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Abstract

We give the asymptotic growth of the number of arcs of bounded length between

boundary components on hyperbolic surfaces with boundary, analogous to a result of

Mirzakhani for curves [25,26]. Specifically, if S has genus g, n boundary components

and p punctures, then the number of orthogeodesic arcs in each pure mapping class

group orbit of length at most L is asymptotic to L6g−6+2(n+p) times a constant. We

prove an analogous result for arcs between cusps, where we define the length of such

an arc to be the length of the sub-arc obtained by removing certain cuspidal regions

from the surface. In demonstrating these results, we develop tools to examine a well-

known association between arcs and curves. We demonstrate that this association

is not injective but is uniformly k-to-1 across arcs of the same type, and on the

pair of pants P it maps at most two two-ended arcs to the same curve. We also

derive arbitrarily large families of arcs whose lengths are equal under any hyperbolic

metric.

Disclaimer: Much of Chapter 2 as well as large parts of the introduction and

preliminaries in this thesis appear in the publication [5] by the author.
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Notation

Symbol Meaning

S A surface of negative Euler characteristic, typically with boundary

X A hyperbolic metric on S

∂S The collection of boundary components of S

So The interior of a surface S

C The set of punctures of S

γ A homotopy class of a curve, or its geodesic representative

C (S) The set of homotopy classes of curves on S

α A homotopy class of an (infinite) arc, or its (ortho)geodesic rep.

A(S) The set of homotopy classes of arcs on S

Ai,j(S) The set of homotopy classes of arcs on S between δi and δj

γα, I(α) The curve associated to an arc α

PMod(S), Mod(S) The (pure) mapping class group of the interior of S

φ A mapping class, or a representative of a mapping class

ℓX(·) The length of an object under a hyperbolic metric X

ℓtX(α) The t-length of an infinite arc α

k(α) The number of arcs of type α associated to the same curve

Hp
t The cuspidal region at the puncture p of volume t

Ht The union of all cuspidal regions of volume t

Aδc The annular region at the boundary component δ of width c

Ac The union of all annular regions of width c

ι(·, ·) The intersection number between two objects

ML(S) The space of measured laminations on S

π1(S) The fundamental group of S

Fn The free group on n generators

D2n The dihedral group of order 2n

P A pair of pants, or three-holed sphere

αP A seam on P

δP0 , δ
P
1 The initial and terminal boundary components of αP

δα0 , δ
α
1 The initial and terminal boundary components of an (oriented) arc α

ια The immersion of P determined by α

ϕα The homomorphism of π1(P ) determined by α

wα The conjugator corresponding to α

W The set of conjugators

(m, r) A signature, where m and r are even and r ≤ m

(m, r, c) A frame, where (m, r) is a signature and c is a conjugator
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Notation

W A wheel; a word written in cyclical notation

Θm A set of 2m+ 2 positions uniformly distributed around a circle

Lq A line of symmetry in Θm

ρq The reflection in the line Lq

xW (p) The syllable of W in position p

ψ∗ The self-homomorphism of π1(S) induced by ψ : S → S

trµ(·) The trace of a group element under the representation µ

|w| The syllable length of a word w
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Introduction

Given a hyperbolic metric X on a surface S, it is a much studied problem to “count”

curves (also known as closed geodesics) of bounded length; that is, find the growth

of the number of curves of length at most L as L grows. Work by Huber [18],

later generalised by Margulis [21], demonstrates that the growth is asymptotially

exponential:

lim
L→∞

|{γ unoriented closed geodesic on S | ℓX(γ) ≤ L}|
1
2L
eL

= 1.

However, if we only consider simple curves - those which do not self-intersect - or

more generally, curves which share a mapping class group orbit, the story is very

different. It was first observed by Rees [33] and Birman-Series [6] that the number

of simple curves grows polynomially in the length. That is, there exist constants

C1, C2 > 0 such that

C1L
6g−6+2r ≤ |{γ simple curve on S | ℓX(γ) ≤ L}| ≤ C2L

6g−6+2r,

where g is the genus and r is the number of ends.

The first asymptotic result in this direction is due to McShane-Rivin [24], who

gave the asymptotic growth of the number of simple curves on the punctured torus

T as

lim
L→∞

|{γ simple curve on T | ℓX(γ) ≤ L}|
L2

= C

for some C > 0.

The punctured torus is a very special case of a hyperbolic surface, and as such

the methods used to prove this result do not generalise to other surfaces. However,

celebrated results by Mirzakhani [25,26] show that the same asymptotic result does

in fact hold in general, even when restricting to a mapping class group orbit. Before

giving the precise statement, we will introduce some notation.

Throughout the following, let S be an orientable surface of negative Euler char-

acteristic of genus g with n boundary components and p punctures, where we assume

(g, n+p) ̸= (0, 3). Let Mod(S) be the mapping class group and let PMod(S) be the
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Introduction

pure mapping class group: the finite-index subgroup of Mod(S) consisting of exactly

those elements which fix each boundary component and each puncture of S. See

[12] for a thorough treatment of mapping class groups. Here we will say that two

multicurves, by which we mean formal sums of finitely many weighted curves, are

of the same type if they share a PMod(S)-orbit. With this notation, Mirzakhani’s

result is as follows.

Mirzakhani’s Theorem ([25, 26]). Let Y be a complete hyperbolic metric on the

interior So and γ0 be a multi-curve on S. Then we have that

lim
L→∞

|{γ of type γ0 | ℓY (γ) ≤ L}|
L6g−6+2(n+p)

= c(γ0)m(Y ),

where c(γ0) is a constant depending on the type γ0 and m(Y ) is a constant depending

on Y .

We refer the reader to [11], [25] and [26] for details of the constants. Here, ℓY (γ)

denotes the Y -length of the geodesic representative of γ. Mirzakhani first proved

the above result for simple multicurves in [25] and then for general multicurves in

[26]; see [10] and [11] for an alternative proof of both cases of this theorem. In fact,

Mirzakhani’s Theorem holds if we redefine the type of a multicurve to correspond

to the orbit of any finite-index subgroup of Mod(S).

In this thesis, we show that Mirzakhani’s Theorem holds when we replace curves

with arcs, also known as orthogeodesics (see Definition 1.1.2). The question of

adapting Mirzakhani’s original proof for simple curves to arcs was first raised in a

talk by Wolpert, in the case of so-called lariats (simple arcs from a cusp to itself).

Here, we take a different approach, which also allows us to consider both simple arcs

and general arcs. We first prove the following.

Theorem 1. Let X be a complete, finite-area, hyperbolic metric on S with non-

empty geodesic boundary. Let α0 be an arc on S. Then there exist positive constants

c(α0) and m(X) such that

lim
L→∞

|{α of type α0 | ℓX(α) ≤ L}|
L6g−6+2(n+p)

= k(α0)c(α0)m(X),

where k(α0) is some positive integer.

2



Introduction

Remark: We differentiate between the constants k(α0) and c(α0) as the latter

comes from Mirzakhani’s Theorem, whereas the former is the result of work in

this thesis. See Proposition 2.2.4 for the definition of the constant k(α0), and (1)

for the definition of c(α0).

Remark: Theorem 1 also holds for multi-arcs, but the majority of the work goes

into demonstrating it for single arcs. We remark throughout Section 2.2 on how to

prove the analogues of the various results needed to do this, and give the statement

in Theorem 2.2.6.

We also consider infinite arcs, that is, arcs whose endpoints are at punctures

of S. As implied by the name, infinite arcs have infinite length as they descend

infinitely far down the cusps. Hence we must define a suitable notion of the length

of infinite arcs to allow us to derive an analogue of Theorem 1. A natural way to do

this is to cut off the cusps (of volume t) and consider the length ℓt(α) of the segment

of the arc which remains (we refer to Section 1.4 for the precise definition). There

are other natural choices of length to assign to infinite arcs, such as the truncated

length (see [28]). As we will explain in Section 2.3, Theorem 2 also holds for the

truncated length and a length closely related to the λ-length (see [29,30]). We prove

the following result.

Theorem 2. Let X be a complete, finite-area, hyperbolic metric on S with (possibly

empty) geodesic boundary. Let α0 be an infinite arc on S. Then for any positive

t ≤ 1, we have

lim
L→∞

|{α of type α0 | ℓtX(α) ≤ L}|
L6g−6+2(n+p)

= k(α0)c(α0)m(X)

where k(α0), c(α0) and m(X) are as in Theorem 1. In particular, the limit does not

depend on t.

Remark: Our arguments can be easily modified to apply to rays, by which we mean

arcs between a boundary component and a puncture. We could equally adapt this

argument for any collection of arcs, infinite arcs, and rays.

The study of orthogeodesics on hyperbolic surfaces has a rich history. For ex-

ample, if one counts all orthogeodesics of length at most L, Basmajian’s Identity

3
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[2] gives an upper bound exponential in L for this number. The actual asymptotic

growth was shown to be exponential by Parkonnen and Paulin in [27] (see [15] for a

generalisation).

These results can be viewed as analogues to Huber’s [18] and Margulis’ [21]

Prime Geodesic theorem mentioned above. Our results are instead analogues of

Mirzakhani’s Theorem, counting arcs in each (pure) mapping class group orbit and

giving polynomial asymptotic growth.

As mentioned above, instead of modifying Mirzakhani’s original proof we take

a different, much simpler approach. The main idea is to associate a curve γα to

each arc α in a way which respects length, up to a well-behaved error, and then use

Mirzakhani’s Theorem to deduce Theorems 1 and 2. In fact, c(α0) will be shown in

each case to be closely related to c(γα0); we will get that

c(α0) = 26g−6+2(n+p)c(γα0) (1)

where c(γα0) is as in Mirzakhani’s Theorem and γα0 is the curve associated to α0 as

defined in Sections 2.1 and 2.3.

Given an arc α between two boundary components, there is a natural way to

associate an immersed pair of pants P in S to α such that α is a seam of P . See

Section 2.1 for a detailed discussion of this. The cuff of P which is not a boundary

component of S is what we refer to as the curve associated to α, denoted γα. In this

way, we get a well-defined map

I : {arcs on S} → {curves on S}.

The precise definition is given in Section 2.1. We show that this map is Mod(S)-

equivariant and preserves the length of an arc up to a well-behaved error.

However, somewhat surprisingly this process is not reversible; there exist im-

mersed pairs of pants in S which share all three boundary components yet are not

homotopic. See Example 3.1.3 for an example of this. In other words, the map I is

not one-to-one. In Chapter 3, we develop techniques to study how many arcs can

be associated to the same curve, and prove the following theorem.

4
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Theorem 3. Let P be a pair of pants, and let α be a two-ended arc on P . Let

γα = I(α). Then |I−1(γα)| ≤ 2.

As mentioned above, there are cases when two arcs are associated to the same

curve, an explicit example of which is given in Example 3.1.3. By construction,

the length of a curve γα associated to an arc α is given by the length of α; this is

demonstrated in Section 2.2. We therefore get that if two arcs are associated to the

same curve, they must have the same length under any hyperbolic metric we put

on S (excluding arcs of the first kind; see Section 2.1). That is, they are length-

equivalent. As an application of our study of arcs associated to the same curve, we

are able to create arbitrarily large families of length-equivalent arcs. The existence

of such families is already known due to the work of Buser [8], using a different

method.

This thesis is organised as follows. In Chapter 1, we will discuss some necessary

background and introduce various terms. In Chapter 2 we demonstrate various

qualities of the association between arcs and curves, before proving Theorem 1 and

Theorem 2. Chapter 3 looks at the possible values for k(α0) in these theorems,

ultimately proving Theorem 3. We conclude by discussing length-equivalent arcs in

Chapter 4.
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Chapter 1

Preliminaries

1.1 Hyperbolic surfaces, curves and arcs

Let S be a connected orientable surface of negative Euler characteristic of genus g

with n boundary components and p punctures, with (g, n + p) ̸= (0, 3). By ∂S we

shall mean the boundary of S, consisting of the n boundary components. The p

punctures correspond to ends of S, and we denote the collection of punctures as C.

When convenient, we may consider the punctures as marked points on (the closure

of) S. Let X be a complete, finite-area, hyperbolic metric on S such that ∂S is

geodesic. We will consider S to be endowed with such a metric throughout the

following. We define the mapping class group of S to be the group of orientation-

preserving homeomorphisms of the interior of S up to homotopy; that is,

Mod(S) := Mod(So) = Homeo+(So)⧸Homeo+0 (S
o),

where So = S \ ∂S is the interior of S, Homeo+(So) is the space of orientation-

preserving homeomorphisms of So and Homeo+0 (S
o) is the subgroup of homeomor-

phisms properly homotopic to the identity. We refer the reader to [12] for more

background on mapping class groups.

Definition 1.1.1: We define a curve to be (the image of) a continuous map γ : S1 →

S. We consider curves up to free homotopy. We assume curves to be essential,

meaning not homotopic to a point or a puncture, and non-peripheral, meaning not

homotopic to a boundary component.

We identify curves which differ by an orientation. Recall that each homotopy

class of curves has a unique geodesic representative. By abuse of notation, we will

use γ to refer to a curve, its homotopy class and its geodesic representative under

X. If a curve can be realised by an embedding, we call it simple.

7



Chapter 1. Preliminaries

We define the geometric intersection number between curves γ1 and γ2 to be

ι(γ1, γ2) = min{|γ′1 ∩ γ′2| | γ′i homotopic to γi, γ
′
1 and γ′2 intersect transversely.}.

Note that the intersection number between two distinct curves is realised by their

geodesic representatives, and a curve γ is simple exactly when ι(γ, γ) = 0.

Definition 1.1.2: An arc is (the image of) a continuous map α : [0, 1] → S such

that α(0), α(1) ∈ ∂S and α
(
(0, 1)

)
⊂ So. We consider arcs up to homotopy relative

to ∂S, where we allow the endpoints to move along ∂S, and we assume that they

are not homotopic into the boundary.

Each homotopy class of arcs has a unique geodesic representative which meets

the boundary orthogonally, which we refer to as an orthogeodesic.

Definition 1.1.3: We define an infinite arc to be (the image of) a continuous map

α : (0, 1) → S such that limt→0 α(t) ∈ C and limt→1 α(t) ∈ C. We consider infinite

arcs up to homotopy relative to C, and we assume that they are not homotopic into

C.

We identify (infinite) arcs which differ by an orientation, and again by abuse

of notation, we refer to both an (infinite) arc and its homotopy class by α. If an

(infinite) arc can be realised as an embedding, then we call it simple. We stress that

throughout, we allow (infinite) arcs to have self-intersections; we do not only consider

simple arcs. Note that the geometric intersection number between (infinite) arcs is

defined analogously to curves, and the intersection number between two (infinite)

arcs is realised by their (ortho)geodesic representatives.

We define the length of (a homotopy class of) a curve or arc to be the length

of its geodesic or orthogeodesic representative, which we denote by ℓX(·). We will

discuss how to assign appropriate finite lengths to infinite arcs in Section 1.4.

Definition 1.1.4: We call an arc two-ended if α(0) and α(1) are on distinct bound-

ary components, and one-ended otherwise. This is defined for infinite arcs analo-

gously.

A multicurve or a multi-arc is a finite formal sum of weighted curves or arcs

8



1.1. Hyperbolic surfaces, curves and arcs

respectively. Explicitly, if ω is a multicurve (resp. multi-arc), then

ω =
m∑
i=1

aiωi

for some ai ∈ R+ and m ∈ Z+, where each ωi is a curve (resp. arc) and for all

i ̸= j, ωi and ωj are not homotopic. We will refer to the ωi as the components

of ω. As before, the geometric intersection number between two multicurves or

multi-arcs is defined to be the minimum size of their intersection across all of their

homotopic representatives. The length of a multicurve or multi-arc is defined to

be the weighted sum of the lengths of its components: for ω =
∑m

i=1 a
iωi, we have

ℓX(ω) =
∑m

i=1 a
iℓX(ω

i).

The pure mapping class group PMod(S) acts naturally on curves and arcs in S.

If φ is a mapping class and ω is either a geodesic curve, an orthogeodesic arc or a

geodesic infinite arc, then we define φ · ω to be the (ortho-)geodesic representative

of f(ω), where f is any representative of φ.

Let ω0 be a curve or arc. For any curve or arc ω, we say that ω is of type ω0

if they share an orbit in the pure mapping class group; that is, there exists some

φ ∈ PMod(S) such that φ · ω0 = ω. We note that the action of PMod(S) preserves

the self-intersection number of a curve or arc; thus if two curves or arcs are of the

same type, they have the same self-intersection number. Curves or arcs with the

same self-intersection number need not be of the same type, but there are only

finitely many types of curve or arc with a given self-intersection number. See for

example [11] for a demonstration of this.

The action of PMod(S) on multicurves and multi-arcs is defined analogously to

the above: if ω =
∑m

i=1 a
iωi is a multicurve or multi-arc, then

φ · ω =
m∑
i=1

ai(φ · ωi).

We say that a multicurve or multi-arc ω is of type ω0 if ω and ω0 share a PMod(S)-

orbit. As a result, we have that if ω =
∑m

i=1 a
iωi and ω0 =

∑n
j=1 a

j
0ω

j
0 are of the

same type then m = n and, up to relabelling, for all i ∈ {1, . . . ,m} ai = ai0 and ωi

is of type ωi0.

9



Chapter 1. Preliminaries

1.2 Cuspidal regions

In this section we discuss the behaviour of curves and arcs in regions called cusps.

We refer the reader to [8] for a general background on hyperbolic geometry.

Let X be a complete, finite-area hyperbolic metric on S. Then each puncture

p ∈ C corresponds to a cusp. Recall that a cusp is an end which has a neighbourhood

Ht isometric to {
z ∈ H2

∣∣∣Im(z) >
1

t

}
⧸⟨z 7→ z + 1⟩

for some t > 0, where we have identified the hyperbolic plane H2 with the Poincaré

upper half-plane. Such a region has volume t, and we refer to Ht as a cuspidal region

(of volume t). The ends of any infinite arc escape down cusps, and the unique

geodesic representative of its homotopy class eventually intersects the horocyclic

foliation of the corresponding cusps orthogonally.

Definition 1.2.1: For t > 0 and p ∈ C, let Hp
t denote the cuspidal region at p of

volume t. Denote the union of these regions over all p by Ht = ∪p∈CHp
t .

The following statement is well-known to experts, and can be seen as a result of

the Collar Lemma (see for example Theorem 4.4.6 of [8], and [19]).

Lemma 1.2.2. For any t < 2, the cuspidal regions Hp
t are embedded and pairwise

disjoint.

For each boundary curve δ in ∂S and for any c > 0, define the annulus Aδc to be

the set of points at a distance less than c from δ. That is,

Aδc = {x ∈ S | dX(x, δ) < c}.

Denote by Ac = ∪δAδc the union of these annuli over all δ in ∂S. It again follows

from the Collar Lemma, applied to the boundary curves, that there exists c′ > 0

depending on X such that the annuli Aδc′ are embedded and pairwise disjoint. Thus

we have the following, and we refer the reader to [4] for more details.

Lemma 1.2.3. There exists c′ > 0 such that for all t < 2, Ht ∩ Ac′ = ∅, and in

particular, S \ (Ht ∪ Ac′) is homeomorphic to So.

10



1.2. Cuspidal regions

For any p and t < 2, and for any complete geodesic γ intersecting ∂Hp
t trans-

versely, γ∩Hp
t takes one of two forms. Either it never leaves the cuspidal region and

so intersects every horocycle in Hp
t orthogonally, or it winds around the cusp before

leaving the region, and hence, when long enough, creates self-intersections. In the

latter case, we call the segment returning. In fact, the deeper into Hp
t a returning

segment goes the more times it must self-intersect, and there is a direct relationship

between the length of a returning segment and its self-intersection number which

we record below for future reference. Recalling that ι(·, ·) denotes the (geometric)

intersection number, we have the following.

Lemma 1.2.4. Let p be a puncture on S equipped with a hyperbolic metric X, and

let d > 0. Suppose β is a geodesic segment in Hp
1 with both endpoints on ∂Hp

1 such

that ι(β, β) ≤ d. Then there exists some positive B = B(d) such that

ℓX(β) ≤ B.

In particular, any geodesic curve γ with at most d self-intersections never enters

He−B(d).

We refer to [3] and [4] for more details about the behaviour of returning segments

and for the proof of Lemma 1.2.4. In particular, Proposition 3.4 of [4] gives a much

more precise description of the relationship between how far an arc goes into a cusp

and its self-intersection number.

We can make a similar observation regarding boundary components on S. When-

ever a complete geodesic enters a small annulus around a boundary curve δ, it spirals

towards δ, and unless it is asymptotic to δ it eventually leaves the annulus, creating

self-intersections if long enough. It follows that if γ is a geodesic curve with at most d

self-intersections, there exists some c < c′ depending on d (and X) such that γ never

enters Ac. Putting this together with the above gives us that γ is contained in the

compact subsurface S \ (He−B(d) ∪Ac) ⊂ So. Note that as before, S \ (He−B(d) ∪ Ac)

is homeomorphic to So. Furthermore, since Mod(S) preserves the self-intersection

number of curves and arcs, the above is true for any curve of type γ. We summarise

this fact below for reference; for a more precise description see Proposition 3.4 of

[4].

11



Chapter 1. Preliminaries

Lemma 1.2.5. Let γ0 be a curve. Then there exists a compact subsurface K ⊂ So

with Ko homeomorphic to So such that for any γ of type γ0, the geodesic represen-

tative of γ is contained in K.

