

by factors like population movements (Guidotti et al., 2019) or interdependencies between 

infrastructure, population, and businesses (Miles & Chang, 2011), possibly requiring wider 

system boundaries and models that can represent complex systems, or complex adaptive 

systems (Bagheri et al., 2010; Dawson et al., 2011).  

Modelling recovery may pose a bigger challenge than modelling damage, as it requires defining 

a restoration strategy (Hu et al., 2016), and few studies to date have modelled disaster recovery 

in the context of multiple hazards (Kong et al., 2019; Wisetjindawat et al., 2017). Nevertheless, 

the examples available reveal that the combined effects of two hazards on system performance 

(including recovery) can be bigger than that of the single hazard (Kong et al., 2019; 

Wisetjindawat et al., 2017), and that the optimal recovery strategy may be to start repairs 

immediate on the system after the first hazard, rather than to wait until after the system has 

been damaged by both hazards (Kong et al., 2019). 

Where rapid change is necessary, planning for recovery to ‘normal’ may become a lower 

priority than enhancing the adaptability of the system. Adaptability can be enhanced in those 

cases through techniques for thinking about the future (e.g. Kwadijk et al., 2010; Rogers et al., 

2012). 

Based on the reviewed literature, the following directions for future research are identified: 

analyse the hazard environment of cities and distinguish places that may require different 

resilience approaches; supplement a response curve analysis with information on real hazards 

to narrow down the range of relevant scenarios; model and better understand the consequences 

of consecutive events on networked infrastructure.
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Chapter 3. Assessing the exposure of urban systems 

to earthquakes, floods, wind, and landslides 

3.1 Introduction 

Natural hazards that occur in urban areas pose a considerable challenge, due to the complexity 

and interdependence of systems on which the urban population depends (UNDRR, 2019). 

Cities are in constant flux and characterised by daily cycles of people commuting to and from 

work, schools, shopping, and entertainment. The flows of people, resources, and services in 

cities are highly dependent on interconnected infrastructure networks (Chang et al., 2007). 

Hazard impacts to these networks (e.g. flooding of a major road) can cause disruptions that 

propagate to other parts of the city (e.g. traffic congestion and delays), causing cascading 

consequences on other systems (Rinaldi et al., 2001). Therefore, urban areas have become a 

focus of efforts to address hazards (Godschalk, 2003). 

While individual infrastructure sectors may be equipped to deal with damage from localised 

accidents (e.g. a pipe burst in a water supply network), they are mostly not equipped to 

withstand a low-frequency, high-consequence event (Butler et al., 2014). Yet the proximity 

and connectedness between systems means that a failure in one system is likely to generate 

cascading failures in other systems (e.g. roads could be blocked by debris from buildings after 

an earthquake, which could interfere with repairs to the water supply system). While 

stakeholders often have a relatively clear understanding of the challenges faced within their 

own sector (Ciurean et al., 2018), the extent to which urban systems as a whole are exposed to 

multiple types of hazards is still unclear.  
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Meanwhile, the availability, quality, and coverage of open hazard data has improved steadily 

(Simpson et al., 2014). Global hazard maps are now available for various hazards, free of 

charge, from online platforms such as the Data Portal of the EU Joint Research Centre (JRC) 

(https://data.jrc.ec.europa.eu/), the GFDRR GeoNode (https://www.geonode-gfdrrlab.org/), 

and the PREVIEW platform by the United Nations Environment Programme (Giuliani & 

Peduzzi, 2011) (https://preview.grid.unep.ch/). These platforms make hazard information 

increasingly easy for anyone to access. Specifically, The Global Facility for Disaster Risk 

Reduction (GFDRR) and the World Bank recently developed a tool aimed at raising awareness 

of possible hazard exposure, intended to provide information for development projects in data 

scarce regions (http://www.thinkhazard.org/).  

Overall, global hazard data is now available for various hazards (e.g. river floods, cyclones, 

earthquakes, or landslides) at high resolution. These global datasets have been used in a number 

of previous studies to look at exposure of people, wealth, or infrastructure to single hazards 

(Pesaresi et al., 2017; Ward et al., 2020), and to combinations of multiple hazards (De Ruiter 

et al., 2019; Dilley et al., 2005; Gill & Malamud, 2014; Gu, 2019; Jongman et al., 2012; Koks 

et al., 2019; Shen et al., 2018).  

For example, Dilley et al. (2005) estimated that approximately 790 million people are directly 

exposed to at least two hazards, and that 105 million people are exposed to three or more 

hazards. The study considered exposure to earthquakes, floods, cyclones, landslides, volcanic 

eruptions, and droughts, and included both urban and rural populations. More recently, Gu 

(2019) assessed exposure to the same six hazards but focusing on urban areas, and found that 

14% of cities are highly exposed to at least two hazards. The study also mapped cities based 

on the number of different hazards faced (Figure 3.1). Their objective was to inform urban 

planners and policy makers on the need to “strengthen resilience, improve preparedness, and 
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adapt strategies of cities to address the effects of natural disasters” (Gu, 2019). However, the 

study does not distinguish between the types of hazard combinations faced in each city. Yet a 

city facing for example earthquakes and landslides will require very different types of 

adaptation measures for resilience than a city exposed to river and coastal flooding.  

 

 

Figure 3.1 The location of cities by population size and level of exposure to natural 

hazards. Figure from Gu et al. (2019). 

 

The aim of this chapter is therefore to analyse the exposure of cities to combinations of hazards, 

while specifically distinguishing the types of hazards that co-occur spatially. The remainder of 

this chapter is structured as follows. Section 3.2 introduces the hazard and urban area datasets 

used, and explains how the data is processed to enable comparison across different hazard 

types. Section 3.3 shows the number of cities and the population exposed to combinations of 

hazards, and describes how the information is evaluated. Section 3.4 then highlights three 

combinations of hazards that are found to be relatively common, discusses potential uses of the 

data, and presents the limitations of the study. Section 3.5 provides conclusions. 
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3.2 Data and methods 

The datasets used in this study include the spatial distribution of earthquakes (Cardona et al., 

2014), river floods (Dottori et al., 2016), coastal floods (Muis et al., 2016), cyclone wind 

(Cardona et al., 2014) and landslides (Nadim et al., 2006), and the extent of urban areas 

(Moreno-Monroy et al., 2020). All of the data used has previously been made openly available 

by the authors of the datasets, which allows the results of the present study to be reproduced. 

3.2.1 Urban areas data 

After reviewing different options (e.g. Balk et al., 2006; Florczyk et al., 2019), the boundaries 

of urban areas are represented by the Functional Urban Areas (FUA) dataset by Moreno-

Monroy et al. (2020). The FUA dataset has been developed to map city centres and their 

surrounding area of influence (or commuter area) globally using a consistent methodology 

(Figure 3.2). Specifically, urban areas in the FUA are defined based on observed population 

densities, built up area, and roads. Moreno-Monroy et al. (2020) trained a classification model 

with existing functional urban area boundaries from OECD countries, before applying it 

worldwide. The urban areas therefore have a physical meaning. Specifically, each FUA is 

considered to be a node of densely interconnected infrastructure systems. FUAs correspond to 

city centres and their surrounding area of influence from where people travel into the centre 

for work and leisure. The data can be obtained at https://ghsl.jrc.ec.europa.eu/download.php. 

In total, the dataset identifies more than 9,000 urban areas across five continents. It includes all 

urban areas with populations of 50,000 or more. Collectively, this represents a total urban 

population of 3.9 billion people. Figure 3.2 shows examples of some of the functional urban 

areas. Urban centres with more than one densely populated cluster of 500,000 inhabitants or 

more are divided into separate FUAs (Moreno-Monroy et al., 2020). Also, urban centres are 

https://ghsl.jrc.ec.europa.eu/download.php


Chapter 3. Assessing the exposure of urban systems to earthquakes, floods, wind and landslides 

 

 

 

25 

divided up if they have more than 20 million inhabitants and a surface area of at least 2,500 

km2, around identified densely populated city centres within the area of influence. Figure 3.2 

shows for example that Hong Kong is divided into several functional urban areas, while 

London is represented as a single large functional urban area.  

 

Figure 3.2  Urban areas used in this study. Sample from (a) Western Europe (b) Southern 

China. The data comes from the Functional Urban Areas dataset (Moreno-Monroy et al., 

2020).  

3.2.2 Hazard data 

The difference in hazard severity between cities is determined by using hazard maps from 

probabilistic hazard models. The advantage of using outputs from hazard models is that the 

models are informed by hazard events that occurred in the past, but complement this 

information to also represent the hazard in areas where they have not previously been recorded, 

but could occur. The probabilistic maps show the distribution of hazard intensity for various 

return periods. A short summary of the datasets used for each hazard are provided in the 

following paragraphs. Full information on how the hazards maps were produced can be found 

in the original publications.  
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Earthquake hazard is represented by maps of earthquake acceleration produced for the 

UNISDR Global Assessment Report 2015 (Cardona et al., 2014), available from 

https://risk.preventionweb.net. The earthquake hazard map represents the expected peak 

ground acceleration (in cm/s2) in each grid cell due to all possible earthquake sources, modelled 

using Probabilistic Seismic Hazard Analysis, for return periods between 250 and 2475 years 

(Cardona et al., 2014). The data has a resolution of  0.5 degree (approximately 50 km). 

River flooding is represented by flood maps from the Joint Research Centre of the European 

Commission (Dottori et al., 2016), available at https://data.jrc.ec.europa.eu/collection/floods. 

The maps provide flood depth globally at 30 arc-second resolution (approximately 1 km) for 

return periods between 10 and 500 years. The flood maps use streamflow data from the Global 

Flood Awareness System (GloFAS) and a two-dimensional hydrodynamic model (AC2D). As 

the streamflow is based on coarse resolution climate data, the data excludes flooding for 

catchments smaller than 5000 km2, and flood defences are not represented in the dataset 

(Dottori et al., 2016). 

Coastal flooding is represented using flood maps by Muis et al. (2016), available from 

https://www.geonode-gfdrrlab.org/. The maps represent coastal flooding due to storm surges 

and tidal effects. The data comes from a coastal hydrodynamic model forced by climatic 

reanalysis data from ERA-Interim. Data is provided at 30 arc-second (approximately 1 km) 

resolution. As with river flooding, the coastal flood maps do not include the presence of flood 

defences. The maps also exclude the effects of land subsidence (Muis et al., 2016). 

Tropical cyclone wind is represented by hazard maps for the UNISDR Global Assessment 

Report 2015 (Cardona et al., 2014), available from https://risk.preventionweb.net. The cyclone 

hazard maps show the probable 3-second gust wind speed (in km/h) for return periods between 

25 and 250 years, at 1 degree (approximately 100 km) resolution. The data is based on 

https://risk.preventionweb.net/
https://data.jrc.ec.europa.eu/collection/floods
https://www.geonode-gfdrrlab.org/
https://risk.preventionweb.net/
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probabilistic modelling of historical tropical cyclone tracks. The model takes into account the 

effects of higher surface roughness in urban areas. The data does not include other causes of 

extreme wind such as extra-tropical cyclones and convective storms.  

Landslides are represented using the landslide hazard map developed for the Natural Disaster 

Hotspots study (Nadim et al., 2006), available from https://sedac.ciesin.columbia.edu/. 

Landslide occurrences are usually triggered by other hazards such as earthquakes and extreme 

rain, and are difficult to represent probabilistically in the same way as earthquakes, floods, and 

cyclones. The data by Nadim et al. (2006) provides the gridded landslide hazard by combining 

both susceptibility and triggering factors. The result is a hazard map with grid cells classified 

into five classes (6-10). Each class is associated with an estimated number of occurrences per 

million years (see Table 3.1). The data is provided at 2.5 arc-minute (approximately 5 km) 

resolution. 

3.2.3 Hazard severity levels 

Comparing across hazards is a common difficulty in multi-hazard studies, as hazards have 

different characteristics and are measured through different parameters (e.g. ground 

acceleration, water depth) (Kappes et al., 2012). Often, hazards are compared based on their 

consequences (e.g. the number of people affected, the total cost of the damage). By measuring 

the consequences, an assumption is made about the vulnerability of the exposed elements (e.g. 

buildings, people), or how fragile or susceptible to damage they are. 

To classify hazard values into severity levels, the same approach as the one implemented in the 

ThinkHazard! tool is selected for this study (Fraser et al., 2016). The ThinkHazard! tool 

classifies hazards into four hazard severity levels. The four levels correspond to: 

https://sedac.ciesin.columbia.edu/
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1. High: Potentially severe damage from this hazard. Without taking measures to mitigate 

the hazard and risk, high levels of damage can be expected to occur within the project 

or human lifetime. 

2. Medium: Potentially damaging effects of this hazard. Potentially damaging events can 

be expected to occur within the project or human lifetime and measures to mitigate the 

hazard and risk should be considered. 

3. Low: Potentially damaging events are less likely to occur within the project or human 

lifetime but are still possible. Measures to mitigate the hazard and risk would be 

considered at critical locations. There is still potential that damaging events could occur 

during the project or human lifetime. 

4. Very low: Available data suggest that potentially damaging effects are unlikely to 

occur, on average, in the project or human lifetime. There is still potential for damaging 

events. 

Note that the levels correspond to hazard levels and do not indicate vulnerability; two cities 

with the same hazard severity can have different levels of vulnerability to the hazard, and 

experience different losses from the same hazard event. The levels represent the damage 

expected if no mitigation measures are provided. It provides an estimate of the amount of 

mitigation that a location requires to make sure that people, structures, and critical activities 

are safe. Table 3.1 shows the return period and intensity values used for each hazard and hazard 

level.  

Earthquake severity is based on the frequency and peak ground acceleration (PGA) of 

earthquakes. High severity means that the a PGA exceeding 196 cm/s2 (one fifth of the 

acceleration of gravity) is experienced on average once every 250 years. According to Worden 

et al. (2012), a PGA  of 196 cm/s2, or 0.2 g, corresponds to a Mean Mercalli Intensity (MMI) 
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level of VII. The MMI scale describes incremental damage levels from earthquakes. A level of 

VII corresponds to “limited damage in buildings with good design; slight to moderate in well-

built ordinary structure; and considerable damage in poorly built or badly designed structures; 

some chimneys broken” (Wood & Neumann, 1931). Medium severity means that a PGA of 98 

cm/s2 (0.1 g) is experienced on average once every 475 years. A 1-in-475 year event has a 10% 

probability of occurring at least once in 50 years. A peak ground acceleration of 0.1 g 

corresponds to an MMI level VI, which is “felt by all, many frightened. Some heavy furniture 

moved; a few instances of fallen plaster. Damage slight” (Wood & Neumann, 1931). Low 

severity means that a PGA of 98 cm/s2 (0.1 g) is experienced on average once every 2475 years. 

Earthquake return periods of 475-years and 2475-years are commonly used return periods in 

seismic design codes for buildings, bridges, and dams (Fraser et al., 2016).  

Table 3.1 Values represent the lower bound of the high, medium, and low hazard levels, 

from Fraser et al. (2016). If the hazard is below the low hazard threshold in a given city, 

it is classified as very low. 

 High Medium Low 

Earthquake 196 cm/s2  in 250 years 98 cm/s2 in 475 years 98 cm/s2 in 2475 years 

River flood 0.5 m in 10 years 0.5 m in 50 years 0.5 m in 500 years 

Coastal flood 2.0 m in 10 years 0.5 m in 50 years 0.5 m in 100 years 

Cyclone 80 km/h in 50 years 80 km/h in 100 years 80 km/h in 1000 years 

Landslide 250 per 1 x 106 years 125 per 1 x 106 years 63 per 1 x 106 years 

 

Flood severity is based on the frequency and maximum depth of flooding. A flood depth of 0.5 

metres is used as the damaging threshold for flooding. At 0.5 metres, sandbags can no longer 

be used to control the flooding, and water reaches the level of light switches and tables surfaces 

(Fraser et al., 2016). High, medium, and low river flood severity corresponds to a flood depth 

of 0.5 metres being exceeded on average every 10-, 50-, and 500-years.  High, medium, and 
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low river flood severity corresponds to a flood depth of 0.5 metres being exceeded on average 

every 10-, 50-, and 100-years.   

Tropical cyclone severity is based frequency and maximum wind speed. A wind speed of 80 

km/h is used as the damaging wind threshold. A speed of 80 km/h falls within the 50-60 miles 

per hour hurricane warning threshold used by the U.S. National Oceanic and Atmospheric 

Administration (NOAA). On the Beaufort wind force scale, a mean wind speed of 80 km/h 

corresponds to a strong gale, causing “slight structural damage (chimney pots and slates 

removed)” (Fraser et al., 2016). The high, medium, and low hazard thresholds are defined for 

the threshold wind speed being reached on average once every 50-, 100-, and 1000- years, 

respectively. Dunn et al. (2018) showed that damage to overhead electricity lines becomes 

significant above 100 km/h, based on data from the UK, but the vulnerability of electricity 

systems may be higher (or lower) in other countries.  

Landslide severity is assigned somewhat differently to the other hazards. Landslides do not 

have an inherent frequency of occurrence but are generally triggered by other events like 

rainstorms or earthquakes. Therefore, landslides maps often express the susceptibility of a 

location to landslides, based on factors such as slope, soil type, and vegetation, without 

specifying frequency (e.g. Stanley & Kirschbaum, 2017). Nevertheless, Nadim et al. (2006) 

produced a landslide hazard map at the global scale that combines susceptibility information 

and landslide triggers (rainfall and earthquakes). The resulting map expresses the average 

frequency with which a landslide is expected to occur within the grid cell. Landslide levels are 

classified based on the following conversion from the four classes of landslide hazard. The first 

two classes are set to high, the third class is set to medium, the fourth class is set to low, and 

the fifth class is set to very low. The frequency of occurrence of landslides for each class, 

estimated by Nadim et al. (2006), are shown in Table 3.1. 
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3.2.4 Data processing 

To calculate exposure, hazard datasets are projected from their original geographic (latitude 

and longitude) coordinate reference system, WGS 1984 (EPSG:4326), to a projected (metres) 

coordinate reference system, World Mollweide (ESRI: 54009), or the coordinate reference 

system in which the urban areas dataset is provided. The projected maps are then resampled 

from their original resolutions to a 1 km grid, and aligned with the urban boundaries. Bilinear 

resampling is used for earthquake and wind data, as the distribution of intensities is relatively 

continuous over space, and nearest neighbour resampling is used for flooding and landslides, 

as they have higher spatial variability over short distances. The resampled grids are then 

overlaid with the urban area boundaries, and the maximum value within each urban boundary 

is recorded. This is repeated for each return period in Table 3.1. The hazard level (very low, 

low, medium, high) for each urban area is then calculated using the maximum values and the 

threshold values in Table 3.1. This is repeated for each hazard.  

The processed data is stored in a table, with cities as rows and hazards as columns, and each 

cell assigned a value representing the hazard level (1 = very low, 4 = high). The table also 

includes the name, country, continent, total population, and total area of each city, as provided 

in the urban boundary information by Moreno-Monroy et al. (2020). 

Matlab is used to analyse the data systematically for each combination of hazards. The analysis 

for two hazards, for example, shows the number of cities exposed to specific levels of the two 

hazards (e.g. high flood and high earthquake), irrespective of their exposure to other hazards. 

The analysis for three hazards shows the number of cities exposed to specific levels of three 

hazards (e.g. high flood, high earthquake and medium landslide), irrespective of exposure to 

the other two hazards. 



Chapter 3. Assessing the exposure of urban systems to earthquakes, floods, wind and landslides 

 

 

 

32 

3.3 Results 

Figure 3.3 shows total exposure per hazard, where colours represent different levels of 

exposure (yellow = low, red = medium, dark red = high). Overall, most exposure to high 

intensity and frequent hazards is seen for river flooding (31% of cities), followed by cyclones 

(23% of cities), coastal flooding (5% ), earthquakes (2%), and landslides (1%). Note that the 

figures show exposure in absolute number of cities, while percentages are given in the text. 

In comparison, the study by Gu (2019) previously found that 37% of cities are highly exposed 

to flooding, 20% to cyclones, 5% to earthquakes, and 3% to landslides. The values found are 

therefore comparable to those previously found by Gu (2019). Differences between the two are 

likely because of the different methods used for defining high hazard levels (i.e. Gu (2019) 

classifies all cities within the top three deciles as highly exposed, while a specified intensity 

and return period is used here). Given the difference in classification method, the results 

obtained are surprisingly consistent with those in Gu (2019). 

 

Figure 3.3 Exposure of urban areas to five hazards. Shows the number of cities exposed 

to each hazard, and the total population living in the exposed cities. Colours correspond 

to high, medium and low hazard levels (see Table 3.1). 

 

When looking at exposure to both medium and high levels for each hazard, a third of cities 

(32%) are exposed to river flooding and a third (32%) to cyclone wind, 26% to earthquakes, 
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9% to coastal flooding, and 2% to landslides. While only a small proportion of cities (2%) are 

exposed to high earthquake hazard levels, many (26%) face at least medium earthquake hazard 

levels. In total 52% of cities are exposed to low or above earthquakes levels, 49% to cyclone 

wind, 32% to river flooding, 10% to coastal flooding, and 5% to landslides. Differences 

between exposure by number of cities and exposure by population is seen for river and coastal 

flooding suggest that river and coastal flooding are more likely to affect larger cities.  

The next sections will present: the exposure to combinations of hazards (section 3.3.1), the 

exposure by continent (Section 3.3.2), the exposure by area exposed to specific hazards 

(Section 3.3.3), the evaluation of the data (Section 3.3.4), and the sensitivity of the data to 

changes in the classification values (Section 3.3.5). 

3.3.1 Exposure to combinations of hazards 

Results suggest that approximately 1 in every 10 cities (11%) faces a high level of at least two 

hazards, and that 1 in 4 cities (26%) face at least medium levels of two or more hazards. 

Previously, Gu (2019) found that 14% of cities were highly exposed to at least two hazards. 

The comparison is given for illustrative purposes, but it should be noted that the two studies 

include different hazards; Gu includes volcanic eruption and droughts, and excludes coastal 

flooding. Exposure to each combination of two hazards can be seen Figure 3.4. The 

combinations of hazards are labelled C1 to C10, and the maps show cities with low or above 

levels of two hazards. A full overview of all exposure values is provided in Appendix A.1. 

Looking at differences in exposure by type of hazard, the most common hazard combination is 

river flooding and cyclone winds (C6), with 8% of cities highly exposed to both hazards. The 

combination is mostly seen for cities on the east coast of China, and on the east coast of the 

United States. After river flooding and wind, most cities (3%) are exposed to combined coastal 
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flooding and cyclone wind (C8). Note that the combinations are not mutually exclusive, and 

some cities could belong to both groups.  The combination of river and coastal flooding (C5) 

is found to be the third most common hazard combination and concerns 2% of cities. 

 

 

Figure 3.4 Maps of exposure to the ten combinations of two hazards (C1 – C10). Colours 

correspond to combinations of hazard levels as shown in the legend (bottom right). The 

bar plot shows the total number of cities exposed to each combination. 
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Figure 3.5 Maps of exposure to the ten combinations of three hazards (C11 – C20). 

Colours correspond to combinations of hazard levels as shown in the legend (bottom 

right). The bar plot show the total number of cities exposed to combinations of three 

hazards. 

 

River flooding and cyclones is also the most common combination of medium and high hazard, 

seen for 11% of cities. However combinations of medium to high earthquakes and river 

flooding (C1) and medium to high earthquakes and cyclone wind (C3), are found to also be 

common, with 7% of cities exposed. In total, more cities have medium or high exposure to 
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earthquakes with river floods/wind, than have medium or high exposure to coastal flooding and 

river floods/wind. When also considering low hazard levels, exposure to earthquakes and 

cyclone wind (C3) is found to be the most common hazard combination in cities. In total, 1% 

of cities (511 cities) have high exposure to three or more hazards, and 6% have medium to high 

exposure to three or more hazards. Cities exposed to combinations of three hazards are shown 

in Figure 3.5. By far the largest exposure to high levels of three hazards is exposure to river, 

coastal, and cyclone hazards (C17). Many of the exposed cities are on the east coast of China 

and the east coast of the United States. However exposure to earthquakes, river flooding and 

cyclone wind (C12) is the combinations of three hazards that occurs by far in the largest number 

of cities when including exposure to low hazard levels and above. The combination of 

earthquakes, river flooding and cyclone wind is found in many cities in China and across Asia, 

in Australia and New Zealand, in Central America, and in the United States. 

