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Abstract—In this paper we consider control mechanisms for
mobile devices in a stochastic environment. In particular, we
consider a device in n-dimensional space subject to Brownian
perturbations where a control mechanism moves the device
towards its target location at a speed which is a function
of its displacement. For this scenario, we construct stochastic
differential equations for the mobility process and solve for the
steady state probability density function of displacement. From
this we are able to give general solutions to key metrics such as
displacement outage (the long term probability of exceeding a
given distance from the target), connectivity probability (derived
from the SNR distribution in a Rayleigh channel with pathloss),
the mean time at which the device first exceeds a given distance
from the target, and the mean kinetic energy required by the
control mechanism. We evaluate these metrics for important
special cases of the control mechanism and also study the
optimization problem of minimizing kinetic energy over the
parameters of the control function.

Index Terms– Mobile device, Brownian motion, kinetic energy,
Fokker-Planck equation, stochastic differential equation, connec-
tivity.

I. INTRODUCTION

Autonomous devices are being proposed for applications in
an increasing number of environments. These include ground-
based robots [1]–[4], unmanned aerial vehicles (UAVs) [5]–[9]
and nanobots [10]–[13]. For these applications, a fundamental
requirement for further research is a model for the device
mobility. There are two broad scenarios in which mobility
models may be useful [14], [15]. In large scale applications,
devices are deployed over hundreds of metres or kilometres.
Here, the system designer may need mobility models to
investigate connectivity issues or communication protocols
between devices as the devices traverse a region. In high
precision applications, small scale perturbations of the device
are of interest. Note that two-dimensional (2D) models may be
reasonable for some large scale applications where variation
in altitude is much less than horizontal variation. However,
3D models are likely to be essential for many small scale
applications. Hence, we consider n-dimensional models which
can be specialised to physical 2D and 3D scenarios and also
adapted to virtual multivariate mobility problems for vector
processes.

In this area, the current stochastic mobility models [16]–[21]
are overly simplistic, while mechanistic and chaotic models
[22]–[25] tend to have no analytical possibilities. For example,
simple stochastic models for position, such as Brownian

motion (BM) [16] or the Ornstein-Uhlenbeck (OU) [26, p.106]
process are physically unrealistic with jagged trajectories and
strict constraints on covariance structure. Similarly, random
waypoint models [17] produce simplistic trajectories unless
complex variations are adopted. At the other extreme, complex
models of device interactions and intelligence [27] lead to
interesting mobility behaviour but analytical insights are rare.
In [15] a more adaptable stochastic model has been proposed,
but as with BM and the OU process, the model assumes
linear control of position. Non-linear control was considered
in [14] but only for the simplest on-off case where either a
fixed velocity is applied in the desired direction or no control
is applied. This motivates the work in this paper where we
investigate stochastic mobility models which allow analytical
results for non-linear controls.

To model both scenarios (large scale and small scale), we
assume a centre or target position around which the devices
move. Hence, we will model tethered devices. Extending
the work to deterministic flight plans is straightforward. The
models assume random fluctuations of position and a control
function which controls the velocity in the desired direction
as a function of displacement from the target. The generality
achieved here is that any control velocity can be applied,
extending the linear controls in [15]. The penalty paid for this
generality is the assumption of symmetry in the n-dimensions
which is needed to make analytical progress. Hence, the
perturbations and controls in all dimensions are assumed
to have the same statistics and the same form. With these
assumptions we develop a set of coupled stochastic differential
equations (SDEs) for position where the SDEs include random
perturbations and an arbitrary control velocity.

From the underlying set of SDEs we obtain a single SDE
for displacement from the target which is solved to give the
steady state distribution of displacement and displacement
moments. This fundamental derivation allows us to further
study important features of the device mobility such as:
precision (for small scale applications - how closely the
device can maintain its position?); energy usage (how does
the control function affect energy usage?); and connectivity
(for large scale implementations - what are the statistics of
device connectivity?). In particular, in this paper we make the
following contributions:
• Precision is characterized by computing displacement

outage probabilities (the probability of being further away



from the target than a given threshold) and MFHTs (the
mean first hitting times at which the device first reaches
a threshold distance from the target).

• Energy usage is characterized by evaluating the mean
kinetic energy (KE) required by the different control
functions. we also study the optimization problem of min-
imizing KE over the parameters of the control function.

• Connectivity is evaluated by the SNR outage probability
for a link involving pathloss and Rayleigh fading.