Since multicurves have finitely many components, this lemma holds for multi-

curves by taking the union of the compact subsurfaces given for (the support of)

each component.

Let d be some non-negative integer, and let α be an infinite arc such that

ι(α, α) = d. Then similarly to the above, α ∩ He−B(d) consists of exactly 2 com-

ponents, which are simple geodesic rays. Equivalently, α∩ (S \He−B(d)) has exactly

one component. We state this here for reference.

Lemma 1.2.6. Let α be an infinite arc. Then there exists some positive tα < 1,

depending only on ι(α, α), such that α ∩ (S \ Htα) has exactly one component.

We also need the fact that if a geodesic goes far enough into a cusp then it must

intersect itself inside H2. To see this, suppose β is a returning geodesic segment in

H2 that enters H
p
t for some t ≤ 1 and some p ∈ C. Consider the cuspidal region Hp

2

and identify it with

{
z ∈ H2

∣∣∣ Im(z) >
1

2

}
⧸⟨z 7→ z + 1⟩.

A fundamental domain for the action of z 7→ z + 1 is the region in H2 bounded by

x = 0 and x = 1. Note that any geodesic in H2 neither of whose endpoints are at ∞

which intersects the line y = 1
t
also intersects its translate under the map z 7→ z+1,

and this intersection occurs above the line y = 1
2
. Hence β intersects itself inside the

embedded cuspidal region Hp
2 . Moreover, any segment entering a cusp in H1 must

intersect itself in a slightly larger cusp; for example, a cusp in H2. We record this

here for reference, and refer to [23] and Proposition 3.2 of [4] for more details.

Lemma 1.2.7. Let 0 < t ≤ 1. If β is a geodesic segment in H2 with both endpoints

on ∂H2, and β ∩ Ht ̸= ∅, then ι(β, β) ≥ 1.

In particular, any simple geodesic not asymptotic to a puncture cannot enter the

region H1.

12



1.3. Counting curves

1.3 Counting curves

We now comment very briefly on measured laminations; briefly, because although

central to Mirzakhani’s work, they somewhat surprisingly play no role here except

in order to state a constant below. A measured lamination is a closed subset λ of S

foliated by complete simple geodesics together with a transverse measure, which is a

measure on arcs transverse to λ invariant under homotopy transverse to λ and under

concatenation. We denote the space of compactly supported measured laminations

on So as ML(S): for background we refer the reader to [14, 31, 34]. To give some

intuitive perspective, we note that ML(S) is homeomorphic to R6g−6+2(n+p) and

that any measured lamination can be obtained as a limit of weighted simple curves.

As the support of any measured lamination is a disjoint union of simple geodesics,

we have the following as a consequence of Lemma 1.2.7.

Lemma 1.3.1. For any λ ∈ ML(S), the support of λ is contained in So \ H1. In

fact, there exists a compact subsurface K ⊂ So \ H1 which contains the supports of

all elements of ML(S).

In the proof of Theorem 1, we will need to use Mirzakhani’s Theorem. However,

this theorem is stated for complete finite-area hyperbolic metrics on the interior

So, and we will need to use the result for our metric X on S which has geodesic

boundary. This issue is resolved by instead using a generalisation of Mirzakhani’s

Theorem to complete Riemannian metrics. We state this in full generality below,

but note that metrics with variable negative curvature are sufficient for our purposes.

Theorem 1.3.2 ([9], Corollary 1.3). Let Y be a complete Riemannian metric on

So = S \ ∂S. Then for any multicurve γ0,

lim
L→∞

|{γ of type γ0 | ℓY (γ) ≤ L}|
L6g−6+2(n+p)

= c(γ0)m(Y )

where c(γ0) is as in Mirzakhani’s Theorem, m(Y ) is a constant depending on Y , and

ℓY (γ) is the length of a shortest curve homotopic to γ.

Remark: We refer the reader to Mirzakhani’s original result [26], the survey by

Wright [35], and Erlandsson and Souto’s book [11, Chapter 8] for details on the

13



Chapter 1. Preliminaries

constants appearing in Theorem 1.3.2. The constant m(Y ) can be expressed in

terms of the Thurston measure mThu on ML(S) as

m(Y ) = mThu({λ ∈ ML(S) | ℓY (λ) ≤ 1}). (1.1)

Following the notation of [11], c(γ0) can be written as

c(γ0) =
cPMod(S)(γ0)

bg,n+p
, (1.2)

and both cPMod(S)(γ0) and bg,n+p can also be expressed in terms of Thurston mea-

sures. The original constants, due to Mirzakhani, were expressed in a different

fashion, using integrals over moduli space with respect to the Weil-Petersson met-

ric. See the end of Chapter 8 in [11] for a discussion on the relationship between

these constants and those appearing in [11]. For details on the Thurston measure,

see [34].

To see that Theorem 1.3.2 implies that we can count curves in our setting, let γ0

be a multicurve on S and let K = K(γ0) be the compact subsurface of So given by

Lemma 1.2.5. By Lemma 1.3.1, we may assume that K is such that ML(S) ⊂ K.

Take any complete negatively curved Riemannian metric Y on So which agrees with

X on K. Since the geodesic representative of every multicurve γ of type γ0 is

contained in K and ML(S) sits inside K, we have that ℓY (γ) = ℓX(γ) for all γ of

type γ0 and ℓY (λ) = ℓX(λ) for all λ ∈ ML(S). From the latter equality, we get

that m(X) = m(Y ) using (1.1). Moreover, we remark that c(γ0) is independent of

the metric chosen, and so we have the following consequence.

Corollary 1.3.3. Let X be a complete, finite-area, hyperbolic metric on S such that

∂S is geodesic. Then for any multicurve γ0,

lim
L→∞

|{γ of type γ0 | ℓX(γ) ≤ L}|
L6g−6+2(n+p)

= c(γ0)m(X)

where c(γ0) and m(X) are as in Mirzakhani’s Theorem.
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1.4 Infinite arcs and their lengths

Here we discuss the assignment of appropriate finite lengths to infinite arcs. For any

t ∈ (0, 1], let Ht = ∪p∈CHp
t be the union of the cuspidal regions of volume t as in

Definition 1.2.1.

Definition 1.4.1: We define the t-length ℓtX(α) of any infinite arc α to be the length

of αt = α ∩ (S \ Ht). That is,

ℓtX(α) = ℓX(α
t).

Note that in general, αt could consist of multiple connected components and in

this case, ℓX(α
t) is the sum of the lengths of its components. Fix an infinite arc α

and let tα be given by Lemma 1.2.6. Then α∩ (S \Htα) is connected, and moreover

for any t ≤ tα, α
t has exactly one component.

Another finite length one can assign to an infinite arc is the truncated length as

defined by Parlier in [28]. Choose a standard collection of cuspidal regions, which

we may take as H1. For any infinite arc α, the (doubly) truncated length of α is

the length of the segment of α between the first and last times α crosses ∂H1. We

denote this length by ℓTrX (α).

This length is closely related to the λ-length introduced by Penner in [29] and

[30]. In our setting, and choosing the appropriate cuspidal regions, we have that

λ(α) = e
1
2
ℓTr
X (α). (1.3)

As mentioned in the introduction, the t-length of an arc is closely related to the

truncated length. Note that for any α ∈ A(S), ℓtαX (α) and ℓTrX (α) differ by a constant,

and this constant depends only on ι(α, α). This is because the tα-length of α is

exactly the truncated length plus the lengths of the two geodesic segments of α

between ∂H1 and ∂Htα , which each have length ln( 1
tα
). Thus we can write

|ℓtαX (α)− ℓTrX (α)| ≤ 2 ln
( 1

tα

)
. (1.4)
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Recall that by Lemma 1.2.6, tα depends only on ι(α, α). Using this fact, one can

demonstrate the following as a consequence of Theorem 2.

Corollary 1.4.2. Let X be a complete, finite-area, hyperbolic metric on S with

(possibly empty) geodesic boundary. Let α0 be an infinite arc on S. Then we have

lim
L→∞

|{α of type α0 | ℓTrX (α) ≤ L}|
L6g−6+2(n+p)

= k(α0)c(α0)m(X)

where k(α0), c(α0) and m(X) are as in Theorem 1. By (1.3), we can replace ℓTrX (α)

with 2 ln(λ(α)) and the same statement holds.

1.5 Words associated to curves and arcs

It will be useful to represent curves as words in the fundamental group of a surface,

particularly in the case of a pair of pants, also known as a three-holed sphere S0,3.

Let P be a pair of pants with boundary components δP0 , δ
P
1 and δP2 , and fix some

basepoint p0 ∈ P . We denote the fundamental group of P with this basepoint as

π1(P, p0). Recall that the fundamental group of a surface consists of homotopy class

of loops based at the basepoint, where homotopies must fix the basepoint. Since P

is path-connected, a different choice of basepoint gives an isomorphic group, thus for

ease of notation we simply write π1(P ). Also recall that the free homotopy classes

of curves on a surface are in one-to-one correspondence with conjugacy classes of

elements in the fundamental group of the surface.

The fundamental group of P is a free group on two generators. From here

onwards, we fix the generators to be the loops a and b based at po freely homotopic

to δP0 and δP1 respectively. Accordingly, each element in π1(P ) is identified with a

word in a, b, a−1 and b−1. Given a reduced word w = xj11 x
j2
2 . . . x

jn
n where xi = a, b

and ji ∈ Z ̸=0, the word length of w is given as

|w|word =
n∑
i=1

|ji|.

Each xjii is referred to as a syllable of the word. If xi is a or b, then we refer to xjii
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1.5. Words associated to curves and arcs

as an a-syllable or a b-syllable respectively. The syllable length of w is

|w| = n.

We call a word reduced if no neighbouring syllables are written in the same generator.

We call a word cyclically reduced if it is reduced and the first syllable is not the

inverse of the last syllable: that is, either x1 ̸= xn or j1jn > 0.

Let φ : P → P be a continuous map. Then the free homotopy class of φ induces

a homomorphism φ∗ : π1(P ) → π1(P ); we can choose a representative of φ which

fixes the basepoint p0 and define φ∗(γ) = φ(γ), where γ is any (homotopy class of

a) loop based at p0. It turns out that two such continuous maps are homotopic

exactly when the homomorphisms they induce are conjugates of one another, by

this we mean that there exists some word ω ∈ π1(P ) such that for all γ ∈ π1(P ),

φ∗
2(γ) = ωφ∗

1(γ)ω
−1. In this case, we write φ∗

2 = ωφ∗
1ω

−1. We will briefly discuss

the proof of this below. We refer the reader to Chapter 1 of [13] for a thorough

treatment of the fundamental group and homomorphisms induced by continuous

maps of the surface.

Theorem 1.5.1. For a surface S and a basepoint x0 ∈ S, let φ1, φ2 : S → S be

continuous maps and φ∗
1, φ

∗
2 : π1(S, x0) → π1(S, x0) be their induced homomorphisms.

Then φ1 and φ2 are (freely) homotopic if and only if φ∗
1 and φ∗

2 are conjugate by

some word in π1(S, x0).

Proof. Suppose that φ1 and φ2 are freely homotopic, and choose (freely) homotopic

representatives φ1
′ and φ2

′ of these maps which fix x0. Let ft : S → S be a free

homotopy for t ∈ [0, 1], such that f0 = φ1
′ and f1 = φ2

′. Consider the closed loop

ω = {ft(x0) | t ∈ [0, 1]} traced out by x0 under this homotopy. Then we have that

φ∗
2 = ωφ∗

1ω
−1; in other words, the homomorphisms are conjugate (see Lemma 1.19

in [13]).

Suppose now that φ∗
1 and φ∗

2 are conjugate by some word ω in π1(S); so φ
∗
2 =

ωφ∗
1ω

−1. As before, we can take homotopic representatives of φ1 and φ2 which fix

x0. There exists a homotopy ft : S → S such that f0 = φ1 and {ft(x0) | t ∈ [0, 1]} is

the loop ω. Let φ′
1 = f1, and note that φ′

1 also fixes x0. As above, φ1
′∗ = ωφ∗

1ω
−1.

Hence φ1
′∗ = φ∗

2, and so φ1
′ and φ2 are homotopic under a homotopy fixing x0 (see
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Proposition 1B.9 in [13]). Note that the universal cover of S is contractible. Com-

bining this homotopy with the free homotopy ft, we see that φ2 is freely homotopic

to φ1.

As mentioned in the introduction, we will associate a curve to an arc by relating

the arc to an immersed pair of pants in the surface. However, we will see (see

Example 3.1.3 for instance) that there exist continuous maps ια and ια′ of P into

S such that ια(P ) and ια′(P ) share all three boundary components, but are not

homotopic.

By Theorem 1.5.1, we have that any two continuous maps of P into itself are not

homotopic if and only if the induced self-homomorphisms of π1(P ) are not conjugate.

We record this here for reference.

Corollary 1.5.2. Let ι1 : P → P and ι2 : P → P be two continuous maps. Then

ι1(P ) and ι2(P ) are homotopic if and only if the induced homomorphisms ι∗1 : π1(P ) →

π1(P ) and ι
∗
2 : π1(P ) → π1(P ) are conjugate.
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Chapter 2

Counting arcs

This chapter contains the proof of the main results of this thesis, and is heavily

based on a publication [5] by the author. First in Section 2.1, we study a method

for associating curves to arcs, which is well-known to experts. We demonstrate in

Section 2.2 that this association treats length nicely, it is equivariant with respect to

PMod(S), and when restricted to a type of arc the fibers have constant cardinality.

We then lay out the proof of Theorem 1. In Section 2.3 we prove that analogous

properties hold for infinite arcs and give the proof of Theorem 2.

2.1 Associating arcs and curves

We begin by focusing on ordinary (compact) arcs, that is, arcs between a pair of

boundary components. Recall that an arc is two-ended if it starts and ends at

distinct boundary components, and one-ended if it starts and ends at the same

boundary component. To define an association from arcs to curves in a way which

only distorts the length of the arc in a bounded manner, we want to construct a

curve from an arc. If we consider a simple arc α on a surface S, we find an intuitive

way to do this. Take the boundary of a regular neighbourhood of the union of α

and the corresponding boundary components of S; in the case that α is simple and

two-ended, this neighbourhood is homeomorphic to an embedded pair of pants P ,

otherwise known as the three-holed sphere S0,3. A pair of pants equipped with a

hyperbolic metric has useful geometric properties which give us various identities,

allowing us to relate the length of α and the length of the (geodesic representative

of the) boundary of this neighbourhood. However, if α is not simple or is one-

ended then the boundary of this neighbourhood will in fact be a multi-curve. To

ensure that we always construct a curve from our arc whilst also constructing a pair

of pants to relate their lengths, we must take a slightly different approach. If we

instead construct our curve by taking two parallel copies of α and joining their ends
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around the boundary components, we get the same result as the previous method

for simple two-ended arcs but we also get a single curve in more complex cases: here

the curve will be the boundary of an immersed pair of pants, or rather the image

of a boundary component of a pair of pants under a continuous map. Examples of

this can be seen in Figure 2.1, and we define this method concretely below.

Figure 2.1: Examples of arcs (in red) and the curves associated to them (in blue).
One arc (above) is simple and two-ended, whereas the other (below) is simple and
one-ended. Note that the curve associated to the one-ended arc is not simple.

We fix an orientation on S, which induces an orientation on the boundary com-

ponents. We will use the “right-hand rule” convention for this; on a boundary

component, you are facing the positive direction if the interior of the surface is on

your right hand side. Let α : [0, 1] → S be an arc on S, oriented from α(0) to α(1).

The endpoints α(0) and α(1) each lie on a boundary component which we denote by

δα0 and δα1 respectively: note that these are not necessarily distinct. Pick basepoints

p0 on δα0 and p1 on δα1 , and consider these boundary components as loops based at

their respective basepoints. Apply a homotopy to α so that α(0) = p0 and α(1) = p1,

moving the endpoints no more than halfway around the boundary component to do

so. Then we define the curve associated to α to be the geodesic curve γα (freely)
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homotopic to the concatenated path

α−1 · δα1 · α · δα0

which starts and ends at p0. As mentioned above, in the case that α is simple and

δα0 ̸= δα1 , γα is homotopic to the boundary of a regular neighbourhood of the union

of α, δα0 and δα1 . An example of this can be found in Figure 2.1. Recall that we

identify arcs and curves that differ by an orientation, and note that the arc α−1

which differs from α only in orientation gives rise to exactly the same curve as α,

even in orientation.

Let P be a pair of pants and fix an orientation on P . The boundary components

of P are referred to as cuffs, and for each pair of cuffs the unique homotopy class of

simple arcs between them is called a seam. We label the cuffs as δP0 , δ
P
1 and δP2 and

the seam between δP0 and δP1 as αP . For any arc α on S with endpoints on δα0 and

δα1 , there exists a continuous map ια such that

ια : P → S,

ια(δ
P
0 ) = δα0 ,

ια(δ
P
1 ) = δα1 ,

ια(αP ) = α.

(2.1)

Note that the images of the two cuffs and the seam under this map determine the

image of the third cuff up to homotopy, since this is exactly the (free) homotopy

class of α−1 · δα1 · α · δα0 . That is,

γα = ια(δ
P
2 ) (2.2)

(up to homotopy). We note here that this is an alternate definition of the curve

associated to an arc. Let ι′α be another continuous map which satisfies (2.1). Then

since they agree on δP0 , δ
P
1 and αP , we have that the images ια(δ

P
2 ) and ι

′
α(δ

P
2 ) of the

third cuff are homotopic and such a homotopy extends to a homotopy from ια(P )

to ι′α(P ). Thus any two such continuous maps of P are homotopic.

Let A(S) and C(S) denote the sets of (homotopy classes of) arcs and curves on
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S respectively. We define the association map I as

I : A(S) → C(S),

I(α) = γα.
(2.3)

In Chapter 3, we will study this association in detail.

2.1.1 Associate arcs on S

Somewhat surprisingly, the map I is not one-to-one. That is, we can find curves γ

such that |I−1(γ)| > 1. In a special case, we can see this rather quickly: suppose

S is a four-holed sphere and α and β are disjoint simple two-ended arcs between

distinct pairs of boundary components. Then γα and γβ are the same (homotopy

class of) curve, up to orientation. For simple examples of these arcs, see Figure 2.2.

Figure 2.2: Two examples of pairs of associate arcs of the first kind on S0,4. In each
example, the two arcs in red are associated to the curve in blue.

However, there are also much less trivial examples of this where the arcs are

between the same boundary components, and these examples can occur on any

surface with boundary. For instance, the two arcs in Figure 2.3 represent distinct

homotopy classes on P , but their associated curves are homotopic. This can be seen

by hand with some work, but in Chapter 3 we will study how to derive this example

(see Example 3.1.3) and many more like it. By mapping a pair of pants into a

surface S in such a way that we respect the relevant pair of boundary components,

we can produce such examples on any surface with boundary.

When a collection of arcs are associated to the same curve under I, we will
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2.1. Associating arcs and curves

Figure 2.3: An example of two arcs of the second kind associated to the same curve
(shown in Figure 2.4), drawn from two perspectives for clarity. These are described
in Example 3.1.3. Using the terminology from Chapter 3, these correspond to the
frame (2, 2, ∅).

refer to them as associate arcs. We will refer to the curves in I(A(S)) as curves

associated to arcs. As mentioned, in Chapter 3 we will investigate associate arcs

and demonstrate that on the pair of pants P , at most two two-ended arcs can be

associated to the same curve. We would expect this statement to generalise to all

arcs on any hyperbolic surface.

Take two associate arcs α1 and α2 on a surface S, and denote the curve associated

to them as γ. The arcs α1 and α2 either join different (not necessarily disjoint) pairs

of boundary components as in Figure 2.2, or the same pair of boundary components

as in Figure 2.3. We will refer to these as arcs of the first kind and arcs of the second

kind respectively.

Associate arcs of the first kind are not the focus of this work; we consider them to

be trivial examples as they can never be of the same type under PMod(S) and will

not affect the proof of our main theorem. In the following when discussing associate

arcs, we will assume them to be of the second kind.
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Figure 2.4: The curve associated to the arcs from Figure 2.3, drawn from two per-
spectives for clarity.

2.2 Counting arcs

In this section, we will discuss various properties of the map I needed to prove

Theorem 1, which we recall here.

Theorem 1. Let X be a complete, finite-area, hyperbolic metric on S with non-

empty geodesic boundary. Let α0 be an arc on S. Then there exist positive constants

c(α0) and m(X) such that

lim
L→∞

|{α of type α0 | ℓX(α) ≤ L}|
L6g−6+2(n+p)

= k(α0)c(α0)m(X),

where k(α0) is some positive integer.

In full generality, this theorem holds for weighted multi-arcs (see Theorem 2.2.6).

In the following, we will mention how to generalise each statement we prove for arcs

to multi-arcs; this theorem then holds for multi-arcs using a proof analogous to that

of Theorem 1 given in Section 2.2.3.

To begin with, we describe how to extend I to the set of multi-arcs. In the case

that α =
∑m

i=1 a
iαi is a multi-arc, we define the multicurve associated to α to be
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the weighted sum of the the curves associated to its components. That is,

γα =
m∑
i=1

aiγαi =
m∑
i=1

aiιαi(δP2 ). (2.4)

Let Amulti(S) and Cmulti(S) be the sets of weighted multi-arcs and weighted multic-

urves respectively. By abuse of notation, we define the association map on multi-arcs

by

I : Amulti(S) → Cmulti(S),

I(α) = I
( m∑
i=1

aiαi
)
=

m∑
i=1

aiI(αi).

