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Degenerate boundaries for
multiple-alternative decisions

Sophie-Anne Baker 1, Thom Griffith 1 & Nathan F. Lepora 1

Integration-to-threshold models of two-choice perceptual decision making
have guided our understanding of human and animal behavior and neural
processing. Although suchmodels seem to extendnaturally tomultiple-choice
decisionmaking, consensus on a normative framework has yet to emerge, and
hence the implications of threshold characteristics for multiple choices have
only been partially explored. Here we consider sequential Bayesian inference
and a conceptualisation of decision making as a particle diffusing in n-
dimensions. We show by simulation that, within a parameterised subset of
time-independent boundaries, the optimal decision boundaries comprise a
degenerate family of nonlinear structures that jointly depend on the state of
multiple accumulators and speed-accuracy trade-offs. This degeneracy is
contrary to current 2-choice results where there is a single optimal threshold.
Such boundaries support both stationary and collapsing thresholds as optimal
strategies for decision-making, both of which result from stationary repre-
sentations of nonlinear boundaries. Our findings point towards a normative
theory of multiple-choice decision making, provide a characterisation of
optimal decision thresholds under this framework, and inform the debate
between stationary and dynamic decision boundaries for optimal decision
making.

Choosing between multiple alternatives is a fundamental aspect of
animal behavior in natural environments. Such decisions can depend
on a reward-dependent task structure that requires a trade-off
between speed and accuracy1–6. Although significant progress has
been made towards understanding the underlying computational
principles of binary decision-making, how it transfers to multiple
(n > 2) choices remains of significant interest7. Several strands point
towards integration-to-threshold models of multiple-choice behavior
comprised of two key mechanisms: integration of accumulated belief
informed by sensory evidence represented as the trajectory of a
decision variable and a threshold on the belief that triggers a
decision1,5,8–11. The optimal formulation of these trajectories and
boundaries, defined under reward maximization, remains an active
topic. Influential models of this type include multiple-choice variants
of the drift-diffusion model (DDM)12, such as the multiple sequential
probability ratio tests (MSPRT) and related models13,14, although the

MSPRT is known only to be asymptotically optimal in the limit of
vanishing decision errors14.

A recent trend in formalizing decision-making is to consider
dynamic thresholds that change with time15–18. Although these
dynamics could conceivably be any continuous process, a popular
form is that of a collapsing threshold representing a reducing oppor-
tunity cost (over a sequenceof trials) or an urgency signal16. Collapsing
boundaries are known to be optimal for value-based binary-choice
tasks18 and perceptual tasks of mixed difficulty19, as well as tasks where
decisions are subject to a time deadline20,21. Evidence for urgency sig-
nals comes from observations of the neural activity of the ventral lat-
eral intraparietal (LIP) cortex for four-choice tasks9. A recent study7

applies such dynamic boundaries to multiple-choice decision making
with a model that we here refer to as the n-dimensional race model
(nDRM), which uses complex nonlinear boundaries and an urgency
signal to maximize reward rate over mixed difficulty trials where the
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decision-maker’s reaction times are freely chosen, but all trials take
place within a fixed time period. The nDRMmodel has been shown to
replicate behavioral phenomena unique tomultiple-choice tasks, such
as violations of both the regularity principle and the independence of
irrelevant alternatives (IIA) principle.

Almost all of the above-mentioned models of decision-making
(except7) assume independent, constant-valued decision boundaries
for each choice accumulator. For those models, the decision bound-
aries cannot depend on time or the state of other accumulators, and
existingmodels with interacting accumulators, such as theMSPRT and
leaky competing accumulator (LCA) models, limit that interaction to
normalization14 or lateral inhibition across accumulators22, respec-
tively. However, a core aspect of multiple-choice decision dynamics is
that the interaction of accumulators or equivalent decision boundaries
mayhave a non-trivial dependenceon the belief over all choices, which
can then act as belief-dependent gains on the choice evidence or as
nonlinear decision boundaries. In particular, optimal boundaries for
general multi-alternative decisions have been shown to be both time-
dependent and nonlinear7. But how crucial is the precise tuning of the
boundary shape to the decision-maker’s rewards? Real decision-
makers need to transfer limited experience on a decision-making
task to decision policies (viewed as boundaries on accumulated evi-
dence) that evolve towards improved outcomes. Therefore, can
decision-makers instead find “good enough” boundaries that yield
close-to-optimal behavior?

Here we explore this aspect of decision-making, focussing on the
consequences of decision boundaries that depend on the (dynamic)
state ofmultiple accumulators.We askwhat form the boundariesmight
take, how they improve decision performance and whether they help
explain neural recordings alongside aspects of behavior and general-
ization. Although here we restrict ourselves to time-independent
thresholds, we build upon the findings for time-dependent thresholds
to explore the relationship between complexity, nonlinearity, and
temporal dynamics. Our particular focus is on the influence of optim-
ality in multiple-choice perceptual decision-making tasks.

Our study adopts a normative approach that focuses first on
optimizing complex nonlinear decision boundaries formultiple choices
within a parametric subset of possible time-independent thresholds.
This setup is followed by examining how these optimized decision
boundaries relate to biological implementations and insights. We use a
Bayesian framework for decision-making between n-choices and then
compose a set of complex nonlinear boundary parameterizations that,
when optimized, reveal a family of reward-maximizing decision strate-
gies; thus, the boundaries exhibit mathematical degeneracy in belong-
ing to a continuous family of solutions to the optimization problem.
Next,we showhow these complex nonlinear boundaries lead to implicit
dynamics, even though the underlying boundary parameterization is
static, meaning that the decision boundaries have an implicit time-
dependence despite the boundary parameterization being time-
independent. This yields a family of apparent temporal structures that
can resemble urgency signals as a direct consequence of having
degenerate belief-dependent optimal boundaries for multiple choices.
Our results suggest the existence of an unconsidered component in the
origin of urgency signals in decision taskswith greater than twochoices,
such as those recorded in neural populations in area LIP9. We demon-
strate analytically that our model replicates several multiple-choice
phenomena, including the offset in neural activity with the number of
alternatives, and violation of both IIA and of the regularity principle,
while being compatible with the network model presented in ref. 7 and
offering testable predictions.