• Analysis of all three areas described above is verified
by simulation using three important families of control
functions.

II. MOBILITY MODEL

Consider a device in n-dimensional space tethered to the
origin and subject to independent BM perturbations in each
of the n dimensions. A control mechanism moves the device
towards its target (the origin) in the following manner. If
X(t) = (X1(t), X2(t), . . . , Xn(t))T is the position of the
device at time t then the control mechanism moves the device
towards the target at velocity v(R(t)) where v(·) only depends
on R(t) = (X2

1 (t) + X2
2 (t) + . . . + X2

n(t))1/2, the radial
displacement from the target. With this type of control, the
velocity towards the origin in the i-th dimension is given by
v(R(t))Xi(t)/R(t). This allows us to describe the motion via
a system of coupled SDEs.

A. SDEs

Extending the model in [14] to an arbitrary number of
dimensions, the basic SDEs for position are given by

dXi(t) = −v(R(t))Xi(t)

R(t)
dt+σdWi(t), for i = 1, 2, . . . , n,

where Wi(t) are standard BM processes and σ2 is the ’instan-
taneous variance’ which controls the size of the perturbations.
Writing the n SDEs in vector form gives:

dX(t) = A(X(t))dt+ BdW(t), (1)

where W(t) = (W1(t),W2(t), . . . ,Wn(t))T , A(X(t)) =
(A1(X(t)), A2(X(t)), . . . , An(X(t)))T , B = σ2In and
Ai(X(t)) = −v(R(t))Xi(t)/R(t).

Since the focus is on the displacement from the target rather
than the actual position, we now convert the SDEs in (1) to
a SDE for R(t). This is achieved by the change of variable
approach given in [26, Eq. 4.3.17]. Applying this to (1) gives:

dR(t) =

 n∑
i=1

Ai(X(t))∂iR(t) +
1

2

n∑
i,j=1

(BBT )ij∂i∂jR(t)

 dt

+

n∑
i,j=1

(B)ij∂iR(t)dWj(t), (2)

where ∂i represents the partial derivative, ∂i = ∂/∂Xi(t).
Noting that B is diagonal and directly computing the partial
derivatives gives

dR(t) =

(
−

n∑
i=1

v(R(t))X2
i (t)

R2(t)
+

1

2

n∑
i=1

σ2

(
1

R(t)
− X2

i (t)

R3(t)

))
dt

+

n∑
i=1

σ
Xi(t)

R(t)
dWi(t). (3)

Using the definition R2(t) =
∑n
i=1X

2
i (t) simplifies the drift

coefficient in (3) giving

dR(t) =

(
−v(R(t)) +

(n− 1)σ2

2R(t)

)
dt+

n∑
i=1

σ
Xi(t)

R(t)
dWi(t).

(4)

Finally, from the properties of independent BM
processes, we observe that the perturbation term,∑n
i=1 σ(Xi(t)/R(t))dWi(t) is statistically identical to

σdW (t) where W (t) is another independent BM process.
This follows from

∑n
i=1X

2
i (t)/R2(t) = 1. Hence, we obtain

the final SDE

dR(t) =

(
−v(R(t)) +

(n− 1)σ2

2R(t)

)
dt+ σdW (t). (5)

B. Two-dimensional Example

Fig. 1. Model diagram.

In this work, the main focus is on one to three dimensions
where the process affords a visual representation and an
example is useful for clarity. In Fig. 1, we show the special
case of n = 2 and relabel the position (X1(t), X2(t)) in the
traditional 2D notation as (X(t), Y (t)). The velocity, v(R(t)),
is directed at the origin with angle φ(t) to the x-axis. This
gives the SDEs

dX(t) = −v(R(t))cos(φ(t))dt+ σdW1(t)

dY (t) = −v(R(t))sin(φ(t))dt+ σdW2(t).

}
(6)

Noting that cos(φ(t)) = X(t)/R(t) and sin(φ(t)) =
Y (t)/R(t) we immediately see how the SDEs in (6) collapse
to (1).