2.2.1 Distortion of the length of an arc under I

In this section, we want to show that the association almost preserves the lengths

of arcs. We can prove that I distorts the length of arcs in a controlled way using

the geometric properties of a hyperbolic pair of pants P (see also Section 6 of [4] for

various expressions relating the lengths of α and γα).

Lemma 2.2.1. Let X be a complete, finite-area, hyperbolic metric on S such that

∂S is geodesic. There exists a constant C(X) > 0 such that for any α ∈ A(S),

|ℓX(I(α))− 2ℓX(α)| ≤ C(X),

where I(α) = γα is the curve associated to α.

Proof. This will follow from basic hyperbolic geometry. Let α ∈ A(S), and let ια

be the continuous map given by (2.1).

The immersed pair of pants ια(P ) consists of a pair of hyperbolic right angled

hexagons with side lengths
ℓX(δα0 )

2
, ℓX(α),

ℓX(δα1 )

2
, r, 1

2
ℓX(γα), s for some r, s > 0. Fix-

ing the lengths of three sides of such a hexagon fixes the lengths of the remaining

three sides. As such, choosing the lengths of 2 cuffs and the seam between them on

a pair of pants fixes the length of the third cuff; that is, the lengths of δα0 , δ
α
1 and α

determine the length of γα. More precisely,

cosh
ℓX(γα)

2
= sinh

ℓX(δ
α
0 )

2
sinh

ℓX(δ
α
1 )

2
cosh ℓX(α)− cosh

ℓX(δ
α
0 )

2
cosh

ℓX(δ
α
1 )

2
(2.5)
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Chapter 2. Counting arcs

(see Theorem 2.4.1 of [8]). Let ∂S = {δ1, . . . , δn}. Then for some i and j, δα0 = δi

and δα1 = δj. To simplify notation, we will write

Ai,j = sinh
ℓX(δi)

2
sinh

ℓX(δj)

2
,

Bi,j = cosh
ℓX(δi)

2
cosh

ℓX(δj)

2
.

Rearranging equation (2.5), we can write the length of γα as

ℓX(γα) = 2 cosh−1(Ai,j cosh ℓX(α)−Bi,j),

and we want to show that this length is close to 2ℓX(α). To this end, we define the

error function Ei,j : [mi,j,∞) → R by

Ei,j(ℓ) = 2 cosh−1(Ai,j cosh ℓ−Bi,j)− 2ℓ,

where mi,j is a lower bound on the lengths of arcs between δi and δj. This can be

taken as mi,j := cosh−1
(
Bi,j+1

Ai,j

)
. This function is continuous, and the limit

lim
ℓ→∞

Ei,j(ℓ) = 2 ln(Ai,j)

exists. We can convince ourselves of this with the following approximations; the

concrete computation of this limit is given in Appendix A.

lim
ℓ→∞

Ei,j(ℓ) = lim
ℓ→∞

(
2 cosh−1(Ai,j cosh ℓ−Bi,j)− 2ℓ

)
= lim

ℓ→∞

(
2 cosh−1(Ai,j cosh ℓ)− 2ℓ

)
= lim

ℓ→∞

(
2 cosh−1

(
Ai,j

eℓ + e−ℓ

2

)
− 2ℓ

)
= lim

ℓ→∞

(
2 cosh−1

(
Ai,j

eℓ

2

)
− 2ℓ

)
= lim

ℓ→∞

(
2 ln

(
Ai,j

eℓ

2
+

√(
Ai,j

eℓ

2

)2
− 1

)
− 2ℓ

)
= lim

ℓ→∞

(
2 ln

(
Ai,j

eℓ

2
+

√(
Ai,j

eℓ

2

)2)
− 2ℓ

)
= lim

ℓ→∞

(
2 ln(Ai,je

ℓ)− 2ℓ
)
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2.2. Counting arcs

= lim
ℓ→∞

(
2 ln(Ai,j) + 2 ln(eℓ)− 2ℓ

)
= 2 ln(Ai,j).

Hence |Ei,j(ℓ)| is bounded for all ℓ ∈ [mi,j,∞), and thus there exists C(i, j) > 0

such that for any arc α between δi and δj we have |ℓX(γα) − 2ℓX(α)| ≤ C(i, j).

Therefore as S has finitely many boundary components, there exists C(X) > 0 such

that for any α ∈ A(S),

|ℓX(γα)− 2ℓX(α)| ≤ C(X).

If α =
∑m

i=1 a
iαi is a multi-arc, then we say the weight of α is the sum of the

weights of its components, W (α) =
∑m

i=1 |ai|. As multi-arcs have finitely many

components, Lemma 2.2.1 holds for multi-arcs as a direct consequence if we allow

the constant to depend on the weight. In particular, we have:

Corollary 2.2.2. Let X be a complete, finite-area, hyperbolic metric on S such that

∂S is geodesic. Let α ∈ Amulti(S). Then there exists a constant C(X) > 0 such that

|ℓX(I(α))− 2ℓX(α)| ≤ W (α)C(X),

where I(α) = γα is the multicurve associated to α and W (α) is the weight of α.

Proof. Let α =
∑m

i=1 a
iαi be a multi-arc. If γα is the multicurve associated to α,

then we have γα =
∑m

i=1 a
iγiα as in (2.4), where γiα = γαi is the curve associated to

αi. Using the triangle inequality and Lemma 2.2.1, we have

|ℓX(γα)− 2ℓX(α)| =
∣∣∣ m∑
i=1

aiℓX(γ
i
α)− 2

m∑
j=1

ajℓX(α
j)
∣∣∣

=
∣∣∣ m∑
i=1

aiℓX(γαi)− 2
m∑
j=1

ajℓX(α
j)
∣∣∣

=
∣∣∣ m∑
i=1

ai
(
ℓX(γαi)− 2ℓX(α

i)
)∣∣∣

≤
m∑
i=1

|ai||ℓX(γαi)− 2ℓX(α
i)|

≤
m∑
i=1

|ai|C(X)
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Chapter 2. Counting arcs

= C(X)
m∑
i=1

|ai|,

and so the lemma holds.

Note that the weight of a multi-arc is invariant under the action of the pure

mapping class group, and so this bound is uniform across multi-arcs of the same

type.

2.2.2 Arcs of the same type are uniformly k-to-1

Part of the proofs of our main theorems will require understanding how close to

injective the map I is when we restrict it to a type of arc. Recall that two arcs are

of the same type if they share an orbit under the action of the pure mapping class

group PMod(S).

We mentioned in Section 2.1 that I can map multiple arcs to the same curve,

which will be studied in detail in Chapter 3. In particular, the number of arcs

mapped to a given curve varies across I(A(S)). However, when we restrict I to a

type of arc we can prove that this number cannot vary. We will show this using the

fact that I is equivariant with respect to PMod(S), which we now demonstrate. In

fact, this map is equivariant with respect to the mapping class group Mod(S).

Lemma 2.2.3. Let φ ∈ PMod(S) and α ∈ A(S). Then

I(φ · α) = φ · I(α).

Proof. To see this, write

γφ·α = ιφ·α(δ
P
2 )

using the alternate definition (2.2) given for γα in Section 2.1. We have that

ιφ·α(P ) ⊂ S is an immersed pair of pants with boundary components δα0 and δα1 ,

and the seam between them is φ ·α. Similarly, φ · ια(P ) ⊂ S is an immersed pair of

pants with boundary components δα0 and δα1 and seam between them φ · α, since φ

fixes the boundary components of S. Therefore, ιφ·α(P ) = φ ·ια(P ) up to homotopy,

and in particular ιφ·α(δ
P
2 ) = φ · ια(δP2 ). Since γα = ια(δ

P
2 ) by (2.2), we have

γφ·α = φ · γα
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2.2. Counting arcs

and so the lemma holds.

Let α0 be an arc, and let α be an arc of type α0. Then α and α0 are related by

some pure mapping class φ. If we imagine the map φ acting on the pair of pants

ια0(P ) of which the associated curve γα0 is a cuff, we can see that α will be the seam

of this new pair of pants and its associated curve will be the image of this cuff. Thus

γα will be a curve of type γα0 for any arc α of type α0. We define the restriction of

I to arcs of type α0

Iα0 : PMod(S) · α0 → PMod(S) · γα0

by Iα0(α) = I(α) for all arcs α of type α0. By Lemma 2.2.3, this map is well-

defined. We can show that not only is this restriction of I surjective, it is also

uniformly k-to-one for some positive integer k.

Proposition 2.2.4. Let α0 be an arc on S. Then there exists k = k(α0) such that

Iα0 is surjective and k-to-1.

Proof. Let γ ∈ PMod(S) ·γα0 , so γ = φ ·γα0 for some φ ∈ PMod(S). Let α = φ ·α0.

Then by Lemma 2.2.3,

γ = φ · γα0 = γφ·α0 = Iα0(φ · α0) = Iα0(α),

thus Iα0 is surjective.

Consider the collection of arcs αi such that γαi
= γ. This set is finite: by Lemma

2.2.1, the maximum length of such an arc is 1
2
ℓX(γ)+

1
2
C(X), and thus there are only

finitely many. Suppose that there are exactly k such arcs, and suppose further that

for some other curve γ′ of type γα0 , there are exactly k′ arcs α′
i such that γα′

i
= γ′.

Since γ and γ′ are of the same type, there exists some ψ ∈ PMod(S) such that

γ′ = ψ · γ. Again by Lemma 2.2.3, we have that for each i ∈ {1, . . . , k},

Iα0(ψ · αi) = γψ·αi
= ψ · γαi

= ψ · γ = γ′.

Thus we have constructed a set of k arcs which are associated to γ′, and so k ≤ k′.

Analogously, we can construct a set of k′ arcs which are associated to γ, hence

k′ ≤ k. Therefore k = k′, and so k is uniform across all curves of type γα0 .
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The map I remains PMod(S)-equivariant when defined on multi-arcs as an im-

mediate corollary to Lemma 2.2.3. Following the proof of Proposition 2.2.4, we can

see that the restriction of the association map to multi-arcs of a particular type is

surjective and k-to-1, for some k depending only on the type.

Corollary 2.2.5. Let α0 be a multi-arc and γα0 be as in (2.4). Let

Iα0 : PMod(S) · α0 → PMod(S) · γα0

be the restriction of I to multi-arcs of type α0. Then there exists k = k(α0) such

that Iα0 is surjective and k-to-1.

2.2.3 Proving Theorem 1

We can now prove that when counting arcs of a given type of bounded length, the

growth is polynomial in L.

Proof of Theorem 1. Let α0 be an arc, and consider the set

{α of type α0 | ℓX(α) ≤ L}

for some L > 0. By Proposition 2.2.4, there exists some k such that the association

map Iα0 is k-to-1. Thus for each curve in the image of the above set under Iα0 ,

there are exactly k arcs in its pre-image. By Lemma 2.2.1, the maximum length of

a curve associated to an arc in this set is 2L+ C(X). Hence we can write

|{α of type α0 | ℓX(α) ≤ L}| ≤ k|{γ of type γα0 | ℓX(γ) ≤ 2L+ C(X)}|.

Then we have

lim sup
L→∞

|{α of type α0 | ℓX(α) ≤ L}|
L6g−6+2(n+p)

≤ lim sup
L→∞

k|{γ of type γα0 | ℓX(γ) ≤ 2L+ C(X)}|
L6g−6+2(n+p)

= k · lim sup
L→∞

|{γ of type γα0 | ℓX(γ) ≤ 2L+ C(X)}|
(2L+ C(X))6g−6+2(n+p)

(2L+ C(X))6g−6+2(n+p)

L6g−6+2(n+p)
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= k · 26g−6+2(n+p)c(γα0)m(X)

using Corollary 1.3.3. Using a similar argument, we have

|{α of type α0 | ℓX(α) ≤ L}| ≥ k|{γ of type γα0 | ℓX(γ) ≤ 2L− C(X)}|,

as every curve of type γα0 of length at most 2L − C(X) must be associated to an

arc of type α0 of length at most L. and therefore

lim inf
L→∞

|{α of type α0 | ℓX(α) ≤ L}|
L6g−6+2(n+p)

≥ k · 26g−6+2(n+p)c(γα0)m(X).

Hence, since the limit superior and inferior both exist and agree, we have that the

limit exists and equals the same value. In other words,

lim
L→∞

|{α of type α0 | ℓX(α) ≤ L}|
L6g−6+2(n+p)

= k(α0)c(α0)m(X),

where c(α0) := 26g−6+2(n+p)c(γα0), k(α0) is as in Proposition 2.2.4, and c(γα0) and

m(X) are as in Mirzakhani’s Theorem.

As mentioned in the introduction, Theorem 1 also holds when we consider multi-

arcs instead of arcs. Following the above proof but substituting Lemma 2.2.1 and

Proposition 2.2.4 with Corollary 2.2.2 and Corollary 2.2.5 respectively, we have the

following result.

Theorem 2.2.6. Let X be a complete, finite-area, hyperbolic metric on S with non-

empty geodesic boundary. Let α0 be a multi-arc on S. Then there exist positive

constants c(α0) and m(X) such that

lim
L→∞

|{α of type α0 | ℓX(α) ≤ L}|
L6g−6+2(n+p)

= k(α0)c(α0)m(X),

where k(α0) is some positive integer.
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Chapter 2. Counting arcs

2.3 Counting infinite arcs

The main work in this section is to prove Lemma 2.2.1, Lemma 2.2.3 and Proposition

2.2.4 from Section 2.2 for infinite arcs, with modifications to account for the range

of values the t-length of an infinite arc can take. The proof of Theorem 2, which

we recall here, will be analogous to that of Theorem 1. Recall from Definition 1.4.1

that the t-length of an infinite arc α is the length of the segment αt = α∩ (S \Ht),

where Ht is as in Definition 1.2.1.

Theorem 2. Let X be a complete, finite-area, hyperbolic metric on S with (possibly

empty) geodesic boundary. Let α0 be an infinite arc on S. Then for any positive

t ≤ 1, we have

lim
L→∞

|{α of type α0 | ℓtX(α) ≤ L}|
L6g−6+2(n+p)

= k(α0)c(α0)m(X)

where k(α0), c(α0) and m(X) are as in Theorem 1. In particular, the limit does not

depend on t.

In Section 1.4, we discussed how to assign appropriate finite lengths to infinite

arcs. The curve γα associated to an infinite arc α is defined analogously to the case

of arcs between boundary components. Recalling the notation from Section 1.4, we

denote by pα0 and pα1 the cusps at each end of α, where α is oriented from pα0 to pα1 .

With tα as in Lemma 1.2.6, define γα to be the geodesic curve (freely) homotopic to

the loop given by the concatenation

(α−1)tα · hα1 · αtα · hα0 . (2.6)

Here, hα0 = ∂H
pα0
tα and hα1 = ∂H

pα1
tα (see Definition 1.2.1) are the horocycles at pα0

and pα1 of length tα, viewed as loops with appropriate basepoints and orientations.

Note that by Lemma 1.2.2, if we replaced tα with any positive t < tα, we would

get the same curve γα. Let P be a (generalised) pair of pants with one boundary

component and two cusps, labelled δ, p0 and p1 respectively. There is a continuous

map ια : P → S which sends p0 and p1 to pα0 and pα1 respectively, and such that

(the homotopy class of) the simple infinite arc between them is mapped to α. Then

equivalently, γα is the geodesic representative of ια(δ).
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2.3. Counting infinite arcs

Abusing notation, we define the association map I on infinite arcs to be

I : A∞(S) → C(S),

I(α) = γα,

where A∞(S) is the set of all infinite arcs on S and γα is given by (2.6).

We will now prove an analogue of Lemma 2.2.1 for infinite arcs. As t can be

taken arbitrarily close to 0, the t-length of an arc can be arbitrarily long, and so

any bound on the difference between the t-lengths of infinite arcs and the lengths

of their associated curves must depend on t. Furthermore, arcs which self-intersect

arbitrarily often will go arbitrarily deep into the cusps, and therefore so will their

curves. Thus for a fixed value of t, this difference can become arbitrarily large.

Hence, any such bound must also depend on self-intersection number.

Lemma 2.3.1. Let α be an infinite arc. Then for any positive t < 1, there exists

C
(
ι(α, α), t

)
> 0 such that

|ℓX(I(α))− 2ℓX(α
t)| ≤ C

(
ι(α, α), t

)
where I(α) = γα is the curve associated to α.

Figure 2.5: The pre-image of an infinite arc α in the generalised pair of pants P ,
with the perpendiculars which we cut along.
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Proof. Let α be an infinite arc, and let tα be given by Lemma 1.2.6. We will start

by proving the lemma in the case that t ≤ tα. Then we will demonstrate that for

t > tα, the difference between ℓ
t
X(α) and ℓ

tα
X (α) is uniformly bounded across all arcs

with the same self-intersection number, and so complete the proof.

Suppose that t ≤ tα. Equip the generalised pair of pants P with a metric using

the pullback of X through ια. Cut P along four geodesic arcs: the pre-image of

α, the perpendicular compact simple geodesic arc from the boundary component to

itself, and the two simple geodesic rays between the boundary component and the

cusps. These geodesics are highlighted in Figure 2.5. We are left with 4 isometric

copies of a quadrilateral with three right angles and one ideal vertex, which we label

as in Figure 2.6.

Consider this quadrilateral in the upper-half space model for H2 and normalise

it such that the ideal vertex is at ∞ and the edges incident to it are on the lines

x = 0 and x = 1. We will write ℓH2(·) for the length of a path in H2. Since t ≤ tα,

we have that the edge qw has length ℓH2(qw) = 1
2
ℓX(α

t), and the edge uv has length

ℓH2(uv) = 1
4
ℓX(γα). As the length of the boundary of the cuspidal region of volume

t is t, the length of the segment which lives in this quadrilateral is t
2
. Therefore it

lies on the line y = 2
t
.

Figure 2.6: One of the quadrilaterals acquired from cutting P (left), and the same
quadrilateral in the upper-half plane model after normalising (right).
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Since q lies on the line y = 2
t
and ℓH2(qw) = 1

2
ℓX(α

t), we have that w =

2
t
ie−

1
2
ℓX(αt). Hence the edges vw and uv lie on circles C1 and C2 defined by the

equations

x2 + y2 =
(2
t
e−

1
2
ℓX(αt)

)2
(x− 1)2 + y2 = 1−

(2
t
e−

1
2
ℓX(αt)

)2
respectively. We can then compute u as the solution to the simultaneous equations

given by C2 and x = 1 with positive y-coordinate. Similarly, we can compute v from

C1 and C2. We then have that as complex numbers, u = 1 + i
√

1− (2
t
e−

1
2
ℓX(αt))2

and v = (2
t
e−

1
2
ℓX(αt))2 + i2

t
e−

1
2
ℓX(αt)

√
1− (2

t
e−

1
2
ℓX(αt))2. We calculate the distance

between u and v by mapping the geodesic on which the edge uv lies isometrically

to the imaginary axis. The length of uv after applying this isometry is

ℓH2(uv) = ln

(
2
t
e−

1
2
ℓX(αt)

1−
√

1− (2
t
e−

1
2
ℓX(αt))2

)

= cosh−1
( t
2
e

1
2
ℓX(αt)

)
.

as (2
t
e−

1
2
ℓX(αt))−1 ≥ 1. Moreover, as ℓH2(uv) = 1

4
ℓX(γα) by construction, we can thus

express the length of γα as

ℓX(γα) = 4 cosh−1
( t
2
e

1
2
ℓX(αt)

)
.

Hence, the difference ℓX(γα)− 2ℓX(α
t) can be written as

4 cosh−1
( t
2
e

1
2
ℓX(αt)

)
− 2ℓX(α

t).

The function Et(ℓ) = 4 cosh−1( t
2
e

1
2
ℓ) − 2ℓ is continuous on [mt,∞), where mt :=

2 ln(2
t
) is a lower bound on the length of αt, and limℓ→∞Et(ℓ) = 4 ln(t). It follows

that there exists C1(t) > 0 such that

|ℓX(γα)− 2ℓX(α
t)| ≤ C1(t). (2.7)

Now suppose that t > tα. Note that αt is contained in αtα ; thus we have
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that ℓtX(α) < ℓtαX (α). Consider αtα \ αt, which lies in Ht \ Htα . Exactly two

of the components of αtα \ αt are simple geodesic arcs from ∂Ht to ∂Htα which

meet each boundary orthogonally. Hence, these two components each have length

ln( t
tα
) ≤ ln( 1

tα
). The other components, if any, are returning segments in Ht with

both endpoints on ∂Ht. Let β be some such segment of α, and let d = ι(α, α).

Then we must have ι(β, β) ≤ d. Thus, as t ≤ 1, ℓX(β) ≤ B(d) where B is given by

Lemma 1.2.4. As B only depends on d, this holds for any such segment. Now we

need to show that there are only finitely many segments of α in Ht \ Htα . From

Lemma 1.2.7, we have that the self-intersection number of each segment is at least

1, and indeed the sum of the self-intersection numbers of these segments is at most

d. Hence, α ∩ (Ht \ Htα) has at most d+ 2 components and so

ℓtαX (α)− ℓtX(α) ≤ dB(d) + 2 ln
( t
tα

)
≤ dB(d) + 2 ln

( 1

tα

)
.