Eight cities are found to have high exposure to four different hazards (see Appendix A.1) 

including Kyoto, Niigata, Hamamatsu, Tokyo, Shizuoka, Mishima, Manila, and Los Angeles, 

and one city has high exposure to all five hazards, the city of Tokyo. A recent study by the 

reinsurance company Swiss Re (2013) ranked Tokyo as the top most hazard exposed city, 

which supports this finding. Six of the eight cities with high exposure to at least four hazards 

are found in Japan. Also, all of the cities exposed to four or more hazards are relatively large 

cities, with populations of at least 800,000 inhabitants. 

3.3.2 Multi-hazard exposure by continent 

The dataset contains approximately 5,000 cities in Asia, 1,800 cities in Africa, 900 cities in 

Europe, 600 cities in North America, 600 cities in South America, and 40 in Oceania. Given 

the small number of cities in Oceania, these are grouped with cities Asia, to make the results 

easier to present.   
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Figure 3.6 Exposure to combinations of two hazards (C1 – C10) by continent. Colours 

correspond to combinations of hazard levels as shown in the legend (bottom right). The 

total number of cities and the corresponding population is shown for each continent. 

 

Figure 3.6 shows the exposure to combinations of two hazards per continent. Cities in North 

America and Asia are found to be most exposed to combined high river flooding and cyclones 

(C6). Cities in Europe, on the other hand, are most exposed to combined coastal and river 

flooding (C5) for high hazard levels, and to earthquakes and river flooding (C1) when including 

both medium and high hazard levels. According to the data, more cities are exposed to 

combined river and coastal flooding (C5) in Europe than in North America. While in North 

America, combined exposure to river and coastal flooding (C5) is found to be less common, 

combined exposure to river flooding and cyclones wind (C6), or flooding and hurricanes, is a 

more widely shared challenge for cities. Cities in South America are most exposed to combined 

earthquakes and river flooding (C1). A comparison between exposure by number of cities and 

by population suggests that combined earthquakes and river flooding (C1) in South America 
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mostly affects small cities, as exposed population is relatively lower for this hazard 

combination than the exposed number of cities. Cities in Africa are found to have relatively 

low exposure to all combinations of the five hazards in this study. Most significant is exposure 

to river and coastal flooding (C5), and to river and earthquakes (C1). However, the hazards do 

not include droughts, heat waves, and other events that also have severe societal and economic 

consequences. 

 

Figure 3.7 Exposure to combinations of three hazards (C11 – C20) by continent. Colours 

correspond to combinations of hazard levels as shown in the legend (bottom right). The 

total number of cities and the corresponding population is shown for each continent. 

 

Figure 3.7 shows the exposure to combinations of three hazards per continent. Far more cities 

are exposed to three hazards in Asia than on any other continent. The figure confirms that 

combined river, coastal, and cyclone hazard (C17) occurs mostly in Asia and North America. 

Medium to high exposure to earthquake, cyclones and landslides (C16) is almost as common 
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as medium to high exposure to river floods, coastal floods, and cyclones (C17) in North 

America. Most exposure to three hazards in Europe can be seen for earthquakes, river and 

coastal flooding (C11), although only a few cities are concerned. Only 10 cities in South 

America and only one city in Africa are shown to have medium to high levels of three types of 

hazards. 

3.3.3 Multi-hazard exposure by area exposed to specific hazards 

Exposure is also analysed across specific hazard regions. This means understanding, for 

example, how many among the cities exposed to flooding are also exposed to earthquakes. For 

that, cities exposed to both flood and earthquake are counted, and the number is divided by the 

total number of cities exposed to flooding. In general, the proportion PL of cities exposed to a 

level L or above for hazard h1 that are also exposed to a level L or above for hazard h2 is 

calculated as:  

𝑃𝐿(ℎ1, ℎ2)  =
𝑁ℎ1,ℎ2
𝑁ℎ1

  (3.1) 

 

where Nh1,h2 is the number of cities exposed to a level L or above of hazards h1 and h2, and Nh1 

is the number of cities exposed to a level L or above of hazard h1. Hazard matrices as in Gill 

and Malamud (2014) are used to present the results. 

Table 3.3 The number of cities exposed to medium and high hazard levels globally and 

per continent. The values are used to calculate the percentage probabilities in Figure 3.8. 

 Global Europe N. America S. America Africa Asia 

Earthquake 2347 188 187 229 209 1509 

River flood 2852 409 263 363 363 1603 

Coastal flood 857 163 75 63 63 480 

Cyclone wind 2884 8 398 59 59 2347 

Landslide 205 8 40 1 1 135 
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Table 3.3 shows the total number of cities exposed to medium or high levels per hazard and per 

continent. These values correspond to Nh1 in Equation 3.1 and are used as the denominators in 

calculating the proportion of overlap between two hazards, shown in Figure 3.8. Note that some 

values are based on very small samples of cities (e.g. for landslides in Europe, South America 

and Africa, and for cyclone wind in Europe) while others come from much larger samples (e.g. 

for Asia). 

 

Figure 3.8 Percentage probability that a city exposed to hazard 1 is also exposed to hazard 

2, globally and for different continents. EQ = Earthquake; RF = River flood; CF = Coastal 

flood; CW = Cyclone wind; LS = Landslide. Note that some values are based on a very 

small sample of cities (Table 3.3). Note also that the proportions are given to the nearest 

whole number, so 100% does not necessarily mean complete overlap between hazards. 
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The values in Figure 3.8 represent the proportion of joint exposure to hazards. Looking at the 

values for the global case, the highest proportion, not including the values along the diagonal, 

can be seen for landslide areas that are also exposed to earthquake exposure. As percentage 

probability is rounded to the nearest whole number, 100% does not necessarily mean complete 

overlap between hazards. However it indicates that the large majority (>99%) of cities exposed 

to medium to high landslides in the dataset are also exposed to earthquakes. The values for 

Asia, given the large number of Asian cities, can be seen to also determine the global average. 

Elsewhere, probabilities differ from the global average. North America tends to have higher 

than average probabilities of joint exposure across pairs of hazards, although not for coastal 

areas that are also exposed to river flooding, while Africa tends to have lower than average 

probabilities of joint exposure. 

3.3.4 Evaluating the hazard data 

Evaluating probabilistic global hazard datasets is challenging (Dottori et al., 2013). In this 

study, the specific interest is to evaluate the hazard severity obtained for each city, and to 

understand whether it is representative of actual hazard conditions in those cities. Evaluation 

data is needed that can provide consistent and comparable information across multiple cities 

and across the five hazards in this analysis. An interesting and unique dataset is identified that 

provides such information in qualitative form: the resilience strategies from the one hundred 

resilient cities (100RC) network of cities. 

The 100RC network is an initiative of the Rockefeller Foundation that aims to help cities 

become more resilient to natural, social, and economic challenges (Spaans & Waterhout, 2017). 

Cities in the 100RC network are guided to develop a resilience strategy using a consistent 

participatory process, where information from experts, the public and private sector, non-

governmental organisations, and the local population is collected (Berkowitz & Kramer, 2018). 
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The 100RC network includes cities from all continents and from a range of hazard contexts 

(Figure 3.9). The UK cities of Bristol and Glasgow were part of the 100RC network. During 

the development of the resilience strategy for Bristol for example, over 1,600 people were 

engaged through meetings, focus groups, workshops, and events (Bristol City Council, 2016). 

This participatory process helps to comprehensively identify the important challenges faced in 

the city. 

 

Figure 3.9 Locations of the 100RC evaluation cities. Green dots show all cities from the 

Functional Urban Areas dataset (Moreno-Monroy et al., 2020), and blue dots show cities 

for which evaluation data is collected from 100RC Resilience Strategies. 

 

The information in the reports of the 100RC provides an interesting comparison to the severity 

levels calculated in this study. The benefits of using information from the reports is that it 

reflects the local knowledge, captures information from local experts, and should in theory 

include all the hazards that the city faces. A downside is that the resilience strategies are 

recognised to be influenced by political priorities (Pitidis et al., 2018; Spaans & Waterhout, 

2017). This is taken into account when analysing the evaluation results. The next part explains 

how the qualitative information in the reports is retrieved and processed in order to compare it 

to the severity levels. 
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The resilience strategy documents are downloaded from the 100RC online portal. Of the 100 

cities, 51 cities have published a resilience strategy at the time of download (November 2019). 

Three of the cities are excluded, one because it does not appear in the urban areas dataset, one 

because it does not have a resilience strategy in English, and one because the document format 

does not enable word search. In two cases, two cities with independent resilience strategies are 

part of a single urban commuter area. In those cases, only the evaluation city with the largest 

population is included. In total, 46 cities are therefore included in the evaluation (Table 3.4).  

Each strategy is reviewed to collect evidence (or lack thereof) for each of the five hazards 

(earthquakes, river floods, coastal floods, cyclone wind, and landslides). The following 

information is considered as evidence of the hazard: a) the hazard is listed under key challenges 

for the city, b) a past occurrence of the hazard is described, c) there are ongoing or planned 

activities that address the hazard. Cities where evidence of the hazard being a challenge for the 

city is found in the resilience strategy are recorded in black font in Table 3.4, and cities where 

no evidence of the hazard is found are recorded in grey font in Table 3.4.  

The strategies are all organised according to the following sections: a description of the city 

context (e.g. important historical events, geographic features); an overview of the consultation 

process; key challenges; and proposed or ongoing activities for increasing resilience. First, the 

key challenges section is checked and any hazards listed are recorded (see page numbers in 

Table 3.4). Then, a search through the document is carried out to identify additional evidence 

of hazards not included in the key challenges, using the following keywords: 

- Earthquake: “earthquake”, “seism” 

- River flood: “flood” (“river”, “basin”, “catchment”) 

- Coastal flood: “flood”, “storm surge” (“coast”, “shore”, “tidal”, “erosion”, “wave”) 
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- Cyclone wind: “cyclone”, “typhoon”, “hurricane”, “strong wind”, “extreme wind”, “wind 

storm”, “superstorm” 

- Landslide: “landslide”, “landslip”, “debris flow”, “mudslide”, “slope failure” (“slope”, 

“hill”) 

A keyword count is also used to estimate the relative severity of hazards across cities. Words 

in brackets are used for additional contextual information but are not considered keywords as 

such. Occurrences of each keyword (so excluding the words in brackets) are counted by 

utilising Python word count capabilities. The total keyword count per hazard, so the sum of the 

count for each keyword of that hazard, is normalised by dividing by the number of pages. The 

normalised values are shown in Table 3.4. Note that the procedure used also counts keywords 

that appear as part of a word; for example “earthquake” is counted in “earthquakes”, 

“earthquake-proof”, and so on. 

The data shows that of the 46 evaluation cities, the largest number are exposed to river flooding 

(31), followed by earthquakes and coastal flooding (22), landslides (14) and cyclone wind (12). 

Two cities are exposed to all five hazards (Panama and Christchurch), 4 cities are exposed to 

four hazards (Los Angeles, Rio de Janeiro, Mexico City, and Wellington), 15 cities are exposed 

to three hazards, 10 are exposed to two hazards, 10 are exposed to one hazard, and only 5 cities 

are not exposed to any of the hazards (Atlanta, Chicago, Dallas, El Paso, Glasgow). Overall, 

the set of cities show a wide range of hazard profiles, providing insight into a range of different 

urban multi-hazard contexts. 
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Table 3.4 Evaluation data collected from the 100RC Resilience Strategies. The numbers 

in the table show how many times hazard keywords appear on average per page (black = 

evidence of hazard, grey = no evidence of hazard). Page numbers refer to the electronic 

page number. 

 City Country Page with city 

challenges 

Earth- 

quake 

River 

flood 

Coastal 

flood 

Cyclone 

wind 

Landsli

des 

1 Amman Jordan 30 0.01 0.09 0.09 0.00 0.00 

2 Athens Greece 14 0.14 0.05 0.05 0.00 0.00 

3 Atlanta United States 14 0.00 0.26 0.26 0.00 0.00 

4 Bangkok Thailand 23 (26, 88) 0.23 1.23 1.23 0.01 0.00 

5 Boston United States 20 0.00 0.27 0.27 0.01 0.00 

6 Boulder United States 10 (14) 0.00 0.92 0.92 0.00 0.00 

7 Bristol UK 38 0.01 0.28 0.28 0.00 0.00 

8 Buenos Aires Argentina 29 (121) 0.01 0.22 0.22 0.00 0.00 

9 Byblos Lebanon 13 0.07 0.07 0.07 0.02 0.00 

10 Cali Colombia 28 0.24 0.33 0.33 0.00 0.04 

11 Chicago United States 29 0.00 0.37 0.37 0.01 0.00 

12 Dakar Senegal 14 0.03 0.23 0.23 0.00 0.00 

13 Dallas United States 15 0.03 0.18 0.18 0.00 0.00 

14 Da Nang Vietnam 11 0.00 2.77 2.77 0.68 0.00 

15 El Paso United States 32 0.02 0.14 0.14 0.01 0.00 

16 Glasgow UK 20 0.00 0.17 0.17 0.00 0.00 

17 Christchurch New Zealand 32 (20, 90, 92) 1.01 0.15 0.17 0.02 0.01 

18 Los Angeles United States 13 (42) 2.21 0.66 0.66 0.02 0.21 

19 Medellin Colombia 8 (30) 0.15 0.18 0.18 0.00 0.24 

20 Melbourne Australia 38 (54, 56, 95) 0.01 0.29 0.30 0.00 0.00 

21 Mexico City Mexico 16 (20) 0.50 0.45 0.45 0.03 0.06 

22 Montevideo Uruguay 14 (17) 0.00 0.63 0.63 0.03 0.00 

23 Montreal Canada 16 (27, 36) 0.07 0.45 0.45 0.02 0.00 

24 New Orleans United States 12 0.00 0.48 0.49 0.24 0.00 

25 New York City United States 35 0.01 0.84 0.88 0.09 0.00 

26 Norfolk United States 18 0.02 0.75 0.80 0.13 0.00 

27 Oakland United States 10 0.69 0.53 0.53 0.00 0.00 

28 Panama Panama 25 (58) 0.25 0.67 0.67 0.05 0.14 

29 Paris Oakland 20 0.00 0.51 0.51 0.02 0.00 

30 Pittsburgh United States 14 (17, 20) 0.00 0.25 0.25 0.00 0.16 

31 Quito Ecuador 18 (60, 65) 0.42 0.17 0.18 0.03 0.27 

32 Ramallah Palestine 18 (44) 0.22 0.03 0.03 0.00 0.01 

33 Rio de Janeiro Brazil 12 (25) 0.00 0.37 0.47 0.10 0.22 

34 Rome Italy 40 0.06 0.13 0.13 0.00 0.01 

35 Rotterdam Netherlands 12 (43) 0.02 0.28 0.28 0.06 0.00 

36 San Francisco United States 7 2.32 0.13 0.13 0.03 0.00 

37 Santa Fe United States 31 0.01 0.36 0.36 0.01 0.00 

38 Santiago Chile 28 0.20 0.11 0.11 0.00 0.04 

39 Santiago Dom. rep. 31 0.47 0.53 0.53 0.14 0.02 

40 Semarang Indonesia 45 0.01 0.32 0.32 0.00 0.09 

41 Surat India 20 0.01 0.34 0.35 0.01 0.00 

42 Sydney Australia 36 (39) 0.01 0.15 0.15 0.00 0.00 

43 Thessaloniki Greece 20 0.08 0.16 0.16 0.00 0.00 

44 Toyama Japan 15 0.24 0.85 0.85 0.00 0.11 

45 Tulsa United States 21 0.06 0.07 0.07 0.01 0.00 

46 Wellington New Zealand 8 (19, 37) 1.34 0.20 0.22 0.07 0.02 
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The word count in the case of earthquakes, cyclones, and landslides, confirms the collected 

evidence of the hazard (i.e. high keyword count for cities where there is evidence of the hazard, 

and low keyword count for cities where there is no evidence of the hazard). For flooding, the 

situation is a bit more complicated. References to flooding include all types of flooding (fluvial, 

coastal, and pluvial). Therefore when recording evidence of fluvial and coastal flooding, 

contextual information is used to determine the type of flooding. For example for the city of 

Chicago, flooding is discussed in the context of stormwater and combined sewer overflows, 

which suggests pluvial (rainfall) flooding. As no evidence of flooding is found other than the 

evidence indicating pluvial flooding, no river flooding is recorded for the city of Chicago, 

despite many uses of the word ‘flood’ in the document. As word count for flooding corresponds 

to any mention of flooding across different types of flooding, it is a poor indication of specific 

flood types. 

The hazard levels for the 49 evaluation cities are compared to the evaluation data in Figure 

3.10. The y-axis shows the four hazard levels. Each dot corresponds to a city, and numbers 

show the corresponding city in Table 3.4. Overall, both ‘false positives’ (cities with high hazard 

level but no evidence of the hazard in the resilience strategy, i.e. grey dots) and ‘false negatives’ 

(cities with very low hazard levels but with evidence of the hazard in the resilience strategy, 

i.e. coloured circles) can be seen. The low and medium hazard levels are not discussed in the 

evaluation. The best match (fewest false positives or false negatives) can be seen for 

earthquakes and coastal flooding, and a relatively good match can be seen for cyclone wind. 

However, more false negatives can be seen for landslides, and many false negatives can be 

seen for river flooding.  
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Figure 3.10 Hazard levels compared with evaluation data from the 100RC resilience 

strategies (RS). Each point represents a city. Numbers refer to the city numbers in Table 

3.4. The hazard level is shown on the y-axis. Grey dots mean that there is no evidence of 

the hazard in the resilience strategy, while open circles mean that evidence of the hazard 

is found in the resilience strategy. For city/hazard combinations where evidence is found, 

the colour shows the average number of occurrences of hazard keywords per page. 

 

Next, the five hazards are each discussed in turn, drawing on evidence from the resilience 

strategies to identify likely reasons for mismatch between the two. 
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Earthquake 

Bangkok reports earthquakes as a challenge to the city despite low hazard levels according to 

the global data. A search through literature shows that earthquake ground motion can be 

amplified by soil conditions in Bangkok by up to a factor of 5 (Ashford et al., 2000). However, 

the global earthquake data used in calculating the hazard level approximates ground conditions 

over large regions and does not capture local variability in soil type. In this case, the mismatch 

is therefore likely to be due to the coarse representation of soil conditions in the global hazard 

model. 

River flooding 

In total, 12 out of the 46 cities (Christchurch, Medellin, Melbourne, Montreal, Norfolk, 

Panama, Quito, Rio de Janeiro, Santiago de Chile, Santiago de los Caballeros, Semarang, and 

Toyama) show evidence of river flooding in the resilience strategy, yet are classified as having 

‘very low’ river flood hazard based on the global hazard maps. The resilience strategy for the 

city of Christchurch (New Zealand) states that: “much of Greater Christchurch sits on a 

floodplain. Major defences protect communities from catastrophic flooding by the Waimakariri 

River”. Yet the city is classified as having ‘very low’ river flood hazard according to the hazard 

data. Some of the difference can be explained by cities being in small catchment areas which 

are excluded in the global flood maps. Differences could also be due to the evidence in the 

resilience strategy not indicating a significant flood hazard. For example the evidence of river 

flood hazard in Quito consists of planned improvements to flood defences as part of a river 

restoration project, which may, but does not necessarily, indicate that the city is exposed to 

river flooding.  
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River flooding also shows some false positives. For example, Atlanta (United States) is 

classified as having very high river flood hazard according to the global data, but does not give 

any evidence of river flooding in their resilience strategy, although it discusses concerns with 

rainfall flooding. High standards of river flood protection in cities in the United States may 

explain the difference (Scussolini et al., 2016). The same reason could apply to the other false 

positives (Atlanta, Bristol, Chicago, Dallas, and El Paso). All cities with false positives are in 

the United States or United Kingdom, where flood protection standards are high (Scussolini et 

al., 2016).  

In summary, differences in river flood hazard may be the result of global flood maps not 

including flooding in small catchments, the maps not accounting for high levels of flood 

protection present in certain cities, and insufficient evidence in some resilience strategies to 

determine whether river flooding is severe (in doubt, it is considered severe). 

Coastal flooding 

The cities of Buenos Aires (Argentina) and Thessaloniki (Greece) are classified as having high 

coastal flood hazard levels according to the global data, but do not identify coastal flooding as 

a challenge in their resilience strategy. The two cities both have plans to regenerate the coastal 

area with housing, shops and offices. Lack of mention of coastal flood hazards in this case may 

be an indication of political bias. Slightly worrying in the context of the resilience strategy is 

that sections discussing coastal redevelopment plans do not include any mention of assessment 

or mitigation of coastal flood risks. 

Extreme wind 

Rio de Janeiro lists strong wind as a challenge, while it has a very low cyclone wind hazard 

level according to the global data. The reason is that the city is not on the path of tropical 
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cyclones, and strong wind is storms other than tropical cyclones, which are not included in the 

global hazard dataset. On the other hand, Atlanta (United States), Surat (India), and Toyama 

(Japan) do not include evidence of wind hazard in their resilience strategy despite having a very 

high cyclone wind hazard level according to the global data. The mismatch could be due to the 

cities being highly adapted/prepared to the hazard (particularly Japan). Also, as cyclone events 

often combine strong wind with extreme rainfall and storm surges, another reason for the data 

seemingly overpredicting the hazard may be that wind hazard is ignored next to the more 

significant impacts of flooding. 

Landslides 

Three cities discuss landslides in their resilience strategy, but have a very low landslide hazard 

level according to the global data, including Pittsburgh (United States), Rio de Janeiro (Brazil), 

and Rome (Italy). The major source of uncertainty for the landslide dataset is attributed to 

quality and resolution of the input datasets for representing the spatial distribution of landslide 

factors (Nadim et al., 2006). In Rio de Janeiro, informal housing (favelas) constructed on slopes 

could be a factor generating landslide hazard. This informal housing is not represented in the 

global or regional hazard datasets, and yet are known to be a critical factor in landslide 

occurrence (Bozzolan et al., 2020). While slope conditions in Rio de Janeiro may not point to 

significant landslides occurrences, when coupled with informal housing and the associated 

deforestation, slope cutting, loading, and poor drainage, occurrences of landslides become 

significantly exacerbated. 

Overall, mismatch comes from both limitations of the global hazard data (e.g. not accounting 

for the effect of local geology on earthquake acceleration, not including flooding over small 

catchment areas), and limitations of the evaluation data (e.g. biased information due to political 

priorities, ambiguities between type of flooding, cities not providing evidence for hazards that 
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they are highly adapted/prepared for). Causes of mismatch lead to both underestimation and 

overestimation of the hazard. In other words, the modelled data appears to both under- and 

over-predicts hazard severity in approximately equal measure relative to the local data. Certain 

factors will systematically weaken the hazard across cities (e.g. including flood defences). 

Other factors would systematically strengthen the hazard across cities (e.g. land subsidence). 

Considering all factors together may not make a big difference at the global scale. On the other 

hand, it may lead to significant differences in individual cities. It is possible, also, that some 

factors are common to all cities in a given part of the world, which would create regional bias. 

In general the hazard levels calculated from the global hazard data seem to provide a relatively 

good representation of earthquake, cyclone wind, and coastal flood hazard levels in cities, 

while levels of river flooding and landslides are found to be more uncertain. 

3.3.5 Sensitivity of the classification 

This section assesses the influence that the choice of values in Table 3.1, used for classifying 

hazard levels, has on the results. The influence is checked for earthquakes, river flooding, and 

cyclone wind, which are expected to have the greatest influence on multi-hazard exposure 

overall. Results are shown here for three cases, each varying the return period and hazard 

intensity values for one of the three hazards. Some additional cases are included in Appendix 

A.2. 