C. Steady State Displacement Distribution

Associated with the SDE in (5) is the Fokker-Planck dif-
ferential equation for the PDF, f(x, t), which is the PDF of
R(t) evaluated at x. From [26, p.234], this is given by

∂f(x, t)

∂t
= − ∂

∂x

((
−v(x) +

(n− 1)σ2

2x

)
f(x, t)

)
+
σ2

2

∂2f(x, t)

∂x2
. (7)

The steady state solution of (7), if it exists, is found by setting
∂f(x,t)
∂t = 0 and f(x, t) = f(x), where f(x) is the PDF of

R (the steady state displacement). This leads to the first order
differential equation(

−v(x) +
(n− 1)σ2

2x

)
f(x) =

σ2

2

df(x)

dx
. (8)

This is easily solved by integrating factor methods, giving the
solution

f(x) = Kxn−1 exp

(
−2V (x)

σ2

)
, (9)

where V (x) =
∫ x
0
v(τ)dτ and K is a normalizing constant

so that
∫∞
0
f(x)dx = 1. Hence, the steady state PDF of dis-

placement is available for all control mechanisms which allow
a solution. Displacement ’outage’ probabilities can therefore
be obtained via

P (R > RD) =

∫ ∞
x=RD

Kxn−1 exp

(
−2V (x)

σ2

)
dx. (10)

For reasonable control functions, v(x), which are likely to be
envisaged, it is probable that V (x) can be obtained in closed
form so that (9) provides a closed form displacement PDF.
However, V (x) occurs in the exponent in (10) making the
integration more challenging. For most control functions be-
yond piecewise linear, it is likely that evaluation of the outage
probabilities in (10) requires a single numerical integration.

From (9), the steady state moments of displacement are
obtained as

E[Rk] =

∫ ∞
0

Kxn+k−1 exp

(
−2V (x)

σ2

)
dx. (11)

D. Large Displacement Probability

An important class of velocity functions are those which
are monotonically increasing and have a ceiling such that
v(R(t)) → c as R(t) → ∞. The monotonicity arises from
the logic that there is more need to move towards the target at
larger displacements so the velocity would be increased or held
constant, but not reduced. The ceiling arises from practical
upper limits on device velocity. For such velocity functions
and large displacements, RD, we can write v(RD) = c − ∆
where ∆ > 0 is small. We can also bound the values of V (x)
in x ≥ RD by

V (x) ≥ V (RD) + (x−RD)(c−∆) , a+ bx. (12)

Substituting (12) into (10) gives

P (R > RD) ≤
∫ ∞
x=RD

Kxn−1 exp

(
−2(a+ bx)

σ2

)
dx

= K exp

(
−2a

σ2

)(
σ2

2b

)n
Γ

(
n,

2bRD
σ2

)
,

(13)

where Γ(·, ·) is the upper incomplete gamma function, a =
V (RD) − RD(c − ∆) and b = c − ∆. While (13) provides
an upper bound, an even simpler approximation can also
be constructed. First, we use the approximation V (x) ≈
V (RD) + (x − RD)c in (10) followed by the asymptotic
result, Γ(r, s) ∼ sr−1 exp(−s) for large s [28]. This gives
the approximate result

P (R > RD) ≈ K
(
σ2

2c

)
Rn−1D exp

(
−2V (RD)

σ2

)
. (14)

E. Connectivity Probability

Consider the mobile device communicating with a fixed
device at the origin. The classical model for the SNR of this
link involving pathloss and Rayleigh fading is given by

γ(t) = AR(t)−η|h(t)|2, (15)

where A is a constant, R(t) is displacement, η is the pathloss
exponent and h(t) is the fast fading normalized Rayleigh
channel gain with E[|h(t)|2] = 1. We assume that connectivity
occurs above a certain SNR threshold, γC . In steady state the
connectivity probability is therefore

P (γ(t) > γC) = E[P (|h(t)|2 > γCR
η/A|R)]

= E[exp(−γCRη/A)]

=

∫ ∞
x=0

Kxn−1 exp

(
−2V (x)

σ2
− γCx

η

A

)
dx,

(16)

using the fact that |h(t)|2 is exponential and substituting the
PDF of displacement, f(x), given in (9). For piecewise linear
control functions and η = 2, (16) is tractable and closed form
connectivity probabilities are available. For most other cases,
(16) gives a general solution requiring a single numerical
integration.

F. Mean First Hitting Time

In order to derive the MFHT, we first express the underlying
FPE in (7) in a more general form as:

∂f(x, t)

∂t
= − ∂

∂x
(A(x)f(x, t)) +

1

2

∂2(B(x)f(x, t))

∂x2
. (17)

In our case, A(x) = −v(x)+(n−1)σ2/(2x) and B(x) = σ2.
From [26, p.234], the MFHT of an object located at x = a at
t = 0 hitting a boundary b > a is given by Ta,b, where

Ta,b = 2

∫ b

y=a

1

ψ(y)

∫ y

z=a

ψ(z)

B(z)
dzdy, (18)



and
ψ(u) = exp

(∫ u

x=a

2A(x)

B(x)
dx

)
. (19)

For our case, substituting A(x), B(x) and a = 0 into (19) and
(18) gives:

T0,b =
2

σ2

∫ b

0

∫ y

0

(
z

y

)n−1
exp

(
2(V (y)− V (z))

σ2

)
dzdy.