Note that by Lemma 1.2.6, tα depends only on d = ι(α, α). Thus there exists some

C2

(
ι(α, α)

)
> 0 such that

|ℓtαX (α)− ℓtX(α)| ≤ C2

(
ι(α, α)

)
. (2.8)

Now by applying (2.7) to tα, we have that |ℓX(γα)− 2ℓX(α
tα)| ≤ C1(tα). Com-

bining this with (2.8), we can write

|ℓX(γα)− 2ℓX(α
t)| ≤ C1(tα) + 2C2

(
ι(α, α)

)
.

Therefore, for any t ≤ 1,

|ℓX(γα)− 2ℓX(α
t)| ≤ C

(
ι(α, α), t

)
where

C
(
ι(α, α), t

)
=

C1(t) if t ≤ tα,

C1(tα) + 2C2

(
ι(α, α)

)
if t > tα.

The fact that I defined on infinite arcs is PMod(S)-equivariant holds by an
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argument analogous to the proof of Lemma 2.2.3. That is, for any infinite arc α and

any φ ∈ PMod(S),

I(φ · α) = φ · I(α). (2.9)

For any infinite arc α0, Iα0 : PMod(S) · α0 → PMod(S) · γα0 is the restriction of

I to PMod(S) · α0. Given any curve γ of type γα0 and a fixed value of t, there are

only finitely many arcs α of type α0 such that ℓX(α
t) ≤ 1

2
ℓX(γ) +

1
2
C
(
ι(α0, α0), t

)
.

By Lemma 2.3.1, this means that there are only finitely many arcs α of type α0 such

that γα = γ. Using this together with (2.9), Proposition 2.2.4 holds for Iα0 by an

analogous argument.

Proposition 2.3.2. Let α0 be an infinite arc. Then there exists some k = k(α0)

such that Iα0 is surjective and k-to-1.

Armed with this, we can follow the argument from the proof of Theorem 1 to

prove Theorem 2. That is, we can demonstrate that the growth of the number of

infinite arcs of a given type of bounded t-length is polynomial in the length.

Proof of Theorem 2. Let α0 be an infinite arc, and fix some positive t ≤ 1. Let γα0

be the curve associated to α0, as in (2.6). Using the same argument as in the proof

of Theorem 1, replacing Lemma 2.2.1 and Proposition 2.2.4 with Lemma 2.3.1 and

Proposition 2.3.2, we have

lim
L→∞

|{α of type α0 | ℓtX(α) ≤ L}|
L6g−6+2(n+p)

= k · 26g−6+2(n+p) lim
L→∞

|{γ of type γα0 | ℓX(γ) ≤ L}|
L6g−6+2(n+p)

= k · 26g−6+2(n+p)c(γα0)m(X)

= k(α0)c(α0)m(X)

where c(α0) = 26g−6+2(n+p)c(γα0), k(α0) is as in Proposition 2.3.2, and c(γα0) and

m(X) are as in Mirzakhani’s Theorem.

Remark: As previously mentioned, Theorem 2 holds when we replace the t-length

by the truncated length ℓTrX (see Corollary 1.4.2). This can be seen by applying

Theorem 2 in the case that t = tα0 , and using the bound on the difference in the

tα0-length and the truncated length from (1.4).
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2.4 Simple two-ended arcs have no associates

As a final comment before we leave this chapter, we document a proof that k(α0) = 1

in a special case which requires no further technical work. Recall that we call an

arc two-ended if it is between two distinct boundary components on S, that is,

such that δα0 ̸= δα1 . Otherwise, we call it one-ended. Working directly from the

definition of arcs and their associated curves, we can demonstrate that if α is simple

and two-ended, then it has no associate arc. In other words, there is no other arc

on S associated to the same curve as α, and thus the association map Iα is 1-to-1

(see Theorem 2.4.4). In Theorem 1, this will correspond to k(α) = 1. Our first

goal is to demonstrate that if α is simple and two-ended then the curve associated

to it is simple, by relating the self-intersection number of an arc to that of the

curve associated to it. This is done by giving a more hands-on construction of a

representative of γα and finding its self-intersection number.

To begin, let α be any (not necessarily simple) orthogeodesic arc. The repre-

sentative of γα will be constructed using the following method, which we refer to

as the “hoop-and-stick” construction. Choose two positive parameters ε and δ and

imagine standing on the arc α at the endpoint α(0) with two objects; a stick of

length ε and a hoop covered with paint. If δα0 = δα1 , take a step of length δ forwards

before proceeding. Balance the hoop at the end of your stick on your left and push it

away from you, following the orientation of δα0 . As it comes back around from your

right, stop it at the end of your stick, leaving a 2ε gap between the endpoints of the

path up to this point. Now walk along α to α(1), pushing the hoop along at the end

of your stick. In this manner, we draw out a copy of α which maintains a constant

distance of ε from the original. Upon reaching α(1), stop the hoop and turn around,

before rolling the hoop around δα1 as you did in the first step. Note that we do not

take a step forward at this stage. Finally, proceed to walk back along α to α(0),

rolling the hoop on your right again. Once you reach α(0), the hoop has reached its

original start point and we have drawn out a closed loop on S. This loop, denoted

γhsα , is homotopic to γα, and we call this the hoop-and-stick representative of γα. In

other words, we have formed an immersed version of a regular neighbourhood of the

arc together with its boundary components. Note that choosing large values of ε
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or δ could cause the curve to behave unexpectedly; we always consider sufficiently

small values of each parameter.

Consider any self-intersection point of α. In a small neighbourhood around this

point, we see that γhsα draws out two strips of width 2ε around each segment of α in

the neighbourhood, which cross exactly once. Thus at each self-intersection point of

α, the hoop-and-stick curve self-intersects exactly 4 times. If δα0 and δα1 are distinct,

this is the only case in which γhsα self-intersects. Otherwise, γhsα crosses itself exactly

twice more; this occurs once when the first copy of α drawn out crosses the original

copy of δα0 , then again when the second copy of α crosses near the first point of

self-intersection. Thus we have that

ι(γhsα , γ
hs
α ) = 4ι(α, α) + 2∆

where

∆ =

1 if δα0 = δα1 ,

0 otherwise.

Therefore, the self-intersection number of γα is bounded from above by this value.

We record this here for reference.

Proposition 2.4.1. Let α be an arc on S. Then

ι(γα, γα) ≤ 4ι(α, α) + 2∆

where ∆ = 1 if δα0 = δα1 and ∆ = 0 otherwise.

From this we can deduce that the curve associated to a simple two-ended arc

is itself simple. We can in fact demonstrate that the converse also holds, which we

outline here.

Proposition 2.4.2. Let α be a two-ended arc on S. Then γα is simple if and only

if α is simple.

Proof. As a result of Proposition 2.4.1, we have that if α is simple then γα must be

simple.

For the other direction, suppose that α is two-ended and γα is simple. We will

use some standard facts about homology, and refer the reader to any textbook on
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the subject, such as [7, 13]. We denote by ι∗(·, ·) the algebraic intersection number

between two objects, and recall that the algebraic intersection number depends only

on homology.

As the curves γα, δ
α
0 and δα1 bound some immersed subsurface X, we have that

γα is homologous to the sum δα0 +δ
α
1 , with the orientation inherited from the surface.

We claim that X is in fact an embedded subsurface.

To see this, first note that γα is separating. If it were not, we could cut along γα

and find a simple arc in the resulting cut surface which would define a curve η in S

such that ι∗(γα, η) = 1 but ι∗(δα0 + δα1 , η) = 0. Suppose that δα0 and δα1 are not in

the same connected component of the cut surface S \ γα. Then we can find an arc

β in S which joins δα0 and δα1 and crosses γα exactly once, such that ι∗(γα, β) = 1

but ι∗(δα0 + δα1 , β) = 0. Thus γα, δ
α
0 and δα1 are boundary components of the same

component of S \ γα, which is X. Suppose X has a boundary component θ which is

none of these. Then we can find an arc β joining δα0 and θ such that ι∗(γα, β) = 0

but ι∗(δα0 + δα1 , β) = 1. So no such boundary component θ exists. As a result, we

can say that the subsurface X is embedded.

Here, we specify that α is the orthogeodesic representative of its homotopy class.

We know that part of α lies inX, as it joins δα0 and δα1 . Suppose α does not lie entirely

within X. Then α must intersect γα. Recall the hoop-and-stick representative γhsα

of γα from the discussion above Proposition 2.4.1. As α and γα intersect, so too do

γhsα and γα. Suppose there exist bigons between γhsα and γα. Then each such bigon

implies the existence of a bigon between the geodesics α and γα, which is impossible.

Thus γhsα and γα must have non-trivial geometric intersection number, and therefore

γα has non-trivial geometric self-intersection number. However, γα is a simple curve,

so we have a contradiction. Thus α must lie entirely within X.

We can therefore restrict our focus to the subsurface X, and possibly by applying

a homotopy we have that the map ια : P → X is surjective. In fact, this map ια

is an immersion, and thus has a well-defined degree s ∈ Z+. We can express this

degree as

s =
area of P

area of X

and as the hyperbolic surface with three boundary components of minimal area is

the pair of pants, we must have that s = 1. Therefore, ια is a proper immersion of
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degree 1, and hence is an embedding. In particular, α must be simple as it is the

image of the seam between δP0 and δP1 .

The argument that we will set out relies on the Isotopy Extension Theorem,

which we state here for reference.

Isotopy Extension Theorem (Theorem 1.3, [16]). Let γ be an embedding of the

circle into S, and consider some isotopy h of γ. Then h can be extended to the

entire surface S.

We need to verify a short lemma in which we apply the Isotopy Extension The-

orem.

Lemma 2.4.3. Let γ be a simple curve on S, and let φ ∈ PMod(S) such that

φ · γ = γ. Then for any simple representative γ′ of the homotopy class of γ, there

exists a representative φ′ of the homotopy class of φ such that φ′(γ′) = γ′ point-wise.

Proof. Abusing notation, we choose some representative of the mapping class φ and

denote it by φ. By the definition of φ · γ = γ, there exists a homotopy ht from

φ(γ′) to γ′ for any representative γ′ of the homotopy class of γ. We can choose this

homotopy such that h1 ◦ φ fixes γ′ point-wise.

Note that since γ is simple, then as long as we choose a representative which

does not self-intersect, we can take ht to in fact be an isotopy. Therefore, we can

apply the Isotopy Extension Theorem to γ′ and ht, extending ht to an isotopy of S,

denoted h̃t. Now, the map φ′ given by

φ′ := h̃1 ◦ φ

applies φ before moving the image of γ′ back onto itself by isotopy. Explicitly,

φ′(γ′) = h̃1(φ(γ
′)) = γ′ point-wise. Furthermore, φ′ is indeed homotopic to φ via

the homotopy h̃′t := h̃t ◦ φ, and so we are done.

Using this, we can demonstrate that no two simple two-ended arcs of the same

type are associated to the same curve under I on any surface S. Note that associate

arcs of the first kind (as in Figure 2.2) are never of the same type under the action

of PMod(S).
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Theorem 2.4.4. Let α be a simple two-ended arc on some hyperbolic surface S.

Then the association map Iα is 1-to-1.

Proof. Recall from Lemma 2.2.3 that the association map Iα is PMod(S)-equivariant.

That is, Iα ◦φ = φ◦Iα for any pure mapping class φ. Let γα be the curve associated

to α, and recall that by Proposition 2.4.2 it is simple.

Let α1, α2 be associate arcs of type α such that γα1 = γα2 ; equivalently, Iα(α1) =

Iα(α2). Since they are of type α, by definition we can write

α1 = φ1 · α

α2 = φ2 · α

for some pure mapping classes φ1, φ2. Thus we have

Iα(α1) = Iα(α2) =⇒ Iα(φ1 · α) = Iα(φ2 · α)

=⇒ φ1 · Iα(α) = φ2 · Iα(α)

=⇒ φ1 · γα = φ2 · γα

using the equivariance of Iα with respect to PMod(S). We can rearrange this last

statement to give (φ−1
2 ◦ φ1) · γα = γα, leaving us in a position to apply Lemma

2.4.3. The goal here is to find a representative of φ−1
2 ◦ φ1 which fixes a well-chosen

representative of γα which contains α as a segment, and thus this representative

will also fix α. To construct our representative of γα, follow the hoop-and-stick

construction detailed above Proposition 2.4.1 with a slight alteration. After drawing

out the first copy of δα0 , allow the hoop to come all the way to α before pushing it

along in front of you along α. Upon reaching α(1), continue as in the original method.

We now have a homotopic representative of γα which contains α as a segment, which

we will denote γhs∗α . We know that γα is simple by Proposition 2.4.1, and γhs∗α does

not self-intersect. Hence we can apply Lemma 2.4.3 to construct a representative

(φ−1
2 ◦ φ1)

′ of the mapping class φ−1
2 ◦ φ1 such that

(φ−1
2 ◦ φ1)

′(γhs∗α ) = γhs∗α

point-wise, and as such we also have that (φ−1
2 ◦ φ1)

′(α) = α point-wise. Therefore
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we can write

(φ−1
2 ◦ φ1) · α = α

which further implies that φ1 ·α = φ2 ·α. Thus by definition, α1 = α2 and the map

Iα is 1-to-1.

This proof does not extend to more general arcs, as the Isotopy Extension The-

orem plays a key role here and a more general statement does not hold for strict

homotopies. As mentioned previously, in Chapter 3 we lay out the tools required to

study this problem in a general setting.
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Pairs of associate arcs

This chapter is dedicated to the study of associate arcs; arcs whose images under

the association map I are equal. Whilst the definition of the association is purely

topological, we will find ourselves using more discrete and combinatorial methods to

study such arcs. Using these, we describe all instances of two-ended associate arcs

on the pair of pants P , and demonstrate that no more than 2 two-ended arcs are

mapped to the same curve.

Theorem 3. Let P be a pair of pants, and let α be a two-ended arc on P . Let

γα = I(α). Then |I−1(γα)| ≤ 2.

Future work will focus on demonstrating that Theorem 3 implies that the same

fact holds when α is one-ended, or on any surface with boundary.

First, in Section 3.1 we define a correspondence between arcs and words in gen-

erators of the fundamental group of the pair of pants P , which is the crux of the rest

of the chapter. In Section 3.2, we lay out the key definitions and terminology we

will need moving forward, culminating in a proposed system for labelling instances

of associate arcs on P . Section 3.3 contains the bulk of the work, using the tools we

gave ourselves in Section 3.2 to demonstrate that our labels - what we will define

as frames - are in one-to-one correspondence with pairs of associate arcs. Finally in

Section 3.4, we discuss what this labelling tells us about associate arcs, as well as

a geometric point of view which corroborates our findings. We will also discuss the

potential for generalising this work to all surfaces with boundary.

3.1 Characterising arcs in P using π1(P )

Recall from Section 1.5 that P is a pair of pants with boundary components δP0 ,

δP1 and δP2 . We fix a basepoint p0 ∈ P and consider π1(P ) := π1(P, p0), which is

isomorphic to the free group F2.
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To start, we comment that arcs between different pairs of boundary components

cannot be associated to the same curve. The bulk of the chapter will then deal with

the case of arcs joining the same pair of boundary components.

A curve associated to a two-ended arc on P is homologous to the third boundary

component. If the arc is instead one-ended, then the associated curve is homologous

to twice the corresponding boundary component. As a result, we have the following.

Lemma 3.1.1. Let α and β be arcs on P which do not join the same pair of boundary

components. Then γα ̸= γβ.

In the following, we will restrict our focus to two-ended arcs between the same

pair of boundary components.

Definition 3.1.2: For any i, j ∈ {0, 1, 2} where i ≤ j, let Ai,j(P ) be the set of

homotopy classes of (unoriented) arcs between δPi and δPj , and let Ii,j be the map

Ii,j : Ai,j(P ) → C (P ) defined by Ii,j(α) = I(α).

We now introduce a method for identifying each arc in Ai,j(P ) for i ̸= j with

a word in generators of π1(P ) of a particular form. This will prove consistently

useful in studying arcs associated to the same curve. As discussed in Section 2.1

(see (2.1)), an arc on a surface S corresponds to some continuous map of the pair

of pants P inside S. Thus when S = P , we have a continuous map P → P .

Let i, j ∈ {0, 1, 2} such that i ̸= j. Throughout the following, α will be a (two-

ended) arc in Ai,j(P ). For any arc α ∈ Ai,j(P ), we have a continuous map P → P

fixing δPi and δPj , up to homotopy. Fix the generators a and b of π1(P ), where a

and b are loops on P freely homotopic to δPi and δPj respectively. The images of

a and b under these continuous maps must be homotopic to a and b respectively,

and hence their images under the induced homomorphisms are conjugate to a and

b respectively. For any arc α between δPi and δPj , we denote the homomorphism ι∗α

induced by ια as ϕα for ease of notation. We can then write

ϕα : a 7→ waaw
−1
a

b 7→ wbbw
−1
b

(3.1)

for some wa, wb ∈ π1(P ); that is, wa and wb are both words in a and b. Since ϕα is

a homomorphism, its action on the generators determines its action on the entirety
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of π1(P ), and thus these two words wa and wb fully describe ϕα. Recall that by

Corollary 1.5.2, two continuous maps ι1 and ι2 of P are homotopic if and only if

their induced homomorphisms are conjugate. We can use this to give an example of

two arcs in P which are associated to the same curve.

Example 3.1.3: Consider the arcs α1 and α2 such that the corresponding contin-

uous maps ια1 and ια2 induce the homomorphisms ϕ1 and ϕ2 respectively, given

as

ϕ1 : a 7→ a ϕ2 : a 7→ a

b 7→ b−1aba−1b b 7→ ba−1bab−1.

These two maps are not conjugate by any word, hence by Corollary 1.5.2 the cor-

responding pairs of pants are not homotopic. Thus α1 and α2 are distinct arcs.

Recall that we defined the association of a curve γα to an arc α in Section 2.1. As

in (2.2), the curves associated to α1 and α2 are given by ια1(δ
P
2 ) and ια1(δ

P
2 ). As δ

P
2

corresponds to the word b−1a−1 in our chosen generators, these curves correspond

to the elements ϕ1(b
−1a−1) and ϕ2(b

−1a−1). We can compute these as

ϕ1(b
−1a−1) = b−1ab−1a−1ba−1,

ϕ2(b
−1a−1) = ba−1b−1ab−1a−1.

Recall that curves are freely homotopic if their corresponding words in the funda-

mental group are conjugate. We can see that conjugating ϕ1(b
−1a−1) by ba−1 gives

us

(ba−1)b−1ab−1a−1ba−1(ba−1)−1 = ba−1b−1ab−1a−1

which is ϕ2(b
−1a−1). Hence ια1(δ

P
2 ) and ια2(δ

P
2 ) are homotopic, and so γα1 = γα2 .

Note that α1 and α2 are given in Figure 2.3, and their associated curve is in

Figure 2.4. The reader may find it illuminating to draw stages of the homotopy

between γα1 and γα2 , noting that this does not give rise to a homotopy between the

corresponding immersed pairs of pants.

As described above, the homomorphism ϕα induced by the continuous map cor-

responding to an arc α can be fully described by the two words wa and wb, as in
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(3.1). However, we can improve this by combining them to form a single word which

also fully describes ϕα.

By Corollary 1.5.2, we can conjugate ϕα by any word and the resulting homo-

morphism will be induced by a continuous map of a pair of pants freely homotopic to

ια, and hence by an arc homotopic to α relative to the boundary. We can therefore

conjugate ϕα by w−1
α to obtain a simpler map which fixes a and conjugates b by the

word w−1
a wb but still corresponds to α. Moreover, there is always such a word of

minimal word length which is unique by construction. Thus we need only consider

maps which have been reduced in this way.

To demonstrate this more concretely, consider all maps ϕ of the form given in

(3.1) and define an equivalence relation on the set of these maps by ϕ1 ∼ ϕ2 if and

only if for some w ∈ π1(P ), ϕ2 = wϕ1w
−1. As homomorphisms are equivalent

under this relation exactly when they are conjugate, each homotopy class of arcs

corresponds to a unique equivalence class. Let ϕ be of the form given in (3.1). Then

we can reduce ϕ by conjugating by w−1
a and performing any necessary cancellation

in the words w−1
a wb and w

−1
b wa. In any equivalence class, there is a representative

which fixes a and conjugates b by a word of minimal syllable length.

Definition 3.1.4: A homomorphism ϕ : π1(P ) → π1(P ) is reduced if it takes the

form
ϕ : a 7→ a

b 7→ wbw−1

for some word w which has minimal syllable length across homomorphisms in the

equivalence class of ϕ which fix a.

We will see below that there is a unique reduced map in each equivalence class.

However, we note that we have made a choice here; one could equally define reduced

maps to fix b, in which case we would focus on the word w−1 instead of w. Our

results would remain the same with this change.

These reduced maps must in fact take a particular form, which we will then use

to see they are unique.
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Lemma 3.1.5. Let ϕ be a reduced homomorphism which conjugates b by w. Then

w is cyclically reduced, and takes the form

w = bk1al1 . . . bknaln

for some positive integer n and some non-zero integers k1, . . . , kn, l1, . . . , ln.

Proof. First, we demonstrate that w must begin with a b-syllable and end with an

a-syllable. If w does not end with an a-syllable then it ends with a b-syllable; for

some word w′ and integer K, w = w′bK . We can write

ϕ(b) = wbw−1 = w′bKbb−Kw′−1

= w′bw′−1
,

hence the map ϕ′ which fixes a and conjugates b by w′ is a reduced map equivalent

to ϕ, as ϕ = ϕ′. However, w′ is shorter in syllable length than w, contradicting

the fact that ϕ is reduced. Similarly, if w does not begin with a b-syllable then it

begins with an a-syllable, and conjugating ϕ by the inverse of this syllable gives an

equivalent map which fixes a and conjugates b by a shorter word, so again we find

a contradiction.