Results
Problem setup and aim
To investigate the form of the optimal decision boundary for multiple
choices, we follow the usual convention that choice evidence is

modeled by overlapping normal distributions23. Each choice (hypoth-
esis)Hi is represented by a normal distributionwith vectormean μi and
standard deviation σi. These parameters μi, σi are defined by the inter-
choice discriminability,which is the amount of overlap between choice
distributions: the less overlap between distributions i and j, the more
discriminable the choices and easier the task24. We assume equal dis-
criminability between all choices, and so all choice distributions are
equivariant with equidistant means, which is achieved by using vector-
valued evidence (see Methods). This means that for each decision
episode, the “true” hypothesis is equally indiscriminable from all other
hypotheses, giving a consistent n-alternative forced choice (nAFC)
paradigm regardless of which hypothesis is chosen.

The integration-to-threshold model samples evidence from the
‘true’ hypothesis until a decision boundary is reached. Each choice
distribution represents possible evidence for that hypothesis, origi-
nating from the environment, memory, or noisy sensory processes18.
At each time step, a sample is taken and inference is performed on the
evidence accumulated thus far, generating a decision trajectory. The
decision time T is when this trajectory crosses a boundary for a par-
ticular choice. If the boundary crossed represents the “true” hypoth-
esis, then zero error e =0 is generated, whereas crossing any other
boundary generates a unit error e = 1. Usually, integration-to-threshold
models rely on scalar evidence with a scalar decision boundary. In our
case, the evidence will be a vector with boundaries that are hyper-
surfaces in a vector space, which is detailed in the next section.

At the end of a decision episode, when a choice is made, the
decision time and error are combined into a single reward. Here, we
formulate reward as a linear combination of error and decision time
weighted by their associated costs Wi and c:

r =
�Wi � cT , incorrectdecision

�cT , correct decision:

�
ð1Þ

This is a standard reward function used in a wide range of past work,
for example, ref. 7,25. Unequal error costs Wi ≠Wj induce choice-
dependent reward, where hypothesis-dependent error costs are
relative to the “true” hypothesis and to each other. For tractability,
we will assume all error costs are equal, with the expectation that
similar results hold in the unequal cost case but that the analysis will be
more complicated. We also consider a constant (time-independent)
cost c per time step, assuming stationarity of evidence distributions
and evidence accumulation in a free-response task. A challenging
aspect of this framework is that reward is highly stochastic due to the
random nature of evidence sampling. How then do we define
optimality?

In this paper, we come from the view that humans and animals
maximize expected reward19,26–28. Then the optimum decision bound-
arymaximizes the average reward for a given ratio of costs c/W. Monte
Carlo simulations of decision trajectories of independent trials, using
the formalism outlined above and the evidence inference method
derived in the next section, yield reward values for a set of candidate
decision boundaries. In general, we find a set of high-dimensional
nonlinear, complex boundaries. We will show that these boundaries
are consistent with a range of behavioral and phenomenological
results along with testable neurophysiological predictions.

Multi-alternative decision-making as a particle diffusing in n-
dimensions
In this section, we show that n-alternative decision-making can be
viewed as a diffusion process in an (n − 1) dimensional subspace of the
belief space. This is a perspective that has previously been established
(for example, see refs. 7, 14), butwe cover thismaterial here to help the
reader build intuition and to detail the implications for multi-
alternative decisions.
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For 2AFC tasks, integration-to-threshold models such as the
sequential probability ratio test (SPRT, see Methods), represent the
decision trajectory as a particle diffusing in 1D. If we define this
dimension on the y-axis with the origin corresponding to the point of
equal belief for each hypothesis, then positive y-values represent
greater belief in choiceH0 and negative values greater belief in choice
H1. If time is represented along the x-axis, the decision trajectory takes
the form of a random walk over a range of y-values, with decision
boundaries y ≥ ± θ0,1 for the two decisions 0, 1. This bounded random
walk model can be extended to nAFC tasks, the walk taking place in
(n − 1)-dimensions. However, this extension is not straightforward.
Firstly, belief in hypotheses H0,1 are defined over the positive and
negative real numbers of a single dimension, which raises the question
of how belief in another hypothesis H2 should be represented. Sec-
ondly, the decision boundaries in 1D are well defined as a pair of single
bounds (θ0 < y < θ1), but as the belief space extends to n-choices, how
should the decision boundaries be represented?

To examine these questions, we take a Bayesian sequential infer-
enceperspective inwhich 1Ddecision variables inmodels like the SPRT
are deconstructed into two decision variables that represent the
degree of belief in two hypotheses H0 and H1. By using the sequential
Bayesian inference beliefs directly, the positive/negative range for the
1D decision variable is split into two independent axes that represent
normalized belief over each hypothesis as a separate decision trajec-
tory, given by the posterior probability Pi(t) = P(Hi∣x(1:t)) where x(1:t) is
the accumulated evidence at time t (see Fig. 1).

The decision variable transformation between the SPRT and
sequential Bayesian inference is straightforward (Fig. 1c, d). A decision
variable (DV) represents the accrual of all sources of priors and evi-
dence into a quantity that is interpreted by the decision rule to pro-
duce a choice4. The DV of the SPRT is the log posterior probability
ratio29 and the DV of sequential Bayesian inference is simply the pos-
terior probability. Because sequential Bayesian inference is con-
strained by P0(t) + P1(t) = 1, it has the same number of unconstrained
degrees of freedom as SPRT. Moreover, the boundary values are
equivalent under the DV transformation from SPRT boundaries θ0,1 to
boundaries on the posteriorsΘ0,1; specifically, the SPRT thresholds are
given by the log-odds of the corresponding posterior thresholds in
sequential Bayesian inference4,

θ= logðΘ=1�ΘÞ: ð2Þ

Now, the key point is that sequential Bayesian inference applies to an
arbitrary number of choices and so holds for general nAFC decision-
making14. Figure 1c, d illustrate this for 3- and 4-choice tasks,
respectively, with the dashed lines representing flat decision bound-
aries Pi(t) >Θi. Individual probability trajectories for each choice
correspond to the coordinates of the overall decision trajectories
(Fig. 1a, b), interpreted as aparticle diffusing innD. Sequential Bayesian
inference forms an orthogonal coordinate system for each probability
trajectory (Fig. 1c, d) as components of the n-dimensional decision
trajectory (Fig. 1a, b).