(20)
For piecewise linear control functions, the inner integral in
(20) is tractable, but numerical integration is almost always
required for the outer integral.

G. Kinetic Energy

In steady state, the mean kinetic energy provided by the
control mechanism is µKE = E[m0v

2(R)/2] where m0 is
the mass of the device and R is the steady state displacement.
Using (9) we obtain:

µKE =
m0

2

∫ ∞
0

v(x)2Kxn−1 exp

(
−2V (x)

σ2

)
dx. (21)

For piecewise linear control functions, (21) is tractable and
closed form kinetic energies are available. For most other
cases, (21) gives a general solution requiring a single numer-
ical integration.

III. SPECIAL CASES

The best known special case is the two-dimensional OU
process where v(x) = αx for some positive constant, α. In this
case, the processes, X1(t), X2(t) R(t) are well known, see for
example [26, p.234] and [29], and extensive transient as well
as steady state results are available since, in this case, X1(t),
X2(t) are Gaussian. In most other cases the transient solution
is not available but steady state results on the displacement
PDF, connectivity probability, MFHT and kinetic energy are
given in Secs. II-C, II-E, II-F and II-G. It is reasonable that a
control mechanism would apply a velocity, v(x), which is an
increasing function of displacement. However, a linear v(x)
function is simplistic and does not model physical features
such as a maximum velocity or threshold control where the
device is only moved if its displacement exceeds a certain
value. Hence, we consider three special cases: ’on-off’ control
(OC), ramp control (RC) and sigmoid control (SC) which
cover these important features. The control functions are given
below. For OC,

vOC(x) =

{
0 if x ≤ m
c if x > m,

(22)

where c is the maximum velocity and m is the threshold. The
corresponding expression for VOC(·) is

VOC(x) =

{
0 if x ≤ m
(x−m)c if x > m.

(23)

For RC,

vRC(x) =


0 if x ≤ max(0,m− s)
c(x−m+ s)/s if max(0,m− s) < x ≤ m
c if x > m,

(24)
where c is the maximum velocity, m is the threshold at which
maximum velocity is applied and m − s, where s > 0, is
the start point of the ramp. Defining L = max(0,m − s),
the corresponding expression for VRC(·) split into the same 3
regions as in (24) is

VRC(x) =


0
c
2s (x2 − L2 − 2(m− s)(x− L))

VRC(m) + (x−m)c.

(25)

Finally, for SC,

vSC(x) =

{
0 if x ≤ 0

c/(1 + exp (−(x−m)/s) if x > 0,
(26)

where c is the maximum velocity, m is the mid-point and
1/s is the growth rate of the sigmoid. The corresponding
expression for VSC(·) is

VSC(x) =

{
0 if x ≤ 0

cslog(1 + exp ((x−m)/s) if x >, 0
(27)

In all three scenarios, c is maximum velocity and m locates
the function. For RC and SC, s is a measure of steepness.

Since vOC(x) and vRC(x) are piecewise linear, closed
form results are available for the displacement PDF leading
to displacement outage, connectivity probability and kinetic
energy. For OC, the MFHT is also available in closed form.
For SC, results are obtained via numeric integrations.

A. Ramp Control (RC) and On-Off Control (OC)

In this section, we focus on the derivations for RC. Since
the most complex form of VRC(x) is a quadratic in x, while
VOC(x) is only linear in x, we can obtain OC results as a
special case of RC. Substituting (25) into (10) requires three
types of integrals, The first is

∫∞
a
xm exp(−bx)dx given in

[30, Eq. 3.351.2] and the second is
∫ a
0
x2 exp(−bx2)dx given

in [30, Eq. 3.381.8] as an incomplete gamma function, which
also has a representation in terms of the error function, erf(·).
For both integrals, a > 0, b > 0 and m is a positive integer.
The third integral is Im =

∫∞
a
xm exp(−bx2−cx)dx for c > 0

and m ∈ {2, 3, 4}. Expanding Im gives

Im =
1

2b

∫ ∞
a

xm−1 ((2bx+ c)− c) exp (−bx2 − cx)dx.