Figure 3.11 shows the sensitivity of river flood hazard levels to the classification values. Here, 

depths are changed from 0.5 metres to 2.0 metres for all hazard levels, and the return period 

for the low hazard level is changed from 500 to 100 years (both of these changes correspond 

to fewer cities being exposed). The dotted lines in Figure 3.11 show all cities exposed to low, 

medium or high hazard levels using the baseline values in Table 3.1, and the coloured bars 
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show exposure using the alternative values. The results suggest that exposure to river flooding 

does not change significantly when threshold values are varied. 

 

Figure 3.11  Exposure to combinations of one, two or three hazards when river flood 

threshold values are changed from those Table 3.1. Colours represent hazard levels, and 

x-labels correspond to hazard combinations (see Figures 3.6 and 3.7). 

 

Figure 3.12  Exposure to combinations of one, two or three hazards when earthquake 

threshold values are changed from those Table 3.1. Colours represent hazard levels, and 

x-labels correspond to hazard combinations (see Figures 3.6 and 3.7). 

 

Exposure to earthquakes is found to change significantly when changing the classification 

values (Figure 3.12). Figure 3.12 shows the exposure when a return period of 975 years, instead 

of 2475 years, is used to define low earthquake hazard levels, and when the intensity for 

medium and low hazard is changed from 0.1 g to 0.2 g (196 cm/s2). Exposure to earthquakes, 
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and to combinations of earthquakes with other hazards becomes far less significant in this case, 

both in absolute number of cities exposed, and relative to other hazard combinations. 

 

Figure 3.13  Exposure to combinations of one, two or three hazards when cyclone wind 

threshold values are changed from those Table 3.1. Colours represent hazard levels, and 

x-labels correspond to hazard combinations (see Figures 3.6 and 3.7). 

 

Figure 3.13 shows the results when classification values are varied for cyclone wind hazard. 

Here, return period is changed from 1000 years to 250 years for the low hazard level, and 

hazard intensity is changed from 80 km/h to 100 km/h for all hazard levels. While exposure 

values are lower in this case, the changes do not significantly affect the relative exposure across 

hazard types.  

3.4 Discussion 

Looking across the information collected in this analysis, both on hazard severity and number 

of cities exposed, three multi-hazard contexts are identified for further research. The first is the 

combined exposure to river flooding and cyclones, seen in many cities, both coastal and inland, 

particularly across Asia and North America. The second is the combined exposure to river and 

coastal flooding, particularly in coastal cities in Asia and north of Europe. And the third is the 

combined exposure to (low) earthquake and cyclone wind, and (low) earthquake and river flood 
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hazards. The first two contexts are the subject of a lot of research, including by meteorologists, 

climate change adaptation scholars, hydrologists, and others (Couasnon et al., 2020; Gallina et 

al., 2016), but understanding the challenges associated with earthquakes and floods; and with 

earthquakes and cyclones, is still in its infancy and requires further work (Hart et al., 2015; De 

Ruiter et al., 2019). The analysis and results presented are primarily intended to inform 

researchers and others working to develop tools or methods for increasing resilience in cities, 

particularly in relation to physical damage and impacts to infrastructure. The next section 

provides a short summary of the information for the three contexts, including considerations 

on data accuracy. 

3.4.1 Common multi-hazard environments  

The analysis found that approximately 8% of cities are exposed to both high cyclone and high 

river flood hazards. High flood levels in this analysis means that without mitigation measures, 

(a part of) the city would have a 10% chance of flooding each year, while high levels of cyclone 

wind refer to wind speeds reaching 80 km/h at least once every 50 years. Figure 3.13 shows a 

more detailed view of the exposed cities. Note that the analysis does not distinguish the area of 

flooding in each city. Therefore, high exposure can apply to cities with a small area and cities 

with a large area exposed. Large cities are more likely to be identified as highly exposed simply 

due to a larger surface area.  

In terms of accuracy of the global data on which the results are based, Dottori et al. (2016) 

previously evaluated the river flood model in various parts of the world. Evaluation was carried 

out in Europe, South America, Africa, and India. They compared the flooded extent to official 

national flood maps, and to flooded extents from satellite imagery. Overall, Dottori et al. (2016) 

shows that the model is able to reproduce the overall flood extent well over large regions and 

in different parts of the world, but the ability to correctly predict flood location at the grid cell 
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level is fairly low. This suggests that the flood levels might not be representative for specific 

cities, particularly for smaller cities. However, overall exposure to flooding might be 

representative when the results are aggregated. Given that wind hazard varies relatively 

constantly over space, the total overlap between the two hazards might therefore be 

representative even if results for individual cities are not. It is worth noting that although the 

accuracy of the flood depths in the model are not evaluated (Dottori et al., 2016), the hazard 

levels are relatively insensitive to a variations in flood depth (Figure 3.11). 

 

Figure 3.13 Distribution of combined cyclone wind and river flood hazard in North 

America (left) and Asia (right). Each point represents a city. The area is proportional the 

population of that city. 

 

Results show that 2% of cities are exposed to high river and coastal flooding. The majority of 

these cities are in Asia and Europe, including multiple cities in The Netherlands (Figure 3.14). 

In this study, high flood hazard for both river flooding and coastal flooding represents flooding 

from a 1-in-10 year event, under present climate, if flood defences were not included. Figure 

3.14 shows that multiple large coastal cities are exposed to combined river and coastal flood 

hazards. 
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Figure 3.14 Distribution of combined river and coastal flood hazard for Europe (left) and 

Asia (right). For colour scheme see Figure 3.12. 

 

River and coastal flooding could occur at the same time as compound flooding (Couasnon et 

al., 2020), which could have implications for the overall extent of flooding. The probability of 

the two hazards occurring at the same time depends on the main drivers of each type of 

flooding, and varies along the global coastline, as shown by Couasnon et al. (2020).  

Finally, results also found that 25% of cities are exposed to combined low+ earthquake and 

cyclone hazard, that 17% of cities are exposed to combined low+ earthquake and river flooding, 

and that 8% of cities are exposed to low+ levels of all three hazards. Exposure decreases 

significantly when only medium and high hazard levels are considered (Figure 3.15). Figure 

3.15 (a) shows the distribution of exposure to high, medium, and low levels of combined 

earthquake and river flooding. The combination occurs across parts of China and extends 

through the middle East, Turkey, and into parts of Europe in particular Italy. Figure 3.15 (b) 

shows the distribution of exposure to high, medium, and low levels of combined earthquake 

and cyclone wind. The combination is most common in Asia, including Japan, Taiwan, the 

Philippines, and mainland China, as well as central America, the west coast of the United 

States, and along the west coast of South America. 
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Figure 3.15 Distribution of combined earthquake and river flooding (left) and earthquake 

and cyclone wind (right) (for colour scheme see Figure 3.13). 

 

Earthquakes and flooding, and earthquakes and cyclones, are independent of each other, but 

could have joint implications if the city is still recovering from one event when the other occurs 

(De Ruiter et al., 2019). It can sometimes take several years to rebuild and recover after a 

damaging hazard event, and the consequences of a second hazard in that period could be more 

than the sum of the consequences of the individual events (Gallina et al., 2016; Gill & 

Malamud, 2014). Places exposed to earthquakes and floods may consider whether measures to 

mitigate one hazard increases the risk of another (for example a dam to prevent flooding may 

create a possible risk of dam-break flooding due to an earthquake), and whether there are 

opportunities for jointly addressing the hazards (for example, avoiding construction on 

floodplains, that face both flood risk and possible liquefaction risk during an earthquake).  

3.4.2 A dataset of combined hazard levels  

To analyse the exposure of cities to combinations of hazards, this chapter assembled a dataset 

of combined hazard levels, or ‘COHAZLE’ dataset. The COHAZLE dataset has the following 

potentially beneficial characteristics: 
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1. It combines information for five hazards -earthquakes, river flooding, coastal flooding, 

tropical cyclone wind, and landslides- all of which can cause physical damage to 

infrastructure and are responsible for significant losses each year.  

2. For each hazard, it provides a severity level (very low, low, medium, high) that broadly 

describes the expected amount of damage from the hazard if no mitigation measures were 

provided, based on both the return period and intensity of the hazard. 

3. It provides hazard information for more than 9,000 cities, in theory all cities with 50,000 

inhabitants or more (Moreno-Monroy et al., 2020). 

4. A city is defined according to observed population densities and extent of infrastructure 

(e.g. buildings and roads), and therefore has a consistent physical meaning across countries. 

5. The city includes the suburban commuter area, whose infrastructure (e.g. water supply, 

drainage, roads) is likely to be functionally integrated with the rest of the city. 

6. The hazard levels (very low, low, medium, high) are calculated in the same way as in the 

online ThinkHazard! tool (https://thinkhazard.org/) provided by the Global Facility for 

Disaster Risk Reduction (Fraser et al., 2016). 

7. The data is in spreadsheet format and is therefore easily accessible to non-experts. 

These characteristics of the data make it potentially valuable for addressing multi-hazard risks 

in cities, however, there are also some notable limitations that need to be accounted for when 

using the data: 

1. The hazard data and models on which the information is based are uncertain 

2. The severity levels are intended to be representative of a developing context, and may 

therefore report the hazard as more severe than it would be in practice even without 

targeted mitigation measures. 

https://thinkhazard.org/


Chapter 3. Assessing the exposure of urban systems to earthquakes, floods, wind and landslides 

 

 

 

59 

3. The severity of a hazard (likelihood of being damaged without mitigation measures) 

will be different for different infrastructure sectors. 

4. The level of damage from the hazards also depends strongly on the characteristics of 

the city, for example how long ago the water supply and drainage networks were built, 

the age of buildings, or the construction materials used. 

In summary, the dataset supplements existing data by making exposure information for 

multiple hazards easily accessible and comparable. The advantage is that it enables users to 

identify cities that may be exposed to combinations of hazards. However, given that severity 

is only expressed in relative terms, that no spatial information about the hazards is included, 

and that the information is uncertain and sometimes inaccurate, the dataset cannot replace more 

detailed hazard assessments. The dataset provides insights about the hazards that could be 

significant in a city of interest, but does not provide the information needed to address the 

hazards. Addressing the hazards requires more detailed assessments, where the hazards are 

expressed in physical units (e.g. flood depth, peak ground acceleration), and where local factors 

are accounted for (e.g. variability in ground conditions, vegetation, flood defences) (Gill & 

Malamud, 2017). 

3.4.3 Towards collaboration networks based on city similarity 

The dataset could potentially contribute to developing ‘learning networks’ between 

stakeholders (e.g. local authorities, infrastructure service providers, researchers) across cities 

that have similar (multi-)hazard environments. Inter-city partnerships are common in local 

government, with examples like the C40 cities, the Asian Cities Climate Change Resilience 

Network (ACCCRN), of the 100 Resilient Cities. Similar partnerships could also be beneficial 

between infrastructure professionals, as they allow data, tools and examples of best practice to 

be shared (Hickford et al., 2018). Infrastructure resilience is already associated with 
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partnerships, although so far the focus has mainly been on partnerships between sectors within 

the same city (Hickford et al., 2018). Meanwhile, collaboration in relation to hazards and the 

built environment is also taking place between cities, for example Japan and Turkey are visited 

by engineers to learn about earthquake mitigation, while The Netherlands is considered a role 

model in flood engineering. Cities in different countries may have similar (multi-)hazard 

challenges, and one benefit of the COHAZLE data could be helping to connect stakeholders in 

these cities. 

Similar cities could be identified relatively easily by searching through the dataset. However, 

if the dataset was to grow by including additional hazards, or by differentiating more than four 

severity levels, finding similar cities may become challenging. In that case, a useful approach 

would be to use a similar coefficient. 

Chang et al. (2015) proposed such an approach using the Gower coefficient (Gower, 1971) to 

calculate similarity between coastal communities. In the approach by Chang et al. (2015), the 

coefficient is used to identify communities using vulnerability indicators as input data.  

The Gower coefficient is one of various possible methods for calculating the similarity of a set 

of objects (in this case cities) based on a set of attributes (in this case the hazard levels). The 

Gower coefficient defines the similarity between two objects based on the sum of differences 

between their attribute values. Missing data is accounted for through a coefficient b. The 

similarity between two objects i and j is: 

𝑆𝑖𝑗  =
∑ 𝑠𝑖𝑗ℎ 𝑏𝑖𝑗ℎ
𝐻
ℎ = 1  

∑ 𝑏𝑖𝑗ℎ
𝐻
ℎ = 1

 ,  (3.2) 

where sijh is a similarity score that is calculated according to the data type for attribute h, and 

bijh defines whether the comparison is possible between the values of attribute h for objects i 

and j, and H is the total number of attributes. The variable b takes a value of 1 if attribute data 
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is available for both i and j, and 0 if data is missing for one of the two objects. For continuous 

data, the score sijh is: 

𝑠𝑖𝑗ℎ = 1 − 
|𝑥𝑖ℎ  −  𝑥𝑗ℎ|

𝑅ℎ
    (3.3) 

where xih is the value of attribute h for object i, xjh is the value of attribute h for object j, and Rh 

is the maximum range of the attribute h. For binary and nominal data the score sijh is simply: 

𝑠𝑖𝑗ℎ = {
1    if  𝑥𝑖ℎ = 𝑥𝑗ℎ
0    otherwise    

. (3.4) 

 

Therefore, for all data types, if two objects have the same values for all attributes, Sij is 1. If the 

attribute values of two objects, for all attributes, are on two opposite ends of the attributes’ 

range, the similarity will be 0. If values are the same for some attributes but different for others, 

or if all attribute values differ a bit, the similarity will be some fraction between 0 and 1. 

When ∑ 𝑏𝑖𝑗ℎ
𝐻
ℎ = 1  = 0, i.e. when none of the attributes can be compared because some of the 

data is missing for all attributes, Sij is undefined. As Sij can be obtained even if data is only 

available for one attribute, Chang et al. (2015) proposes calculating the quality C of the 

comparison using: 

𝐶𝑖𝑗  =
∑ 𝑏𝑖𝑗ℎ
𝐻
ℎ = 1  

𝐻
.   (3.5) 

The quality of the comparison Cij ranges between 0 and 1, where 0 means that no data is 

available for comparison, and 1 means that all the data is available (i.e. that objects i and j can 

be compared on all the attributes).  

The coefficient also provides the option of weighting variables (Gower, 1971). Weights can be 

applied by simply multiplying the similarity term by a constant value, using: 
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𝑆𝑖𝑗  =
∑ 𝑠𝑖𝑗ℎ 𝑏𝑖𝑗ℎ
𝐻
ℎ = 1  𝑤ℎ
∑ 𝑏𝑖𝑗ℎ
𝐻
ℎ = 1  𝑤ℎ

 (3.6) 

where wh represents a weight defined for a specific attribute. The Gower coefficient therefore 

provides an simple method for measuring similarity that can be applied to nominal, binary, and 

interval data for calculating hazard similarity.  

The COHAZLE data is of ordinal type, and in order to apply the Gower coefficient to the data, 

the following mapping is used to transform the data from ordinal to interval data: 4 = high, 3 = 

medium, 2 = low, and 1 = very low. The values can then be used to calculate the similarity 

score using Equation 3.2. This method assumes equal intervals between consecutive levels. An 

alternative method could also assign bigger intervals for specific cases (e.g. 5 = high, 4 = 

medium, 2 = low, and 1 = very low), or use alternative methods such as Goodall (1966) or 

Podani (1999). However, the simple mapping approach considered suitable for our case, as it 

allows the similarity scores to be easily interpreted. 

With the unweighted Gower coefficient, all differences between levels have an equal effect on 

the similarity. However, defining some weights wh and using the weighted similarity in 

Equation 3.6 can give more importance to specific hazards in the similarity. This is shown with 

the example of three cities, A, B, and C (Table 3.5). 

Table 3.5 Three example cities to demonstrate the proposed similarity index. 

 Earthquake River flood Extreme wind 

City A 2 (low) 4 (high) 3 (medium) 

City B 4 (high) 4 (high) 3 (medium) 

City C 3 (medium) 4 (high) 2 (low) 

 

Cities A and B in Table 3.5 have the same exposure to river flooding and wind, but a different 

exposure to earthquakes. Cities B and C have the same exposure to floods, but vary slightly in 
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exposure to earthquakes and storms. Using Equation 3.6 to calculate the similarity between 

cities A and B, and A and C, the two pairs both have a similarity of 0.78. Supposing there is 

specific interest in earthquake exposure, a weight of wh = 2 is applied to the earthquake levels. 

The similarity between A and B is now 0.67, whereas the similarity between A and C is 0.75. 

In both cases the similarity decreases because the dissimilarity in earthquake levels is given 

more importance, but it decreases more between cities A and B, where the difference in 

earthquake levels is greatest. Weights can therefore be used to change the relative influence of 

hazards on the similarity, or to ignore certain hazards altogether, by setting wh for selected 

hazards to zero. The data can therefore easily and intuitively be weighted to include user 

preferences. 

An of the use of the coefficient is provided here for the city of Bristol. First, the hazard context 

of the city is briefly described, and then similar cities are identified and compared. According 

to a flood risk assessment conducted for the city of Bristol in 2013, tidal flooding from the river 

Avon represents one of the main drivers of flood risk in central Bristol (Hyder Consulting, 

2013). The worst case scenario for flooding in the city is expected to be a combination of a 1-

in-200 year tidal flood combined with a 1-in-2 year river flow. Their coincidence is expected 

to occur once every 200 years. Overall, most of the city centre has protection standards for up 

to a 1-in-200 year flood. However, the standards will be driven down by climate change. In 

100 years, 1,400 properties are expected to be at risk of flooding (Figure 3.16). A new plan is 

currently under consultation for addressing the anticipated increase in flooding in the centre of 

Bristol. Previously, the city experienced severe flooding in 1968, when nearly all streams and 

river in the city broke their banks. Flooding is usually caused by long duration storms and there 

is tendency for flooding to occur in winter. However there are recorded instances of flooding 

being driven by summer rainstorms. Localised flooding often occurs during seasonal high tides. 
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Figure 3.16 The modelled combined 0.5% AEP tidal the 50% AEP river flooding in 

Bristol under (a) present, (b) 2110 scenario (CAFRA, 2013). 

 

Figure 3.17 City similarity for the city of Bristol based on COHAZLE. 

 

In the COHAZLE dataset, Bristol is classified as having high exposure to coastal flooding, and 

very low exposure to other hazards. More than 10 cities are found to have a value of Sij = 1, in 

other words to have identical hazard  levels as Bristol. Therefore, geographic distance is 

included as an additional criterion to help select 10 similar cities. The closest cities to Bristol 

identified with the same hazard profile include London, Lincoln, Leeds, Scunthorpe, Hull, 

Nantes, Gent, Roosendaal, Rotterdam, and Antwerp.  

An internet search reveals that many of these cities are part of the STAR FLOOD EU funded 

project for increasing city resilience to river flooding (https://www.starflood.eu/). The project 

https://www.starflood.eu/
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includes multiple case study cities, for which it describes the flood context including the main 

types of flooding faced, the mitigation measures in place, and any damaging flooding that 

occurred in recent memory. Among case studies are London, Hull, Leeds, Rotterdam, Le 

Havre, and Antwerp. Looking for example at Hull, it is said that  “flood risk management for 

tidal and fluvial flooding has a long legacy in Hull”. Hull also uses an interesting and relatively 

unique system of protection, combining a ‘high level system’ that raises the level of the river 

upstream of the city above that of the surrounding land and in that way prevents rainwater from 

draining from the land into the river. Several flood storage lagoons are also being delivered to 

address flood risk.   

This brief example shows us two things: one is that partnerships and exchange of best practice 

between cities is indeed valued and being used to advance hazard management, and that when 

applied to Bristol, the tool acts as a simple and successful filter for rapidly identifying a set of 

cities with similar hazard characteristics. 

An organisation could develop and champion a working version of the proposed tool, for 

example through a dedicated web platform. The tool could be used to help engineers, planners, 

hazard risk managers or local authorities in a city to rapidly find other similar cities facing the 

same challenges. The tool may be particularly beneficial for small and mid-size cities, that 

often receive less attention than megacities (Birkmann et al., 2016). Yet the majority of urban 

growth is expected to happen in small and mid-sized cities (Birkmann et al., 2016). The tool is 

also likely to be most useful to cities that face high levels of multiple hazards. 

The evaluation showed that the global hazard data does not always provide a good estimate of 

the hazard for individual cities, particularly in the case of river flooding. Therefore, there is a 

concern that implementing the data into a tool may lead to cities either overestimating or 

underestimating their level of exposure to certain hazards. However, the tool could easily work 
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by only including the data internally. In other words, rather than providing the data itself to 

users, the data would be used to output the names of other cities, provided to users as starting 

points for further data collection. At best, the guidance would help users find useful and 

relevant information that is applicable to their hazard context. At worst, users would lose time 

searching through information about cities that is not perceived as relevant to their context. As 

data continues to improve, the datasets used within the system could be updated. Other 

parameters could also be included for example total population, building characteristics, or 

extent of green space.  

3.4.4 Study limitations 

The main limitation of this study is the uncertainty of the input datasets. To address this, 

evaluation of the data is carried out for a 46 cities by collecting qualitative information from 

city strategy reports. The results of the evaluation show that the available global data deviates 

from reality in a number of cities. It deviates least for earthquakes, cyclone wind, and coastal 

flood datasets than for river flooding and landslides. This would be expected as flooding and 

landslides are more dependent on local factors, and therefore more difficult to represent at the 

global scale. The main factor that is currently hindering improvements to large scale 

probabilistic flood and landslide datasets is the quality and resolution of input datasets for 

parameters such as elevation, soil type, and climate (Nadim eta l., 2006; Hawker et al., 2018). 

The quality of modelled data will likely improve as better resolution satellite data becomes 

available, making  the use of global datasets for assessment at the city scale more viable in the 

future. 

Interactions between hazards, both spatially and temporally, are not explicitly accounted for in 

the analysis. Hazards can interact in different ways (e.g. coinciding, compound, cascading) 

(Tilloy et al., 2019), and interactions make some hazards more likely to happen together than 
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others. For example, storm surges are often coupled with strong winds during storms. On the 

other hand, storm surges and earthquakes result from separate processes and are less likely to 

happen at the same time. The distinction between hazards affecting a city together or separately 

is important because the consequences of the hazards happening together could, in some cases, 

be more than the sum of  the separate hazards. However, determining the probability of hazards 

happening together is still a challenge. Difficulties exist both conceptually (within what interval 

of time can hazards be considered to happen together), and methodologically (e.g. how might 

climate change influence the interaction between hazards). The likelihood of hazards having 

combined consequences on a community depends on interactions between the hazards (Tilloy 

et al., 2018), but also on the time that the affected community needs to recover the hazards (De 

Ruiter et al., 2019). More research is therefore needed, both in terms of natural interactions 

between the hazards, but also in understanding combined impacts. Exploring how research on 

hazard interactions could be incorporated into the analysis, and how it might influence the 

findings, would be an interesting direction for further research.  

The results presented are relatively sensitive to the choice of values used to define hazard 

levels. The hazard levels from Fraser et al. (2016) selected for this study show the intensity at 

which a hazard would become damaging in an area if no protective measures were taken against 

it. As damaging intensities in practice vary in different parts of the world due many factors, 

such as building types, materials, age, maintenance, and so on, Fraser et al. (2016) selects a 

low damage threshold, that reflects conditions in vulnerable areas. However choosing different 

damage thresholds has a strong influence on exposure, and results need to be interpreted in 

light of the relatively conservative (low) threshold values used in this study. 