Fig. 1 | Multiple-choice decision trajectories. c, d show evidence accumulation, x,
as independent probability trajectories per choice hypothesis, Hi. a, b show how
these trajectories combine to form n-dimensional decision trajectories (colors
matchbetween the lower andupper plots). Dashed lines are example “flat”decision
boundaries, θ, with shadedgray showing values/areas above the decision boundary
in which a decision has been triggered. Notice that the evidence accumulation is
constrained to an (n − 1)D subspace: a plane for three choices (a) and a tetrahedron

for four choices (b). For visualization, (b) shows a four-dimensional object
embedded into three dimensions projected onto a two-dimensional page; the
fourth axis is orthogonal to those shown and “goes into” the page. The import of
these different perspectives is that two-choice probability trajectories evolve in
time, so decision boundaries can be time-dependent; however, n-choice decision
trajectories also evolve in space, so decision boundaries can also have spatial
dependence and thus a complex high-dimensional structure.
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There are geometric implications of using sequential Bayesian
inference as coordinates for n-dimensional decision trajectories
(Fig. 1a, b). Although the decision trajectories have n probability-
coordinates, Pn, they are constrained such that ∑iPi(t) = 1; therefore,
the decision trajectories populate (n − 1)D simplices. For example,
2AFC decision dynamics are represented as a particle constrained to
have P0(t) + P1(t) = 1, which is the 1D line P1 = 1 − P0 on a 2D (P0, P1) plot
of the beliefs. It follows that 3AFC dynamics take place on a 2D plane
(Fig. 1a) and 4AFC dynamics in a 3D tetrahedron (Fig. 1b) and so forth.
Note that if any hypothesis has zeroprobability Pi(t) = 0, then the space
in which the decision trajectory evolves collapses to the remaining
non-zero directions. For example, each face of the 4-choice tetra-
hedron in Fig. 1b is a combination of three choices with non-zero
probabilities and each edge a combination of two such choices.

As a result, decision boundaries are (n − 2)-dimensional objects in
n-dimensional probability space. So for n > 2 choices, boundaries can
have spatial dependencewith respect to thedecision space visualized in
Fig. 1a, b. For 2AFC tasks, decision boundaries are points on a 2D line,
which are simply the transformed boundaries (equation 2) of the stan-
dard two-choice integration-to-thresholdmodel. Likewise, for 3AFC, the
decision boundaries are lines on a plane (Fig. 1a, dashed lines) and for
4AFC are planes within a tetrahedron (Fig. 1a, dark gray planes). The
example boundaries shown are flat with a constant decision threshold
in eachdimension. An interesting consequence is that high-dimensional
boundaries can have a nonlinear structure as a function of the n-
dimensional beliefs P. Then, the linear 3AFC boundaries (Fig. 1a, dashed
lines) generalize to curves and the planar 4AFCboundaries (Fig. 1b, dark
gray planes) generalize to curved surfaces.

Curved decision boundaries have been shown to perform opti-
mally on 3AFC tasks for free-response, mixed-difficulty trials7; how-
ever, it is not knownhow important the precise shapeof that boundary
is for maximizing reward. Here we ask whether there are other com-
plex boundary shapes that improve performance over the flat
boundary case and whether the greater freedom to choose nonlinear
boundaries has other consequences for decision-making.

Multi-dimensional decision boundaries can be complex
To investigate the importance of boundary shape for reward max-
imization, we define a subset of possible boundaries using some spe-
cific spatial parameterizations that provide diverse sets of nonlinear
boundaries. These parameterizations are constrained such that: (I)
each boundary θi intersects with each edge leading away from the
point Pi = 1, and likewise intersects with each (hyper)plane leading
away from the said point (e.g., each colored boundary intersects with
two edges in Fig. 2); and (II) assuming symmetric error costsWi =Wj for
simplicity in equation (1), the boundaries remain symmetric under

permutations Pi↔ Pj (e.g., all boundaries have the reflectional sym-
metries of the outer equilateral triangle in Fig. 2).

These constraints can be used to derive a general boundary
parameterization comprising a shape function and tuning parameters
(Fig. 2). A general boundary parameterization F(P(t); θ, α,…) takes the
probability vector P(t) as an input, along with an edge-intersection
parameter θ and shape parameters (α, …) to give a decision rule:

PiðtÞ > FðPðtÞ;θ,α, . . .Þ: ð3Þ

The resulting complex decision boundary has an amplitude parameter
α and some additional shape parameters. To make our investigation
tractable, we limit our parameterization to one additional parameter,β
(e.g., a frequency in the oscillating case). For simplicity, we select four
distinct forms of F that we call flat(θ), curve(θ, α), power(θ, α, β), and
oscil(θ, α, β), examples of which are shown in Fig. 2 and all of which
contain the flat boundary as a particular instance (see Methods for the
full forms and a mathematical derivation). Within these parametric
subsets, the optimal decision boundaries are determined by optimal
values of θ, α, and β.

Some example boundary parameterizations illustrate the range of
possible boundary features and how they extend to multiple-choice
decision tasks (Figs. 2 and 3). Each parameterization is a scaling of a flat
boundary (Fig. 2, left column) denoted as the flat(θ) function, such
that: (I) The function curve(θ, α) is the simplest parameterization of
interest, with α the amplitude of the curve (Fig. 2, second column). (II)
The function power(θ, α, β) has an additional parameter β that mod-
ulates a double curve or forms a central peak (Fig. 2, third column). (III)
The oscillatory function oscil(θ, α, β) is a cosine with amplitude α and
frequency β (Fig. 2, fourth column). We have chosen these para-
meterizations so that if β = 0, we recover the curve parameterization,
and if α =0, we recover the flat parameterization. These para-
meterizations apply to any number of choices n ≥ 2, with examples of
the curve andoscil functions for 4AFCs shown in Fig. 3a, b respectively.
Note how these decision boundaries intersect with each 3AFC plane:
each face in Fig. 3a matches a panel in Fig. 2.