Suppose that w is not cyclically reduced. If w is not a reduced word, then after

performing all cancellations we have a shorter word which defines exactly the same

map, contradicting the fact that ϕ was a reduced map. Since w must start and end

with different letters as shown above, there is no cyclic cancellation to perform and

we are done.

Consider an equivalence class of these maps and let ϕ and ϕ′ be reduced maps

from this class. As they are equivalent there is some word z such that ϕ′ = zϕz−1.

However, as both maps are reduced, they both fix a. Therefore z = al for some

integer l. This means that the word by which ϕ′ conjugates b begins with an a-

syllable, which cannot happen by Lemma 3.1.5. So the only possibility for the word

z is the empty word, and hence ϕ′ = ϕ. We have proved the following.

Lemma 3.1.6. There is a unique reduced map in each equivalence class of homo-

morphisms.
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As a consequence, we can relate these reduced maps, and therefore the words

defining them, bijectively with arcs. Beginning with an arc α on P , we can find the

corresponding continuous map ια of P inside itself which is unique up to homotopy.

This in turn gives a unique reduced homomorphism ϕα on the fundamental group,

defined by a unique word wα of the form given by Lemma 3.1.5. This word is

called the conjugator corresponding to α. For future reference we define the set of

conjugators

W :=
{
w = bk1al1 . . . bknaln | n ∈ Z>0, k1, . . . , kn, l1, . . . , ln ∈ Z ̸=0

}
. (3.2)

Note that all w ∈ W are cyclically reduced.

Definition 3.1.7: Let α be an arc on P from δPi to δPj . The conjugator correspond-

ing to α is the word wα ∈ W which defines the unique reduced homomorphism ϕα

induced by the continuous map ια.

By Corollary 1.5.2, arcs which correspond to the same conjugator w are homo-

topic relative to the boundary, thus no two distinct homotopy classes of arcs can

correspond to the same word. Furthermore, every conjugator w defines a homo-

morphism of the fundamental group and every homomorphism π1(P ) → π1(P ) is

induced by some continuous map P → P (see for example Proposition 1B.9 in [13]).

The map which induces the homomorphism defined by w will fix δPi and δPj and

thus defines an arc on P . We have proved the following.

Theorem 3.1.8. There is a bijective correspondence between arcs in Ai,j(P ) and

conjugators w ∈ W.

We will freely swap between an arc α and its corresponding word wα.

3.2 Signatures and Frames

In Section 2.1, we defined the association map I from arcs to curves, as in (2.3). Re-

call that the (homotopy class of the) curve associated to an arc α between boundary

components δαi and δαj is given by the concatenated path

α−1 · δαj · α · δαi .
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In this section, we will use the characterisation of arcs as conjugators from Theorem

3.1.8 to study when two arcs in Ai,j(P ) can be associated to the same curve under

I. Let P be a pair of pants. As in Section 3.1, we fix generators a and b for π1(P )

homotopic to the boundary components δPi and δPj respectively. The principal use

of this tool will be directly computing the word in π1(P ) which gives the curve

associated to an arc. We will then be able to directly check whether the curves

associated to two different arcs are homotopic. Throughout the following, if α is an

arc, then the homomorphism ϕα : π1(P ) → π1(P ) is defined as

ϕα : a 7→ a

b 7→ wαbw
−1
α

where wα is given by Theorem 3.1.8.

Consider the simple arc αP on P given by the seam between δPi and δPj . This

arc is associated to the third cuff of P , which is freely homotopic to the element

b−1a−1 in π1(P ). Similarly, an arc α is associated to the curve corresponding to

ϕα(b
−1a−1). The map ϕα is a reduced map of the form found in Definition 3.1.4;

it fixes a and conjugates b by the word wα. Recall that two curves on a surface

are (freely) homotopic if their corresponding words in the fundamental group are

conjugate. Thus for any pair of arcs α1 and α2, we can encode the statement

I(α1) = I(α2) (or equivalently γα1 = γα2) as

[ϕα1(b
−1a−1)] = [ϕα2(b

−1a−1)],

where [·] stands for the conjugacy class of an element in π1(P ). As these maps are

homomorphisms and ϕαi
(a) = a, we can write

ϕαi
(b−1a−1) = ϕαi

(b−1)a−1 = ϕαi
(b)−1a−1.

By Lemma 3.1.5, the conjugators wα1 and wα2 are cyclically reduced; in particular,

they are reduced words beginning with b and ending with a. Thus the words

ϕα1(b
−1a−1) = wα1b

−1w−1
α1
a−1
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ϕα2(b
−1a−1) = wα2b

−1w−1
α2
a−1

take the same form. Recall that π1(P ) ≃ F2, and that in free groups, cyclically

reduced words are conjugate if and only if they are cyclic permutations of each

other. A cyclic permutation of a word permutes the letters in a cyclic fashion;

for example, we remove a letter from the end of the word and replace it at the

beginning. Since ϕα1(b
−1a−1) and ϕα2(b

−1a−1) both start with a b-syllable, the

cyclic permutation from one to the other must be by an even number of syllables.

Moreover, the words ϕα1(b
−1a−1) and ϕα2(b

−1a−1) must have the same word length,

and they must have the same set of syllables and therefore the same syllable length.

This implies that wα1 and wα2 also have the same syllable length. We record this

important observation here.

Lemma 3.2.1. Let α1, α2 ∈ Ai,j(P ) be arcs corresponding to the conjugators wα1

and wα2 such that I(α1) = I(α2). Then there exist positive even integers m, r such

that their syllable lengths satisfy |wα1| = |wα2| = m, and by shifting each syllable of

ϕα1(b
−1a−1) cyclically to the right by r places, we obtain ϕα2(b

−1a−1).

We want to use Lemma 3.2.1 to help us derive conjugators corresponding to

associate arcs. First, we note that to encompass all possible examples of pairs of

two-ended associate arcs, we need not consider values of r greater than m. To see

this, first note that if |wα| = m, then |ϕα(b−1a−1)| = |wαb−1w−1
α a−1| = 2m+ 2. Let

A and B be words of length 2m+ 2. Indeed, permuting A cyclically to the right by

at least 2m + 2 syllables is equivalent to permuting instead by the residue of that

number modulo 2m + 2. Moreover, if cyclically permuting A by some number of

syllables from m + 2 to 2m gives us B, then we can swap the roles of A and B,

noting that permuting B cyclically to the right by some number of syllables from

2 to m gives us A. Thus every example of a pair of associate arcs corresponds to

some pair (m, r), where r ≤ m. We call these pairs signatures.

Definition 3.2.2: A signature is a pair of positive integers (m, r), where m and r

are even, and r ≤ m.

Thus a more accurate statement of Lemma 3.2.1 is the following.
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Proposition 3.2.3. Let α1, α2 ∈ Ai,j(P ) be arcs such that I(α1) = I(α2). Then

there exists some signature (m, r) such that the syllable length of wα1 and wα2 is m,

and one of ϕα1(b
−1a−1) and ϕα2(b

−1a−1) can be cyclically permuted to the right by r

places to form the other.

This description of all possible cases of pairs of two-ended associate arcs between

δPi and δPj will be a very useful tool which we can use to reverse-engineer such

examples, by deriving words to fit a given signature. Ideally, exactly one pair of

arcs would match each signature so that we can use signatures to accurately label

each instance of associate arcs. It turns out that whilst this is often true, there

are also many examples of signatures with multiple corresponding pairs of associate

arcs, such as in Example 3.2.4 below. However, we will be able to acquire such a

labelling with a little more work.

Example 3.2.4: Consider (m, r) = (8, 6). This signature corresponds to pairs

of conjugators w and w′ of syllable length 8 such that a cyclic permutation of

wb−1w−1a−1 by 6 places to the right gives us w′b−1w′−1a−1. The words

w1 = bab−1a−1b−1aba

w2 = baba−1b−1a−1ba

meet this condition, as can be seen here:

w1b
−1w−1

1 a−1 = bab−1a−1b−1abab−1a−1b−1a−1 baba−1b−1a−1︸ ︷︷ ︸,
w2b

−1w−1
2 a−1 = baba−1b−1a−1︸ ︷︷ ︸ bab−1a−1b−1abab−1a−1b−1a−1 .

Furthermore, the words

w3 = ba−1b−1ab−1aba−1

w4 = ba−1bab−1a−1ba−1

also meet these criteria. However, it is worth noting here that w1b
−1w−1

1 a−1 and

w2b
−1w−1

2 a−1 cannot be cyclically permuted to make w3b
−1w−1

3 a−1 or w4b
−1w−1

4 a−1.

Rather, these examples give two distinct pairs of associate arcs which correspond to
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Chapter 3. Pairs of associate arcs

the same signature (8, 6), and the pairs correspond to different curves.

To start describing conjugators which can satisfy a given signature, we need to

view the words ϕα(b
−1a−1) from a new perspective. In the spirit of considering cyclic

permutations, we write the syllables of these words clockwise in a circle, which we

refer to as cyclical notation.

Definition 3.2.5: A word w ∈ π1(P ) in a and b written in cyclical notation is called

a wheel, which we commonly denote as W . The positions in the wheel correspond

to syllables of w. We consider wheels up to rotation, so that each wheel corresponds

to a conjugacy class in π1(P ). See Figure 3.1 for examples.

b

a2
b−1

a3

b4

a−1

b−1

a
b−1

a−1

b

a−1

Figure 3.1: Two words of syllable length 6 written in cyclical notation; ba2b−1a3b4a−1

(left), and b−1ab−1a−1ba−1 (right).

Recall that if |wα| = m then |ϕα(b−1a−1)| = 2m+ 2. Thus when writing a word

ϕα(b
−1a−1) in cyclical notation, there are 2m + 2 positions. We will denote the set

of these positions as Θm and we label them with the integers −m through m + 1

modulo 2m+2. These could equivalently be seen as the vertices of a regular polygon

with 2m+ 2 sides. The labelling is as in Figure 3.2, with 0 at the top and positive

numbers proceeding clockwise.

For each position p ∈ Θm we denote the syllable of a wheelW in that position by

xW (p). We then say that a wheelW is based at a particular syllable bk if that syllable

is in position 0, so that xW (0) = bk. For consistency, we will only consider wheels to

be based at b-syllables. When rotating a wheel, we will assume the rotation to be

clockwise - that is, in the positive direction - unless otherwise stated. Furthermore,

rotating a wheel by n places will always correspond to rotating it by n syllables,

rather than letters.
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−m
−m+ 1

−m+ 2

. . .

. . .

−3

−2

−1
0

1

2

3

. . .

. . .

m− 2

m− 1

m
m+ 1

⟳

Figure 3.2: The convention for labelling positions of Θm in cyclical notation.

Definition 3.2.6: We will say that a conjugator w splits a wheel if, beginning at

some position and reading clockwise until we have read every syllable, we read off

the word wb−1w−1a−1.

If w splits a wheel, this is equivalent to the existence of a line of anti-symmetry

through the wheel which passes through a copy of b−1 and a copy of a−1. For any

q ∈ Θm, let L
q denote the line between the positions q and q+m+1, which bisects

Θm. Denote the reflection in a line Lq by ρq : Θm → Θm.

Definition 3.2.7: Given a based wheel W on Θm, L
q is a line of anti-symmetry if

the following hold:

• xW (q) = b−1,

• xW (q +m+ 1) = a−1,

• for all p ∈ Θm with p ̸= q and p ̸= q +m+ 1, xW (ρq(p)) = (xW (p))−1.

In other words, the image of a word in W disjoint from the endpoints of the line is

its inverse.
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Chapter 3. Pairs of associate arcs

Definition 3.2.8: Let W be a based wheel. We say we decompose W with this

base by reading off the syllables from −m and proceeding clockwise. Thus a based

wheel decomposes as the word

xW (−m)xW (−m+ 1) . . . xW (m)xW (m+ 1).

See Figure 3.3 for examples of wheels decomposing as words.

x1

x2

x3

x4

x5

x6

x1x2x3x4x5x6

x4

x5

x6

x1

x2

x3

x4x5x6x1x2x3

Figure 3.3: Decomposing the wheel given by x1x2x3x4x5x6 with two different bases.
In the first case (above), it is based at x3, and in the second case (below) it is based
at x6.

In a word of the form wb−1w−1a−1, we refer to the copies of b−1 and a−1 disjoint

from w and w−1 as the cores of the word. If w splits a wheel W , then if we base the

wheel at the core b−1 it decomposes as wb−1w−1a−1.

Let α be an arbitrary arc with conjugator wα and consider the wheel formed by

ϕα(b
−1a−1) = wαb

−1w−1
α a−1. Indeed this wheel is split by wα by construction, but

there is not necessarily a second word which splits it. For example, let wα = b5a4.

Then the wheel given by b5a4b−1a−4b−5a−1 does not split for any word other than

b5a4. We can see this by basing the wheel, for example at the core b−1, and checking

each line Lq to see if it is a line of anti-symmetry. With this base, L0 will be a line

of anti-symmetry but no other line will.

Let (m, r) be a signature, and suppose that α1 and α2 are arcs corresponding to

(m, r). This turns out to be a relatively strong assumption on the words wα1 and
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wα2 . By assumption, the wheel W formed by writing ϕα1(b
−1a−1) (or ϕα2(b

−1a−1))

in cyclical notation is split by both wα1 and wα2 . Basing the wheel at the core b−1 of

ϕα1(b
−1a−1), we therefore know that L0 is a line of anti-symmetry, as is the line L−r.

This is because if we rotated W from this base clockwise by r syllables, it would

decompose as ϕα2(b
−1a−1). Moreover, the syllable xW (−r) would become the new

base and L0 would be line of anti-symmetry with this base. The pre-image of this

line under the rotation by r places is L−r, hence L−r is also a line of anti-symmetry

when the wheel is based at the core b−1 of ϕα1(b
−1a−1).

In this way, a signature (m, r) gives rise to two lines of anti-symmetry in Θm

which differ by a rotation by r places. We will adopt the convention that these two

lines are always given as L0 and L−r, which are highlighted in Figure 3.4.

b∗
a∗

. . .

a∗

b−1

a∗

. . .

. . .

. . .
b∗

a∗ b−1
a∗

b∗

. . .

b∗

a−1

b∗

. . .

. . .

. . .

a∗

b∗a−1

ρ0

ρ−r

Figure 3.4: The starting point for constructing a wheel from a signature (m, r). Note
that the symbol “∗” is used as a placeholder for powers yet to be determined. See
Section 3.2.1 for a thorough description of the construction.
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The reflections in these lines are ρ0 and ρ−r respectively, which can be stated as

ρ0(p) = −p

ρ−r(p) = −p− 2r

for all p ∈ Θm. Recall that we consider positions p ∈ Θm modulo 2m+ 2. From the

definition of lines of anti-symmetry, we can begin to determine what the syllables of

a wheel W which matches the signature (m, r) must be; for instance, xW (−r) = b−1

since it is an end of the line of anti-symmetry L−r, and xW (ρ0(−r)) = xW (r) =

(b−1)−1 = b as L0 is a line of anti-symmetry. We can then use xW (r) to determine

xW (ρ−r(r)) and so on, alternating which reflection we apply. We can see that there

must be at least two orbits in Θm under these maps, as neither maps an a-syllable

to a b-syllable or vice versa. More precisely, let W be a wheel on Θm given by some

ϕα(b
−1a−1), based at the core b−1. ThenW divides into two sub-wheels of a-syllables

and the b-syllables, corresponding to the positions

Θa
m = {p ∈ Θm | p is odd},

Θb
m = {p ∈ Θm | p is even}.

The reflections ρ0 and ρ−r both fix these sub-wheels, thus ⟨ρ0, ρ−r⟩ has at least two

orbits when acting on Θm.

We have already seen in Example 3.2.4 that the signature alone is not always

enough to determine all syllables in a wheel. This is because ⟨ρ0, ρ−r⟩ may not be

the full symmetry group of each of Θa
m and Θb

m, and so some positions cannot be

reached from a core syllable by iterating the two reflections.

The symmetry group of a regular polygon with n sides is isomorphic to the

dihedral group D2n of order 2n. We define D2n as

D2n := ⟨σ, ρ | σn, ρ2, (ρσ)2⟩.

Note that the symmetry group of each of Θa
m and Θb

m is isomorphic to the dihedral

group D2m+2 as they each have size m+ 1.

Observe that for any p, ρ0ρ−r(p) = p + 2r and so ρ0ρ−r is the rotation of Θm
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clockwise by 2r places. We will denote this by σ2r. As a rotation of a regular polygon

with 2m+ 2 sides, σ2r has order equal to

2m+ 2

hcf(2m+ 2, 2r)
=

m+ 1

hcf(m+ 1, r)
,

where hcf(·, ·) is the highest common factor. Thus the subgroup generated by the

rotation σ2r and the reflection ρ0 is a dihedral group of order 2m+2
hcf(m+1,r)

. Moreover,

as ρ−r = ρ0σ
2r we have that ⟨ρ0, σ2r⟩ = ⟨ρ0, ρ−r⟩. We have proved the following.

Proposition 3.2.9. Let (m, r) be a signature. Then the corresponding reflections

ρ0 and ρ−r acting on the positions in Θm generate

⟨ρ0, ρ−r⟩ ≃ D 2m+2
hcf(m+1,r)

.

In particular, they generate the full symmetry group of Θa
m and Θb

m if and only if

hcf(m+ 1, r) = 1.

Given a finite group G acting on some finite set X and an element x ∈ X, let

Gx = {gx | g ∈ G} be the orbit of x under G, and let Stab(x) = {g ∈ G | gx = x}

be the stabiliser of x in G. Then the Orbit-Stabiliser Theorem says that

|Gx| =
|G|

|Stab(x)|
. (3.3)

As both ρ0 and the trivial symmetry fix the position 0 in Θm, the size of the orbit of

0 under the action of ⟨ρ0, ρ−r⟩ is 1
2
|⟨ρ0, ρ−r⟩| = m+1

hcf(m+1,r)
. Since Θb

m has size m + 1,

we know that we can reach each position in Θb
m from 0 exactly when m + 1 and r

are co-prime. The same holds when considering the orbit of the position m + 1 in

Θa
m. This motivates us to classify signatures into two types; those where m+ 1 and

r are co-prime, and those where they are not. We will refer to these as focused and

unfocused signatures respectively.

Definition 3.2.10: A signature (m, r) is said to be focused if hcf(m + 1, r) = 1,

and unfocused if hcf(m+ 1, r) ̸= 1.

If (m, r) is focused, then by Proposition 3.2.9 ρ0 and ρ−r generate all symmetries

of Θa
m and Θb

m; thus every syllable can be determined by starting at 0 or m + 1
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and alternating reflections until all positions have been reached as described above.

Therefore, there is at most one wheel corresponding to each focused signature. It

remains to show that each focused signature has at least one corresponding wheel.

Lemma 3.2.11. Let (m, r) be a focused signature. Then there exists a wheel corre-

sponding to (m, r).

Proof. To verify that there exists at least one wheel for each focused signature, we

need to verify that the lines of anti-symmetry act consistently on the powers around

the wheel. To do this, consider the alternate presentation for the dihedral group

⟨ρ0, ρ−r | ρ20, ρ2−r, (ρ0ρ−r)m+1⟩. (3.4)

We need to verify that when applying the relations which fix each position, we

also fix each power. This is immediate for the relations ρ20 and ρ2−r. For the final

relation in the presentation given in (3.4), recall from above that ρ0ρ−r is the rotation

clockwise by 2r places. Let W be some wheel of size 2m + 2 and base W on Θm.

We then define the set of labelled positions to be {(p, xW (p)) | p ∈ Θm}. The lines

of anti-symmetry ρ0 and ρ−r act on this set as follows:

ρ0(p, xW (p)) =

(−p, xW (p)−1) p ̸= 0,m+ 1

(p, xW (p)) p = 0,m+ 1

ρ−r(p, xW (p)) =

(−p− 2r, xW (p)−1) p ̸= −r,−r +m+ 1

(p, xW (p)) p = −r,−r +m+ 1

.

We can combine these expressions to describe the rotation ρ0ρ−r in a similar manner;

ρ0ρ−r(p, xW (p)) =

(p+ 2r, xW (p)) p ̸= −r,−r +m+ 1,−2r,−2r +m+ 1

(p+ 2r, xW (p)−1) p = −r,−r +m+ 1,−2r,−2r +m+ 1

.

(3.5)

Simply stated, if p is either on the line L−r or will be mapped to the line L0, one

of the reflections through these lines does not affect the position or its label and so

the resulting label is inverted. If p sits away from these positions, its label will be

inverted by both reflections and thus will be fixed.
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The rotation ρ0ρ−r has two orbits, consisting of the even positions and odd

positions, denoted Θb
m and Θa

m respectively as above. Each orbit contains exactly two

of the positions−r,−r+m+1,−2r,−2r+m+1, thus as we apply successive powers of

ρ0ρ−r up to ρ0ρ
m+1
−r the label will be inverted exactly twice. Thus ρ0ρ

m+1
−r (p, xW (p)) =

(p, xW (p)).

As a consequence of Proposition 3.2.9 and Lemma 3.2.11, for each focused sig-

nature there is exactly one corresponding wheel.