The study does not include certain hazards that are of high concern to cities, including rainfall 

flooding and heat waves, wildfires, volcanic eruptions, and tsunamis. Rainfall or pluvial 
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flooding is challenging to model over large scales as is highly dependent on characteristics of 

the drainage infrastructure. However there have been some studies that model pluvial flooding 

over large areas (e.g. Guerreiro et al., 2017). The additional hazards could introduce new types 

of interactions. For example, wildfires can deforest slopes and amplify landslide hazards (Gill 

& Malamud, 2017), and a loss of tree cover caused by wildfires may amplify exposure to strong 

wind. Future increase in occurrence of wildfires as a result of climate change may make it an 

important consideration for urban hazard. In the future, new datasets and improvements in data 

quality could be used to extend the analysis to other hazards.  

The population values show the total population of the urban area. For population numbers to 

correspond to the number of people affected by the hazard, the impacts of the hazards in one 

part of a city would have to extent throughout the rest of the city. This simplifying assumption 

is unlikely to be correct particularly in large cities, and does not take into account any existing 

features, such as modularity, or redundancy, that is preventing networks from undergoing total 

failure. Recent work on applying graph theory to represent the connections between elements 

of the city could contribute to a better understanding of how shocks spread through complex 

networks (e.g. Arosio et al., 2020), and could provide more accurate estimates of the true 

affected urban population. It should be noted that population affected through cascading 

impacts that initiate outside of the urban area, either at the outskirts (e.g. impacts to a reservoir) 

in neighbouring cities, is also not included in this study (e.g. Koks et al., 2019). 

3.5 Conclusions 

In this chapter, hazard severity levels for five hazard types (earthquakes, river flooding, coastal 

flooding, cyclone wind and landslides) were calculated for urban areas globally using openly 

available datasets. Patterns in exposure to various hazard combinations were analysed.  
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Three hazard combinations were found to be important for cases for further study: combined 

exposure to river flooding and cyclone wind; combined exposure to river and coastal flooding; 

and combined exposure to (low) earthquake and cyclone wind, and (low) earthquake and river 

flood hazards. Hydrometeorological hazard combinations including cyclones and flooding, and 

compound river and coastal flooding, currently appear to be more widely studied than 

earthquakes and flood/wind combinations, and the implications of the latter for urban 

infrastructure still need to be better understood. 
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Chapter 4. Modelling disruption to water supply 

from a consecutive earthquake and cyclone 

4.1 Introduction 

Providing reliable access to water when and where it is needed is essential to the proper 

functioning of any town or city. Water supply in most cities depends on extensive networks of 

buried pipelines, pumps, storage tanks, and treatment works, designed to efficiently deliver 

water in appropriate volume, pressure, and quality (Trifunovic, 2006). Water supply systems 

face various types of threats, such as random failures, attack, and natural hazards (Butler et al., 

2014). Natural hazards like earthquakes and cyclones can cause failure in multiple system 

components, with severe consequences for functionality (e.g. Arrighi et al., 2017; Chang et al., 

2002). De Ruiter et al. (2019) suggested that 10% of the global population are potentially 

exposed to an earthquake and tropical cyclone occurring within 30 days of each other.  

Disruption to water supply during hazard events severe affect the ability of communities to 

cope and recover from the event. For example, the 1995 Kobe earthquake in Japan damaged 

the water supply system and affected firefighting capabilities. As a result, the fires that ignited 

after the earthquake (due to damage to gas pipelines) caused almost as much overall damage 

to the city as the earthquake itself (Kitagawa & Hiraishi, 2004). In the UK, the summer floods 

of 2007 left 350,000 people without mains water supply for over two weeks. The lack of mains 

water supply particularly affect those who struggled to collect water from temporary sources, 

(e.g. bottled water, tanker trucks), including vulnerable people and those without means of 

transport (Pitt, 2008). The Tohoku earthquake and subsequent tsunami in Japan in 2011 

affected water supply to more than 2.2 million households for several weeks (Nojima, 2012). 
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The lack of water access meant that much of the international relief was focused on providing 

drinking water alternatives to the affected communities (Bross et al., 2019).  

While there have been a number of studies that model impacts to water supply from single 

hazards (Chapter 2), there is a lack of studies looking at the impacts of consecutive hazards, 

including on water supply. Consecutive events could have consequences that cannot be 

predicted from simply aggregating the effects of single hazards (Kong et al., 2019; Sitzenfrei 

et al., 2011; Wisetjindawat et al., 2017). Importantly, the consecutive event could lead to a loss 

of service that is greater than that of the two hazard events occurring separately, if the second 

event happens while the system is still affected by the first event. A consecutive hazard event 

is defined in this study as “two or more hazard events affecting a specific system in succession, 

before recovery from a previous event is considered to be completed” (De Ruiter et al., 2019).  

Selva et al. (2013) proposed the term “persistence time window” to refer to the time interval 

during which the effects of a given hazard type are still present on the exposed element. 

Assessing the effects of consecutive hazard events on water supply can provide vital 

information to help communities become better prepared. It is important to understand whether, 

why, and for how long disruption could increase due to a hazard occurring while the system is 

still damaged. A better understanding of consecutive hazards can help water service providers 

identify suitable mitigation measures, and can help emergency managers and local authorities 

develop appropriate plans to reduce potential consequences on the community. Both 

earthquakes and cyclones can disrupt water supply, and multiple cities, particularly across 

China and in the US, are exposed to both hazards (as shown in Chapter 3). The aim of this 

chapter is to demonstrate a modelling approach that can be used to assess the effect that a 

consecutive occurrence of the hazards would have on water supply. The modelling approach is 

demonstrated for an example water supply network representative of a mid-sized city, to 
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understand whether assessing disruption from the hazards separately might underestimate the 

consequences of the consecutive event. The mechanisms that might increase disruption are 

investigated, and the benefits of different mitigation measures are compared. 

The remainder of this chapter is organised as follows: Section 4.2 presents the metrics used to 

quantify the impacts of the single and consecutive events, and defines the concept of 

‘interacting impacts’. Section 4.3 presents the hydraulic model of the water supply system, 

Section 4.4 describes how earthquake damage and restoration are modelled, and Section 4.5 

describes how the storm effects are modelled (including interactions with the earthquake).  

Section 4.6 introduces the case study network and the hazard scenario used to demonstrate the 

proposed approach. Then, Section 4.7 presents the results and Section 4.8 provides a discussion 

and conclusions. 

4.2 Measuring disruption to water supply 

Disruption to water supply is assessed in terms of the ability of the system to meet the demand 

for water over time (Didier et al., 2018). A service deficit is considered to occur when the water 

supply is less than the demand. A common perspective in infrastructure resilience studies is to 

consider both the magnitude and the duration of service deficit (Bruneau et al., 2003). Indeed, 

even moderate impacts to supply could become significant if they extend for a long period of 

time. Assessing the disruption therefore involves assessing both the amount of loss of service 

due to the hazard, and the duration for the system to recover from the event.   

Let us assume that water is consumed at a set of nodes i across the network. The variable Ci(t) 

represents water consumption at a node i over time t. Assuming that the system is able to fully 

meet the demand for water under normal conditions, consumption Ci(t) under normal 

conditions is equal to demand Di(t) for water at point i. Following the hazard event(s), the 



Chapter 4. Modelling disruption to water supply from a consecutive earthquake and cyclone 

 

 

 

74 

system to be unable to meet demand at certain locations, causing some loss of service at those 

locations. Service is considered to be affected whenever consumption Ci(t) falls below demand 

Di(t) at a given location and point in time (Didier et al., 2018). The level of service Si(t) here is 

represented by a binary variable. The variable takes a value of 1 if the ratio of consumption to 

demand is above some critical threshold α, and 0 otherwise (Klise et al., 2017). 

𝑆𝑖(𝑡)  =  {
1    if 𝐶𝑖(𝑡) / 𝐷𝑖(𝑡) ≥  α
0    otherwise                 

 (4.1) 

The combined service across all nodes in the network S(t) can then be calculated by aggregating 

the values of Si(t). Note that the number of people relying on the network could vary at different 

points i, meaning that loss of service at different nodes will not impact the same number of 

people. The difference in population at different nodes can be reflected by weighting the Si(t) 

at each node by the node population, and dividing by the total population supplied by the 

network. The service S(t) across N would then be: 

𝑆(𝑡)  =
∑ (𝑆𝑖(𝑡)  × 𝑝𝑜𝑝𝑖
𝑁
𝑖 = 1 )

∑ 𝑝𝑜𝑝𝑖
𝑁
𝑖 = 1

  (4.2) 

  

where S(t) represents the proportion of the population receiving a satisfactory level of service 

at a given time, and popi is the population at node i. Values of S(t) range between 0 and 1. A 

value of 0 corresponds to all of the population receiving less than a threshold α of the usual 

demand, and a value of 1 corresponds to all of the population receiving more than a threshold 

α of the usual demand. The threshold α is set to 1% in this study. By using a threshold of 1%, 

it is possible to clearly identify the population that is without water. A value of SD(t) equal to 

0 means that all of the nodes are receiving less than 1% of the demand, and value of SD(t) equal 

to 1 means that all nodes are receiving at least 1% of the demand. For the modelled case study, 

service was found to rapidly drop between 1 and 0, and to recover rapidly from 0 to 1, resulting 
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in only small differences in service levels for different values of α. However, where this is not 

the case, a threshold of 1% could underestimate service recovery, and previous studies have 

used higher threshold, for example a threshold of 80% was used in Klise et al. (2017). Multiple 

thresholds could also be used where the service levels are more sensitive to the chosen 

threshold value.  

To compare the overall effect of different events, the total service deficit (TSD) is calculated 

by integrating the service deficit (i.e. the proportion of the population not receiving adequate 

service) over time:  

𝑇𝑆𝐷 = ∫ 1 −  𝑆(𝑡)
𝑡𝑟

𝑡0

 𝑑𝑡 (4.3) 

 

where t0 and tr correspond to the start and end time of the event of interest. The start and end 

time would be chosen according to the scope of the assessment. The start time t0 will often be 

the time of occurrence of the hazard, while tr will often be set to the time when service is 

considered to have recovered, i.e. when S(t) is equal to 1 (Didier et al., 2018). The value of 

TSD can therefore be applied for any hazard or sequence of hazard events, by selecting 

appropriate values of t0  and tr. The total service deficit from hazard A would be calculated by 

integrating the loss of service between time t0,A corresponding to the occurrence time of the 

hazard, and time tr,A at which service recovers (Figure 4.1). Similarly, the total service deficit 

from the consecutive event AB (i.e. sequence of hazard events A and B) would be calculated by 

integrating between time t0,A when the first hazard occurs, and time tr,AB when service has 

recovered from the consecutive event. For simplicity when comparing different events and 

combinations of events, TSD can also be calculated between some simulation start time ts,0 and 

some simulation end time ts,f, as long as ts,0 < t0,A and ts,f  > tr,AB.  
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Figure 4.1 Service levels S(t) over time for (a) just event A and (b) events A and B 

occurring consecutively. Times t0 and tr represent the start and end times of the events, 

and times ts,0 and ts,f represent the start and end time of a simulation. The area TSD is the 

total service deficit from each event. The dashed line is the level of service under damage. 

 

Figure 4.1 shows the variation in service over time S(t), and the total service TSD, in the case 

of a single and a consecutive hazard event. In Figure 4.1 (a), a single event A causes a temporary 

loss of service, before the supply is restored by repairing or replacing of affected elements. In 

Figure 4.1 (b), the same event A occurs, but a second event B occurs before repairs are 

completed for event A. The second event causes a further drop in service, which lasts until 

repairs are completed. In both cases, the total service deficit corresponds to the total area 

between the normal level of service and the level of service under damage. 

To assess the effect that the events coinciding in time has on the system, a new quantity is 

defined here, the ‘change in total service deficit’ ΔTSD. The value of ΔTSD corresponds to the 

difference between the total loss of service from the consecutive event, and total loss of service 

from the two hazards occurring independently. Figure 4.2 shows an example of the service 

deficit from two events A and B occurring independently, and the same events overlapping. As 

shown in Figure 6.2, ΔTSD is the difference between the loss of service attributed to the 

independent hazards, and the actual loss of service during the consecutive event, represented 

by the grey area in Figure 4.2 (b). 
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Figure 4.2 The service levels for (a) events A and B occurring separately, and (b) a 

consecutive occurrence of events A and B. ΔTSD is the service deficit due to the interacting 

effects of the two hazards on the system. 

 

The value of ΔTSD is calculated as: 

𝛥𝑇𝑆𝐷 = 𝑇𝑆𝐷𝐴𝐵  −  (𝑇𝑆𝐷𝐴 + 𝑇𝑆𝐷𝐵), (4.4) 

 

Where TSDA and TSDB is the total service deficit from two single events, and TSDAB is the total 

service deficit for a consecutive occurrence of the two events. Calculating ΔTSD isolates the 

effect of the consecutive events relative to individual events, and can be used to identify the 

mechanisms by which disruption increases during a consecutive event. This will be shown for 

an example water supply network, but first, the next section introduces the hydraulic model 

used in this study. 

4.3 Model of a water distribution system 

The water supply system consists of junctions, tanks, reservoirs, pipes, pumps, and valves, that 

are used to distribute water from a source to the point of demand (Figure 4.3). The system is 

modelled as a pressurised pipe network using a hydraulic model (Trifunovic, 2006). This 

section provides a brief overview of the model used and introduces the key variables for 
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understanding the level of service. Further information can be found in Rossman (2000) and 

Klise et al. (2017).  

 

Figure 4.3 The components and layout of a water distribution network. Water leaves the 

network at junctions based on the demand at that junction. 

 

The elements of the water supply system are represents simply as a network of nodes and links 

(e.g. Klise et al., 2017; Morley & Tricarico, 2008; Muranho et al., 2012; Pathirana, 2010; 

Rossman, 2000). Each link caries some flow qj each node has some pressure pi at a given point 

in time. Other node and link variables vary between elements. A reservoir element represents 

an ‘infinite’ source of water (e.g. a river, groundwater aquifer, or treatment plant). Reservoirs 

have constant water pressure and represent a boundary condition of the model. Junctions are 

nodes that connect pipes. Each junction has some time-varying demand Di(t). Water leaves the 

network through junctions, representing water consumption Ci(t) over time. Tanks are nodes 

that store water. Each tank has a minimum and maximum water level. If water in a tank falls 

below the minimum level, outflow from the tank stops. Similarly, if the tank reaches a 

maximum level, inflow stops. Pipes are links that connect two junctions. As water travels 

through pipes it loses energy due to friction. In contrast, pumps are links that add energy to the 

water. The amount of energy that a pump can add to the water is described by a pump curve. 

The pump curve represents the relation between pressure and flow (the higher the flow rate, 
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the less energy the pump can add to the water). Valves are links that can be used to regulate 

flow or pressure.  

Flow in the network is governed by the conservation of mass (i.e. all water that enters the 

system must either leave or accumulate within the system), and conservation of energy (i.e. all 

changes in energy of the water are accounted for through friction loss or pumping). The energy 

of the water, or total head H, consists of three components, its potential energy (due to height), 

its pressure energy, and its kinetic energy: 

𝐻𝑖 = 𝑧𝑖  +  
𝑝𝑖
𝜌𝑔

+
𝑣2

2𝑔
  (4.5) 

where Hi is the total head at a given node, zi is the elevation of the water at the node (m), pi is 

the gauge water pressure at the node (Pa), ρ is the water density (kg/m3), g is the acceleration 

of gravity (m/s2), and v is the flow velocity (m/s2). The sum of the potential and pressure energy, 

the first two terms in Equation (6.3), is referred to as the hydraulic (or piezometric) head 

(Trifunovic, 2006). The hydraulic head is expressed in units of metres equivalent water height. 

Hydraulic head determines the direction of flow. Water flows through the network from nodes 

with the greatest hydraulic head, to node with lower hydraulic head.  

Inputs to the model include the network topology, node elevations, and component 

characteristics (e.g. tank diameter, pipe diameter, pipe roughness). The model computes the 

flows and nodal pressures at each timestep. Simulation over time consists in solving the 

pressure and flows that meet the conservation of mass and conservation of energy requirement  

at consecutive timesteps. Controls can be used to define the behaviour of pumps and valves 

based on tank levels. For example, a pump could be switched on when levels in a corresponding 

tank reach some level, or pressure, pi (as water in the tanks is assumed to be static, the pressure 

pi at tank nodes is equivalent to the water level). 
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4.3.1 Demand-driven and pressure-driven modelling 

There are several freely available hydraulic models of water supply systems (e.g. Rossman, 

2000; Klise et al., 2017). Models can be grouping into demand-driven, and pressure-driven 

models. Demand-driven models treat the outflow at junctions as constant (i.e. a boundary 

condition) (e.g. Rossman, 2000). In other words, the consumption Ci(t) at nodes is assumed to 

always be equal to the time-varying demand Di(t) at the node. This approach is suitable when 

modelling a network that operates under normal conditions where demand is always met (Klise 

et al., 2017). However, demand-driven models cannot represent changes in outflow (i.e. 

supply) due to hazard damage (e.g. leaking pipes, damage to pumping stations). Yet when a 

hazard occurs, the network is often unable to supply the necessary volume of water. In such 

cases, an alternative approach has been proposed, referred to as ‘pressure-driven’ modelling. 

In a pressure-driven model, the extent to which outflow Ci(t) meets demand Di(t) at each 

junction depends on the available pressure at the junction.  

There are several different pressure driven hydraulic models including EPANETpdd (Morley 

et al., 2008), WaterNetGen (Muranho et al., 2012), and the Water Network Tool for Resilience 

(WNTR) (Klise et al., 2017). The Water Network Tool for Resilience (WNTR, pronounced 

‘winter’) is a hydraulic model provided by the US Environment Protection Agency (US EPA) 

for analysing how water supply systems respond to various hazards (Klise et al., 2017). WNTR 

is selected for this study, as it provides easy to use methods for adding damage to the network 

(leaks and pump outage), and is implemented in Python which makes it highly flexible for 

carrying out a probabilistic analysis (Klise et al., 2017). The WNTR simulation engine is based 

on the conservation of mass and head-loss equations from Rossman (2000). The conservation 

of mass at each node i is represented through: 



Chapter 4. Modelling disruption to water supply from a consecutive earthquake and cyclone 

 

 

 

81 

∑ 𝑞𝑖𝑗
𝑗∈𝑀𝑖

− 𝐶𝑖  = 0 (4.6) 

 

where Mi is the set of pipes connected to node i, qj,i is the flow rate of water to node i from pipe 

j, and Ci is the water being consumed (i.e. leaving the network) at node i. The head-loss (or 

friction loss) hL through a pipe between two nodes is calculated using the Hazen-Williams 

formula: 

ℎ𝐿,𝑗 =  10.667 𝑐𝑗
−1.852𝑑𝑗

−4.871𝐿𝑗𝑞𝑗
1.852 (4.7) 

  

where cj is the Hazen-Williams roughness coefficient of the pipe, Lj is the pipe length (in m), 

dj is the diameter of the pipe (in m), and qj is the flow through the pipe (in m3/s). WNTR uses 

a reformulation of Equation (6.2) to allow the calculation of negative flow rates (Klise et al., 

2017). The roughness coefficient depends on pipe material and age. Pressure driven demand in 

WNTR is solved using (Wagner et al., 1988): 

𝐶𝑖 = 

{
 
 

 
 

0             𝑝𝑖 ≤  0

𝐷𝑖√
𝑝𝑖
𝑃𝑓
     0 <  𝑝𝑖 < 𝑃𝑓

      𝐷𝑖             𝑝𝑖 ≥ 𝑃𝑓

  (4.8) 

  

where Ci is the actual flow of water being consumed at a node (m3/s), Di is the water demand 

at node i (m3/s), pi is the pressure at node i (Pa), and Pf is a threshold pressure at which full 

demand is considered to be met (Pa). Node demand decreases when pressure at the node falls 

below Pf and reaches zero when pressure falls to zero. P  is set to 15 metres in this study. WNTR 

solves the system of simultaneous equations (4.6) to (4.8) at each timestep using a Newton-
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Raphson algorithm (Klise et al., 2017). Note that the model assumes steady uniform flow at 

each timestep.  

In this study, the model is run in pressure-driven mode using a timestep Δt of 5 mins. The 

model recalculates flow, nodal pressure, and nodal demand at each timestep.  A value of Δt of 

5 mins is found to provide a good balance between accuracy and computational time. Reducing 

the timestep makes a negligible difference to the calculated values of flow and pressure, but 

increasing the timestep introduces some deviation in the results. If a tank empties between two 

timesteps, or if a time based control changes pump operations between two timesteps, the 

model automatically reduces the timestep. 

4.3.2 Modelling damage to components 

WNTR includes methods for adding pipe leaks and pump outage to a network. WNTR models 

pipe leaks by splitting a pipe into two separate pipe sections at the midpoint and adding a new 

junction (see Figure 4.5). The rate of leakage Dleak (in m3/s) at the new junction is a function 

of the pressure at the junction, calculated using (Crowl & Louvar, 2001): 

𝐷𝑙𝑒𝑎𝑘,𝑖  = 𝐶𝑑 × 𝐴𝑖  × 𝑝𝑖
𝛼 ×√

2

𝜌
 (4.9) 

 

where Cd is the discharge coefficient (unitless), Ai is the area of the hole (m2), pi is the pressure 

inside the pipe (Pa), α is another discharge coefficient, and ρ is the density of the fluid. The 

coefficients Cd and α are influenced by the flow regime, pipe material, and orifice shape (Klise 

et al., 2017). The default values of Cd and α included in WNTR are used in this study (0.75 and 

0.5 respectively, corresponding to large leaks out of steel pipes). Note that pressure-dependent 

leak demand Dleak is different to pressure-dependent consumption Ci. An important difference 
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is that Dleak is unbounded, and continues to increase with pressure. On the other hand, Ci does 

not increase beyond Di (see Figure 4.2). Leak repairs are modelled by removing the demand 

node and replacing the two pipe sections with the original unbroken pipe.  

 

Figure 4.2 A comparison between leak demand Dleak and pressure-driven water 

consumption Ci at a node. (a) shows the variation in leak demand Dleak with node pressure 

for different leak areas Ai.  (b) shows the variation in pressure-driven consumption Ci 

with node pressure pi for different levels of demand Di. Leak demand is unbounded and 

continues to increase with pressure, while consumption Ci has a maximum value 

equivalent to the nodal demand Di at a given timestep. Pressure head corresponds to pi  / 

(ρg). 

The method for applying pipe leaks is also applied to model leakage from tanks. For tanks, 

slight changes are made to the network layout before applying the tank leaks. As shown in 

Figure 4.5 (b), before running the simulation, a junction (with demand equal to zero and 

elevation equal to that of the tank) is added next to the tank. The original pipe connecting the 

tank to the network is replaced with two pipes, one connecting the new node to the tank, and 

the other leading from the new node to the rest of the network. The same is done for all tanks 

in the network prior to modelling the hazard scenario (WNTR makes it possible to automate 
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the process of adding and changing network elements). If the tank is damaged in a simulation, 

a pipe leak is applied to the new pipe.  

 

Figure 4.5 Adding leakage to (a) pipes and (b) tanks, and (c) adding bypass pumps to 

model pump outage. 

 

Pumps can be switched on or off automatically throughout the simulation using controls. 

Controls are rules included in the model that change the pump status at a specified time, or 

depending on a specified value (e.g. a control could switch on a pump if tank levels fall below 

a specified level). WNTR models pump outage using these controls. Given the start and end 

time of the outage for a selected pump, WNTR adds two new time based controls to the pump 

(the added controls have priority over any previous controls at the pump). The first control 

shuts down the pump at the specified start time of the outage, and the second control restarts 

the pump at the end of the outage. The pump then resumes operating as normal, including 

responding to any pre-existing controls. 
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When a pump is shut down, no flow passes through the pump. Therefore, if the pump is the 

only connection between two parts of the network, pump shut down was found to cause 

problems with model convergence. To overcome this, a ‘bypass pipe’ was added alongside 

each pumping station as shown in Figure 4.5 (c). Note that a ‘pumping stations’ is used to refer 

to two or more pumps in parallel at the same location. The bypass pipe includes a no-return 

valve to ensure flow only occurs in the direction of pumping. The diameter of the bypass pipe 

is set to the largest of the diameters of the pipes that it connects to (on either side of the pumping 

station), and the roughness value of the pipe is set to the average of the connecting pipes. The 

bypass pipe enables flow of water, without adding any energy to the water. For the modelled 

case study scenario, the addition of the bypass pipe was found to significantly improve model 

convergence (convergence increased from approximately 50% of simulations to more than 

95%).  