Overall, we have constructed a set of permutation-invariant,
nonlinear decision boundaries that we will use as candidate functions
to explore optimal decision rules. This raises the question of which
parameter values give optimal boundaries within these parametrized
subsets of boundaries.

Complex decision boundaries are consistent with the speed-
accuracy curve
It iswell established that humans and animals generate speed-accuracy
trade-off (SAT) curves during decision-making experiments6,9,

Fig. 2 | Example boundaries for three choices. Each column belongs to the
indicated parameterization and each row (apart from the flat case with just one
parameter) shows two opposite extreme examples. Colors indicate the edge-
intersection parameter θ, and parameter values α and β are indicated as

appropriate. Notice the diverse range of curves to explore spatially-dependent
optimal boundaries. Comparison with the flat(θ) parameterization is shown by the
dashed colored lines.
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showing themean error against mean decision time, where each point
on the curve can be accorded a cost ratio c/W of time to errors
(equation (1)). For 2AFC tasks, the trend is such that as the value of c/W
increases, speed is favored over the accuracy, and so the mean deci-
sion time decreases with a compensatory increase in mean decision
error. This trade-off is instantiated by the decision rule (learned for
each c/W value) with the SAT curve implicitly parameterized by deci-
sion boundary parameters. For 2AFCs, this is a single parameter: the
flat boundary threshold θ30,31. For nAFCs with n > 2, these are complex
boundary functions (equation (3)) with sets of parameters (α, β,…). If
the SAT curve is truly a curve, rather than a region, then multiple
parameter combinations would give the same SAT, since a curve
requires just one implicit parameter.

To examine the SAT curves for each parameterization, we opti-
mized the boundary parameters for a range of cost ratios c/W and then
plotted the resulting accuracies and decision times (Fig. 4). Optimal
parameters θ, α, β were found by stochastic optimization over the
reward landscapes, usingMonte Carlo simulation over a grid search of
parameters to generate a visualization of the reward landscapes
(Fig. 5a–c). As rewards are highly stochastic, smoothed landscapes
were averagedover 100,000decision trajectories.Optimal parameters
were extracted by taking all points with a mean reward for which
r > rmax � δσ, where rmax is the maximum mean reward of the noisy
landscape, σ is the spread of rewards, and δ =0.02 is a small parameter
(see Methods for details). Since the variation in expected reward is so
small as to be negligible for a real decision-maker with limited capacity
for sampling rewards from the environment, we define these bound-
aries as constituting a set of “good enough” boundaries that are in
practice as effective as a true optimum within each parameterization.

The boundary functions curve, power, and oscil produce smooth,
well-defined SAT curves (Fig. 4) that resemble the relationship
between speed and accuracy for optimal rewards found
experimentally2,31. Despite the wide range of boundary shapes they
describe, all three parameterizations produce nearly identical SAT
curves, as confirmed by overlaying the average over all three cases
(Fig. 4, black dashed curve, all panels). Flat boundaries (α =0) are
containedwithin these parameterizations, and so the SATcurves for all
three boundary functions closely resemble theflat-boundary case.One
difference between the three cases is their relative spreads: the
curve(θ, α) parameterization yields the tightest SAT curve, followed by
the oscil(θ, α, β) SAT curve, and finally, the power(θ, α, β) SAT curve is
the thickest. One might therefore consider that the curve para-
meterization qualifies as the ‘best’ SAT curve, which is consistent with
previous work since it describes the shape of the optimal boundary
found for the 3AFC case in refs. 7,14. However, all parameterizations

closely follow a single mean SAT curve (black dashed lines), so a wide
range of boundary characteristics give near-optimal decisions. More-
over, each value of c/W has multiple points spread along the same
curve, so the SAT can be satisfied by multiple optimized boundaries
even within the same parameterization.

A degenerate set of decision boundaries yield close-to-optimal
expected reward
So far, we have seen that optimized nonlinear decision boundaries
generate well-defined SAT curves that remain similar in three para-
meterizations curve, oscil, and power. Next, we analyze the optimized
boundaries by direct inspection of the reward landscapes and their
position on the SAT curve.

Inspection of the 3AFC reward landscapes for the curve para-
meterization reveals that the region withmean rewards within δ of the
maximum rmax extends across the parameter space (Fig. 5, black lines).
As c/W increases and themaximumreward rmax decreases (panels a–c),
this acceptance region sweeps towards θ = 1/3 and the flat boundary
α > 0 and becomes more dependent on α in addition to θ. These
acceptance regions correspond to sets of optimized parameter com-
binations and so specify families of decision boundaries that all max-
imize reward within a small variance.

For closer scrutiny of the optimal region, five sections of the
reward landscapes for 3AFC curve(θ, α) parameterization are shown in
Fig. 6. These sections correspond to values α = {−20, 10, 0, 10, 20}
(including the flat boundary α =0) to provide a detailed look at the
reward landscape peaks with 100-foldmore samples of θ than in Fig. 5.
Evidently, the peak changes with cost ratio c/W and θ (Fig. 6, right
column). This analysis leads to the observations: (I) As c/W increases,
the reward landscape maximum covers a broader range of θ values
(sectionpeaks separate) andappears to acquire slope (peaks diverge in
height, with a higher-to-lower pattern). (II) The spread of the average
rewards at the peak of each section overlaps (red dashed lines),
decreasing as c/W increases but not diminishing to zero. (III) Extracting
near-to-optimal parameters by taking all points within a small δ = 0.02
range of the peak average reward yields a set of near-optimal decision
boundaries over a broad range of θ andα values (black points in Fig. 6).