When (m, r) is unfocused, only the syllables in a sub-wheel are determined. As

the positions 0 and m + 1 are each stabilised by exactly one non-trivial element of

⟨ρ0, ρ−r⟩, we have by (3.3) that their orbits have size m+1
hcf(m+1,r)

. Thus the sub-wheel

determined by these reflections has size 2m+2
hcf(m+1,r)

. The positions making up this sub-

wheel, which we will refer to as the focused sub-wheel constructed by an unfocused

signature, are uniformly distributed around Θm. By this we mean that the spaces

between positions on the sub-wheel are all of the same size. We can calculate by

hand that were we to write the syllables of the focused sub-wheel in cyclical notation,

the result is the wheel is constructed by the signature
(

m+1
hcf(m+1,r)

−1, r
hcf(m+1,r)

)
. Note

that this signature is always focused.

To determine the remaining syllables in the wheel corresponding to (m, r), con-

sider the syllables in the positions −m through −m + hcf(m + 1, r) − 2 clockwise.

These lie between the core a−1 of ϕα1(b
−1a−1) and the first syllable of ϕα1(b

−1a−1)

which lies on the focused sub-wheel. Note that they are the first hcf(m + 1, r) − 1

syllables in the decomposition of the wheel with this base. For simplicity, we label

the syllables in these positions as the word c1. Continuing clockwise from here, we

label the syllables between −m + hcf(m + 1, r) − 2 and the next syllable on the

focused sub-wheel as c2, which will have the same syllable length as c1. This con-

tinues until we have collated all syllables not present on the focused sub-wheel into

c1, c2, . . . , c 2m+2
hcf(m+1,r)

. Figure 3.5 gives a visual representation of this process. We can

now collapse the wheel W on Θm into a smaller wheel Wc on Θ 2m+2
hcf(m+1,r)

−1, which

has size 4m+4
hcf(m+1,r)

. After collapsing, each ci acts like a single syllable and takes up

only one position. The action of ρ0 and ρ−r on the positions around Θ 2m+2
hcf(m+1,r)

−1 is

well-defined, and they still generate a subgroup isomorphic to D 2m+2
hcf(m+1,r)

and there-

fore preserve the focused sub-wheel. Moreover, by the Orbit-Stabiliser Theorem (see
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(3.3)), as no non-trivial element of ⟨ρ0, ρ−r⟩ fixes the position of c1, the size of its

orbit is equal to 2m+2
hcf(m+1,r)

. Hence all ci share an orbit; in particular, each ci is equal

to c1 or c−1
1 . In the following, we will refer to the word c1 simply as c.

b∗
a∗

b−1

a∗

b∗

a

b∗
a∗ b−1

a∗

b∗

a−1

b∗

a∗

b

a∗

b∗a−1

c1

c2

c3 c4

c5

c6 c1

b−1

c2

a

c3 b−1
c4

a−1

c5

b
c6

a−1

Figure 3.5: Highlighting the words which we label as ci and collapse into Wc, when
constructing a wheel from (8, 6).

Therefore, after choosing a length m of conjugator, a rotation r and a word c of

syllable length hcf(m+1, r)− 1, we have determined exactly one wheel. This triple

will be referred to as a frame. We note that as we are choosing c to be an even

number of syllables from the start of a conjugator, it is also a conjugator.

Definition 3.2.12: A frame is a triple (m, r, c), where (m, r) is a signature and c

is a conjugator of syllable length hcf(m+1, r)− 1. If (m, r) is focused then the only

choice for c is the empty word.

Whilst each unfocused signature corresponds to infinitely many frames and thus

infinitely many wheels, each frame generates exactly one wheel by the above argu-

ment. We have proved the following.

Proposition 3.2.13. Let (m, r, c) be a frame. Then there is exactly one wheel

constructed by (m, r, c).

In Section 3.2.1 below, we describe in detail the process by which we construct

a wheel from a frame.

As every pair of two-ended associate arcs corresponds to some signature by

Proposition 3.2.3, we can further say that every such pair corresponds to some
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frame. It remains to be seen that no pair of associate arcs corresponds to multiple

frames, which we will demonstrate in Section 3.3. In other words, given a wheel W

constructed by a frame, we will see that there are exactly two ways to base W so

that it decomposes as wb−1w−1a−1 for some conjugator w.

3.2.1 Constructing a wheel from a frame

In this section, we will concretely describe the process by which we construct a

unique wheel from a choice of frame (m, r, c).

Given a frame (m, r, c), we take a copy of Θm, the circle with 2m + 2 positions

distributed uniformly around it such that they lie on the vertices of a regular polygon

with 2m + 2 sides. We label these positions with the numbers −m through m + 1

modulo 2m+2 as in Figure 3.2. Now we inscribe Θm with the two lines L0 and L−r,

which we proclaim are lines of anti-symmetry as in Definition 3.2.7. This places

a copy of b−1 in positions 0 and −r, and a copy of a−1 in positions m + 1 and

−r +m+ 1. See Figure 3.4.

We now use this initial information to determine as many syllables around Θm

as possible, with the aim of constructing the entire wheel. Denote the wheel that we

are constructing as W . Note that when constructed, W will be based at the syllable

b−1 currently in position 0. Recall that ρ0 and ρ−r are the reflections in the lines L0

and L−r respectively, given as

ρ0(p) = −p

ρ−r(p) = −p− 2r.

Step 1:

Beginning at p = 0, as L−r is a line of anti-symmetry we have that xW (ρ−r(0)) =

(xW (0))−1. Thus as xW (0) = b−1,

xW (−2r) = b.

Since L0 is also a line of anti-symmetry, we have that xW (ρ0(−2r)) = (xW (−2r))−1.
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Therefore

xW (2r) = b−1.

Applying ρ−r again we reach the position −4r, then ρ0 takes us to 4r, and so on. We

terminate this process when we reach p = −r, since this position must have been

reached by applying ρ−r, and applying the next map ρ0 fixes this position. Further

steps of this process would retrace our path until we reached p = 0 again. At each

position p in this sequence, if it was reached by applying ρ−r then xW (p) = b. If

instead it was reached by applying ρ0 then xW (p) = b−1. In this manner, we have

determined some of the b-syllables around W , on the sub-wheel Θb
m consisting of

only the even-numbered positions.

We can run this process again, this time starting at the position m + 1. As

xW (m+ 1) = a−1, we instead determine a collection of a-syllables on the sub wheel

Θa
m consisting of only the odd-numbered positions. Recall that ρ0 and ρ−r fix Θa

m

and Θb
m, thus these two processes do not overlap.

Suppose hcf(m+1, r) = 1. Then by Proposition 3.2.9, all syllables in the positions

on Θb
m are determined by the first process and all positions on Θa

m are determined by

the second. As Θm = Θa
m ∪Θb

m, we have constructed W . Note that as in Definition

3.2.12, since |c| = hcf(m+ 1, r)− 1 we must have that (m, r, c) = (m, r, ∅).

Otherwise, hcf(m+ 1, r) > 1 and thus by Proposition 3.2.9 these processes have

only determined the syllables on the focused sub-wheel sitting on Θ m+1
hcf(m+1,r)

−1, as

described below Definition 3.2.10. This sub-wheel is also based at xW (0), and its

positions are uniformly distributed around Θm.

Step 2:

We now proclaim that the syllables in positions−m through−m+hcf(m+1, r)−2

clockwise are given by the word c. Precisely, we write

c = x1x2 . . . xhcf(m+1,r)−1

for syllables xi of c, and state that xW (i) = xi+m+1 for positions i ∈ {−m,−m +

1, . . . ,−m + hcf(m + 1, r) − 2}. Thus we have xW (−m) = x1, xW (−m + 1) = x2,

through to xW (−m + hcf(m + 1, r) − 2) = xhcf(m+1,r)−1. We can now follow the

process in Step 1 again, beginning this time at p = −m. This will determine the
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syllables in another set of positions on Θb
m, as −m is even. Eventually, the process

would return to p = −m, where we let it terminate. Repeating this process for

each position −m through −m + hcf(m + 1, r) − 2, we have effectively performed

the process on the collapsed wheelWc on Θ 2m+2
hcf(m+1,r)

−1, as described above Definition

3.2.12, beginning at p = − 2m+2
hcf(m+1,r)

−1. See Figure 3.5. Again by Proposition 3.2.9,

we have that all copies of c around Wc share an orbit under ρ0 and ρ−r; hence this

process determines the remaining syllables of W .

3.3 Relating frames and pairs of associate arcs

In the previous section, we demonstrated that frames are the appropriate system

for labelling wheels, and thus pairs of associate arcs. Here we will prove that for

any frame, there is exactly one pair of arcs whose words split the wheel that it

constructs. The process by which a wheel is constructed from a frame is described

in Section 3.2.1. We prove the following.

Theorem 3.3.1. Let (m, r, c) be a frame. Then for some s1, . . . , sn, t1, . . . , tn ∈

{1,−1}, the words

w1 = cbs1c−1at1cbs2c−1 . . . atn−1cbsnc−1atnc

w2 = cb−s1c−1a−t1cb−s2c−1 . . . a−tn−1cb−snc−1a−tnc

split the wheel generated by (m, r, c), where n = 1
2

(
m+1

hcf(m+1,r)
− 1
)
. Moreover, this

choice of powers is unique, and w1 and w2 do not split the wheel generated by any

other frame.

This theorem will follow from Proposition 3.3.3 and Proposition 3.3.4. We will

first derive the structures of w1 and w2, before showing that they are unique to this

frame.

The reader is advised to keep Figure 3.6 in mind throughout the following. Con-

sider the case that (m, r) is focused. Then the only corresponding frame is (m, r, ∅),

as the powers around the wheel are determined by the two lines of anti-symmetry.

If we construct a wheel from (m, r, ∅), then by construction it will decompose as

w1b
−1w−1

1 a−1 with the initial base for some conjugator w1. After rotating by r

65



Chapter 3. Pairs of associate arcs

places, it will instead decompose as w2b
−1w−1

2 a−1 for some conjugator w2. The lines

of anti-symmetry L0 and L−r are mapped to the lines Lr and L0 respectively by this

rotation; in other words, they are the lines of anti-symmetry corresponding to the

“signature” (m, 2m+ 2− r), if we allowed such values in our definition.

b∗
a

b∗

a∗
b−1

a∗ b−1
a∗

b

a∗

b∗

a−1

b∗a−1

b∗
a−1

b∗

a∗
b
a∗ b−1

a∗

b−1

a∗

b∗

a
b∗a−1 b∗

a−1

b∗

a∗
b
a∗ b−1

a∗

b−1

a∗

b∗

a
b∗a−1

reflectrotate

Figure 3.6: Demonstrating that rotating the lines of anti-symmetry L0 and L−r by
r and reflecting them in the vertical line give the same result, in signature (6, 2).
Whilst the symmetries are considered in a different order, their position is identical
in either case.

Instead of rotating by r places to obtain these two new lines, we could have

reflected the original pair in L0. This is simply a reflection, we are not considering it a

line of anti-symmetry at this stage. As the signature is focused, the only information

required to generate the wheel is the positions of the two lines. Thus, whether we

rotate this wheel by r places or reflect it in L0, the wheel will decompose as the

same word. Figure 3.6 demonstrates this visually. Another way to see this is by

considering the expressions for these symmetries using cyclical notation. Applying
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the reflections ρ0 and ρ−r after rotating their axes by r places gives the reflections

σr ◦ ρ0 ◦ σ−r and σr ◦ ρ−r ◦ σ−r respectively, where σr(p) = p+ r for all p. Similarly,

the reflections through Lr and L0 are given by ρ0 ◦ ρ−r ◦ ρ0 and ρ0 ◦ ρ0 ◦ ρ0 = ρ0.

For any p ∈ Θm, we can compute

σr ◦ ρ0 ◦ σ−r(p) = −(p− r) + r

= −p+ 2r

σr ◦ ρ−r ◦ σ−r(p) = −(p− r)− 2r + r

= −p

ρ0 ◦ ρ−r ◦ ρ0(p) = −(−(−p)− 2r)

= −p+ 2r

ρ0(p) = −p.

As a result, we can see that σr ◦ ρ0 ◦ σ−r = ρ0 ◦ ρ−r ◦ ρ0, corresponding to Lr, and

σr ◦ ρ−r ◦ σ−r = ρ0, corresponding to L0.

Moreover, we know that after reflecting the wheel in L0 it will decompose as

w1b
−1w1

−1a−1, where w is w with the exponent of each syllable replaced by its

negative. As the wheel after rotating decomposes as w2b
−1w−1

2 a−1, we have that

w2 = w1.

Furthermore, as every b-syllable and a-syllable around the wheel shares an orbit

under ⟨ρ0, ρ−r⟩ with the core b−1 or a−1 respectively, we have that every syllable

must have a power of 1 or −1 as they can be reached by some sequence of reflections

in the lines of anti-symmetry from a core. This argument proves the following.

Lemma 3.3.2. Let (m, r) be a focused signature, and (m, r, ∅) be the corresponding

frame. Then for some s1, . . . , sm
2
, t1, . . . , tm

2
∈ {1,−1}, the words

w1 = bs1at1 . . . b
sm

2 a
tm
2

w2 = b−s1a−t1 . . . b
−sm

2 a
−tm

2

split the wheel constructed by (m, r, ∅), and they begin at −m and −m−r respectively

with the wheel’s initial base.

This statement is the first convincing piece of evidence that we should have at
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most two arcs associated to any given curve. Since we have found that in this case

the two words are so closely related, it feels intuitive that there can be no other

words defining arcs which are associated to the same curve as these two. This will

indeed be the case, as we demonstrate concretely later; for now we generalise Lemma

3.3.2 to the unfocused case.

Proposition 3.3.3. Let (m, r, c) be a frame. Then for some s1, . . . , sn, t1, . . . , tn ∈

{1,−1}, the words

w1 = cbs1c−1at1cbs2c−1 . . . atn−1cbsnc−1atnc

w2 = cb−s1c−1a−t1cb−s2c−1 . . . a−tn−1cb−snc−1a−tnc

split the wheel constructed by (m, r, c), where n = 1
2

(
m+1

hcf(m+1,r)
− 1
)
. These words

begin at −m and −m− r respectively with the wheel’s initial base.

Proof. Let w1 be the conjugator such that the wheel constructed by (m, r, c) de-

composes as w1b
−1w−1

1 a−1 before rotating. Recall from the discussion following

Definition 3.2.10 that there is a focused sub-wheel determined by the unfocused sig-

nature (m, r). By Lemma 3.3.2, we know that for each syllable of w1 which is on the

focused sub-wheel, the syllable in its position after rotating by r places clockwise is

its inverse. It remains to demonstrate what the remaining syllables must be.

As discussed in the motivation for the definition of a frame, each word between

the syllables of the focused sub-wheel is either c or c−1. In particular, we know that

the word strictly between m + 1 and (m + 1) + hcf(m + 1, r) − 1 clockwise is c.

Consider the string “a−1cbs1” between these positions on the wheel, read clockwise.

Applying either line of anti-symmetry, the resulting string is “b−s1c−1at0”, again read

clockwise. Here, t0 = −1 under the reflection ρ but t0 = 1 under ρ−r; see Figure

3.7. In particular, we note that the power of each copy of the word c only depends

on its position within the wheel; if the preceding syllable clockwise in the focused

sub-wheel is an a-syllable, then it is 1, but if the preceding syllable is a b-syllable,

it is −1. Therefore, as the syllables on the focused sub-wheel alternate between a

and b, the powers of c alternate accordingly. We can therefore say that for some
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3.3. Relating frames and pairs of associate arcs

s1, . . . , sn, t1, . . . , tn ∈ {1,−1},

w1 = cbs1c−1at1cbs2c−1 . . . atn−1cbsnc−1atnc.

Here, n = 1
2

(
m+1

hcf(m+1,r)
− 1
)
as the size of the focused sub-wheel is 2m+2

hcf(m+1,r)
+ 2 and

each of a and b make up half of the syllables in the word.

Moreover, after rotating the wheel clockwise by r places, each a-syllable is re-

placed with an a-syllable and each b-syllable is replaced with a b-syllable, since r is

even. Therefore the resulting powers of c after rotating the wheel have not changed.

Thus the wheel now decomposes as w2b
−1w−1

2 a−1, where

w2 = cb−s1c−1a−t1cb−s2c−1 . . . a−tn−1cb−snc−1a−tnc.

c
bs1

. . .

. . .

. . .

. . .

. . .

b−1

. . .

. . .
. . . b−1 . . .

b−s1

c−1

a

. . .

. . .

. . .

a−1

. . .

b−s1

c−1
a−1

Figure 3.7: Demonstrating that the power of a copy of the word c depends only on
its preceding syllable on the focused sub-wheel.
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As a result of Proposition 3.3.3, we can see that whilst in the focused case we must

invert every power in one word to obtain the other, in the unfocused case we must

only invert the powers of a particular sub-word. In either case, this demonstrates

that there is a strong relationship between the structures of two words which split

the same wheel. We will now use this relationship to show that each pair of words

is unique to a frame.

Proposition 3.3.4. Let (m, r, c) be a frame, and let w1 and w2 be the words given

by Proposition 3.3.3. Then w1 and w2 are the only words which split the wheel

constructed by (m, r, c), and the only rotations after which this wheel decomposes as

wb−1w−1a−1 for some conjugator w are 0 and r.

Proof. We will prove this theorem in two parts, addressing each statement in turn.

By Proposition 3.3.3, we have that w1 and w2 split the wheel W constructed by

(m, r, c) and begin at −m and −m − r respectively with the initial base. Suppose

there exists a third word w′ which is neither w1 nor w2 and splits the wheel. It must

therefore begin at a different position, say −m− r′ for some r′ ̸= r and r′ ̸= 0. This

immediately tells us that this wheel can be constructed by multiple frames; these

correspond to the signatures (m, r), (m, r′) and (m, r′ − r), where r′ − r is modulo

2m + 2. We can consider each frame in turn and apply Proposition 3.3.3 to tell us

what the structure of w1, w2 and w′ must be, aiming to find a contradiction.

To demonstrate that in fact the only words which split the wheel W are w1 and

w2, we begin by concerning ourselves with the frame (m, r, c) which corresponds

to w1 and w2, and the frame (m, r′, d) which corresponds to w1 and w′. Here d is

the word formed by the first hcf(m + 1, r′) − 1 syllables of w1. We will break this

situation down by cases, considering whether or not the underlying signatures are

focused.

Case 1: (m, r) is focused and (m, r′) is focused.

In this case, c = d = ∅. Proposition 3.3.3 applied to (m, r, ∅) gives us that for

some powers s1, . . . , sm
2
, t1, . . . , tm

2
∈ {1,−1},

w1 = bs1at1bs2 . . . a
tm
2 −1b

sm
2 a

tm
2 ,

w2 = b−s1a−t1b−s2 . . . a
−tm

2 −1b
−sm

2 a
−tm

2 .
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Applying Proposition 3.3.3 again to the frame (m, r′, ∅), we have that for some

powers s′1, . . . , s
′
m
2
, t′1, . . . , t

′
m
2
∈ {1,−1}

w1 = bs
′
1at

′
1bs

′
2 . . . a

t′m
2 −1b

s′m
2 a

t′m
2 ,

w′ = b−s
′
1a−t

′
1b−s

′
2 . . . a

−t′m
2 −1b

−s′m
2 a

−t′m
2 .

Combining these, we see that for all i, si = s′i and ti = t′i, and moreover that

w′ = w2. Consequently, w1 and w2 are the only words which split the wheel W .

Case 2: (m, r) is focused and (m, r′) is unfocused.

As before, we have

w1 = bs1at1bs2 . . . a
tm
2 −1b

sm
2 a

tm
2 ,

w2 = b−s1a−t1b−s2 . . . a
−tm

2 −1b
−sm

2 a
−tm

2 .
(3.6)

In this instance, applying Proposition 3.3.3 to the frame (m, r′, d), we have that for

some s′1, . . . , s
′
n′ , t′1, . . . , t

′
n′ ∈ {1,−1},

w1 = dbs
′
1d−1at

′
1dbs

′
2d−1 . . . at

′
n′−1dbs

′
n′d−1at

′
n′d,

w′ = db−s
′
1d−1a−t

′
1db−s

′
2d−1 . . . a−t

′
n′−1db−s

′
n′d−1a−t

′
n′d.

(3.7)

We do not have enough information here to complete the picture. We need to

consider two sub-cases concerning the frame (m, r′ − r, e), which corresponds to w2

and w′. Here, e is the first hcf(m + 1, r′ − r) − 1 syllables of w2. Note that we are

considering r′ − r modulo 2m + 2 to ensure this is well-defined. This frame comes

from forgetting w1; it constructs the wheel with the base such that it decomposes

as either w2b
−1w−1

2 a−1 or w′b−1w′−1a−1, depending on whether r′ < r or r′ > r.

Case 2a: (m, r′ − r) is focused.

In this case, we have that for some s′′1, . . . , s
′′
m
2
, t′′1, . . . , t

′′
m
2
∈ {1,−1},

w2 = bs
′′
1at

′′
1 bs

′′
2 . . . a

t′′m
2 −1b

s′′m
2 a

t′′m
2 ,

w′ = b−s
′′
1a−t

′′
1 b−s

′′
2 . . . a

−t′′m
2 −1b

−s′′m
2 a

−t′′m
2 .

Combining this with (3.6), we have that s′′i = −si and t′′i = −ti, hence w′ = w1. But

by (3.7) we have w′ ̸= w1. This is a contradiction, so we are done.
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Case 2b: (m, r′ − r) is unfocused.