4.4 Modelling earthquake damage and restoration 

Multiple studies of earthquake damage and restoration to water supply networks can be found 

in the literature (e.g. Chang et al., 2002; Guidotti et al., 2016; Isoyama et al., 2000; Klise et al., 

2017; Tabucchi et al., 2010). The damage caused by a specific earthquake event (i.e. an 

earthquake of specific type, magnitude, and location) to a water supply system depends on 

many uncertain factors. There are uncertainties in earthquake attenuation, geological 

conditions, pipe age and material and other factors that influence damage. Damage from an 

event is therefore generally represented probabilistically, as a probability of an element 

exceeding a given damage state (FEMA, 2003). Determining the probability of damage of 

components is done by calculating earthquake ground motion at the component, identifying 

different component damage states, and using component fragility functions for each damage 

state. Each step is described in more detail in sub-sections 4.4.1 to 4.4.3. Each component will 
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have one value of probability for each damage state. Typically, components will have a lower 

probability of reaching a higher damage state. 

To model the effect of the damage on service, the probabilities need to be coupled with the 

physically-based model presented in Section 4.3. This can be done by generating multiple 

equally likely instances of damage. To generate an instance of damage, random numbers ak  

between 0 and 1 are generated for all components k (nodes and links) in the network. Each 

random number is compared to the component probability values PDSx,k of exceeding each 

damage state of that component. If PDSx,k is greater than ak, the component is considered to be 

in the corresponding damage state. Each component is assigned the greatest damage state 

whose probability is exceeded. Each instance of damage will therefore consist of one damage 

state value (this includes DS0, no damage) for each component. Components with higher 

probabilities of failure will tend to be damaged more often and more severely across multiple 

‘instances’ of damage. 

A specific instance of damage (consisting of a set of damage state values DSk for all 

components) can then be represented in the model as described in Section 4.3.2. Running a 

simulation on the damaged system provides service levels over time for the specific instance 

of damage. Repeating this process across multiple instances of damage provides insights into 

the probable time-varying service levels. 

The restoration time for a given scenario will depend on the amount of damage, as well as on 

the number of repair teams available (Tabucchi et al., 2010). Restoration time is calculated in 

this study based on the component damage and number of repair teams, using a resource-

constraint approach (Section 4.4.4). Damage states and probabilities of damage, as well as pipe 

repair times are based on values from the Federal Emergency Management Agency (FEMA, 
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2003). The model representation of damage states and the repair times for tanks and pumping 

stations is based on Klise et al. (2017). 

4.4.1 Earthquake attenuation 

Earthquake effects include ground shaking as well as permanent ground displacement such as 

lateral spread, liquefaction, or landslides. Depending on soil type, liquefaction can occur over 

large areas and is a significant concern for water supply pipes (Eidinger, 2012). Therefore, both 

ground shaking and liquefaction effects are represented in the model. The probability of tank 

and pumping station damage is calculated from peak ground acceleration (PGA), while the 

probability of pipe damage is calculated from both peak ground velocity (PGV) and peak 

ground displacement (PGD) (FEMA, 2003). Therefore, estimates of all three ground motion 

parameters are needed.  

The ground motion prediction equation by Campbell and Bozorgnia (2008) is selected for this 

study, as it provides consistent and widely applicable equations (based on data collected 

worldwide) to calculate the values of all three parameters, PGA, PGV and PGD (Douglas, 

2014). The variation in ground motion Y with distance from the epicentre is calculated using: 

𝑙𝑛(𝑌)  =  𝑐0 + 𝑐1𝑀 + (𝑐4 + 0.17 𝑀) ×  ln√𝑅𝑅𝑈𝑃
2 + 𝑐62 + 𝑓𝑠𝑖𝑡𝑒 (4.10) 

 

𝑓𝑠𝑖𝑡𝑒  =  𝑐10 × ln (
𝑉𝑠30

𝑘1
)

+ 𝑘2 (ln (𝐴1100 + 1.88 (
𝑉𝑠30

𝑘1
)
1.18

) − ln(𝐴1100 +  1.88)), 

(4.11) 

where Y corresponds to PGA, PGV, or PGD depending on the coefficient values selected from 

Table 4.1. RRUP is the closest distance to the co-seismic fault rupture  (km), Vs30 is the average 



Chapter 4. Modelling disruption to water supply from a consecutive earthquake and cyclone 

 

 

 

88 

shear wave velocity in the top 30 metres of the site (m/s), and A1100 is the peak ground 

acceleration (m/s2) on reference rock conditions (i.e. Vs30 = 1100 m/s). The form of the 

equation shown applies to a magnitude 5.5, strike-slip (rake angle of 0 and dip angle of 90 

degrees), shallow crustal earthquake. Other parameter values implicit in Equation 4.10 include 

a depth to the co-seismic rupture of 10 km and a sediment depth of 2 km. Equation 4.10 only 

applies for values of Vs30 up to 400 m/s. To calculate the reference PGA value A1100 

corresponding to a Vs30 value of 1100 m/s, the following simplification of Equation (4.11) is 

used: 

𝑓𝑠𝑖𝑡𝑒  =  (𝑐10 + 1.18 𝑘2) ln (
𝑉𝑠30

𝑘1
) (4.12) 

where Vs30 is set to 1100 m/s. The various parameter values are selected based on average or 

recommended values in Campbell and Bozorgnia (2008). The aleatory uncertainty in ground 

motion is not included in the model. 

Table 4.1 Parameter values for Equations 4.10 – 4.12 from Campbell and Bozorgnia 

(2008). 

 c0 C1 C4 C6 C10 K1 K2 

PGA -1.715 0.500 -2.118 5.60 1.058 864 -1.186 

PGV 0.954 0.696 -2.016 4.00 1.694 400 -1.955 

PGD -5270 1.600 -2.000 4.00 -0.820 400 0.000 

 

4.4.2 Damage states 

Earthquake damage to components is represented through several damage states (FEMA, 

2003). The focus in this study is on estimating the functionality of the system after the hazard 

event, rather than calculating the damage itself and the associated cost of repairs. Therefore, 

only damage states that correspond to a loss of system functionality are included in the model. 
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In total, two damage states for pumping stations, three damage states for pipes, and four damage 

states for tanks are considered in the study (Table 4.2).  

Table 4.2 The earthquake damage states included in this study, based on FEMA (2003). 

The model representation of earthquake damage states is based on Klise et al. (2017). 

Component Damage 

state 

Description Model representation in this 

study 

Pumping 

station 

DS0 None No damage 

DS1 Malfunction for a short time 

(less than three days) due to 

loss of electric power and 

backup power if any, or slight 

damage to buildings 

Shut-down (no flow through 

pump) 

Pipe DS0 None No damage 

DS1 Small leak due to ground 

shaking 

Leak diameter between 1 and 

5 cm* 

DS2 Large leak due to liquefaction Leak diameter between 5 and 

15 cm (only in liquefaction-

prone areas)* 

Tank DS0 None No damage 

DS1 Considerable damage with 

only minor loss of content 

Leak diameter of 10 cm 

DS2 Severe damage, tank going out 

of service 

Leak diameter of 30 cm 

DS3 Tank collapsing and losing all 

of its content 

Leak diameter of 100 cm 

* The model representation of pipe damage is a simplification of the damage observed during 

actual events. In practice, leaks can vary widely in shape and size, depending on factors such as 

pipe diameter, pipe material, type of joint, or soil conditions. Both ground shaking and liquefaction 

could result in catastrophic leakage beyond what is represented here. 

 

Table 4.2 gives the description of each of the selected damage states provided by FEMA, and 

the corresponding representation in the model. Where a range of leak diameters is provided 

(i.e. for pipes), the leak is sampled from a uniform distribution. Note that damage states are 

provided for pumping stations rather than individual pipes. A single damage state is therefore 

used to represent the functionality of all pumps at the same pumping station in the model (i.e. 
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all pumps that work in parallel at the same location). Note also that DS2 for pipes only occurs 

in liquefaction prone areas.  

4.4.3 Probability of reaching a damage state 

The probability of components reaching a given damage state is determined using fragility 

functions provided by FEMA. The fragility functions are based on damage inventories of past 

earthquake events and on expert elicitation (FEMA, 2003).  

The probability of pipe damage is represented by an expected number of pipe failures per unit 

length of pipe. The expected number of small leaks per unit length of pipe is calculated based 

on PGV, using: 

𝑅𝐷𝑆1  = 0.0001 × 𝑃𝐺𝑉
 2.25, (4.13) 

 

where PGV is the peak ground velocity in cm/s at the midpoint of the pipe. The number of 

large leaks (DS2) per unit length of pipe is calculated based on PGD, using: 

𝑅𝐷𝑆2  = 𝑃𝑙𝑖𝑞𝑢  ×  𝑃𝐺𝐷
 0.56, (4.14) 

 

where PGD is the peak ground displacement at the mid-point of the pipe (in inches), and PL is 

the probability (between 0 and 1) of liquefaction occurring. The value PL depends on peak 

ground acceleration, earthquake magnitude, liquefaction susceptibility, and the depth to 

groundwater, and is calculated using the corresponding functions in FEMA. No correction 

factor is applied for depth to groundwater, equivalent to assuming a default depth of 1.5 metres. 

The probability of a given pipe being damaged can then be determined using: 
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𝑃𝐷𝑆 =  1 − 𝑒
 − 𝑅𝐷𝑆 × 𝐿 ,  (4.15) 

 

where PDS is the probability of the pipe reaching a given damage state, L is the length of the 

pipe in kilometres, and RDS is the expected number of repairs per kilometre for the 

corresponding damage state. Note that the equation corresponds to modelling failures as a 

Poisson process with mean failure rate RDS × L. 

FEMA provides fragility curves for different types of tanks and pumping stations (buried, on-

ground or elevated tanks, different tank materials, and pumping stations of different sizes). The 

parameters of fragility curves for on-ground steel tanks, and for small pumping stations are 

shown in Table 4.3 (these are used in the modelled case study). Different fragility curves are 

used to distinguish between unanchored tanks or pumping station sub-components, 

representing the baseline case with no mitigation, and anchored tanks and pumping station sub-

components. 

Table 4.3 Median and beta parameters for the lognormal probability curves FEMA 

(2003).  

Component Damage state Probability 

Median Beta 

Unanchored (without mitigation) 

Pumping station DS1 0.15 0.70 

Tank DS1 0.35 0.75 

DS2 0.68 0.75 

DS3 0.95 0.70 

Anchored (with mitigation) 

Pumping station DS1 0.15 0.70 

Tank DS1 0.35 0.75 

DS2 0.68 0.75 

DS3 0.95 0.70 
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Figure 4.6 Fragility curves plotted from equations FEMA (2003), for (a) 50 metre pipe 

(brittle and ductile material) (b) a 1000 m pipe (brittle and ductile material) (c) pumping 

stations (with and without anchoring) (d) tanks (with and without anchoring). Note the 

different scales on the y-axis.  

 

The lognormal fragility curves corresponding to the parameter values from Table 4.3 can be 

seen in Figure 4.4. Figures 4.4 (a) and (b) shows that the variation in the probabilities of failure 

with peak ground velocity for a 50 metre and a 1000 metre pipe. It can be seen for example 

that the probability of a 50 metre brittle pipe reaching DS2 (i.e. large leak due to ground 

displacement) is 0.1 for a peak ground velocity of 25 m/s, while for a 1000 metre brittle pipe it 
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is 0.9, significantly higher. A value of 0.9 suggests that long pipes in liquefaction zones are 

almost certain to fail at the corresponding peak ground velocity. Also, in Figures 4.4 (c) and 

4.4 (d), the effect of anchoring tanks can be seen to have a far higher effect of functionality 

than the effect of anchoring pumping station sub-components, which is significant when 

interpreting the results.  

4.4.4 Earthquake restoration time 

Restoration times from the earthquake are modelled by running a simple restoration routine. 

The restoration routine takes as inputs the number of workers available, the priority of repairs 

and the time needed for each repair, and returns the end time of each repair. It assigns teams of 

workers to repairs in order of priority until all the repairs are completed. Separate crews are 

assumed to repair pipes, tanks, and pumps, and the time is calculated separately in each case. 

Pipe repairs are prioritised by diameter, starting with larger diameter pipes (Chang et al., 2002; 

FEMA, 2003), and tank and pump station repairs are prioritised by tank capacity and maximum 

flow capacity respectively, with largest capacity components repaired first.  

Table 4.4 Repair time for individual components included in this study. 

Component Type Restoration time (hours)* 

Pumping station Any 8 

Pipe pipe diameter ≤ 300 mm, DS1 4 

pipe diameter ≤ 300 mm, DS2 6 

pipe diameter > 300 mm, DS1 8 

pipe diameter > 300 mm, DS2 12 

Tank Any 12 

* pipe restoration times are based on values used in HAZUS-MH in the US while pump and tank restoration 

times have been suggested for demonstration purposes in Klise et al. (2017). They may not be 

representative of actual restoration times and may not be representative for different parts of the world. 
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A random component is added to the calculated restoration times for each hazard, to represent 

uncertainty in repair times. The random number is sampled from a normal distribution with 

mean zero and standard deviation of one hour. The minimum possible repair time for any 

component is set to two hours.  

4.5 Modelling cyclone damage and restoration 

Cyclones affect urban areas through strong winds, rain, and possible flooding. Many forms of 

damage to water supply systems from the effects of cyclones have been observed. Pipes can be 

damaged when wind uproots trees, or crushed in severely flooded area (Copeland, 2005). 

Elevated water storage tanks can be affected by wind, and on-ground storage tanks can be 

damaged or overturned by flooding (Karamouz et al., 2017). In particular, a major problem for 

water supply during Hurricane Katrina was the loss of power and the lack of backup generators 

(Patterson et al., 2007). Other events have also shown that power outages can be a major cause 

of disruption to water supply during a tropical cyclone, windstorm, or flood event (Klinger & 

Owen Landeg, 2014; Pant et al., 2018). The storm is therefore represented in this study by a 

loss of functionality of the pumping stations due to a power loss. Two cyclone damage states 

are included in the model, as shown in Table 4.5.  

Table 4.5 The cyclone damage states included in this study. 

Component Damage 

state 

Description Model representation in this 

study 

Pumping 

station 

DS0 None No damage 

DS1 Malfunction for a short time 

due to loss of electric power 

and lack of backup power 

Shut-down (no flow through 

pump) 

 

To account for uncertainty in the storm damage to the system, storm impacts are represented 

using the same probabilistic approach as for the earthquake. The probability of pumping station 
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failure is considered to be a function of the wind speed, with greater probability of failure as 

storm intensity increases. The probability could be determined, for a given case study, given 

information about the power network (location of critical components, layout, connection to 

the water system). For example, Dunn et al. (2018) provides functions for the expected number 

of failures per kilometre of overhead electricity cables, and Guidotti et al. (2016) models the 

cascading effects of power on water. These approaches could be used to calculate probability 

of failure values of pumping stations for a given storm intensity. In this study, the storm is 

directly represented by a probability value at each pumping station for the selected hazard 

scenario (Section 4.5.2). 

The time needed to restore power will depend on the amount of damage and the number of 

repair teams available. An expected time needed to restore power could be determined, given 

information about the power network, by using the same resource-constraint model as for the 

earthquake. However, only the expected restoration time E(s) is assumed to be available to 

represent the probable time needed to restore power for the selected hazard scenario. A random 

value sampled from a normal distribution with mean 0 and standard deviation of 1 hour is 

added to E(s) to account for the uncertainty in restoration times within each model run. Note 

that in each model run, the same recovery time is used for all pumping stations (i.e. all pumping 

stations recover at the same time, representing the time when the power is restored). 

4.6 Application to a case study  

The modelling approach is now applied to an example water supply system representative of a 

water supply system for a mid-sized city. The case study is used to demonstrate the potential 

of this approach for assessing the service deficit from consecutive hazards.  
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4.6.1 C-Town 

In this study, the approach is demonstrated on the water supply system of C-Town. The C-

Town water supply system has been used in previous studies for testing expansion strategies 

(Marchi et al., 2014) and assessing resilience (Diao et al., 2016), and is openly available for 

download in EPANET format (Ostfeld et al., 2012). Under normal conditions, the C-Town 

network supplies approximately 15 megalitres per day of water. The population of C-Town is 

estimated at each node based on consumption, using Equation 6.10 (Klise et al., 2017): 

𝑝𝑜𝑝𝑖 = 
∫ 𝐷𝑖(𝑡)
𝑡 = 7 𝑑𝑎𝑦𝑠

𝑡 = 0
𝑑𝑡

𝐷𝑝𝑝𝑑 ×  7
 (6.10) 

  

Where popi is the population at node i, Di(t) is the consumption under normal conditions, or 

demand, at node i (m3/day), and Dppd is the total demand per person per day (m3/day). Dppd is 

assumed to be 0.15 in this study, (i.e. 150 litres per day, which represents an reasonable 

estimate for a city. Amsterdam for example has a consumption of 130 litres per day according 

to Trifunovic (2006). As a result, the population of the town is approximately 100,000 

inhabitants.  

The network consists of 442 pipes, 396 junctions, 7 storage tanks and 11 pumps in total 

distributed at 5 pumping stations. Figure 4.7 shows the C-Town network layout, including the 

location of tanks (T1 to T7) and of pumping stations (S1 to S5). All of the water is supplied 

from a single source to five different pressure zones (Zones 1 to 5). In each zone, the pressure 

is regulated by a specific pumping station and tank(s). The pumps are regulated by controls 

based on water levels in the tanks, switching on when level are low, and switching off when 

the tanks fill up. The demand varies on a daily cycle, with a peak in the morning and evening, 

and low levels overnight. The demand pattern provided in the original file has a resolution of 
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1 hour. As the model is run at a 5 minute timestep, the demand pattern is interpolated (using 

cubic interpolation) to a 5 minute timestep to match the modelling resolution. Detailed 

information on pump operations, daily demand variability, pump and tank capacity and pipe 

characteristics is provided in the original EPANET file available from Ostfeld et al. (2012). 

 

Figure 4.7 The case study water supply network of C-Town. 

 

To model the response of the network to the hazard scenario, assumptions are made regarding 

the susceptibility of pipes to liquefaction, and regarding the number of repair teams. The area 

is assumed to have a moderate susceptibility to liquefaction, which corresponds to 10% of the 

area at risk according to FEMA. In general, liquefaction often occurs in places underlain by 

alluvial deposits such as floodplains (FEMA, 2003). Therefore, the 10% of pipes at the lowest 

elevation are selected as being prone to liquefaction. The pipes prone to liquefaction are shown 

in red in Figure 4.7. Finally, C-Town is assumed to have a total of 6 repair teams available (2 

teams of 4 workers each for repairs to pipes, 2 teams for tank repairs and 2 for repairs to 

pumping stations). 
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4.6.2 Hazard scenario and mitigation measures 

An example consecutive hazard scenario is selected and modelled on the C-Town network. 

The selected scenario is an moderate magnitude earthquake (M = 5.5) within the same week as 

a cyclone. Dunn et al. (2018) analysed the rates of failure of electricity cables due to wind, and 

found that rates of failure increase rapidly as windspeeds exceed 30 m/s. This suggests that a 

power outage could be expected to occur (dependent on the characteristics of the power supply) 

at wind speeds somewhat over 30 m/s, or approximately 100 km/h. Both 100 km/h winds and 

a magnitude 5.5 earthquake can be considered as moderate magnitude events, in terms of the 

expected overall damage on the city. Such events also occur relatively frequently in parts of 

the world, making a consecutive event plausible in the most exposed cities, in particular in 

parts of South East Asia. Activities during the hazards are assumed to resume as normal in the 

city in the modelled scenario, and the water demand is not considered to be affected (i.e. the 

scenario assumes no population movement such as evacuation out of the city or to temporary 

shelters). In this context, loss of water supply and other services could represent the most 

significant impact of the events on the city, through disruption to businesses, possible 

disruption to hospitals, and the lack of fire protection. 

Multiple combinations of the two events are modelled, by randomly sampling the time of 

occurrence of each event. As start times for the events are sampled of the same period, there is 

an equal probability of the earthquake occurring before the cyclone, as of the cyclone occurring 

before the earthquake. The occurrence time of each hazard, t0,A and t0,B  is sampled from a 

uniform distribution between 0 seconds and 432,000 seconds (i.e. over a time interval of 5 

days). After estimating the time to restore the system after the events, the start and end times 

of the simulation are set to ts,0 = 0 and ts,f = 604,800 seconds (i.e. the simulation is run for 7 
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days in model time). In this scenario, running the simulation for seven days ensures that the 

recovery process is captured for all event occurrence times. 

Several standard mitigation measures aimed at reducing earthquake and cyclone impacts, 

respectively, are applied, and their benefits during the combined event is analysed. The 

mitigation measures are applied by modifying the stored failures and rerunning the model. The 

following earthquake mitigation measures are applied: 

• M1-E: Anchoring tanks and anchoring sub-components in pumping stations. This is 

done by changing the fragility functions of the tanks and pumping stations to reflect the 

fragility of anchored components, based on FEMA (2003). 

• M2-E: Changing pipe materials from brittle to ductile. This is done by multiplying the 

repair rates of pipes by a factor of 0.3 (FEMA, 2003). 

• M3-E: Increasing the number of repair teams. This is done by changing the number of 

repair teams from 2 to 5 for the pipes, tanks, and pumping stations, and recalculating 

the restoration time of components with the new number of repair teams. 

• M4-E: Both changing pipe material and anchoring components.  

The following mitigation measures are considered for the cyclone: 

• M5-S: Providing backup power for all pumps at the main pumping station. This is done 

by setting the probability of failure of all pumps at the main pumping station to zero. 

• M6-S: Providing backup power sufficient for operating one pump at each pumping 

station. This is done by setting the probability of failure of the pump with the greatest 

capacity to zero (the backup generators are assumed to not provide any mitigation 

during the earthquake event). 
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The next section presents the results for the baseline and mitigation scenarios, as well as results 

of the analysis aimed to identify the causes of increased disruption. 

4.7 Results 

In total, 5,000 simulations of the scenario are modelled. From the 5,000 simulations, 231 do 

not converge. Non-convergence of hydraulic simulations under damage scenarios has been 

noted before (e.g. Chang et al., 2002; Diao et al., 2016). Results from the non-converged 

simulations are discarded, and the remaining 4,769 simulations are analysed (95% of the total).  

4.7.1 Disruption from single and combined hazards 

First, the impact of the individual events on service is shown. Service curves from all the 

simulations can be seen in Figure 4.8. The figure shows the variation in service from 5 hours 

before the occurrence of the hazard, to 48 hours after the event. Each simulation represents one 

equally probable outcome of each event, with varying numbers and locations of components 

failing. Overall, the results show high variability across simulations, ranging from no disruption 

to more than 70% of the network being without water. Comparing the two events, the 

earthquake is seen to cause more disruption to water supply than the cyclone. This reflects the 

fact that the earthquakes affects all the elements in the system, while the cyclone only affects 

pumping stations. The recovery behaviour is consistent with the model assumptions, namely 

that repairs to the network following the earthquake are carried out gradually, while pumping 

stations all regain power at the same time when the power supply is restored. Also, in 99% of 

simulations, service recovers within 32 hours of the earthquake, and within 12 hours of the 

storm.  
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Figure 4.8 – Service curves for the single hazard earthquake and storm simulations. The 

grey lines represent individual simulations. The xth percentiles are shown (representing 

the service level at a given timestep exceeded in x% of simulations). 

 

Next, the instances of damage seen in Figure 4.8 are rerun (the damage states and failure times 

were previously saved), this time with the two events occurring in the same simulation. The 

two events occur at randomly sampled times within a five day time window. Using this 

approach allows the change in service deficit ΔTSD to be calculated by comparing service loss 

from the single events to that of the consecutive events.  