These three observations all support the effective degeneracy of
optimized decision boundaries within the parameterizations. Obser-
vation (I) shows that for small c/W, the underlying structure of the
reward landscape appears to degenerate with sections almost entirely
overlapping (Fig. 6, top right). As c/W increases, a shallow structural
maximum becomes apparent (Fig. 6, bottom right). Observation (II)
shows significant overlap in the close-to-optimal region even across
the apparent structural maximum (Fig. 6, bottom right). Observation

Fig. 3 | Example boundaries for four choices. Example decision boundaries are
given by the curve parameterization (a) and the oscil parameterization (b). The
colors/levels are different edge-intersection parameter values θ, using the same

values as those in Fig. 2, where (a) is theN = 4 equivalent of the first curve example.
Shading is used to visualize the shape of the boundary.
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(III) shows directly that there is an effective degeneracy. One could
question whether different sections through the reward landscape
would change these observations, as Fig. 6 depends on the range and
discretization of α. Our range of α covers the entire range of boundary
shapes shown in Fig. 2, including flat boundaries, and because of the
gradual variation across sections, we would not expect further struc-
ture from a finer discretization. We also expect that usingmoreMonte
Carlo samples for each cross-section would not change the results, as
the means and spreads shown in the sections in Fig. 6 appear to be
good estimates of the distributions of average rewards (e.g., by their
smooth variation with θ and unitary maxima).

The close-to-optimal set of boundaries produces a rangeof speed-
accuracy trade-offs (Fig. 5d–f). In 2AFC decision-making, each point on
the SAT curve is a unique optimal boundary specifying a unique trade-
off for a given value of c/W. This raises the question: for nAFCs with
n > 2, what are the range of points on the SAT curve given by the set of
close-to-optimal boundaries? Fig. 5d shows the mean decision errors

against mean decision times for all close-to-optimal boundaries found
in the 3AFC landscapes from Fig. 5a–c. In each case, an effectively-
optimal reward is achieved by a broad range of SATs (Fig. 5d) rather
than a tight group around a single SAT.

How can a small range of reward values produce a broad range of
speed-accuracy trade-offs? The breadth of speed-accuracy trade-off
values produced by complex decision boundaries is explained by a
range of near-optimal threshold parameter values. Then, given cost
values W and c, the rewards

EðrmaxÞ= �WEðeÞ � cE½T �, e= f0,1g, ðcorrect=incorrectdecisionÞ
ð4Þ

have two degrees of freedom for each value of EðrmaxÞ in trading off
the expected error EðeÞ and expected decision time E½T �. Thus, the
same expected reward may be attained by boundaries with different
combinations of EðeÞ and E½T �. Hence, the set of close-to-optimal

Fig. 5 | Reward landscapes and effective degeneracy of optima. a–c show
example reward landscapes over parameters of the curve(θ, α) decision boundaries
for cost ratios c/W of 0.001, 0.04, and 0.1 for 3AFCs. The regions of maximal reward
areoutlined (black lines forδ =0.02; see text)within a projection of themean reward
onto a horizontal plane, which reveals an extended region of nearly-optimal decision

boundaries. d–f show the speed-accuracy trade-off for decision boundaries
encompassed in the maximal region of a–c, with the black dashed line showing the
mean SATcurve fromFig. 4. Notice the “spread”of SATvalues for the samecost ratio
and similar values of θ. There are apparently two types of degeneracy in the set of
optimized decision boundaries: boundary shape (a–c) and SAT (d–f).

Fig. 4 | Speed-accuracy trade-off curves for 3AFCs optimized over all para-
meters. Colors indicate the cost ratio c/W (blue through to yellow) for a the curve
parameterization, b the power parameterization, and c the oscil parameterization.
The average SAT curve (dashed line) is a piecewise-linear curve from the mean

decision time and error over all three parameterizations for each c/W value (see
methods). All parameterizations (a–c) give regions of speed-accuracy trade-off that
are tightly gathered around the mean SAT curve and depend smoothly on the cost
ratio c/W.
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decision boundaries yields the range of ðEðeÞ,E½T �Þ solutions shown in
Fig. 5d–f.

Effectively-optimal decisions with different boundary shapes
What are the characteristics of the nonlinear decision boundaries in
the near-optimal set? If the decision boundaries were qualitatively
similar in shape, then learning the particular boundary shapewould be
important for maximizing reward. Conversely, if the boundary shapes
are qualitatively different, then learning the precise boundary shape
would not be critical, and the emphasis onoptimalitywould shift to the
inference and normalization processes for multiple-choice decision-
making.

Figure 5e shows that for each cost ratio c/W, the edge-intersection
parameter θ seems to be the main determinant of optimality, as is
visible in the homogenous values of θ within each region (a–c). In

contrast, the shapeparameterα takes heterogenous valueswithin each
region (a–c) in Fig. 5f. For every cost ratio c/W, the entire explored
range of α is represented in the optimal set, whereas there is a narrow
range of θ that varies with c/W. The flat-boundary case (α =0) is opti-
mal for each of the degenerate sets, with the optimal θ then a single
value that lies within the broadened range when α is non-zero. Thus,
for all c/W, there aremanySATsneareachparameter value, and in turn,
each SAT instance is close to many different parameter values
(Fig. 5e, f).

Therefore, it appears that close-to-optimal multi-alternative
boundaries are possible with significant modulation of the flat-
boundary case. The close-to-optimal set contains a broad range of
parameters, giving a diverse set of boundary shapes (examples in
Fig. 7). This supports the notion that learning the precise boundary
shape is less important for making effective optimal decisions.

Fig. 6 | Sections through reward landscapes. Five sections through the reward
landscapes from Fig. 5a–c for the 3AFC curve(θ, α) parameterization are shown in
the left-hand column of panels for α = {−20, −10, 0, 10, 20} (colors in legend). Note
that the α =0 (cyan) sections are flat decision boundaries. Average rewards across
the sections are shown in the right-hand column with their mean (solid lines) and

spread (transparent area), both are estimated with Gaussian Process regression;
95% confidencebounds. The red dashed lines show the overlapbetween the spread
of all sections at their peak mean rewards. Maximal regions lie within a small
fraction (δ =0.02) of the standarddeviationof thepeak reward, giving adegenerate
set of decision boundaries with close-to-optimal rewards (black points).
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Mean error and decision time vary along the optimal decision
boundaries
Every point on an extended boundary for nAFC decision-making with
n > 2 has an associated error and decision time distribution (see Fig. 7
for a color map of the mean decision time for flat boundaries). In
contrast, the 2AFC decision thresholds are points on a line in the space
of 2D belief vectors P from (0, 1) to (1, 0). Each choice on an extended
boundary is a single point with an error and decision time distribution.
Spatially-dependent error and decision time distributions that vary
along the decision boundary are a consequence of having a multi-
dimensional belief vector that can vary over a decision boundary
embedded as a curve or surface in the higher-dimensional belief space.