Here, we have that

w2 = ebs
′′
1 e−1at

′′
1 ebs

′′
2 e−1 . . . at

′′
n′′−1ebs

′′
n′′e−1at

′′
n′′e,

w′ = eb−s
′′
1 e−1a−t

′′
1 eb−s

′′
2 e−1 . . . a−t

′′
n′′−1eb−s

′′
n′′e−1a−t

′′
n′′e.

(3.8)

In particular, consider the first syllable of e, which is also the first syllable of w2.

By the expressions for w′ in (3.7) and (3.8), we have the first syllable of e is the

same as the first syllable of d. Thus w1, w2 and w′ all share the same first syllable.

However, in (3.6) we can see that this syllable is bs1 in w1 but b−s1 in w2. This is a

contradiction, so we are done.

Case 3: (m, r) is unfocused and (m, r′) is focused.

Up to relabelling, this case is identical to Case 2, as we can repeat the argument

but swap the roles of r′ and r. Thus here too we reach a contradiction.

Case 4: (m, r) is unfocused and (m, r′) is unfocused.

Here we have the following;

w1 = cbs1c−1at1cbs2c−1 . . . atn−1cbsnc−1atnc,

w2 = cb−s1c−1a−t1cb−s2c−1 . . . a−tn−1cb−snc−1a−tnc.
(3.9)

w1 = dbs
′
1d−1at

′
1dbs

′
2d−1 . . . at

′
n′−1dbs

′
n′d−1at

′
n′d,

w′ = db−s
′
1d−1a−t

′
1db−s

′
2d−1 . . . a−t

′
n′−1db−s

′
n′d−1a−t

′
n′d.

(3.10)

Again we must proceed to sub-cases.

Case 4a: (m, r′ − r) is focused.

Here, we have that

w2 = bs
′′
1at

′′
1 bs

′′
2 . . . a

t′′m
2 −1b

s′′m
2 a

t′′m
2 ,

w′ = b−s
′′
1a−t

′′
1 b−s

′′
2 . . . a

−t′′m
2 −1b

−s′′m
2 a

−t′′m
2 .

This immediately contradicts the previous equations, as w2 and w
′ should both have

the same first syllable as w1, but this implies they are different. Thus we have a

contradiction and we are done.
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Case 4b: (m, r′ − r) is unfocused.

Here, we have that

w2 = ebs
′′
1 e−1at

′′
1 ebs

′′
2 e−1 . . . at

′′
n′′−1ebs

′′
n′′e−1at

′′
n′′e,

w′ = eb−s
′′
1 e−1a−t

′′
1 eb−s

′′
2 e−1 . . . a−t

′′
n′′−1eb−s

′′
n′′e−1a−t

′′
n′′e.

(3.11)

Note that if |c| = |d|, then we immediately have that w′ = w2. However by (3.11)

we have that w′ ̸= w2, so we have a contradiction. Suppose then without loss of

generality that |c| < |d|. Then the start of w1 can be written in two ways, considering

(3.9) and (3.10);

cbs1c−1 = b∗a∗ . . . b∗a∗

c

bs1 a∗b∗a∗ . . .
c−1

,

dbs
′
1d−1 = b∗a∗ . . . b∗a∗bs1a∗b∗a∗ . . . b∗a∗

d

bs
′
1 a∗b∗a∗ . . .

d−1

.

In the expression for w2 in (3.9), the syllable bs1 is inverted, but the syllable in the

same place in the expression for w′ in (3.10) is not, since it is contained within d. In

particular, the first syllable in which w2 and w′ differ is bs1 , thus this syllable must

also be bs
′′
1 in (3.11). But this means that e = c, and the syllables inverted in w2 to

make w′ are exactly those inverted to make w1. Therefore, w′ = w1. However, by

(3.10), w′ ̸= w1, and so we have a contradiction.

Thus in every case, either the only words which split the wheel W are w1 and

w2 or we find a contradiction.

Now suppose that after some rotation r′ ̸= r and r′ ̸= 0, the wheel decomposes

as w′b−1w′−1a−1 for some w′. This word therefore splits the wheel, and so we can

run through all of the previous cases to reach a contradiction in each case except

Case 1, as this case allows for there to be multiple rotations. We now need more

information, so we proceed to sub-cases.

Case 1i: (m, r′ − r) is focused.

Here we have

w2 = bs
′′
1at

′′
1 bs

′′
2 . . . a

t′′m
2 −1b

s′′m
2 a

t′′m
2 ,

w′ = b−s
′′
1a−t

′′
1 b−s

′′
2 . . . a

−t′′m
2 −1b

−s′′m
2 a

−t′′m
2 .
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We already had that w′ = w2, but these equations show that w′ ̸= w2. Thus we

have a contradiction.

Case 1ii: (m, r′ − r) is unfocused.

Here we have

w2 = ebs
′′
1 e−1at

′′
1 ebs

′′
2 e−1 . . . at

′′
n′′−1ebs

′′
n′′e−1at

′′
n′′e,

w′ = eb−s
′′
1 e−1a−t

′′
1 eb−s

′′
2 e−1 . . . a−t

′′
n′′−1eb−s

′′
n′′e−1a−t

′′
n′′e.

By the same reasoning as the previous case, we find a contradiction and we are done.

Thus in all cases, the theorem holds.

As a result of Proposition 3.3.4, we know that only the two words w1 and w2 split

the wheel constructed by (m, r, c), and moreover that no other frame generates a

wheel which w1 or w2 split. If there was such a frame, then the wheel it constructed

would in fact be the same as the wheel generated by (m, r, c), and thus it would

decompose as some wb−1w−1a−1 with a different base. Since we have just proven

this is impossible, we have that there is a one-to-one correspondence between pairs

of associate arcs and frames, and we have hence proved Theorem 3.3.1. Since wheels

are given by the words which split them, we have also proved the following.

Corollary 3.3.5. No two frames generate the same wheel.

3.3.1 Geometric viewpoint

We now note an observation on the presence of the word “c” in the structure given

by Theorem 3.3.1. We demonstrated that this is the correct form of associate arcs by

examining wheels and the restrictions that imposing lines of anti-symmetry places

on their syllables. However, we can see that this has a geometric correlation as well.

Suppose we began with a pair of arcs α1 and α2 with conjugators w1 and w2 which

are associated to the same curve, and suppose that the signature they correspond

to is focused. These arcs sit inside a pair of pants P , and as the signature is focused

we have that w1 = w2; the powers in one word are those of the other but inverted.

Thus for some powers s1, . . . , sm
2
, t1, . . . , tm

2
∈ {1,−1}, we have

w1 = bs1at1bs2 . . . a
tm
2 −1b

sm
2 a

tm
2 ,
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w2 = b−s1a−t1b−s2 . . . a
−tm

2 −1b
−sm

2 a
−tm

2 .

Recalling the corresponding homomorphisms ϕ1 and ϕ2, if we compose ϕ1 with

the homomorphism which inverts a and b, we get ϕ1 which, up to orientation, corre-

sponds to the same arc as ϕ2. This homomorphism which inverts a and b corresponds

to the map on P which reflects it in a plane bisecting all boundary components. Thus

we can see that two focused arcs are in fact symmetric copies of one another, up to

orientation. We can see this for example in Figure 2.3, which we give here again for

convenience.

Figure 3.8: The arcs from Figure 2.3, shown again here for convenience.

We can imagine mapping this pair of pants inside another copy of itself. Under

this continuous map, these arcs lose this symmetry as they are tangled up in the

new surface. However, they will still be associated to a common curve, which has

also been mapped into the new surface. In this way we can imagine generating

many examples of associate arcs distinct from the one we began with, by mapping

our pair in ever more complicated ways into P . This is nothing new however, as we

can see evidence of this phenomenon in Theorem 3.3.1. Given any continuous map

ψ of P inside itself which fixes the boundary components δPi and δPj homotopic to

the generators a and b of π1(P ), we can consider the corresponding homomorphism
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of π1(P ) inside itself and choose it to be reduced. As a result we have a map

ψ∗ : a 7→ a

b 7→ cbc−1

for some conjugator c. The homomorphisms ϕ1 and ϕ2 are given by

ϕ1 : a 7→ a ϕ2 : a 7→ a

b 7→ w1bw
−1
1 b 7→ w2bw

−1
2 .

After composing the corresponding continuous maps of P with ψ, the homomor-

phisms become

ψ∗ ◦ ϕ1 : a 7→ a ψ∗ ◦ ϕ2 : a 7→ a

b 7→ ψ∗(w1)cbc
−1ψ∗(w−1

1 ) b 7→ ψ∗(w2)cbc
−1ψ∗(w−1

2 ).

In these homomorphisms, b is conjugated by ψ∗(w1)c and ψ∗(w2)c respectively. If

we expand these expressions, we see that for n = m
2
,

ψ∗(w1)c = cbs1c−1at1cbs2c−1 . . . atn−1cbsnc−1atnc

ψ∗(w2)c = cb−s1c−1a−t1cb−s2c−1 . . . a−tn−1cb−snc−1a−tnc,

which is precisely the expression given by Theorem 3.3.1 for the general form of

the conjugators corresponding to associate arcs. We also note that the signature

corresponding to these words will always be unfocused. If the old signature was

(m, r), then the new signature will be
(
|c|(m + 1) +m, |c|r + r

)
, and we have that

|c|(m+1)+m+1 = (|c|+1)(m+1) and |c|r+ r = (|c|+1)r, thus hcf
(
|c|(m+1)+

m + 1, |c|r + r
)
= |c| + 1, which is never 1. Thus any way in which we choose to

map a focused pair of arcs into P results in a pair of arcs related to some unfocused

signature.

As a result of this, we can view examples of associate arcs coming from focused

signatures as true, irreducible examples of associate arcs in some sense, as there is

no simpler example to derive them from. Each focused signature corresponds to
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a unique way of constructing a pair of inherently associate arcs, whilst unfocused

signatures give arcs which are the result of mapping some focused pair of arcs. In

this way, we could choose to view frames in a different light; removing the notion

of unfocused all together, we could define a frame to be a triple (m, r, c), where

hcf(m+1, r) = 1 and c is some conjugator of any length. This perspective highlights

the notion of focused signatures being unaltered and original examples of associate

arcs.

3.4 Implications of the relation

Following the results from Section 3.2 and Section 3.3 concerning conjugators, we

now discuss the implications for the corresponding arcs. We recall that if α is an arc

on the pair of pants P , then wα is the word which conjugates b in the corresponding

(reduced) homomorphism ϕα : π1(P ) → π1(P ) which fixes a. The correspondence

between arcs and conjugators is bijective by Theorem 3.1.8. Recall from Definition

3.1.2 that Ii,j is the associate map I restricted to the class of arcs between boundary

components δPi and δPj . We can now prove the following theorem, from which we

will deduce Theorem 3.

Theorem 3.4.1. Let γ ∈ C (P ). For i ̸= j, we have |I−1
i,j (γ)| ≤ 2.

Proof. If no arc joining δPi and δPj is associated to γ, then |I−1
i,j (γ)| = 0. Otherwise,

let α be such an arc. Theorem 3.1.8 gives us the corresponding conjugator wα. We

can then write the associated curve γ = γα as the word wαb
−1w−1

α a−1. Writing

this in cyclical notation, we have a wheel; either this wheel splits for some word

other than wα, or it does not. If not, then there is no other arc in Ai,j(P ) which is

associated to γα as its conjugator must appear in this wheel, and so the pre-image

of γα under Ii,j has size 1. If the wheel does split for some other word wβ, then some

frame generates the wheel and by Corollary 3.3.5 we know that this frame is unique.

By Theorem 3.3.1, we know that only wα and wβ split this wheel and thus only α

and β are associated to this curve. Hence the pre-image of γα has size two.

Theorem 3 is then an immediate corollary of Lemma 3.1.1 and Theorem 3.4.1.

Theorem 3. Let P be a pair of pants, and let α be a two-ended arc on P . Let

γα = I(α). Then |I−1(γα)| ≤ 2.
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It seems reasonable to believe that a more general version of Theorem 3 should

hold. For instance, there does not appear to be any reason why the one-ended case

should be more complicated than the two-ended case, though this remains to be

studied in detail.

In another direction, we would like to demonstrate that on any surface with

boundary, at most two arcs can be associated to the same curve. With more work,

it is possible that this will be seen as a direct consequence of Theorem 3. It seems

reasonable to believe that on any surface with boundary S, if two arcs are associated

to the same curve, then as they are associated to this curve through immersed pairs

of pants, they must both exist in some immersed or embedded pair of pants in S.

Future work will investigate this possibility, and examine other methods with which

we might generalise Theorem 3.

Conjecture 3.4.2. Let S be a surface, and let γ be a curve on S. Then |I−1(γ)| ≤ 2.

Conjecture 3.4.2 would imply that in Theorem 1 and Theorem 2, the parameter

k(α0) can only equal 1 or 2. Recall that k(α0) is the cardinality of |I−1(γα0)|, which

is uniform across arcs of type α0. At present, we are not aware of any pairs of

associate arcs on a surface which are of the same type. It would be illuminating to

find such an example, as this would be a counterexample to the claim that k(α0) = 1

for any arc α0.

Question: Can we find a method to check whether two associate arcs are of the

same type, and hence find a type of arc for which k = 2?

We also remark that the cases of arcs which are associated to the same curve

are very unique in terms of the conjugators they correspond to. Not only must they

have a very particular structure, but the powers s1, . . . , sn, t1, . . . , tn ∈ {1,−1} in

Theorem 3.3.1 must also satisfy some deeper condition. Consider for examples the

signatures of the form (6, r). As 6 + 1 = 7 is prime, all such signatures are focused.

Labelling the words which split the wheel constructed by (6, r, ∅) as wr,1 and wr,2,

we can derive by hand that

w2,1 = b−1aba−1b−1a, w2,2 = ba−1b−1aba−1,
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w4,1 = b−1a−1b−1aba, w4,2 = baba−1b−1a−1,

w6,1 = b−1ab−1ab−1a, w6,2 = ba−1ba−1ba−1.

At present, no common property which separates these words out from other words

of the form given by Theorem 3.3.1 presents itself.

We can easily find many examples of words which fit this structure but do not

give associate arcs. For instance, for any conjugator c the words cb−1c−1a−1c and

cb−1c−1a−1c are of the structure given by Theorem 3.3.1, but the corresponding arcs

are not associated to the same curve. Moreover, if we choose w such that in the

word wb−1w−1a−1 the only pair of syllables b−1 and a−1 which are opposite each

other in cyclical notation are the cores, then w can have no associates. Beyond this,

the criteria which distinguish a word of this form which does indeed correspond to

an associate arc are not known, and could be investigated further.

Question: Can we derive all choices of powers in words of the form given in Theo-

rem 3.3.1 which do correspond to associate arcs, and thus describe the full class of

associate arcs?
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Chapter 4

Length-equivalent arcs

On a surface S of negative Euler characteristic, homotopy classes of paths such as

curves and arcs are purely topological objects until we fix a hyperbolic metric on

the surface, which assigns a length to each homotopy class of such paths. Different

hyperbolic metrics may assign different lengths to the same class of paths, and for

any path we can choose a hyperbolic metric which makes it arbitrarily long. See

[12] for more details of this.

Interestingly, on any surface there exist collections of curves whose lengths are

equal under any hyperbolic metric. Such curves are called length-equivalent, and

have been studied by various authors such as Anderson [1], Buser [8], Horowitz [17],

Leininger [20], and Masters [22].

Definition 4.0.1: Let X stand for any hyperbolic metric on S, and ℓX(ω) denote

the length of the curve or arc ω under X. Then two curves or arcs ω1 and ω2 are

length-equivalent if for all X,

ℓX(ω1) = ℓX(ω2).

Note that we only consider pairs of curves or pairs of arcs, rather than one of

each.

In fact, it has been demonstrated that there are multiple ways to construct

families of length-equivalent curves which grow arbitrarily large. These are done

using representatives for curves on S in the fundamental group π1(S). Horowitz [17]

and Masters [22] each give a method which constructs words in the fundamental

group iteratively from fixed generators, based on some integer sequences. We refer

to work by Anderson [1] for a thorough survey of such examples. A reader familiar

with these methods may recognise similarities with the method we lay out in Section

4.3.

In this chapter, we will demonstrate constructively that such families of arcs
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exist as well. We will begin by describing an example in Section 4.1 which is given

implicitly by Buser [8]. In Section 4.2, we discuss a quality of words in the funda-

mental group of a surface which can detect whether the corresponding curves are

length-equivalent, called the trace. Finally, in Section 4.3 we apply this to families

of words given by homomorphisms of the form found in Chapter 3 to construct ar-

bitrarily large families of length-equivalent arcs. Our families, unlike that given by

Buser, will be made up of pairs of arcs which are associated to the same curve.

4.1 An example of a family of length-equivalent

arcs

In Section 3.7 of [8], Buser gives a proof that the spectrum of the lengths of curves

on a hyperbolic surface has unbounded multiplicity; by this we mean that there exist

values λ such that arbitrarily many curves are of length λ. This is done by con-

structing arbitrarily large families of length-equivalent curves. In doing this, Buser

implicitly constructs a family of length-equivalent arcs which also grows arbitrarily

large. The work is done on the once-holed torus S1,1, which can be viewed as a

subsurface of any hyperbolic surface with genus at least 2.

To demonstrate how Buser’s example defines a family of length-equivalent arcs,

we view the once-holed torus as a pair of pants P after gluing together two of the

cuffs, which we denote as δP0 and δP1 . Note that in order to perform this gluing map,

we require that these boundary curves have the same length; that is, if X is the

hyperbolic metric on P then ℓX(δ
P
0 ) = ℓX(δ

P
1 ).

Buser constructs a family of length-equivalent curves by observing that the in-

volution ρ : P → P given by the rotation fixing the third cuff and permuting δP0 and

δP1 is an orientation-preserving isometry. Let ω be a “figure-eight” curve on S1,1,

with one self-intersection. This curve consists of a loop about the boundary curve

and a loop around the genus. Cutting S1,1 to retrieve P leaves ω as an arc on P

which goes around the third cuff once; see Figure 4.1. We can see that ρ(ω) ̸= ω,

but as ρ is an isometry we have that ℓX(ρ(ω)) = ℓX(ω). Since this is true under any

hyperbolic metric X, ω and ρ(ω) are length-equivalent.

To define further curves, Buser defines a continuous map of S1,1 into itself and
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4.2. Trace-equivalent words

Figure 4.1: The curve ω on the once-holed torus S1,1 (left), and the resulting arc on
the pair of pants P (right). The curve on S1,1 we cut along to obtain P is highlighted
in red.

iterates this argument. We will present his method here in our language and on the

pair of pants P . Consider γω, the curve associated to ω on P . This curve bounds an

immersed pair of pants; we denote the continuous map by ιω and inscribe the pre-

image of this immersed copy of P with the arcs ω and ρ(ω) before mapping. Applying

the involution ρ again to generate another two arcs, we have constructed the 4 arcs

ιω(ω), ιω(ρ(ω)), ρ(ιω(ω)) and ρ(ιω(ρ(ω)) on P . These arcs are length-equivalent, as

ιω preserves length-equivalency and ρ is an isometry. If we continually iterate this

procedure, we can generate a collection of 2κ length-equivalent arcs for any positive

integer κ, and thus we are done. See [8] for the details which we omit here.

4.2 Trace-equivalent words

There are many examples of length-equivalent arcs beyond those given by Buser’s

example. The key observation which justifies this is the fact that associate arcs of

the second kind (see Section 2.1) must be length-equivalent. This is because we

can express the length of an arc in terms of the length of its associated curve and

its corresponding boundary components using (2.5) in the proof of Lemma 2.2.1.

Hence, any two arcs of the second kind which are associated to the same curve must

always have the same length and hence be length-equivalent. Moreover, if we found
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two length-equivalent curves which were each associated to two arcs of the second

kind, then these four arcs would all be length-equivalent by the same reasoning as

above.

Lemma 4.2.1. Pairs of associate arcs of the second kind are length-equivalent.

Moreover, for arcs α1 and α2 of the second kind, if γα1 and γα2 are length-equivalent

then so too are α1 and α2.

We can use this observation to produce more examples of length-equivalent arcs.

If we view the four-holed sphere S0,4 as two pairs of pants glued together along a cuff,

then the two arcs given by the seams of the pairs of pants between the remaining

cuffs are associate arcs of the first kind. These arcs are both associated to the simple

curve given by the image of the cuffs we glued together, and if we choose a metric

on S0,4 such that for instance all four boundary components have the same length,

these arcs are length-equivalent. More examples can be generated from this pair,

such as by applying any power of an appropriately chosen Dehn twist1. However,

these will only be length-equivalent in pairs. The aim for the rest of this chapter is

to construct specially chosen families of pairs of associate arcs of the second kind

which we can demonstrate are length-equivalent in arbitrarily large collections. If

we do not specify otherwise, associate arcs will be assumed to be of the second kind

for the remainder of the chapter.

For some i ̸= j, take any collection of pairs of associate arcs in Ai,j(P ) and

consider the collection of the curves associated to them. Each pair is associated to a

single curve on P and no two pairs are associated to the same curve by Theorem 3, so

we have exactly half as many curves as we do arcs. The literature provides a method

to show that our curves are length-equivalent by checking if they are trace-equivalent,

which would in turn imply by Lemma 4.2.1 that our arcs are length-equivalent.