The output of the simulation gives a total disruption (exceeded in 1% of simulations) of 

probable consecutive events to be 853,034 person-hours. In comparison, the cyclone and 

earthquake caused a disruption of 163,567 and 803,319 person-hours, respectively. The 

disruption from the consecutive event is therefore more than that of the separate events, as  
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Figure 4.9 Example service curves for selected simulations. The hatched areas represent 

the disruption from an independent occurrence of the earthquake (red) and storm (blue), 

and the black line shows the disruption when the events coincide. 
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expected, but less than the sum of the separate events, when comparing averages across many 

equally probable scenarios. However, when analysing the results of individual instances, the 

values of  ΔTSD are seen to vary quite significantly across different equally probable instances 

of the scenario. 

Figure 4.9 compares the loss of service for the earthquake, storm, and coinciding event for nine 

selected instances or cases, numbered 1 to 9. The hatched areas represent the disruption from 

the single hazards occurring individually, and the area above the black line represents the total 

disruption from the coinciding event. ΔTSD is the sum of the hatched areas subtracted from the 

area above the black line. In case 1 for example, the first event occurs 81 hours after the start 

of the simulation, and causes a loss of service (the red hatched area) over approximately half 

of the network. Then, 20 hours later at 101 hours, the second event occurs. When the second 

event occurs on the damaged network, the service level (thick black line) falls below 50%. This 

means that more than 50% of the population loses water supply. On the other hand, the same 

failure occurring on the undamaged network (the blue hatched area) affects service to less than 

20% of the population. Note that cases 2 and 5 show the first event influencing disruption 

during the second event, even though service level has recovered (Davis et al., 2014).  

4.7.2 Analysing the cause of increase in disruption 

Figure 4.10 shows a more detailed look at case 1 in Figure 4.9, and plots the areas of the 

network where service is disrupted across different time steps of the simulation. It can be seen 

from the figure that parts of the network (zones 3 and 4 in particular) are unaffected during the 

single hazard events, but are significantly affected by the coinciding event.  
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Figure 4.10 Spatial view of service disruption over time for one instance of the events, 

including (a) the cyclone, (b) the earthquake, and (c) the coinciding event. 

 

The functionality of specific elements (pumps and tanks) in zones 3 and 4 are analysed in 

Figure 4.11. Different rows show tank and pump levels for each single hazard (rows 1 and 2) 

and for the consecutive event (row 3). The dashed red and blue lines show the hazard event, 

the full black line shows tank levels, and dashed black line shows pumping. The grey line show 

tank levels under normal conditions. The tank in Zone 3 is seen to drain due to damage from 
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the earthquake (row 2). However, this is compensated by an increase in pumping, which 

maintains pressures and ensures supply. During the coinciding event however (row 3), the 

storm affects the pump station and causes both tank levels and pumping to be out of order at 

the same time, explaining the loss of service seen in the network at that time (Figure 4.10). A 

similar dynamic explains the loss of service in zone 4.  

 

Figure 4.11 Tank and pump levels in zones 3 and 4, for case 1. 

 

4.7.3 Explanatory factors for the increase 

Different explanatory factors for the increase are plotted against ΔTSD for all instances of the 

scenario (Figure 4.12). The figure shows that the total disruption from the single hazards (i.e. 
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sum of hatched areas) is not a good predictor for ΔTSD. On the other hand, the storage deficit 

at the time of the second event is a relatively good predictor for ΔTSD. Indeed, large values of 

ΔTSD (including cases 1, 2, and 3 in Figure 4.9) all occur for a storage deficits of 3000 m3 or 

more.  

 

Figure 4.12 Several factors plotted against the change in disruption relative to the sum of 

the single events (ΔTSD), in thousand person-hours (t.p.h.). 

 

A very pronounced pattern can also be seen between ΔTSD and the interval time between the 

two events. ΔTSD is mostly negative for interval times < 5 hours, and is randomly scattered 

about the mean when interval time > 25 hours. However, for interval times between 5 and 25 

hours, ΔTSD tends to be large (disruption is likely to increase significantly). Between 0 and 5 

hours, ΔTSD tends to negative, suggesting that when the two events happen at the same time 

they are likely to affect the same (already affected) elements, and cause less impact overall 



Chapter 4. Modelling disruption to water supply from a consecutive earthquake and cyclone 

 

 

 

107 

than if they happened at different times. A time window can therefore be identified for this 

system during which consequences of a second event would be amplified. The time window 

may be associated with a lag between the time at which damaged tanks drain, and the time 

needed to restore the tanks. However, the results show that large increases in disruption can 

also occur for low deficits, pointing to other sources of vulnerability to the combined hazards. 

4.7.4 Mitigation measures 

The analysis is rerun for each of the mitigation measures M1 to M6. In total, 4,519 simulations 

out of 5,000 converged for all mitigation measures, and for all three of the earthquake, cyclone, 

and consecutive hazard cases. The effect of mitigation on the single hazard events is shown in 

Figure 4.13. Only the hazard being targeted by each mitigation measure is shown, since the 

mitigation measure has no influence on the other hazard (as shown in Table 4.6). In the case of 

the storm, providing backup pumping for one pump at each station avoids all disruption. This 

is because the network is designed to operate successfully under normal conditions with a 

single pump working at each pumping station. The other mitigation strategies all partially help 

to reduce disruption, but their influence on performance varies. Increasing the number of repair 

teams (M3-E) reduces restoration time (exceeded in 1% of cases) from 42 to under 32 hours, 

but does not influence the magnitude of disruption. Changing pipe materials (M2-E), reduces 

both the magnitude and duration of disruption significantly. However, changing pipe material 

of all pipes represents and expensive solution, and would likely only be feasible to implement 

gradually through repair and maintenance cycles. Note that in the case of the earthquake, none 

of the mitigations measures can eliminate disruption altogether. 
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Figure 4.13 Service curves for the single events with different mitigation measures. 

 

Table 4.6 shows the total disruption exceeded in 1% of cases for each mitigation strategy and 

for the single and coinciding events. The effect of the single hazard mitigation measures varies 

in the coinciding event. For example, anchoring (M1-E) causes a bigger reduction during the 

coinciding event than replacing pipes (M2-E), because pump failure is a large contributor to 

increased disruption as shown in Figure 4.11.  

Table 4.6 The total disruption in the case of the storm, earthquake, and coinciding event 

for different mitigation measures. 

Mitigation measure Disruption exceeded in 1% of 

simulations 

Storm Earthquake Coinciding 

- None 163,567 803,319 853,034 

M1-E Anchored tanks and pumps 163,567 748,731 765,759 

M2-E Ductile pipes 163,567 338,462 429,224 

M3-E Increased number of repair teams 163,567 624,865 697,437 

M4-E Ductile pipes and anchored tanks/pumps 163,567 316,818 373,351 

M5-S Backup power station 1 143,546 803,319 851,473 

M6-S Backup power main pump at all stations 0 803,319 803,319 
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4.8 Discussion 

Results for the C-Town water supply system show that loss of service from individual hazards 

cannot be used to predict the loss of service during the consecutive event, as consecutive-event 

loss of service is found to vary from 25% less to over 50% more than the total loss of service 

of the individual events. In some cases, disruption may also extend to places that are not 

affected by either of the single events (Figure 4.10).  

4.8.1 Measuring the change in total service deficit 

The change in total storage deficit is found to be a useful metric for identifying system 

vulnerabilities to the combined events. No significant relationship is found between ΔTSD and 

the total disruption from individual events (Figure 4.12). Instead, for the case of C-Town, a 

relatively good indicator is the total tank storage level at the time of the second event. However, 

disruption also increases in cases of low storage deficit, suggesting that further analysis is 

needed to identify remaining vulnerabilities within the system. More work is also needed to 

understand how these results would translate to other systems, for example systems that are 

less dependent on tanks and pumps to maintain pressures, but may have other characteristics 

that make them vulnerable to combinations of events (e.g. Sitzenfrei et al., 2011).  

4.8.2 Distinguishing three cases of consecutive events 

By stochastically varying the time of occurrence of the two events, a relationship can be seen 

between interval time and change in disruption (Figure 4.10). The relationship can be explained 

in terms of three categories of consecutive events: 

1. The first category is when the second event occurs at the same time or very soon 

after the first event, while the system is damaged, but still has some buffer capacity. 
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Here the second event is likely to affect some parts of the system that are already not 

functioning, therefore adding less disruption. Buffer capacity further helps to maintain 

the level of service while the damage to both systems is repaired. This category of 

events means the impact of the second event is less than it would be under normal 

conditions. 

2. The second category is when the second event occurs some time after the first event, 

while the system has only partly recovered and its buffer capacity is depleted. Here the 

second event might affect the functioning of parts of the system that have just 

recovered, and depleted buffer capacity cannot cover the demand for the additional time 

that the system takes to recover. The overall consequences of the combined event in 

this case are significant. 

3. The third category is when the second event occurs when the system has already 

recovered, and therefore no significant interactions are seen.  

The behaviour of the system through the three stages seems to follow a ‘Mexican hat’ type 

function. Further work is needed to understand the effect of other factors, for example for cases 

when limited resources need to be distributed between the two events for recovery.  

4.8.3 Study limitations 

The model used in this study leaves out a number of processes that could influence the results. 

For example, water demand for firefighting is not modelled, which could increase disruption 

by reducing pressures in parts of the network (FEMA, 2003). The use of valves for isolating 

leaking pipes is also not included, which in turn reduce the amount of pipe leakage (Klise et 

al., 2017). Water demand is also assumed to be the same as under normal conditions. The 

assumption may in this case be reasonable given that a relatively moderate scenario of the 

hazards is modelled, but might not apply to a more extreme event. The impact of the earthquake 
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on smaller service pipes is not included. The model does not consider any obstacles, like debris 

on roads, that could delay the restoration. The study focuses on the ability of the system to 

supply water in sufficient quantity, and does not measure other indicators of disruption to water 

supply, such as pressure or quality requirements (Davis et al., 2014).  

4.9 Conclusions 

This study demonstrates an approach for looking at impacts of consecutive hazards on water 

supply systems, demonstrating it with the example of a consecutive earthquake and cyclone 

event. The two hazards are assumed to occur within a week of each other. Using an example 

water supply system representative of a real system supplying approximately 100,000 

inhabitants (C-Town), the study finds that loss of service from individual hazards cannot be 

used to predict the loss of service during the consecutive event. The consecutive-event loss of 

service is found to vary from -25% to +50% relative to the total loss of service of the individual 

events. By stochastically modelling instances of the two events occurring over a five day time 

window, the study also identified three different categories of consecutive events, based on 

interval time between events, that correspond to different categories of system response.  
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Chapter 5. Exposure of roads to flooding and debris 

flow in a case study city in China 

5.1 Introduction 

Multi-hazard studies on engineered systems are often demonstrated in simulated environments, 

and not enough studies apply methods in actual contexts (Ciurean et al., 2018). A likely 

limitation is the difficulty in accessing the relevant data (Ciurean et al., 2018). As a result, there 

is insufficient understanding of the advantages and limitations of assessing multi-hazards in 

practice, and how it could benefit decision making. It is also unclear to what extent proposed 

methods are compatible with data availability. In particular, cities in China are often exposed 

to multiple types of hazards (see Chapter 3) and the economy and urban area are growing at a 

rapid pace, making it essential to integrate multi-hazard information into decision making in 

order to increase the future resilience of these cities. 

The city of Jingdezhen, in Jiangxi province, in the East of China, is used as a case study in this 

chapter. Jingdezhen is located on the Changjiang river, in a mountainous area downstream of 

the Huangshang mountain range. It is a mid-sized but rapidly growing city, famous throughout 

China and beyond for its porcelain (Zhang et al., 2020). The growth of the population and 

economy mean that the consequences hazards on the city, and on other locations relying on 

supplies from Jingdezhen, is likely to increase, as the city is home to several important 

industries and is considered to be an economic hub for the region (Zhang et al., 2020).  

Jingdezhen is known to be highly exposed to river flooding (Wang et al., 2018; Zhang et al., 

2020). The city is built on the Changjiang river, a tributary of the Yangtze river, and a large 
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part of the city lies on the floodplain, resulting in frequent and severe flooding (Wang et al., 

2018). Particularly large floods occurred in 1998 and 2016 (Wang et al., 2018; Zong & Chen, 

2000). Most of the flooding occurs in summer during the rainy season, sometimes driven by 

typhoon rainfall (Hohai University, 2015). Efforts are ongoing to address the flood risk in the 

city. Current ongoing projects include the construction of a dam upstream of the city, and flood 

embankments along the urban portion of the river. Only protection for a 1-in-50 year flood was 

found to be structurally and economically viable in Jingdezhen (Hohai University, 2015). 

Therefore, in addition to structural protection, the city is also applying ‘soft’ and green 

engineering methods to mitigate flooding. A low lying part of the city has been reclaimed and 

converted into a lake that can store incoming flow from the tributaries (Figure 5.1 (d)). The 

city has also worked to increase population awareness of floods (Hohai University, 2015), and 

research is ongoing to assess the flood resilience of the city. In summary, current flood risk in 

Jingdezhen remains high, and the protection measures being built will still leave the city 

vulnerable to flooding, making it necessary to better understand and manage floods when they 

do occur (Zong & Chen, 2000). 

In that context, a multi-hazard approach can contribute to higher preparedness for floods when 

they do happen, by anticipating interactions between floods and other hazards, with potentially 

significant consequences. There is evidence that the city is prone to typhoons. However, local 

information shows limited impacts from wind (Hohai University, 2015), consistent with the 

fact that the city is located inland where the wind speeds are often lower than on the coast. 

Nevertheless, typhoons that travel further inland can bring abundant rain, that, in addition to 

generating river floods, can also cause other hazards, such as surface flooding and slope 

failures. In particular, debris flows could be an important threat to the city. Debris flows are 

seen to occur more often near areas where there has been disturbances to the ground, for 



Chapter 5. Exposure of roads to flooding and debris flow in a case study city in China 

 

 

 

115 

example through construction of new buildings and roads, loading and unloading, and 

deforestation, which are likely consequences of urban expansion activities (Gill & Malamud, 

2017). 

 
 

Figure 5.1 Map of the study area, showing (a) Jiangxi province in China, (b) the location 

of Jingdezhen city between the Huangshan mountains in the North and Poyang Lake in 

the South, (c) the urban area of Jingdezhen, including the location of flood embankments 

and flood storage lakes. The road network is obtained from Open Street Map (Haklay & 

Weber, 2008). 
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Roads are critical for city function (Reiner & McElvaney, 2017), and can be affected by both 

flooding and debris flows, making them a suitable focus for this study. Roads enable access 

between areas of the city, and the performance of the road network under hazards is measured 

based on the increase in average travel time (assuming constant travel speeds). The 

performance of the road network can therefore be affected by events such as traffic accidents, 

congestion, or more severely by the  roads being blocked or damaged by hazards. Reduced 

transport capacity can delay the restoration process, affect the work of emergency and 

healthcare services, and have consequences on the population. 

Therefore, this chapter will analyse the challenges associated with river flooding and debris 

flows on the road network of Jingdezhen, with the aim of better understanding the limitations 

to multi-hazard analysis in practice. Section 5.2 introduces the road network data and the 

method used to measure the functionality of roads at the city scale. Then, Section 5.3 describes 

how hazard scenarios are modelled. The results of the analysis, showing the effects of river 

flood, debris flow, and of their combination, are presented in Section 5.4. Finally, Section 5.5 

discusses the challenges of this study, aiming to draw useful insights for other similar studies.  

5.2 Measuring the performance of the road network 

The study represents the road network as a graph of nodes and links (Section 5.2.1), and uses 

methods from graph theory to understand how its performance decreases when roads (i.e. links) 

become damaged (Section 5.2.2). 

5.2.1 Modelling the roads as a graph of nodes and links 

Data representing the layout of the future road network in Jingdezhen, in spatial georeferenced 

format, is obtained for this study. Specifically, the data obtained shows the road layout that 

aims to be delivered by 2030 based on the urban masterplan. The original data obtained 
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represents the roads and intersections in relative detail using sets of parallel lines as shown in 

Figure 5.2 (a).  

Several processing steps are applied to convert the road data to a graph of nodes and links. 

Nodes represent road intersections, or the points where roads leading out of the city have been 

cut (which are not necessarily intersections), while links correspond to road sections that 

connects two nodes. First, the centreline of each road is obtained using the ArcMap ‘collapse 

double line to centre’ tool, setting a 100 metre maximum distance between lines. The result 

can be seen in Figure 5.1 (b). From this, manual editing is used to simplify intersections into 

single points or node (Figure 5.2 (c)), as well as to smooth out several other aspects of the data. 

For example, roundabouts are converted to a single node, and roads are aligned so that they 

meet at a single point. The network is then checked to ensure that roads are all continuous 

between intersections, and split at intersections (except where one road passes over another 

without possibility to pass from one to the other). A section of motorway that passes through 

the city is also added to the network, as it represents an important link between parts of the city 

and is necessary for understanding the performance, particularly if some of the local roads 

become blocked. The motorway centreline is obtained from open street map (Haklay et al., 

2018) and merged with the network. As the motorway is in fact an overpass that passes over 

other roads, care is taken to only introduce nodes where there is indeed an intersection between 

the motorway and a local road. Motorway intersections are shown as triangles in Figure 5.2 

(e). 

The graph makes several simplifying assumptions about the roads. First, the small roads, used 

mainly by pedestrians and motorbikes, with restricted access for cars, are excluded. Then, the 

road capacity (e.g. number of lanes) and travel speed is assumed to be constant for all of the 

roads. Finally, the roads are all assumed to provide access in both directions.  
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Figure 5.2 Processing the road network. (a) the original data as obtained from Hohai 

University (b) the network after applying the ‘collapse dual lines to centerline’ tool in 

ArcMap (c) intersections to single points, ‘future’ network (d) removing roads not 

complete according to satellite imagery, ‘current’ network. Extent and layout of the (e) 

current and (f) planned Jingdezhen road network. 
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From the graph representing the planned network for 2030, a second graph is generated to 

represent the current road network, to analyse how performance changes between the two. 

Specifically, the current road network is generated by manually removing links from the 2030 

network, based on a comparison between the 2030 network and recent satellite imagery (from 

ESRI World Imagery).  

The ESRI World Imagery layer combines high resolution satellite imagery from multiple 

providers, and while the imagery does not provide an exact date, the information is said to not 

date back more than 5 years. For simplicity, the study assumes that the information corresponds 

to the network in 2020. The satellite images are used to identify the roads that have not yet 

been built, and these are removed after having made a copy of the graph. The graph is then 

edited where necessary to ensure that roads are continuous between intersections, which may 

not be the case where a connecting link has been removed.  

The final processing steps includes projecting the current and future network to a projected 

coordinate system (the UTM 50 N metric projection is used here, corresponding to the part of 

the world where Jingdezhen is located), and calculating the length of each. 

5.2.2 Using graph theory to describe network performance 

Methods from graph theory are frequently used to assess the performance of transport networks 

(e.g. Hu et al., 2016; Pregnolato et al., 2016). Here, two metrics from graph theory are selected 

to represent performance of the roads in Jingdezhen under alternative hazard scenarios.  

The first metric used is the network efficiency (Bozza et al., 2016; Hu et al., 2016). Network 

efficiency refers to the travel distance between nodes in the network, and is calculated as: 
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𝜂 =  ∑∑𝑤𝑖𝑤𝑗
1

𝑑𝑖𝑗
,

𝑁

𝑗

𝑁

𝑖

 (5.1) 

where 𝜂 is the efficiency of the network, 𝑤𝑖 and 𝑤𝑗 is the weight applied to nodes i and j, and 

dij is the shortest distance between nodes i and j. Weights allow nodes to be given more 

importance in the analysis, for example reflecting differences in population density, or 

highlighting important locations (e.g. hospitals, schools). However, in this study, all nodes are 

assumed to have equal importance and are assigned an equal weight (w = 1). Fu et al. (2015) 

previously showed a strong correlation between population density and road intersection 

density, suggesting that each road intersection, despite their varying catchment area, may serve 

a similar total population. To compare networks of different sizes (in this case the current and 

future network), the efficiency is then normalised using: 

𝐹 =  
𝜂

𝜂0
, (5.2) 

where F is the functionality of the network under a given hazard scenario, 𝜂 is the efficiency 

of the network given the occurrence of a hazard, and 𝜂0 is the efficiency of the undamaged 

network. The functionality F takes values between 0 and 1. If F = 0, all roads in the network 

are blocked as a result of the hazard, while if F = 1, all roads are accessible. If pairs of nodes 

are disconnected during a hazard, the distance between them becomes infinite, and the inverse 

of the distance becomes zero.  

The second metric used is road betweenness. Betweenness refers to the likelihood that a road 

is on the shortest path between two nodes (intersections) in the network. Roads with higher 

betweenness serve as (part of) the shortest path between many pairs of nodes, while roads with 

low betweenness are only on the shortest path for a small number of nodes.  Unlike efficiency, 
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betweenness is calculated for each link rather than for the entire graph. The betweenness of a 

link is calculated as: 

𝑏(𝑟)  =  ∑∑
𝜎𝑠𝑡(𝑟)

𝜎𝑠𝑡

𝑁

𝑡=1

𝑁

𝑠=1

, (5.3) 

where 𝑏(𝑟) is the betweenness of link r, 𝜎𝑠𝑡 is the number of shortest paths between nodes s 

and t, and 𝜎𝑠𝑡(𝑟) is the number of shortest paths that pass through a link r. When calculating 

the shortest path, the length of each road section is taken into account. Therefore, there is 

generally a single shortest path between two points, and the fraction inside the summation sign 

is 1 if the shortest path passes along road r, and 0 otherwise. As trips generally prefer taking 

the shortest possible route, betweenness can be used as an estimate of the traffic flow through 

roads (Pregnolato et al., 2016). Damage to roads with higher betweenness, and therefore higher 

traffic flow, is expected to have a higher consequence than damage to roads with low 

betweenness.  

Specifically, the betweenness metric is applied in two different ways, to estimate the flow of 

traffic a) within the city, and b) during an evacuation from the city. To distinguish the flow in 

the two cases, Equation (5.3) is applied to a subset of nodes. Specifically, to estimate the flow 

within the city, nodes s and t in Equation (5.3) are selected from a subset k of all nodes N. The 

set of nodes k represents all nodes, except for those at the end of roads that lead out of the city. 

In contrast, to estimate the flow during an evacuation, values of s are sampled from k, while 

values of t are sampled only from the end of roads that lead out of the city. For illustrative 

purposes, the relative betweenness of roads under normal conditions is shown in Figure 5.3.  
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Figure 5.3 The betweenness of roads for the current (2020) and future (2030) networks, 

for: travel to other parts of the city (daily traffic); leaving the city (evacuation). 

Betweenness values are classified into five levels (very low, low, medium, high, very high) 

based on natural breaks in the data, using ArcMap.   

 

Figure 5.3 shows how the flow of traffic would differ depending on whether roads are being 

used to reach other parts of the city (daily traffic), or to leave the city (evacuation). A daily 

traffic scenario when modelling the hazards means that the population largely remains within 

the city, for example people moving from flooded homes to shelters in the same city during a 

flood. In that case, the roads would be needed for emergency services and healthcare, and may 

also be important for minimising disruption to business and other activities, to reduce wider 

socio-economic impacts. On the other hand, the flow of traffic out of the city is most relevant 
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if the population is required to evacuate, for example if a flood overwhelms the ability of the 

city to provide shelter for the displaced population, requiring people to travel to neighbouring 

cities. Although the two cases are distinguished here, it is also possible that part of the 

population evacuates, and part remains within the city. In general, roads that are more central 

tend to play a higher role (have a higher relative betweenness) for daily traffic, while arteries 

leading out of the city become crucial in the event of an evacuation. Roads with few 

alternatives, particularly bridges that cross the river, have relatively higher betweenness in both 

cases. 