(28)
Now, using integration by parts, Im can be written as

Im =
1

2b

(
−cIm−1 + (m− 1)Im−2 + am−1 exp (−ba2 − ca)

)
.

(29)
Hence, using the recursion in (29), Im can be solved in terms
of I0 which is given in [30, Eq. 3.322.1].



Due to the number of possible cases (OC, RC, SC in 2D or
3D), in the numerical results section, we focus on 3D results
and for the RC case, only the m > s case is shown. Hence, we
only show the mathematical expressions for these scenarios.
All other cases can be derived using the methodology above.

For RC, substituting the three integral results into K and
(10), (16), (21) gives the results in (37)-(41), in the Appendix,
where γ(·, ·) is the lower incomplete gamma function and
E1(·) is the exponential integral.

In the same way, for OC, substituting the three integral
results into K and (10), (16), (20), (21) gives the results in
(31)-(34) in the Appendix, where erfc(·) is the complementary
error function.

IV. OPTIMAL CONTROL

The control mechanism will ideally maintain the device
close to the origin with little expenditure of energy. Prox-
imity to the origin could be measured in several ways. For
example, via a target connectivity probability, PC , such that
P (γ(t) > γC) ≥ PC , a target displacement, RD, with
associated probability, PD, such that P (R > RD) ≤ PD
or a target MFHT, TMFHT, such that T0,RD > TMFHT.
Here, we focus on obtaining an acceptably low probability of
excursions beyond RD in steady state. Minimizing the kinetic
energy requires the minimization of (21) over the parameters
of the control function. Here, we focus on the three special
cases in Sec. III so that the mean kinetic energy is labelled
µKE(m, s, c), with some abuse of notation as the s parameter
is not present in OC. Hence, in this paper, we focus on the
optimization problem,

(m∗, s∗, c∗) = argmax
m,s,c

−µKE(m, s, c)

such that P (R > RD) ≤ PD. (30)

For OC and RC, closed form expressions are given in Sec. III
for µKE and P (R > RD). For SC, these expressions are
obtained via numeric integration of (21) and (10). The mini-
mization in (30) is performed by an interior point algorithm
and results are shown in Sec. V.

A second optimization problem considered is to maximize
the connectivity probability with a limited kinetic energy
budget. Hence, using the same framework as above, we obtain
the problem,

(m∗, s∗, c∗) = argmax
m,s,c

P (γ(t) > γC)

such that µKE(m, s, c) ≤ µ0. (31)

For OC and RC, closed form expressions are given in Sec. III
for µKE . For SC, the expression is obtained via numeric
integration of (21). Connectivity probabilities are obtained
using (16). The minimization in (31) is performed by an
interior point algorithm and results are shown in Sec. V.

V. NUMERICAL RESULTS

In this section, we first verify the analytical results for dis-
tance outage probability, connectivity probability and MFHT.

For outage probability and MFHT we consider 3D scenarios
and for connectivity we assume a 2D situation which models
the case where the vertical spread is much smaller than the
azimuthal variation. Unless otherwise specified, the numerical
values of parameters used are given in Table I

Control Type Parameter Value

all

c 5
σ2 1
A 2
m0 1
η 2

OC m 2.1

RC mRCnarrow, mRCbroad 2.52, 3.15
sRCnarrow, sRCbroad 0.84, 2.1

SC mSCnarrow, mSCbroad 2.1, 2.1
sSCnarrow, sSCbroad 1/5, 1/2.1

TABLE I
PARAMETER VALUES USED IN FIGS. 2-5.

In Fig. 2, we plot the outage probability, P (R > RD) vs
RD for all 5 scenarios (narrow and broad RC, narrow and
broad SC and OC). The analysis agrees with the simulations
in all cases. The fundamental trend in Fig. 2 is that narrower
control functions give higher outage probabilities. Note that
all the control functions are centred on the same value so the
key parameter distinguishing them is the spread parameter.
Hence, OC has the highest outage, followed by RC (narrow),
SC (narrow), RC (broad) and lastly, SC (broad) which has
the lowest outage. This is because the broader functions
begin to operate earlier and exert more control over small
displacements. Analytical results are computed using (32),
(33) for OC, (38), (39), (40) for RC (both in the Appendix)
and (10) for SC.