Hence, the close-to-optimal set of boundaries have different
ranges of mean decision times and mean errors but practically indis-
tinguishable expected rewards. If the under-determinism in the reward
structurewereeliminated (e.g., by alsominimizingmeanerror ormean
decision time), then the set of reward-maximizing decision boundaries
would contract and SATs narrow.

Interestingly, decision times vary even along flat boundaries
(Fig. 7a, yellow lines; decision times shown by background color), and
so even the simplest case of crossing a single threshold is complicated
for multiple alternatives.

Implicit dynamics of optimal decision boundaries support both
static and collapsing thresholds
The point where a decision trajectory crosses a high-dimensional
decision boundary is a belief vector that has a corresponding mean
error and mean decision time. Because all of these quantities can vary
along a nonlinear boundary, there can appear to be non-trivial
dynamics in the decision ‘threshold’ if it is instead interpreted as a
unitary value rather than as a boundary function. Here we refer to this
property as implicit dynamics because it originates in the boundary
shape rather than from an explicit time-dependence of the threshold.
In Fig. 7, the boundary overlays a gradient coloring representing
decision time,making explicit the non-trivial relationbetweendecision
time and belief of a decision. In this sense, we uncover temporal
‘dynamics’ implicit in the static, complex, and nonlinear decision
boundaries for multiple choices.

There has been much debate over whether temporally-dynamic
decision thresholds give a better account of 2AFC experimental data
than the static thresholds of SPRT15,16,18. The assumption of fixed
(constant-valued) thresholds has been called into question, with col-
lapsing thresholds gaining popularity, which are sometimes inter-
preted as urgency signals9,19,30,32. From an optimality perspective,

collapsing thresholds aremore appropriate for repeated free-response
trials ofmixeddifficulty and for thosewith deadlines19,21, whereas static
thresholds are appropriate for single free-response trials without
deadlines and repeated free-response trials of known difficulty; how-
ever, static thresholds are not adequate for single free-response trials
of mixed, a priori unknown difficulty25. Models with collapsing
thresholds have been shown to reduce the skew of error and decision
time distributions in some experimental tasks16, and urgency signals
proposed to account for increased firing rates in the LIP brain regionof
macaques during trials in which accumulated evidence (encoded as
neuronal firing rates) is unchanging10,11,30. How multiple-choice deci-
sion boundaries relate to this debate is thus of interest.

To investigate the relationship between implicit decision thresh-
old dynamics discussed above and spatial nonlinear decision bound-
aries, we transform the decision variables to a form that gives a
temporal structure in the threshold as a consequence of the extended
static boundaries. The boundary beliefs are sorted by decision time,
averaging over boundary values with identical decision times. These
then appear as time-dependent decision boundaries applied to evi-
dence (Fig. 8), which for display purposes, we represent using the log-
odds (equation 2).

These dynamic decision thresholds have a range of temporal
structures for each cost ratio c/W, separating naturally into three
categories: increasing (Fig. 8, top row), collapsing (middle row), and
static thresholds (bottom row). These categories appear to correlate
with the shape of the decision boundary: increasing thresholds with
convex boundaries (e.g., Fig. 7a, dark blue curve), decreasing thresh-
olds with concave boundaries (e.g., Fig. 7a, red curve), and static
thresholds with flat boundaries (e.g., Fig. 7a, yellow line). This corre-
lation seems to originate in an increase in decision time as the belief
moves away from equality between choices (Fig. 7a–c, shading). All
things being equal, decisions that terminate with higher beliefs tend to
be more accurate, whereas decisions terminating with a low belief of
the choice tend to be less accurate. Therefore, experimental obser-
vation of implicitly dynamic decision boundaries (including increasing
thresholds) could be due to time-dependent accuracy plots of data
from individual subjects33.

We emphasize that while these implicit threshold dynamics look
like temporal dependence, they are, in fact due to the spatial structure
of the decision boundary. Flat decision boundaries can therefore be
interpreted as a special case where the boundary on the belief in one
choice to cross its threshold is independent of the beliefs of the other
choices; however, even then, the mean decision time and mean error
have a spatial structure along these boundaries (Fig. 7).

Fig. 7 | Examples of qualitatively-different degenerate decision boundaries
overlaid on themeandecision times forflatboundaries.Herewe show the curve
(a), power (b), and oscil (c) parameterizations for 3AFCs. All plotted boundaries
maximize reward to the same value (for the same cost ratio c/W =0.04) despite
having no other common characteristics. a–c show a map of the mean decision

time over the belief space, with low decision times at the center increasing towards
the edges. Decisions, and hence decision times, only manifest at decision bound-
aries, so to visualize the variation over the whole belief simplex, we generated an
approximation of the mean decision time distribution using incrementally-
increasing flat decision boundaries.
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Comparison to currentmodels, interpretations, and predictions
There are few normative approaches to modeling multiple-choice
decision-making, with the recent study of ref. 7 the state-of-the-art in
using an evidence accumulation vector accumulated in a race model
with a boundary in n-dimensional space. Using dynamic programming,
they find optimal decision boundaries for free-response, mixed-
difficulty trials are nonlinear and collapse over time. Clearly, their
nDRM is closely linked to the model presented here, but there are key
differences: the models have a different evidence structure, trial
structure, and optimization process, which leads to diverging per-
spectives on the nature of multiple-choice decision boundaries. In the
following, we describe how these perspectives can be reconciled, and
in doing so gain a broader understanding of normalization and infer-
ence in multiple-choice decision-making.