5.3 Modelling hazards 

Hazard scenarios in this study include river flooding and debris flows. Rather than focusing on 

a specific event, the study aims to understand how the performance of the road network is 

affected under incremental hazard magnitudes. Specifically, the performance will be compared 

for incremental flood magnitudes, with and without the occurrence of debris flows. River 

flooding is modelled at the city scale using a two-dimensional hydrodynamic model (Section 

5.3.1), while debris flows are modelled using a distributed, empirical model for regional 

susceptibility assessment (Section 5.3.2). 

5.3.1 River flooding 

To model river flooding, synthetic flood hydrographs are generated for a 20-, 50-, and 100- 

year return period flood, based on a time series of peak flows for the period 1952-2010, shown 

in Figure 5.4 (a). The return period of each flow is calculated using the Weibull formula (Shaw 

et al., 2010): 

𝑇 =  
1

𝑃
=
𝑁 + 1

𝑅
, (5.4) 
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where P is the annual probability of occurrence, R is the rank of the flow (largest value has R 

= 1 and smallest value has R = N), and N is the total number of points in the time series of 

annual maxima. Given N = 58 years in Jingdezhen, the largest flow to occur in the time series 

will have a rank of 1, and a return period of (58 + 1) / 1 = 59 years, while the smallest value 

will have a rank of (58 + 1) / 58 = 1 year. Then, a Gumbel extreme value distribution is fitted 

to the data (Shaw et al., 2010). From the Gumbel distribution it is possible to read the peak 

flows at the return periods of interest. Peak flows for a 5-, 10-, 20-, 50-, and 100-year return 

period in Jingdezhen city are large relative to river flow in the UK, and correspond to 5033, 

6045, 7016, 8272 and 9214 m3/s, respectively. Given lack of information regarding the shape 

of the flood hydrograph, a symmetric triangular hydrograph is assumed, as shown in Figure 5.4 

(c). The duration of the flood is based on information about past floods, that are said to typically 

last between 3 and 5 days in Jingdezhen (Hohai University, 2015). Here a 4 day duration is 

assumed.  

 

Figure 5.4 (a) maximum annual river flow in Jingdezhen city from the Changjiang river 

from 1952 to 2010, (b) A Gumbel distribution fitted to the annual maximum flow, (c) 

synthetic flood hydrographs for the 20, 50, and 100 year return period. 

 

The flood hydrographs are then used as input to a the LISFLOOD-FP hydrodynamic model to 

obtain inundation extents (Bates et al., 2013). The model uses a simplified implementation of 
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the shallow water equations to represent the movement of water over a raster grid (Bates et al., 

2010). The movement of water is modelled by considering friction slope, water slope, and local 

acceleration, while convective acceleration is assumed to be negligible. The following shows 

the conservation of momentum equation: 

𝜕𝑄𝑥
𝜕𝑡

+ 𝑔𝐴
𝜕(ℎ + 𝑧)

𝜕𝑥
+
𝑔𝑛2𝑄𝑥

2

𝑅
4
3𝐴

= 0, (5.5) 

where Qx is volumetric flow rate in the x Cartesian direction, A is the cross sectional area of 

flow, h is the water depth, z is the bed elevation, g is the acceleration of gravity, n is the 

Manning friction coefficient, R is the hydraulic radius, t is time and x is the distance in the x 

Cartesian direction. The first term in the equation is the local acceleration, the second is the 

water slope, and the third is the friction slope. Conservation of mass is represented in the model 

as: 

𝜕𝐴

𝜕𝑥
+
𝜕𝑄

𝜕𝑥
= 0. (5.6) 

Rivers are represented as sub-grid channels embedded in the two-dimensional domain (Neal et 

al., 2012). For grid cells that contain a sub-grid channel segment, the flow of water is calculated 

within the cell, both within the channel and in the adjacent floodplain (Bates et al., 2013).  

A 90 metre terrain grid is used in this study for modelling inundation extents, obtained from 

the MERIT DEM (Yamazaki et al., 2019). Computation time on the 90 metre grid is 

approximately 1 minute, but increases to approximately 40 minutes if a 30 metre grid is used 

instead, due to an adaptive time step based on grid size and water depth (Bates et al., 2013). 

Given the need to assess model sensitivity and compute flood extent for multiple scenarios, 

using the 30 metre grid cell is found to be infeasible and the 90 metre grid is used instead.  
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The depth of the channel is calculated by assuming that the maximum channel capacity is 

equivalent to a 1-in-T year flood, and calculating and error term err based on the Manning 

equation: 

𝑒𝑟𝑟 = |
𝐴𝑅

2
3√𝑆

𝑛
 − 𝑄𝑇|, (5.7) 

where A is the cross section area of the channel and R is the hydraulic radius of the channel. 

The channel is assumed to be rectangular, so A = bd and R = bd / (b + 2d), where d is the 

channel depth, and b is the channel width. The error is calculated for values of d between 0 and 

30 metres, and the value that minimises the error is selected. The roughness coefficients for the 

river and floodplain are calibrated through comparison with flood extents from a previous 

modelling study (Hohai University, 2015). Channel roughness values between  0.03 and 0.15, 

and floodplain roughness values between 0.1 and 0.5 are tested (Bates et al., 2013). The 

sensitivity of flood extents to variations in roughness, hydrograph shape, and flood duration, 

are discussed in Section 5.3.1. This study assumes that the channel capacity is equivalent to a 

5-year return period flow. A 5-year return period corresponds to the level of protection before 

the construction of protective measures (Hohai University, 2015). 

Road disruption from flooding is determined by combining information from the raster flood 

extent and the road network data. If a part of a road section overlaps with a flooded grid cell 

with a depth of at least 0.5 metres, the road section is considered to be interrupted. This rule is 

applied for all roads except for the motorway overpass, that passes above other roads and is 

considered to be unaffected by flooding.  
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5.3.2 Debris flows 

The area susceptible to debris flow is modelled using the Flow-R model (Flow path assessment 

of gravitational hazards at a Regional scale) (Horton et al., 2013). Flow-R is a spatially 

distributed empirical model for regional susceptibility assessment of debris flow and freely 

available from https://www.flow-r.org/. Mapping susceptibility to debris flows involves a) 

identifying possible sources of debris flow, b) modelling how the flow propagates from the 

source.  

Sources of debris flow are identified according to terrain slope and water input. Terrain data 

from the 30 metre shuttle radar topography mission is used (Van Zyl, 2001). According to 

Horton et al. (2013), a resolution in the order of 25 metres provides a good balance between 

accuracy and computational time in Flow-R. Slope and flow accumulation is calculated from 

the elevation data using spatial processing tools in ArcMap. A grid cell is identified as a 

potential source if it has a slope of at least 15 degrees (Horton et al., 2013), and if it has the 

following critical combination of slope angle and upslope area (surface area that drains through 

that point): 

𝑡𝑎𝑛(𝛽𝑡ℎ𝑟𝑒𝑠)  =  0.31 𝑆𝑢𝑐𝑎 
−0.15           𝑖𝑓 𝑆𝑢𝑐𝑎 <  2.5 𝑘𝑚2 

𝑡𝑎𝑛(𝛽𝑡ℎ𝑟𝑒𝑠)  =  0.26                           𝑖𝑓 𝑆𝑢𝑐𝑎 ≥  2.5 𝑘𝑚2, 
(5.8) 

 

where βthres is the slope threshold, and Suca is the surface of the upslope contributing area. The 

hilly areas of Jingdezhen are found to consist of sandy or silty material favourable to the 

initiation of debris flows (Nachtergaele et al., 2010). 

https://www.flow-r.org/
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Flow propagation from the source is modelled by Flow-R based on spreading and friction 

algorithms. The Holmgren algorithm determines the degree of spread of the flow, based on a 

spread parameter x: 

𝑝𝑖
𝑓𝑑
= 

(𝑡𝑎𝑛 𝛽𝑖)
𝑥

∑ (𝑡𝑎𝑛𝛽𝑗)𝑥
8
𝑗=1

         ∀ {
𝑡𝑎𝑛 𝛽 >  0
𝑥 𝜖 [1,∞),

 (5.9) 

 

where i, j, are the flow directions, pi
fd is the susceptibility proportion in direction i, tan βi is the 

slope gradient between the central cell and the cell in direction i, and x is the variable exponent. 

When x = 1, the spread is equal in all directions, and as x increases, the spread decreases. As x 

→ ∞ the flow reduces to the single flow direction. A persistence functions reproduces the 

behaviour of inertia, by giving a weight w to the flow direction with respect to the previous 

direction: w = 1.5 for flow in the same direction, w = 1 for flow at 45, 90, and 135 degrees to 

the original flow direction, and w = 0 for flow at 180 degrees (opposite direction) to the 

oncoming flow. These weights are combined with Equation 5.9 and used in the propagation of 

susceptibility from the source. The runout distance is calculated based on frictional laws that 

control the other cells that can be reached. The energy balance is calculated according to: 

𝐸𝑘𝑖𝑛
𝑖 = 𝐸𝑘𝑖𝑛

0 + 𝛥𝐸𝑝𝑜𝑡
𝑖 − 𝐸𝑓

𝑖 , (5.10) 

where 𝐸𝑘𝑖𝑛
𝑖  is the kinetic energy of the cell in direction i, 𝐸𝑘𝑖𝑛

0  is the kinetic energy of the central 

cell, Δ𝐸𝑝𝑜𝑡
𝑖  is the change in potential energy to the cell in direction i, and 𝐸𝑓

𝑖  is the energy lost 

in friction to the cell in direction i. Horton et al. (2013) use the friction model from  Perla 

(1980), corresponding to the solution of the equation of movement, leading to the velocity Vi 

of the flow at the end of the segment i being: 
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𝑉𝑖 = √𝑎𝑖𝜔(1 − 𝑒𝑏𝑖)  +  𝑉0
2𝑒𝑏𝑖 , (5.11) 

with 

𝑎𝑖 =  𝑔(𝑠𝑖𝑛 𝛽𝑖 − µ cos 𝛽𝑖), 

 

𝑏𝑖 = 
−2𝐿𝑖
𝜔

, 

where µ is the friction parameter, 𝜔 is the mass-to-drag ratio, βi is the slope angle of the 

segment, V0 is the velocity at the beginning of the segment, Li is the length of the segment, and 

g is the acceleration due to gravity. The spreading coefficient in Equation (5.9) is set to 4, the 

friction parameter is set to 0.02, and the mass-to-drag ratio is set to 200 (Horton et al., 2011). 

The set of parameter values used is found to maximum debris flow extents and represents a 

worst case scenario. Sensitivity to different parameter values is shown in Section 5.5.2. A road 

section is considered to be exposed to debris flows if it overlaps with a grid cell with a 

susceptibility of at least 0.1. 

5.4 Results 

5.4.1 Network damage 

Figure 5.5 shows the effects of river flooding on the current (2020) and future (2030) road 

networks in Jingdezhen. Figures 5.5 (a) – (f) show the road sections that become inaccessible 

due to flooding (in purple), and the road sections that remain useable (in green), for the 20-, 

50-, and 100-year floods. In Figures 5.5 (g) and (h), the increase in the number of roads flooded 

with increasing river flow can be seen. Figure 5.5 (g) shows that the number of roads affected 

remains approximately constant until a flow rate of 5,000 m3/s. Above 5,000 m3/s, the number 

of flooded roads increases steadily, showing a linear relation with the increase in river flow 
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rate. The results are consistent with expectations, as a flow rate of 5,000 m3/s corresponds to a 

5-year return period flow, which is the flow rate above which the river is assumed to overflow 

its banks, and used to calculate the depth of the channel accordingly. As expected, when the 5-

year flow is exceeded, impacts on the road network start to increase. Figure 5.5 (g) shows that 

more than 150 road sections are flooded in the 100-year flood scenario, while more than 280 

road sections are flooded in the same flood for the future road network. The number of roads 

flooded increases proportionally faster with the same increase in flow rate in the future 

network. However, Figure 5.5 (h) shows that the proportion of road sections flooded, is 

surprisingly constant across the two networks. This suggests that new roads are built evenly 

across both flood prone, and non-flood prone areas. Note that the flood damage in Figure 5.5 

(g) and (h) includes flow up to extreme flow rates. In practice, floods greater than 13,000 m3/s 

have not been recorded at the Changjiang gauging station. Under a hypothetical flood that 

significantly exceeded the maximum recorded flow and reached a flow rate of 15,000 m3/s, 

approximately half of all road sections would be flooded in both the current and future road 

network. 

Looking at the portion of Figures 5.5 (g) and (h) when flow rate is less than the channel capacity 

(i.e. < 5,000 m3/s, and should not yet have overflows the channel), a small and constant number 

of road sections are nevertheless seen to be flooded. The roads flooded before the river 

overflows onto the floodplain include the bridges that cross the river, and a few roads that 

closely follow the river banks. By crossing the river, bridges overlap with flood grid cells, and 

are therefore recorded as flooded, despite flow being contained within the channel. The 

additional roads flooded along the river banks result from the coarse resolution flood grid cells 

within the channel to partly overlap with roads along the river. However, this does not affect 

the part of the graph that is of most interest, when flow exceeds channel capacity. 
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Figure 5.5 Location and number of roads flooded: (a) – (f) show flooding of the current 

(2020) and future (2030) road networks for the 20-, 50-, and 100-year return period 

floods. (g) – (h) show roads flooded for incremental flood magnitudes. 
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Figure 5.6 shows the damage to roads from a maximum plausible debris flow scenario. The 

damage caused by debris flows is far less than the damage due to flooding in terms of the 

number of road sections affected (Figure 5.6). However, several critical road sections appear 

to be susceptible to damage, including one of the main roads leading out of the city towards 

the north (subplot 1). Figure 5.6 (b) also shows that one of the long newly built roads along the 

northern half of the network may be susceptible to debris flows (subplot 2). Severe damage 

could also be caused by debris flow in the south of the city (subplots 3 and 4). There is a 

possibility, according to the model, that debris flows could be deposited into the channel of the 

Nanhe tributary (subplot 3). Deposited material in the river could in turn increase the flood 

risk. However, overall, the debris flow and flood risk are seen to largely occur in different parts 

of the network, with limited direct interaction between the hazards.  

 

Figure 5.6 Damage to roads from debris flows for the current (2020) and future (2030) 

road networks under a worst case debris flow. Subplots 1 – 4 show zooms of four critical 

locations (red squares).  
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5.4.2 Impacts on network performance 

By looking now at the functionality of the road network, this section investigates how the 

hazards affect the functionality of the network. Figure 5.7 shows the betweenness of roads, 

with higher betweenness corresponding to greater use of the road, and lower betweenness 

representing fewer vehicles using the road. The betweenness therefore helps identify the most 

critical roads. Here, the motorway overpass is assumed to remain accessible during flooding, 

due to its elevation above the river. On the other hand, bridges and roads along the river are 

considered to flood when the river overflows its banks. The assumption is based on bridges 

being level with the surrounding roads, rather than elevated above other roads. The sensitivity 

of the results to this assumption is discussed in Section 5.5.2. As bridges become inaccessible 

under all three flood scenarios in the model, the motorway overpass becomes the most critical 

link for transport within the city (Figures 5.7 (a) – (f)). The betweenness of roads evolves with 

the magnitude of the flood scenario. For example, comparing Figure 5.7 (a) and (c), traffic is 

forced to transfer to alternative roads as flood magnitude increases. In particular, the long road 

section in the north of the city is important in the event of a severe flood scenario, for 

connecting the area in the northeast of the city to other parts of the city. Comparing the network 

before and after expansion (Figures 5.7 (a) and (d)), new roads to the west are seen to have 

high betweenness in the flood scenario, showing that these newly built roads provide additional 

redundancy during a flood.  

Figure 5.8 now shows the betweenness for scenarios where both flooding and debris flows 

combine. Figures (a) to (f) assume that the city is able to absorb the disruption, meaning that 

those in the flooded areas are relocated to other parts of the city (e.g. shelters are provided in 

primary schools), and that the most critical services continue to function. Figures (g) to (l) 

assume that the population evacuates from the city to shelter in neighbouring cities.  
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Figure 5.7 The betweenness of road sections in the current (2020) and future (2030) road 

network, for the 20-, 50-, and 100-year floods. (a) – (f) show the betweenness of roads 

under a scenario where the population remains in the city, and (g) – (l) show the 

betweenness for an evacuation scenarios. 
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Figure 5.8 The betweenness of road sections in the current (2020) and future (2030) road 

network, for the 20-, 50-, and 100-year floods, combined with debris flow. (a) – (f) show 

the betweenness of roads under a scenario where the population remains in the city, and 

(g) – (l) show the betweenness for an evacuation scenarios. 
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By comparing Figure 5.7 and Figure 5.8, the influence of debris flows on accessibility can be 

seen. Overall, the debris flows have a higher influence on accessibility in the case of an 

evacuation (Figures 5.7 and 5.8 (g) to (l)), than on travel within the city (Figures 5.7 and 5.8 

(a) to (f)), as  it mostly blocks roads at the edges of the city (including some of the roads leading 

out of the city).  

Under the flood only scenario, exit roads all have comparable betweenness. However when 

some of those roads become blocked in the debris flow scenario, betweenness is highest on the 

roads that remain accessible, towards the east, west, and north of the city. Figures 5.7 and 5.8 

also show that in all the cases, the motorway remains critical for accessibility, including during 

evacuation where it provides the shortest path for leaving the city from certain areas. Overall, 

the betweenness provides a picture of how the flow of traffic varies with road damage, and 

depending on whether the population evacuates or stays within the city. The next section 

quantifies the influence of the hazards by calculating the efficiency of the network under 

incremental flood magnitudes. 

Figure 5.9 shows how the efficiency of the network changes for incremental flood magnitudes. 

The efficiency is approximately constant up to 5000 m3/s, and then decreases linearly with flow 

rate, in both the current and future network. Overall, the efficiency of the 2030 network is 

higher than that of the 2020 network across all floods. Also, efficiency decreases slower in the 

2030 network than in the 2020 network. Figure 5.9 (b) compares the efficiency with and 

without the occurrence of debris flows. The debris flows have almost no influence on efficiency 

in the 2020 network, while they cause a noticeable loss of efficiency in the 2030 network. 

Interestingly, the loss of efficiency due to debris flows is greatest when the effects of flooding 

are limited (i.e. at low flow rates), and becomes smaller under higher flood scenarios. 
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Figure 5.9 (a) The efficiency of the road network under incremental flood magnitudes, 

and (b) the efficiency of the road network under incremental flood magnitudes both 

without and with debris flows. 

 

5.5 Discussion 

The results show that both betweenness and efficiency provide interesting and potentially 

valuable ways of quantifying the effects of hazards on infrastructure. Both can also be used to 

look at the combined effects of hazards on the network. This section discusses some of the 

limitations and challenges identified in this study, and opportunities for future work. 

5.5.1 Data availability 

Limited local information was available for this study, both about the infrastructure and about 

the hazards. The local data available included the layout of the future road network and a time 

series of annual maximum river flows. The data was supplemented with additional data 

sources, including digital elevation models (DEMs) from the Shuttle Radar Topography 

Mission (SRTM), the ESRI World Imagery satellite imagery, and Baidu maps (the Chinese 



Chapter 5. Exposure of roads to flooding and debris flow in a case study city in China 

 

 

 

138 

Google Maps). Specifically, both 30 m and 90 m products from the SRTM DEM were used. 

The 90 m DEM from Yamazaki et al. (2019) has greater vertical precision, and allows a 

reasonable run time for the flood model, while the 30 m DEM from NASA Earthdata provides 

higher horizontal precision and is suitable for modelling the debris flows. The ESRI World 

Imagery was used to determine the extent of the current road network, and Baidu maps was 

found to be useful for gathering information at street level on the elevation and characteristics 

of the roads. Model parameters for the hazards were determined by making reasonable 

assumptions, informed by previous studies using the models. 

Road data was easier to obtain than other types of infrastructure data, which is likely to also be 

true in other areas (Barrington-Leigh & Millard-Ball, 2017). Figure 5.9 for examples compares 

four alternative open sources of road data, including the global Roads Open Access DataSet 

(gROADS) (CIESIN, 2013), the Global Roads Inventory Project (GRIP) (Meijer et al., 2018), 

and Open Street Map (OSM) (Haklay & Weber, 2008). Many of the current roads are mapped 

in OSM, and GRIP provides a cleaned up version focused on the main roads. For Jingdezhen, 

many of the roads are seen to be mapped in both the GRIP and OSM data, but pre-processing 

and checking of the data would be crucial when using it for analysis. Several pre-processing 

steps were necessary even when using the local road data provided, to convert the network to 

a suitable graph. The quality and format of the data, and the amount of pre-processing required, 

will influence the feasibility of carrying out this type of analysis. Relating city functionality to 

the performance of the road network would be a valuable area for future research. For example, 

Bozza et al. (2016) suggested using artificial neural networks to relate indicators of social well-

being and the performance of urban networks. This idea would be most useful through relating 

the performance to the layout of the road network. However progress in this direction is still in 
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its infancy, and it is still unclear to what extent measurable indicators of social well-being do 

indeed correlate with the condition of infrastructure systems. 

 

Figure 5.9 Road information for Jingdezhen city from three global datasets and local 

data, including (a) the global Roads Open Access DataSet (CIESIN, 2013) (b) the Global 

Roads Inventory Project (Meijer et al., 2018), (c) Open Street Map (Haklay & Weber, 

2008) (d) local data. 

 

Data on other critical infrastructure, including drainage, water supply and electricity, was not 

available in digital format. The drainage network for example is important for determining how 

surface flooding could disrupt road transport (Pregnolato et al., 2016). Other systems like water 

supply and electricity are also critical to enable the population to cope during the hazard. Future 

work could explore the possibility of using emerging datasets that are providing information 

of these systems globally, for example by using machine learning to learn the features of the 

systems in areas where data is available, and extend the same patterns to data scarce areas 

(Arderne et al., 2020). Meanwhile, road data is often the most likely to be available, and the 

performance of roads is a foundation for the functioning of other urban systems (Reiner & 

McElvaney, 2017). 

The extent of flooding is the biggest uncertainty in this analysis. The flood model focuses on 

flows in the main channel, without including the inflow from tributaries. However, while 

approximately 80% of the flow comes from the main channel, 20% is provided by tributaries 
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(assumed based on the upstream catchment area of each). Therefore, the timing of peaks in the 

tributaries and main channel could lead to patterns of flooding that are not captured in our 

model. While local flood maps were not available in digital georeferenced format for analysis, 

they were provided as images (PDF files), allowing a visual comparison of the flood extents 

with those of a previous modelling study. The comparison was used when calibrating the model 

(Figure 5.10).  

 

Figure 5.10 (a), (b), and (c) show the modelled flood scenarios. (d), (e), and (f) show the 

flood extents from a previous modelling study for the same return periods 

 

Figure 5.10 shows a comparison of the three flood scenarios with those from the previous 

modelling study. Overall, discrepancies are largest around the tributaries, suggesting that these 

should be included in future analysis to provide a more accurate picture of the flood extents. 

The flood extents were found to be most sensitive to variations in channel depth, so additional 

channel depth information should improve accuracy. 
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5.5.2 Sensitivity of the results to uncertainties in the data 

A key uncertainty of the analysis relates to the elevation of roads. The road layout data does 

not distinguish different types of roads (e.g. bridge, overpass). Therefore, a simple approach 

where the roads are assumed to be at the same elevation as the terrain results in a complete loss 

of access between urban areas on opposite sides of the river (Figure 5.11 (a)). In practice, the 

motorway that crosses the river can be seen to be elevated relative to other roads (Figures 5.11 

(e) and (f)), and therefore is likely to remain accessible even when other roads become flooded. 

On the other hand, bridges are at the same level as the rest of the roads in the city, except for 

roads directly alongside the river that are much lower than the rest of the city, and pass under 

the bridge (Figure 5.11 (g) – (i)). Therefore, the scenario modelled in this study assumes that 

the motorway remains accessible, while bridges are flooded in the same way as other roads. 