In Fig. 3, we plot the connectivity probability vs the
threshold, γC , for the same five scenarios given in Fig. 2. All
analytical results are supported by simulations. We observe
that the order of performance is exactly the same as in
Fig. 2, where OC is worst and SC (broad) is best. Again,
the reason for the trend is the extra control provided by the
broader control functions which begin to operate at smaller
displacements than the narrower control functions. Analytical
results are computed using (42) for OC, (43) for RC and (16)
for SC.

In Fig. 4, we plot the MFHT, T0,b, vs the threshold, b, for
the same five scenarios given in Fig. 2. All analytical results
are supported by simulations. The MFHT results are not very
sensitive to the type of control function for small thresholds
but diverge at higher values. The effect for the higher values
is that the control functions which reach maximum effect first
are more effective at slowing down excursions to the threshold.
Hence, OC has the longest MFHT followed by RC (narrow)
and RC (broad). In contrast, SC is smooth and only approaches
the peak value of c, so that the MFHT values for SC are
smaller with SC (broad) the smallest MFHT. Analytical results
are computed using (35), (36) for OC and (20) for RC and



SC.
In Fig. 5, we plot the outage probability, P (R > RD) vs RD

for 3 scenarios (narrow RC, broad SC and OC). The outage
probabilities are on a log-scale to highlight the accuracy of the
simple large displacement approximations. Analytical results
are computed as in Fig. 2 for exact results and using (14) for
the approximations. The approximations agree very well with
the exact results in all cases where the outage probability is
small (say less than 10−2).

In Fig. 6, we plot the optimal (minimum) mean kinetic
energy vs RD for a fixed target probability, PD = 0.1. As
expected, RC and SC deliver lower KE values as they control
mobility at smaller distances than OC, hence reducing the need
for the maximal control velocity. However, the gap between
OC and RC/SC is not large. Results for SC and RC are visually
indistinguishable.

In order to see how the three different control mechanisms
minimize the mean KE we plot the optimal control functions
for RD = 0.1 in Fig. 7. We observe that the basic position
of all three functions is similar and the slopes of vRC and
vSC are similar. Hence, the different functions operate by
trading off low displacement control for maximum velocity. At
small displacements, SC has the most control, followed by RC
and then OC. Hence, SC usually avoids larger displacements
and can therefore have a higher maximum velocity without
inflating the KE. At the other extreme, OC has no control
at low displacements. This causes larger displacements and
therefore the maximum velocity is reduced to avoid increasing
the KE.

In Fig. 8, we observe the maximum connectivity probability
according to a varying upper bound on kinetic energy, µ0, and
a particular set of γC values. The basic trends are as expected:
connectivity improves with more energy and connectivity
improves as γC decreases. The relative values given by OC,
RC and SC are of more interest. As in Fig. 7 the results for
OC are worse than for RC and SC which are indistinguishable.
In the upper and lower tails all three control types are very
similar, with the largest differences being in the centre where
differences of a few percent can be observed. The small
variation between control types is reasonable as connectivity
is a large-scale issue unlikely to be strongly affected by local
variations in control.

VI. CONCLUSIONS

We have developed a tractable SDE model for mobility
extending prior work to handle arbitrary non-linear controls.
The models cater for n-dimensions so that physical mobility
scenarios (2D and 3D) as well as vector processes may
be considered. The SDEs deliver simple integral expressions
for important performance metrics such as distance outage,
MFHT, connectivity probability and mean KE. For typical
examples of non-linear control functions, we obtain analyt-
ical expressions for these metrics and identify the following
insights into the effect of the control function on performance.
For control functions located in the same place, broader
control functions are usually beneficial. Since the broader
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Fig. 2. Outage probability, P (R > RD), vs RD .
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Fig. 3. Connectivity probability, P (γ(t) > γC), vs γC .

functions apply more control at smaller displacements, they
tend to reduce deviations from the target and improve dis-
tance outage, connectivity and reduce KE. However, for large
excursions from the target, narrower control helps the MFHT
as this introduces maximum control earlier, making it harder
to attain larger displacements. These conclusions are all in
the context of monotonic increasing control functions with a
ceiling.
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APPENDIX

Here we provide 3D and 3D results for OC and RC control
scenarios.



3D OC Results: For ease of notation, let β = c
σ2 , then
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3D RC results for m > s: For ease of notation, let β = c
σ2 , R1 = m− s , then
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2D OC Connectivity: For ease of notation, let g = γC
A , b = −βAγC
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2D RC Connectivity when m > s: For ease of notation, let g = γC
A , b = −βAγC , R2 = β
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