In comparison with the nDRM, one difference between ourmodel
and that in ref. 7 is in how they use Bayesian inference to accumulate
evidence. Although the nDRM is derived from Bayes’ rule, evidence is
accumulated linearly and inference values (the posterior) are used
indirectly to calculate the expected reward7. Conversely, our model,
which focuses more on the details of nonlinear decision boundaries,
uses the posterior from Bayes’ rule as the accumulated evidence. In
this respect, our model has less biophysical realism that the nDRM
because there is little supporting evidence for the brain representing
posterior beliefs directly as probabilities. Instead, studies point
towards the brain employing indirect representations from which
beliefs can be inferred33,34. However, we describe below how either

view of evidence representation is compatible with two of the main
results of the present paper.

Firstly, evidence accumulation takes place on ann − 1-dimensional
simplex in our model, as in Fig. 1a, b (n = 2 a curve; n = 3, a plane).
Similarly, reward maximization in the nDRM results in evidence accu-
mulation perpendicular to a diagonal equidistant from all evidence-
component axes, and so the space collapses to n − 1 dimensions. This
subspace appears to be a scaling of the posterior simplices shown in
Fig. 1a, b, which is simply a normalizationof the evidenceaccumulation
(see Methods). In consequence, bothmodels agree that normalization
of the evidence is a key component of multiple-choice decision-mak-
ing, which is imposed by using probability values directly here and
emergent in the nDRM. Further, the decision boundaries in both
models exist in that same subspace, and so agree as to the expected
dimensionality of neural population activity during evidence accu-
mulation (see later section on Predictions).

Secondly, our model results in a set of close-to-optimal decision
boundaries that contains drastically different boundary shapes, which
we now argue is compatiblewith the nDRM. Tajima et al. use a network
approximation to the optimal decision rule to separate the boundary
components into a race model with nonlinear and dynamic (collap-
sing) boundaries, both with normalization, and evaluate their perfor-
mance under reward maximization7. Their model performance is best
in the presence of internal variability (adding noise), where omitting
boundary dynamics performs similarly or slightly better than the
combination of nonlinearity, dynamics, and normalization together.

Fig. 8 | Implicit threshold dynamics. Columns separate results by curve, power,
and oscil parameterization for 3AFC decision-making. The rows show examples of
implicit dynamics categorized as increasing (a–c), decreasing (collapsing,d–f), and
flat (static, g–i). Colors indicate the cost ratio c/W for which the thresholds are

optimized. Note that the transformed threshold refers to taking a log-odd scale for
better visualization (equation 2). Therefore, nonlinear static, high-dimensional
decision thresholds exhibit implicit dynamics with a correlation between those
dynamics and the boundary shape.
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From our perspective, these distinctly different types of boundaries
could be interpreted as members of a set of close-to-optimal bound-
aries since both types result in effectively maximal rewards.

The effect of evidence normalization is also important. Both the
model presented here and the nDRM rely on evidence normalization
as key tomodel performance. In themodel here, the normalization of
evidence follows from using posteriors, whereas in the nDRM it fol-
lows from a projection of the accumulated evidence onto the n − 1-
dimensional subspace described above. This suggests a major influ-
ence onoptimality formultiple-choice tasks, yet an assessment of the
contribution of normalization alone on performance is absent in ref.
7: in the nDRM, normalization is not separated from the nonlinearity
of the decision boundaries. For this reason, and because7 uses mixed
difficulties which demand collapsing boundaries, comparing the
performance to flat boundaries for the nDRM is not comparable to
the flat boundaries examined here. Normalization appears integral to
optimal multiple-choice decision-making, and the magnitude of its
influencemay offer an explanation for degenerate optima: it appears
that boundary shape has a lesser influence on optimality when the
evidence is normalized, which would benefit learning and general-
ization as a general neural mechanism for context-dependent deci-
sion-making35.

Evidence normalization is also a mechanism that satisfies a num-
ber of physiological constraints. Represented by the range of neural
activity, normalization satisfies: (I) Biophysical constraints of the range
of activity of neural populations – the firing rate of biological neurons
cannot be negative and cannot exceed a certain level due to their
refractory period13; (II) neural recordings of decision-making tasks
show that a decision is triggered when neural activity reaches a ste-
reotyped level of activity9, and (III) as the number of options increases,
so too does the processing and representation of multivariate evi-
dence accumulation and the relative belief over these options. This,
together with the wide-ranging influence of normalization on optim-
ality discussed previously, leads us to consider normalization as an
integral part of the evidence accumulation process.

We now show that normalization, here in the form of a posterior
representation of the evidence, can explain some ‘irrational’behaviors:
(a) the decrease in offset activities in multi-alternative tasks; (b) vio-
lation of the independence of irrelevant alternatives, and (c) violation
of the regularity principle9,36–39. These behaviors are outcomes of three
properties of normalization when adding (for example) a third option
P2, where the currently-held beliefs are P0 and P1 such that P0 + P1 = 1;
then the new normalized probabilities are

~Pi =
1

1 +P2
Pi: ð5Þ

This has the effect of increasing the minimum distance dT = T − Pi/
(1 + P2) from each choice belief to a boundary T, decreasing the dis-
tance d = Pi/(1 + P2) − 1/3 from the flat prior, and reducing the differ-
ence in belief values supporting each alternative

Δi,j =
1

1 +P2
∣Pi � Pj ∣, i≠j: ð6Þ

All of these quantities decrease as the belief value of option P3
increases, which has the following consequences.

First, we consider (a) a decrease in offset activities in multi-
alternative tasks. Multiple studies show that the initial average neural
activity (“offset”) encoding evidence accumulation decreases as the
number of options increases9,36. Support for this offset behavior is
given in ref. 7 for the network model of the nDRM by introducing it
directly into the reward maximization as the number of options is
increased. However, assuming that evidence accumulation uses the
posterior directly, as in our model, then for each unit increase in the

number of choices, the average belief per choice decreases by 1/
n(n + 1); i.e., the decrease in offset activity is a direct consequence of
evidence normalization.