We document the method to prove that two words in π1(P ) are trace-equivalent

here, following the work of Anderson[1], Horowitz [17] and Leininger [20]. We refer

the reader to these authors for a much more thorough treatment of the notions of

trace- and length-equivalency. Consider the fundamental group π1(P ) of P . A rep-

resentation of π1(P ) is a map from the fundamental group into the group PSL(2,R)

1A Dehn twist is a simple example of a mapping class on any surface. See [12] for a definition
and thorough treatment.
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which assigns to every group element a matrix. These matrices have a well-defined

trace, which is the sum of the diagonal elements of the matrix. If two group elements

are such that no matter what representation is chosen, the corresponding matrices

have the same trace, we call them trace-equivalent. Note that the trace of a matrix

is invariant under conjugation and taking the inverse, thus the same is true for the

trace of an element of π1(P ). We let trµ(·) denote the trace of a word under a

representation µ.

Fact 4.2.2: The trace trµ(·) is invariant under conjugation and taking inverses.

Since conjugate elements of π1(P ) have the same trace, the trace of a (homotopy

class of a) curve is well-defined. In [20], Leininger proves the following statement

using a relationship between the trace and the length function on Teichmüller space,

as well as work by Rapinchuck [32] on representation varieties.

Theorem 4.2.3 (Theorem 1.4, [20]). Let γ1 and γ2 be curves on a surface S. Then,

writing γ1 and γ2 for representatives of their conjugacy classes in π1(S), we have

γ1 and γ2 are length-equivalent ⇐⇒ γ1 and γ2 are trace-equivalent.

Using the definition of the trace, one can derive the following basic trace relations.

Fact 4.2.4: For group elements u, v, we have that

1. trµ(u) = trµ(u
−1),

2. trµ(u) = trµ(vuv
−1),

3. trµ(uv) = trµ(vu),

4. trµ(uv) = trµ(u)trµ(v)− trµ(uv
−1).

These relations, particularly relation 4, could be used to express the trace of

a word in terms of the trace of shorter words which may be simpler to compute.

Whilst this method may be sufficient for short words, it is not practical when dealing

with longer words. For example, consider the frames (4, 2, ∅) and (4, 4, ∅) as defined

in Definition 3.2.12. If we wanted to check whether the curves they construct are

trace-equivalent, we would be examining two 18-syllable words. Using relation 4 in
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Fact 4.2.4 to break down the trace of an 18-syllable word results in the product of the

traces of two shorter words whose syllable lengths sum to 18, and the trace of another

word which could also have 18 syllables. Unless the words have a very particular

form which allows for heavy cancellation to reduce the complexity quickly, it would

be strenuous to gain any insight on whether they are trace-equivalent. Fortunately,

this process can be streamlined using the work of Horowitz [17]. The first observation

to make is that if a word can be expressed in terms of some shorter words u and

v, we can persistently apply Fact 4.2.4 until we have a polynomial in terms of the

traces of u, v and uv. For example, let u and v be (cyclically reduced) words in a

and b, and consider uvu. We can use Fact 4.2.4 to write

trµ(uvu) = trµ(u)trµ(vu)− trµ(uu
−1v−1)

= trµ(u)trµ(uv)− trµ(v).
(4.1)

In general, we have the following theorem.

Theorem 4.2.5 (Horowitz [17]). Let W (u, v) be a word written in the letters u, v.

Then there exists some polynomial P such that

trµ
(
W (u, v)

)
= P

(
trµ(u), trµ(v), trµ(uv)

)
.

For words u and v, we write u ≡tr v if they are trace-equivalent. Suppose we

have u1, v1, u2, v2 such that u1 ≡tr u2, v1 ≡tr v2 and u1v1 ≡tr u2v2. Then using

(4.1) we can express trµ(uiviui) as trµ(ui)trµ(uivi) − trµ(vi) for each i. The value

of this expression is the same for i = 1 and i = 2; thus u1v1u1 and u2v2u2 are

trace-equivalent. The general version of this is as follows.

Corollary 4.2.6. LetW (u, v) be a word written in the letters u, v. Suppose u1, v1, u2, v2

are words in a and b such that

u1 ≡tr u2,

v1 ≡tr v2,

u1v1 ≡tr u2v2.

Then W (u1, v1) ≡tr W (u2, v2).
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Armed with this, we will be able to show that large classes of well-chosen curves

constructed from frames are trace-equivalent. To choose these curves, we will begin

with a pair of maps corresponding to a frame and consider all maps given by applying

either map a particular number of times. We will illustrate this by considering the

frame of lowest complexity, (2, 2, ∅). This corresponds to the two arcs given by the

embeddings

ϕ1 : a 7→ a ϕ2 : a 7→ a

b 7→ b−1aba−1b b 7→ ba−1bab−1
(4.2)

and their associated curve is given by b−1ab−1a−1ba−1 ∈ π1(P ). This is Example

3.1.3 from Chapter 3. From the work in Section 3.1, we have that these homo-

morphisms each correspond to an continuous map of P within itself. Mapping this

example of length-equivalent arcs inside another copy of P in a sensible way will

generate another example of length-equivalent arcs, following a similar method to

the example in Section 4.1. We describe this in more detail in the following section,

and we note that this was discovered independently to Buser’s example.

4.3 Constructing new families of length-equivalent

arcs

In this section, we will demonstrate that in defining pairs of associate arcs and the

frames from which they are derived, we have implicitly constructed new arbitrarily

large families of length-equivalent arcs. By taking a collection of associate arcs and

showing that the curves associated to them are all length-equivalent using Theorem

4.2.3 and Corollary 4.2.6, we will then have by Lemma 4.2.1 that the associate arcs

are all length-equivalent.

Throughout the following, we will say Φ is a string of some maps ϕ1 and ϕ2 if it

takes the form

Φ = ϕin ◦ ϕin−1 ◦ · · · ◦ ϕi1 ,

for some positive integer n, where ij = 1, 2. We say that such a string has length n.

We remark that a composition of reduced maps is reduced, as in Definition 3.1.4.

Let ϕ1 and ϕ2 be reduced maps, and let w1 and w2 be the conjugators defining them.
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Then indeed ϕ1 ◦ ϕ2(a) = a, and we can write

ϕ1 ◦ ϕ2(b) = ϕ1(w2bw
−1
2 )

= ϕ1(w2)w1bw
−1
1 ϕ1(w2)

−1.

Consider ϕ1(w2), in which we replace each syllable bk in w2 with w1b
kw−1

1 . Since

w1b
kw−1

1 starts and ends with a b-syllable by Lemma 3.1.5, the resulting word ϕ1(w2)

must be cyclically reduced, begin with b and end with a; the same holds for the word

ϕ1(w2)w1. Therefore ϕ1 ◦ϕ2 is a reduced map with conjugator ϕ1(w2)w1. Moreover,

a string Φ of reduced maps of any length is itself reduced.

Recall that by Theorem 3.1.8, each (homotopy class of) arc between a pair of

boundary components on P corresponds to a unique conjugator. We first prove the

following.

Theorem 4.3.1. Let α1 and α2 be a pair of associate arcs, and wα1 and wα2 their

corresponding conjugators. Let ϕ1 and ϕ2 be the maps given by

ϕ1 : a 7→ a ϕ2 : a 7→ a

b 7→ wα1bw
−1
α1

b 7→ wα2bw
−1
α2
.

Let Φ be any string of ϕ1 and ϕ2. Then for some pair of associate arcs β1 and β2,

the maps Φ ◦ ϕ1 and Φ ◦ ϕ2 are given as

Φ ◦ ϕ1 : a 7→ a Φ ◦ ϕ2 : a 7→ a

b 7→ wβ1bw
−1
β1

b 7→ wβ2bw
−1
β2
.

We will verify a simple case of Theorem 4.3.1 by hand before we proceed to the

general case. Recall that the maps ϕ1 and ϕ2 from Example 3.1.3 derived from the

frame (2, 2, ∅) are given as follows:

ϕ1 : a 7→ a ϕ2 : a 7→ a

b 7→ b−1aba−1b b 7→ ba−1bab−1.
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We can check by hand that the pairs (ϕ1 ◦ ϕ1, ϕ1 ◦ ϕ2) and (ϕ2 ◦ ϕ1, ϕ2 ◦ ϕ2) each

correspond to a pair of associate arcs. Computing them directly, we have

ϕ1 ◦ ϕ1 : a 7→ a

b 7→ b−1ab−1a−1bab−1aba−1ba−1b−1aba−1b

ϕ1 ◦ ϕ2 : a 7→ a

b 7→ b−1aba−1ba−1b−1aba−1bab−1ab−1a−1b

ϕ2 ◦ ϕ1 : a 7→ a

b 7→ ba−1b−1ab−1aba−1bab−1a−1ba−1bab−1

ϕ2 ◦ ϕ2 : a 7→ a

b 7→ ba−1bab−1a−1ba−1bab−1aba−1b−1ab−1

These four maps are all reduced and distinct. We must verify that each pair is

associated to the same curve. The words for the corresponding curves are

ϕ1 ◦ ϕ1(b
−1a−1) = b−1ab−1a−1bab−1ab−1a−1ba−1b−1aba−1ba−1,

ϕ1 ◦ ϕ2(b
−1a−1) = b−1aba−1ba−1b−1ab−1a−1bab−1ab−1a−1ba−1,

ϕ2 ◦ ϕ1(b
−1a−1) = ba−1b−1ab−1aba−1b−1ab−1a−1ba−1bab−1a−1,

ϕ2 ◦ ϕ2(b
−1a−1) = ba−1bab−1a−1ba−1b−1ab−1aba−1b−1ab−1a−1.

In both cases, cyclically permuting the first word of the pair to the right by 6 places

gives the second word of the pair. This is made easiest to see by reading each word

cyclically beginning at the underlined syllable. Thus these are pairs of conjugate

words, and therefore homotopic as curves, so we have two pairs of associate arcs.

We can apply a very similar argument to demonstrate that this holds for any such

pair of maps and any length of string.

It is worth noting that these pairs of homomorphisms must correspond to the

same signature, as they are defined by words of the same length and the cyclic

permutations required are by the same amount. Since focused signatures only cor-
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respond to a single frame and thus a single pair of homomorphisms, this signature

must be unfocused. In fact, this will be the case for all iterations of such maps, as

discussed in Section 3.4. Take maps ϕ1 and ϕ2 corresponding to a signature (m, r),

and a map ψ corresponding to some other signature (m′, r′). Then the maps ϕi ◦ ψ

correspond to the signature
(
m′(m+ 1) +m, r′(m+ 1)

)
, which is always unfocused

as m′(m + 1) +m + 1 and r′(m + 1) share a factor of m + 1. In particular, this is

true when the map ψ is a string of ϕ1 and ϕ2. We now proceed to the general case

of Theorem 4.3.1.

Proof of Theorem 4.3.1. As ϕ1 and ϕ2 define associate arcs, they correspond to some

frame (m, r, c) by the discussion following Proposition 3.2.13. Thus (without loss of

generality) cyclically permuting ϕ1(b
−1a−1) to the right by r places gives ϕ2(b

−1a−1).

Thus we can partition ϕ1(b
−1a−1) into two words A and B where |B| = r such that

ϕ1(b
−1a−1) = AB,

ϕ2(b
−1a−1) = BA.

Let Φ be any string in ϕ1 and ϕ2. We can then write

Φ ◦ ϕ1(b
−1a−1) = Φ(AB),

= Φ(A)Φ(B),

Φ ◦ ϕ2(b
−1a−1) = Φ(BA),

= Φ(B)Φ(A).

Since the map Φ is reduced by the discussion above Theorem 4.3.1, these words are

cyclically reduced. Furthermore, cyclically permuting Φ ◦ ϕ1(b
−1a−1) by the length

of Φ(B) gives Φ ◦ ϕ2(b
−1a−1), and thus they are conjugate.

For some pair ϕ1 and ϕ2 defining associate arcs, and some n ∈ Z>0, define the

set

Γn := {Φ(b−1a−1) | Φ is a string in ϕ1 and ϕ2 of length n}.

These are all of the words defining curves associated to arcs given by strings of

length n. We prove the following.

90



4.3. Constructing new families of length-equivalent arcs

Theorem 4.3.2. Let ϕ1 and ϕ2 be a pair of maps corresponding to a pair of associate

arcs. For any n, all arcs corresponding to strings of length n in ϕ1 and ϕ2 are length-

equivalent.

Proof. Let Φ be a string of length n of ϕ1 and ϕ2. Then by Theorem 4.3.1, Φ

corresponds to an associate arc whose associate is given by swapping the first map

ϕi1 in Φ for the other. That is, if ϕi1 = ϕ1 then the associate arc is given by the

same string with ϕi1 = ϕ2. We then know that each such pair of associate arcs is

length-equivalent by Lemma 4.2.1. If we can show that the curves associated to

these pairs are themselves length-equivalent, this will imply that the arcs are all

length-equivalent.

For any n, the collection Γn consists of all curves corresponding to strings of

length n; if we can demonstrate that all of these curves are trace-equivalent, we will

be done by Theorem 4.2.3.

Claim: For any n ≥ 1, all of the elements of Γn are trace-equivalent.

We proceed by induction on n. For n = 1 the only strings are ϕ1 and ϕ2, thus

this case holds by assumption.

Let n ≥ 2, and suppose all of the words in Γn−1 are trace-equivalent. Take any

pair of words Φ(b−1a−1), Ψ(b−1a−1) in Γn, where Φ and Ψ are strings of length n.

Suppose that the curves corresponding to the words Φ(b−1a−1) and Ψ(b−1a−1) are

homotopic. Then they are conjugate by definition, and hence trace-equivalent.

Suppose instead that Φ(b−1a−1) and Ψ(b−1a−1) are not homotopic. Then as con-

jugate words are trace-equivalent and changing the first map in a string if necessary,

without loss of generality we can choose Φ and Ψ to be of the form

Φ = Φ′ ◦ ϕ1,

Ψ = Ψ′ ◦ ϕ1,

where Φ′ and Ψ′ are strings of length n− 1. Thus we can write

Φ(b−1a−1) = Φ′ ◦ ϕ1(b
−1a−1),

Ψ(b−1a−1) = Ψ′ ◦ ϕ1(b
−1a−1).
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By the definition of reduced maps, the word ϕ1(b
−1a−1) must take the form

ϕ1(b
−1a−1) = w1b

−1w−1
1 a−1

= bk1al1 . . . bkNalN

for some conjugator w1 ∈ W, some positive integer N and non-zero integers

k1, . . . , kN , l1, . . . , lN . Therefore we have that

Φ(b−1a−1) = Φ′(bk1al1 . . . bkNalN ) = Φ′(b)k1al1 . . .Φ′(b)kNalN ,

Ψ(b−1a−1) = Ψ′(bk1al1 . . . bkNalN ) = Ψ′(b)k1al1 . . .Ψ′(b)kNalN ,

as reduced maps fix a. Now that we have two words of the same form, we are led

to apply Corollary 4.2.6. Here, the words in question are

u1 = a,

v1 = Φ′(b),

u2 = a,

v2 = Ψ′(b).

We must verify that u1 ≡tr u2, v1 ≡tr v2, and u1v1 ≡tr u2v2. We have u1 ≡tr u2 as

a is trace-equivalent to itself. By assumption, Φ′(b) and Ψ′(b) are both conjugate

to b and hence conjugate to each other, therefore they are trace-equivalent by Fact

4.2.2. Hence v1 ≡tr v2. Finally, we write

u1v1 = aΦ′(b) = Φ′(ab),

u2v2 = aΨ′(b) = Ψ′(ab),

and note that Φ′(ab) ≡tr Φ
′(b−1a−1) and Ψ′(ab) ≡tr Ψ

′(b−1a−1) as they are inverses.

Now Φ′ and Ψ′ are both strings of length n−1, and thus Φ′(b−1a−1) and Ψ′(b−1a−1)

are trace-equivalent by the induction hypothesis. Hence Φ′(ab) and Ψ′(ab) are trace-

equivalent and thus so too are Φ(b−1a−1) and Ψ(b−1a−1) by Corollary 4.2.6.

As a result, we can now say that beginning with any frame (m, r, c) and its cor-
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4.3. Constructing new families of length-equivalent arcs

responding homomorphisms ϕ1 and ϕ2 given by the words w1 and w2 from Theorem

3.3.1, we can generate a family of length-equivalent arcs in P between δP0 and δP1

of size 2n for any positive integer n. These will be given by strings of ϕ1 and ϕ2 of

length n. By mapping P into any surface with boundary S such that the images of

δP0 and δP1 are boundary components, we can produce such a family in S.
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Appendix A

Computation of the error function

limit

We want to show that the limit of the error function

Ei,j(ℓ) = 2 cosh−1(Ai,j cosh(ℓ)−Bi,j)− 2ℓ,

as defined in the proof of Lemma 2.2.1, is 2 ln(Ai,j). Cancelling the common factor

of 2, our result will follow if we can show that

lim
ℓ→∞

(
cosh−1(Ai,j cosh(ℓ)−Bi,j)− ℓ

)
= ln(Ai,j).

For ease of notation we drop the indices “⋆i,j”. Let ε > 0. We want to show that

there exists some L0 such that for all ℓ ≥ L0,

| cosh−1(A cosh(ℓ)−B)− ℓ− ln(A)| < ε.

Or equivalently, that

−ε < cosh−1(A cosh(ℓ)−B)− ℓ− ln(A) < ε.

For x = A cosh(ℓ)−B, we can write this as

−ε < ln(x+
√
x2 − 1)− ℓ− ln(A) < ε

since for x ≥ 1, cosh−1(x) = ln(x+
√
x2 − 1).

Remark: lim
x→∞

x+
√
x2 − 1

2x
= 1.

Therefore for all ε1 > 0, there exists L1 such that for all ℓ ≥ L1, or equivalently,
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for all x ≥ A cosh(L1)−B, we have

x+
√
x2 − 1 < (1 + ε1)2x

x+
√
x2 − 1 > (1− ε1)2x.

(A.1)

Using the expression cosh(z) = ez+e−z

2
, we can write x = A eℓ+e−ℓ

2
− B. Combining

this with (A.1), we have that for all ℓ ≥ L1,

ln(x+
√
x2 − 1)− ℓ− ln(A) < ln

(
(1 + ε1)2A

eℓ + e−ℓ

2
− 2(1 + ε1)B

)
− ℓ− ln(A)

ln(x+
√
x2 − 1)− ℓ− ln(A) > ln

(
(1− ε1)2A

eℓ + e−ℓ

2
− 2(1− ε1)B

)
− ℓ− ln(A)

for some ε1 > 0.

Remark: lim
ℓ→∞

eℓ + e−ℓ

eℓ
= 1.

As a result, for all ε2 > 0, there exists L2 such that for all ℓ ≥ L2,

eℓ + e−ℓ < (1 + ε2)e
ℓ

eℓ + e−ℓ > (1− ε2)e
ℓ.

Thus for ℓ ≥ max{L1, L2}, we can write

ln(x+
√
x2 − 1)− ℓ− ln(A) < ln

(
(1 + ε1)A(1 + ε2)e

ℓ − 2(1 + ε1)B
)
− ℓ− ln(A)

ln(x+
√
x2 − 1)− ℓ− ln(A) > ln

(
(1− ε1)A(1− ε2)e

ℓ − 2(1− ε1)B
)
− ℓ− ln(A)

for some ε1, ε2 > 0.

Remark: lim
ℓ→∞

(1 + ε1)A(1 + ε2)e
ℓ − 2(1 + ε1)B

(1 + ε1)A(1 + ε2)eℓ
= 1.

Hence for all ε3 > 0, there exists L3 such that for ℓ ≥ L3,

(1 + ε1)A(1 + ε2)e
ℓ − 2(1 + ε1)B) < (1 + ε3)(1 + ε1)A(1 + ε2)e

ℓ

(1 + ε1)A(1 + ε2)e
ℓ − 2(1 + ε1)B) > (1− ε3)(1 + ε1)A(1 + ε2)e

ℓ.
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So we have that for ℓ ≥ max{L1, L2, L3},

ln((1 + ε1)A(1 + ε2)e
ℓ − 2(1 + ε1)B)− ℓ− ln(A)

< ln((1 + ε1)(1 + ε2)(1 + ε3)Ae
ℓ)− ℓ− ln(A)

= ln((1 + ε1)(1 + ε2)(1 + ε3)) + ln(A) + ℓ− ℓ− ln(A)

= ln((1 + ε1)(1 + ε2)(1 + ε3))

ln((1− ε1)A(1− ε2)e
ℓ − 2(1− ε1)B)− ℓ− ln(A)

> ln((1− ε1)(1− ε2)(1− ε3)Ae
ℓ)− ℓ− ln(A)

= ln((1− ε1)(1− ε2)(1− ε3)) + ln(A) + ℓ− ℓ− ln(A)

= ln((1− ε1)(1− ε2)(1− ε3))

for some ε1, ε2, ε3 > 0. In particular, recalling the definition of Ei,j, we have that

1

2
Ei,j(ℓ)− ln(Ai,j) < ln

(
(1 + ε1)(1 + ε2)(1 + ε3)

)
1

2
Ei,j(ℓ)− ln(Ai,j) > ln

(
(1− ε1)(1− ε2)(1− ε3)

)
.

Let ε0 > 0 be such that

3 ln(1 + ε0) < ε

and set ε1 = ε2 = ε3 = ε0. Set L0 = max{L1, L2, L3}. Then by the above working,

for all ℓ ≥ L0,
1

2
Ei,j(ℓ)− ln(Ai,j) < ε.

We also have that

3 ln(1− ε0) > −ε,

and thus
1

2
Ei,j(ℓ)− ln(Ai,j) > −ε

and so we are done.
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