The varying geometry of the channel makes it difficult to determine exactly when the bridges 

would become inaccessible. Instead, sensitivity of the results is assessed for three different 

possibilities. Figure 5.11 (d) compares how efficiency decreases with increasing flow rates for 

the 2030 network, with three different assumptions:  

1. The elevation of all roads is equal to the terrain elevation (red line),  

2. road elevation is equal to terrain elevation except for the motorway which is 

automatically removed from the list of flooded roads in all scenarios (blue line), and 

3. road elevation is equal to terrain elevation except for the motorway and bridges which 

are automatically removed from the list of flooded roads in all scenarios (green line).  

Figure 5.11 shows that efficiency is (nearly) maximum if bridges are accessible, until the 

channel overflows, and then it decreases abruptly. For flow rates above 8000 m3/s, the 

efficiency is equivalent to that of the network with flooded bridges. This is likely because at 

this flow rate, the roads connecting to the bridge become flooded, preventing access to the 
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bridge in the first place. This suggests that even without detailed information about the 

characteristics or height of the bridge, simply considering that the bridge is not flooded can 

produce a reasonable representation of accessibility and traffic during a flood event. 

 

Figure 5.11 The influence of road elevation information on the results. (a) – (c) show the 

betweenness of the 2030 network in a 20-year flood, using three different assumptions: 

(a) all roads are at the same elevation as the ground (b) the motorway is raised above the 

ground, (c) the bridges are raised above the ground. (e) – (i) show pictures of the roads, 

and (d) compares the efficiency using the three assumptions. 

 

Among the parameters studied, flood extents are found to be most sensitivity to the channel 

depth (Figures 5.12 and 5.13). Channel depth is calculated based on the flow rate at which the 

channel starts to overflow. Using this approach, depths of 10.9 m, 13.7 m, and 15.4 m are 
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obtained for a maximum channel capacity equivalent to the 2-, 5-, or 10- year flood, 

respectively. The resulting extent of flooding can be seen to vary significantly, from 39.6 km2 

for a 2-year return period capacity, to 17.9 km2 for a 10-year return period capacity (Figure 

5.12 (a) – (c)). In contrast, less variability can be seen with variations in floodplain roughness 

((d) – (f)) or channel roughness ((g) – (i)). Interestingly, the maximum flood extent is also not 

very sensitive to changes in the duration (Figure 5.13 (a) – (c)) and shape (Figure 5.13 (d) – 

(f)) of the flood hydrograph. 

 

Figure 5.12 Sensitivity of flood extents to the characteristics of the channel. (a) – (c) shows 

variation in the channel capacity, (d) – (f) shows variation in floodplain roughness, (g) – 

(i) shows variation in channel roughness.  
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Figure 5.13 sensitivity of flood extents to the inflow hydrograph. (a) – (c) shows variation 

in flood duration, (d) – (f) shows variation in hydrograph shape. 

 

On the other hand, hazardous areas tend to become smaller when the parameters of the debris 

flow model are varied. In particular, decreasing the mass-to-drag ratio significantly reduces the 

affected area. Figure 5.14 shows the difference between the extreme and maximum parameter 

values used (extreme scenario: M/D = 30, maximum scenario: M/D = 200). The difference 

influences whether certain roads are indeed susceptible or not. The difference has a strong 
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effect on the loss of efficiency, suggesting that the roads that are only damaged in the maximum 

scenario are critical to the efficiency of the network as a whole. 

 

 

Figure 5.14 Sensitivity of the debris flow to mass-to-drag ratio (extreme scenario: M/D = 

30, maximum scenario: M/D = 200), and of the resulting difference in efficiency at the 

network scale. The location of subfigures 1 – 4 relative to the network can be seen in 

Figure 5.6. 
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5.5.3 Towards multi-hazard analysis in practice 

Decision makers may find it relevant and desirable to include additional hazards in the analysis, 

including non-natural hazards (e.g. random accidents or intentional attacks). From a modelling 

point of view, adding both random failures and intentional attack is relatively straight forward 

compared to natural hazards, as it can be done simply using information about the system, 

without requiring knowledge about the natural environment. Random hazards can be modelled 

by stochastically sampling roads to fail, for example, while intentional attack can be modelled 

by identifying and targeting the assets that create the highest disruption, such as the busiest or 

most central road sections. 

To make the results useful in a decision making context, it may also be valuable to provide 

estimates of the probability of occurrence of the hazard scenarios. Debris flows in this analysis 

are represented by a measure of susceptibility (between 0 and 1). This study assumes a worst 

case scenario where all roads with a susceptibility of 0.1 or above are effected. However, it is 

possible that only a subset of those roads may be affected given the same scenario. The debris 

flows are indirectly related to rainfall intensity, based on a relation between slope angle and 

upslope catchment area, that has been empirically observed to be critical for the initiation of 

debris flows in case of a severe rainfall event. Flooding on the other hand is represented 

deterministically for a given channel characteristics and inflow, as a map of flood depths. By 

using different models and units to represent the two hazards, the present analysis is mostly 

suited to understanding how the hazards relate in space, but cannot easily provide information 

on the probability of the events coinciding. To analyse both the consequences and the 

probability of the two hazards, it may be necessary to use an integrated hazard model, such as 

for example OpenLISEM (Bout et al., 2018). 
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5.6 Conclusions 

The study demonstrates an approach for determining the effect of multiple hazards (in this case 

debris flows and river flooding) on the functionality of a city (Jingdezhen city in China). The 

study represents city functionality through the performance of the road network. The study 

aims to explore an important barrier to multi-hazard studies in practice, which are often 

hindered by a lack of data availability (Ciurean et al., 2018). This study demonstrates a method 

for analysing the performance of the road network that can be used with low data availability. 

While the process provides helpful insights into what might happen during a combined hazard 

event, the results are found to be sensitive to both road elevations and hazard parameters. 

However, the approach used helped to identify critical information (e.g. the susceptibility to 

debris flow at specific locations, probability of flooding of road bridges) for further analysis. 
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Chapter 6. Conclusions and recommended future 

work 

6.1 Conclusions 

The overall aim of this thesis was to integrate knowledge of hazards and of urban infrastructure 

systems to contribute towards increasing the resilience of cities to multi-hazard events. 

First, a review of the literature provided a summary of the research on infrastructure resilience 

and multi-hazards (Chapter 2). Then, hazard datasets for five hazards were combined and 

analysed to provide a global overview of exposure of urban areas to combinations of hazards 

(Chapter 3). Two case studies were then carried out at the city scale to better understand the 

consequences of multi-hazard events. The first was a scenario of a consecutive earthquake and 

storm event affecting a water supply system (Chapter 4), and the second was a coinciding river 

flood and debris flow affecting an urban road network, carried out for the city of Jingdezhen in 

China (Chapter 5).  

In summary, the work presented includes three main contributions: (1) it provides a global 

assessment of the hazard exposure of urban infrastructure systems to five different hazards, (2) 

it contributes evidence showing the effect of consecutive hazards on water supply, and (3) it 

provides insights into the practical aspects of addressing multi-hazard risks at the city scale. 

6.1.1 Global hazard exposure 

Lack of awareness of exposure to multiple hazards is a limitation in making cities better 

prepared against multi-hazard events. Previously, studies had shown the total number of 
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different hazards to which a city is exposed, but to increase resilience it is important to also 

distinguish the types of hazards involved.  

This study analyses the exposure of urban infrastructure systems to five hazards (earthquakes, 

cyclone wind, river flooding, coastal flooding, and landslides). The analysis makes use of 

global hazard datasets. Results show that joint exposure to two or more hazards is common 

(overall, 11% of cities are exposed to high levels of two or more hazards, and 45% are exposed 

to low or above levels of two or more hazards), showing the importance of accounting for 

multiple hazards at the city scale. Hazards seen to both affect the same urban areas include 

strong wind and river flooding, strong wind and coastal flooding (particularly in Asia and North 

America), and river and coastal flooding (particularly in Asia and Europe). Interestingly, the 

study also shows that a quarter of cities are exposed to both (low) earthquake hazard and to 

(low) cyclone winds. Evaluation of the data shows higher accuracy for hazards that vary 

gradually over space (i.e. earthquakes and wind), than for hazards that are more localised (i.e. 

river flooding). The study also discusses possible applications of the combined hazard levels 

(COHAZLE) dataset developed. The data could be useful to increase communication between 

professionals (e.g. urban planners, local authorities, engineers, infrastructure service providers) 

across cities with similar multi-hazard profiles. The study demonstrates a short example of this 

for the city of Bristol.  

6.1.2 Consecutive impacts to water supply 

Studies of performance of infrastructure systems under damage has been mostly focused on 

single hazard events. While there are concerns that the consequences of a combined event can 

be more than the sum, evidence of this is scarce. There is therefore limited evidence that would 

justify carrying out this kind of assessments in practice. 
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This study models a consecutive hazard event, where an earthquake and storm occur within 

hours or days of each other. To account for uncertainty in the damage caused by each event, as 

well as uncertainty in the relative timing of occurrence of each event, a Monte Carlo simulation 

approach is used. Specifically, a procedure is demonstrated for monitoring the change in 

disruption relative to the two events occurring individually. The approach makes it possible to 

investigate the causes of increased disruption. The results are analysed to identify 

characteristics of the system that make it uniquely vulnerable to a consecutive occurrence of 

the two events. The approach is applied and demonstrated with an example water supply system 

representative of a typical system supplying water to a small town. The study finds that the 

relative timing of events had a strong influence on the increase in consequences. The model 

produces similar response patterns both when the earthquake is followed by the storm, and 

when the storm is followed by the earthquake. Specifically, results show that shortly after the 

first hazard, the occurrence of the second event does not increase disruption; in fact, overall 

disruption is less, as the effect of the second hazard is ‘absorbed’ into that already present due 

to the first hazard. However, a time window is identified (in this case between approximately 

5 and 25 hours after the first event) when the system is particularly vulnerable to the second 

event, meaning that its occurrence in that time window can significantly increase the 

consequences, relative to if it had happened under normal conditions. The same modelling 

approach used here could also be applied to other systems and hazard combinations, to help 

identify system vulnerabilities to consecutive events.  

6.1.3 Road network assessment in a real city 

Many cities, particularly in Asia, and a large number in China, are prone to multiple hazards. 

However, researching and understanding multi-hazard risks in those cities requires overcoming 
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barriers in data availability, privacy concerns, and accessibility to information, both regarding 

hazards and the infrastructure systems that it could affect. 

This study models the consequences of a multi-hazard event in the case study city of 

Jingdezhen in China. Specifically, the performance of the road network to a combined river 

flooding and debris flows scenario is analysed. Metrics from graph theory are used to represent 

the performance of the road network. The results suggest that the performance of the future 

road network (planned for 2030) will be higher than that of the current network, both under 

normal conditions and during a flood scenario. However, if the flood coincides with debris 

flow, the performance would instead fall below that of the current network. Therefore, the 

study identifies a potential area of susceptibility to debris flows. The findings however are 

sensitive to data uncertainty. Important gaps that will require further understanding include 

understanding how the river flow affects bridges, understanding the depth of the channel, and 

understanding the mass-to-drag ratio of debris flow. Through sensitivity analysis, it was 

possible to identify specific locations where (i.e. which road sections) should be prioritised for 

detailed studies, as they have the greatest influence on the calculated functionality.  

6.2 Recommended future work 

6.2.1 Short term: building an evidence base for increased impacts 

In the short term, it would be interesting to extend the study from Chapter 4 (i.e. the comparison 

the single- and multi-hazard impacts on water supply) to other water supply system 

configurations. Chapter 4 shows results for the water supply in the hypothetical city of C-Town, 

characterised by a relatively steep topography and strongly reliant on pumping and tank storage 

for its operations. Applying the same analysis to systems with different characteristics could 

help understand whether the observed increase also occurs with other system configurations. 
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For example, in a relatively flat water distribution network powered by pumps, increased 

impacts might result primarily from patterns of combined damage to pipes and pumps (as 

opposed to patterns of tank and pump damage that are the cause of the greatest increase in C-

Town). Different mechanisms of failure may help to identify other vulnerabilities within the 

systems.  

The analysis could also be extended to other combinations of hazards. For example, flooding 

could affect the functionality of pumping stations (e.g. Arrighi et al., 2017) similarly to a 

cyclone or windstorm. Depending on the layout of the system, flooding may also damage 

storage tanks or pipes (Copeland, 2005). These effects could be represented in the same way 

as with the earthquake and storm, assigning each component a probability of failure (a delay 

in recovery times may need to be included to account for the duration of the flood). Landslides 

are another hazard that could damage water infrastructure, and they could be included in a 

similar way, using a probability of failure derived from landslide susceptibility or hazard maps. 

Further work could also extend the model to explicitly account for increased damage to 

components, and increased recovery times due to the combination of hazards.  

Extending the analysis to other systems hazards combinations would be a valuable way of 

increasing understanding of combined impacts. It would highlight cases in which these 

combined impacts are significant, and build up the evidence base for justifying assessments of 

combined impacts in practice. Indeed, further evidence could encourage infrastructure 

providers in hazard prone cities to carry out assessments on their own systems. By using real 

component fragilities and hazard-informed patterns of damage, the assessment aims to be 

representative of real conditions. The approach follows that used for single hazards, making it 

in theory relatively straight forward to implement.  
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6.2.2 Long term: towards interdisciplinary, problem-driven research 

Understanding combined impacts only represents the first step towards reducing those impacts 

in practice. One difficulty is that risk-based thinking still dominates many hazard mitigation 

decisions. Risk-based thinking compares mitigation options based on both the severity and the 

probability of an event, such that low-probability high-consequence events (e.g. consecutive 

earthquake and cyclone) may be given relatively low importance. Therefore, alternative ways 

of valuing solutions may need to be agreed on, and embraced, before mitigation of combined 

hazard events is seen in practice. An interesting possibility would be to compare alternative 

mitigation options based on the benefits for single hazard events, as well as on the benefits 

during combined hazard events (i.e. the ‘synergistic’ value). Another difficulty is that beyond 

a certain event magnitude, the engineering solutions available to infrastructure service 

providers may not be sufficient to maintain service levels within acceptable boundaries. In that 

case, resilience may have to be provided at the level of the community, for example through 

evacuation or temporary relocation of the population, emergency response, or partnerships with 

surrounding cities. The assessment of combined impacts to infrastructure services could help 

inform broader community-level decisions by providing information such as which areas are 

likely to experience disruptions, and how severely they could they be affected. Using the 

information in wider community planning could help to reduce consequences when disruption 

does occur. 

Therefore, making systems more resilient to combined hazards in practice goes beyond the 

scope of engineering, and requires an interdisciplinary approach. Indeed, to effectively address 

multi-hazard challenges in practice (e.g. developing new ways of valuing solutions, informing 

community-based approaches), collaboration with social scientists, local authorities, 

emergency planners and the wider society will be needed. These collaborations need to find 
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common ground in other ways than through shared disciplinary knowledge. One alternative is 

to focus on shared problems. These problems, to be compelling, should be grounded in real 

contexts. Such a problem-focused approach has been embraced by the NERC funded 

Tomorrow’s Cities research hub, an interdisciplinary research hub working to “bring multi-

hazard disaster risk management to the centre of urban policy and practice”. 

(https://www.tomorrowscities.org). The project centres on four cities with distinct multi-hazard 

challenges: Kathmandu, Istanbul, Nairobi, and Quito. 

Cities have a wide variety of hazard conditions (shown in Chapter 3), each of which require 

targeted approaches (Chapter 5), so selecting appropriate case studies is crucial. Priority should 

be given to cities where analysis of combined hazards is expected to be most valuable. To 

identify suitable case studies, three aspects are highlighted for consideration. The first aspect 

is whether the city faces significant risk from multiple types of hazards. The second aspect is 

the vulnerability of the population of that city; cities with a larger vulnerable population would 

benefit more from improved mitigation decisions. The third aspect are prospects for change 

within the city. Cities undergoing rapid change, receiving large investment, or that are in the 

process of redeveloping areas or industries, provide an opportunity for new knowledge to be 

applied and immediately add value at scale, while generating new evidence.  

The value of multi-hazard research can be increased through partnerships between cities based 

on hazard similarity. Using the growing availability of hazard data along with similarity 

indices, as proposed in Chapter 3, targeted solutions developed in one context could be 

transferred to other similar areas. Of course, the diversity of societal behaviours, cultures, 

values, and perceptions of hazards would also determine how suitable solutions are for a given 

context. Therefore, hazard similarity could be taken forward to include both natural and societal 

factors that play a role in disaster risk reduction. 
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In conclusion, (1) based on global data analysis and two modelling case studies, the thesis 

demonstrates a need, and potential, to better understand the consequences of combined hazards 

on the functionality of critical urban infrastructure, as a first step towards better preparing 

infrastructure services in the face of combined hazards; (2) to generate value from combined 

hazard assessments in practice, partnerships between engineers and other stakeholders will be 

needed, requiring a shift towards interdisciplinary and problem-oriented research, a timely 

change that will help make our cities more resilient to the complex and interconnected 

challenges coming our way. 
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Appendix 

A. Supplements to Chapter 3 

A.1 Exposure results 

Table A.1 provides an overview of exposure values for the combinations of hazards. Rows 

represent different combinations. The total exposure values T1 to T4 show all cities exposed 

to at least 1, 2, 3 and 4 hazards, respectively. Columns show the values for different hazard 

levels. Approximately half of cities (4,396 cities) are exposed to high levels of at least one 

hazard.  
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Table A.1 Number of urban areas exposed to single and combinations of hazards (out of 

9,031 cities in the urban areas dataset). 

 Hazards High hazard level Medium+ hazard 

level 

Low+ hazard 

level 
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T1 All 1+ hazards 4396 2748 6186 3307 7712 3665 

S1      192 157 2347 1168 4683 2255 

S2      2760 2079 2852 2109 2959 2140 

S3      475 890 857 1180 866 1191 

S4      2038 1199 2884 1586 4440 2184 

S5      90 217 205 314 409 437 

T2 All 2+ hazards 1023 1141 2363 1865 4089 2546 

C1      57 89 642 554 1496 1202 

C2      15 70 253 418 502 733 

C3      54 64 662 440 2234 1265 

C4      12 63 193 306 402 433 

C5      176 610 277 732 286 748 

C6      682 751 970 956 1535 291 

C7      8 139 25 167 82 228 

C8      228 559 444 730 523 843 

C9      21 159 64 222 105 259 

C10      52 113 117 186 252 344 

T3 All 3+ hazards 127 517 511 807 1354 1343 

C11      4 54 42 183 142 447 

C12      13 45 160 201 783 754 

C13      2 52 23 110 80 227 

C14      9 45 160 219 320 557 

C15      4 54 62 167 103 257 

C16      9 44 110 135 248 342 

C17      90 421 158 96 180 586 

C18      7 139 11 14 19 167 

C19      4 79 15 32 43 195 

C20      15 98 46 50 84 233 

T4 All 4+ hazards 8 99 78 277 188 500 

C21      3 38 28 171 86 367 

C22      2 52 11 153 18 166 

C23      1 36 14 106 42 194 

C24      3 39 46 148 83 232 

C25      3 79 7 100 15 155 

C26      1 36 7 100 14 154 
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Figure A.1 uses matrices to show the number of urban areas per hazard level. Each matrix 

shows the results for one combination of two hazards. Individual squares in the matrix show 

the number of cities for each combination of hazard levels. The sum of pixel values in each 

matrix is equal to the total number of cities in the analysis. The numbers on the x- and y-axis 

correspond to the hazards levels, with 1 = very low, 2 = low, 3 = medium, 4 = high. The figure 

shows that almost all combinations of hazard levels occur in at least one urban area. 

 

 

Figure A.1 The number of urban areas exposed to combinations of two hazards. 
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Figure A.2 The population exposed to combinations of two hazards. 
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Figure A.3 Exposure to combinations of two hazards (C1 – C10) by continent, with equal 

ranges on the y-axis. Colours correspond to combinations of hazard levels as shown in 

the legend (bottom right). The total number of cities and the corresponding population is 

shown for each continent. 
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A.2 Additional sensitivity analysis results 

Sensitivity analysis is used to determine how the results are affected by the choice of return 

period and threshold value. Several cases are explored (Table A.2). In each case, changes are 

made to one or more values to look at the influence on the findings. The analysis focuses on 

values that are expected to have the largest influence on the results, particularly earthquake, 

river flooding, and cyclone hazards. The exposure to one, two, and three hazards for each of 

the cases in Table A.2 can be seen in Figure A.3. 
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Table A.2 Alternative threshold values used in the sensitivity analysis. Each case 

corresponds to one or more changes to the threshold values. The table includes the reason 

for selecting the changes. The values that are different to the baseline in each case are 

shown in blue. 

Hazard High Medium Low 

Baseline: No change 

Baseline values used for the results in Chapter 3. 

Earthquake 196 cm/s2  in 250 years 98 cm/ss in 475 years 98 cm/s2 in 2475 years 

River flood 0.5 m in 10 years 0.5 m in 50 years 0.5 m in 500 years 

Coastal flood 2.0 m in 10 years 0.5 m in 50 years 0.5 m in 100 years 

Cyclone 80 km/h in 50 years 80 km/h in 100 years 80 km/h in 1000 years 

Landslide 250 per 1 x 106 years 125 per 1 x 106 years 63 per 1 x 106 years 

Case 1: Lower earthquake return period 

Low earthquake hazard is defined relative to a longer return period than other hazards. 

Earthquake 196 cm/s2  in 250 years 98 cm/ss in 475 years 98 cm/s2 in 975 years 

Case 2: Higher earthquake intensity 

The threshold for medium and low earthquake hazard is set to a lower intensity than the high 

hazard threshold. 

Earthquake 196 cm/s2  in 250 years 196 cm/ss in 475 years 196 cm/s2 in 975 years 

Case 3: Lower cyclone wind return period 

Low cyclone wind hazard is defined relative to a longer return period than flooding. 

Cyclone 80 km/h in 50 years 80 km/h in 100 years 80 km/h in 250 years 

Case 4: Higher cyclone wind intensity 

The cyclone intensity may be low in terms of possible damage relative to the intensities of other 

hazards. 

Cyclone 180 km/h in 50 years 180 km/h in 100 years 180 km/h in 1000 years 

Case 4: Combined cyclone wind and earthquake lower bounds 

Different, but still plausible, thresholds for earthquakes and wind can significantly influence the 

results 

Earthquake 196 cm/s2  in 250 years 198 cm/ss in 475 years 198 cm/s2 in 975 years 

Cyclone 180 km/h in 50 years 180 km/h in 100 years 180 km/h in 250 years 
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Figure A.4 Additional sensitivity analysis results corresponding to the cases presented in 

Table A.2. 
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A.3 Comparison with other global hazard datasets 

River flooding 

The 100-year return period river flood map from Dottori et al. (2016) is compared with the 

river flood map used for the UNISDR Global Assessment Report 2015 (Herold & Rudari, 

2013). The map is available from https://preview.grid.unep.ch/. Unlike the flood maps in 

Dottori et al. (2016), Herold and Rudari (2013) include flooding over small catchment areas. 

The map by Herold and Rudari (2013) is aligned to the urban areas in the same way as the other 

hazard maps, and maximum flood depths are recorded from each urban area. 

Cyclone wind 

The cyclone wind data from Cardona et al. (2014) is compared with the cyclone wind map by 

Tan and Fang (2018). The two use a similar approach to calculate the wind hazard, but Tan and 

Fang (2018) provide the results at much higher resolution (30 arc-second or approximately 1 

km resolution). The data from Tan and Fang (2018) is processed in the same way as the other 

datasets and maximum wind speeds are recorded for each urban area. 

Results 

Figure A.4 compares river flood and wind speed values with those obtained from alternative 

global hazard datasets. The figure shows a higher correlation for the wind datasets than for the 

river flood datasets.  

https://preview.grid.unep.ch/
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Figure A.5 The left panel compares the maximum flood depths per urban area in Dottori 

et al. (2016) and Herold and Rudari (2013). The right panel compares the maximum wind 

speeds per urban area in Cardona et al. (2014) and in Tan and Fang (2018). 
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