Next, we consider (b) the violation of IIA. The independence of
irrelevant alternatives (IIA) recurs inmany traditional rational theories
of choice40,41. It asserts that the presence of an ‘irrelevant’ option
should not affect the choice between “relevant” options (e.g., adding a
low-value choice to existing higher-value choices)42–44. Violation of this
principle has been shown across behavioral studies in both animals
and humans37. This behavior is replicated in7 using a network
approximation of the nDRM with added noise during evidence accu-
mulation and is attributed to their use of divisive normalization. In our
model, the violation of IIA is explained by the representation of evi-
dence accumulation as the belief vector (equations (5, 6)): as the belief
of the third option (P2) increases, the belief values of other options are
reduced, which necessitates further evidence accumulation before
making a decision than would otherwise have been required. Further,
the difference in belief values supporting both high-valued options is
decreased (equation (6)), so more evidence is needed to choose
between these options also. Requiring additional evidence accumula-
tion, and so increased difficulty in choosing between the two high-
valued options, is exhibited by longer decision times and/or higher
error rates, as in behavioral studies.

Last, we consider (c) the violation of the regularity principle. The
inverse of IIA violation, the regularity principle, says that adding extra
options cannot increase the probability of selecting an existing option,
and has been found to be violated in behavioral studies38,39. This is
simulated in7 using the same network approximation of the nDRM as
for the violation of IIA. We also find that violation of regularity is
congruent with IIA violation: adding a third option reduces the belief
value of the original options (equation (5)) while also reducing the
difference in belief values (equation (6)).

Our next consideration is related to network models of decision-
making. In the nDRM, evidence accumulation is implemented in a
straightforward manner, but the optimal boundaries are complex and
nonlinear7. The optimal decision policy is approximated by a recurrent
neural circuit that implements a nonlinear transformation of the
accumulators, which simplifies the decision rule to a simple winner-
takes-all rule when an accumulator reaches a single threshold. The
decision rule is then simple, local, single-valued, and applies to each
population independently. An interesting question is whether a similar
approximation and neural implementation can be implemented with
the nonlinear boundaries presented here. In principle, our model
could be approximated by applying normalization (as in ref. 7) and a
nonlinear transformation of the decision variable to remove the non-
linear component of the boundary. However, it is unclear whether a
recurrent network (as in ref. 7) exists to transform the decision vari-
ables for themore complex power and oscil boundaries. If it is possible
to represent the nonlinearities within a larger recurrent network, one
would obtain a local, single-valued decision rule applied indepen-
dently to each accumulator.

Reproduction of other experimental findings
Hick’s law in choice RTs: Hick’s law is a benchmark result relating
decision time to the number of choice alternatives. The relationship is
classically log-linear in the form �RT=a+ b logðnÞ. This relationship is
found for both perceptual and value-based implementations of the
nDRM for a set cost ratio45–47. Our model also replicates this relation-
ship for a number of cost ratios (Fig. 9a, colored lines). Interestingly,
both the slope and intercept vary with the cost ratio c/W.

SAT offset and slope: It has been reported that increasing the
number of choices n results in a steeper slope and larger values for
decision time versus coherency, along with a steeper slope and larger
values ofmeanerror9. For ourmodel,we find that the SAT curvesmove
away from the origin with increasing choices (Fig. 9b). Notice that the
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slope of the curves also decreases with the number of choices, which is
not inconsistent with ref. 9.

Dynamic thresholds: Urgency signals have been observed in
neural recordings from area LIP duringmultiple-choice tasks8,9 and are
often interpreted as implementing collapsing decision thresholds,
although this is still under debate15,16. For multiple-choice boundaries,
temporal dynamics of this type have been found for the optimized
nDRM7. Our model shows that the appearance of urgency signals
could, in part, be explained by the change of decision times along
nonlinear decision boundaries (Figs. 7 and 8), giving rise to what looks
like temporally-dynamic thresholds. However, boundaries that are
nonlinear in evidence (but linear in time) do not apply to 2AFC tasks.
Therefore, they cannot act as a catch-all explanation for the urgency
signal since this signal has also been observed during 2AFC tasks.
Additionally, our results also reproduce dynamic boundaries with
increasing ormixed gradients, as found in17, although not as a result of
mixed-difficulty trials.

Predictions
The nDRMmakes several predictions pertaining to both behavior and
neural implementation7. These also apply to themodel presented here
but stem directly from the mechanism of posterior probabilities as
evidence accumulation with the consequent boundary degeneracy.
Here we make a variation of these predictions and so a means of dis-
tinguishing empirically between the nDRM and a distinct class of
models, encompassing the one here, where the integrators are nor-
malized to represent probabilities48,49.

Firstly, the depression of neural activity prior to evidence accu-
mulation (the offset) increases with the number of alternatives, as
found in neural recordings of area LIP9. We find that this can be
attributed directly to the decreasing value of the priors.We, therefore,
predict that mean offset is independent of modulations of the task,
such as changes in reward rate or the learnt SAT. This is contrary to the
predictions made by7, which attribute the offset to a mechanism for
reward maximization of the network approximation, and so predict
that the offset has a dependency on reward rate, encompassing the
reward values and inter-trial interval.

Secondly, the neural population activity should be near an (n − 1)-
dimensional subspace during evidence accumulation. We found that
evidence accumulation takes place on an (n − 1)-dimensional simplex
with nonlinear decision boundaries. In this, we agree with7 that the
neural population activity should be constrained to an (n − 1)-dimen-
sional subspace during evidence accumulation, and that this could be
tested with standard dimensionality-reduction techniques using multi-
electrode recordings. However, there may be further subtlety in our

case due to the effective degeneracy of the decision boundaries. The
section “Implicit dynamicsof optimal decisionboundaries supportboth
static and collapsing thresholds” showed that the decision variable can
be transformed into a form that gives apparent temporal structure in
the threshold (Fig. 8), dependent on the particular nonlinear boundary
within the degenerate set. Our expectation is that this subtlety in the
threshold dynamics may also manifest in that the accumulation mani-
fold may appear to vary from subject to subject or trial to trial while
maintaining near-optimal performance (given that any point in the
accumulation manifold could also be on some decision boundary).

Discussion
In this study, we have examined the characteristics of decision
boundaries that maximize reward on a single trial of a multiple-choice
decision task and found a close-to-optimal set of high-dimensional
nonlinear boundaries. This differs from simple diffusion models, both
qualitatively and conceptually, that are known to be optimal for two-
choice tasks. We have also demonstrated that a consequence of non-
linear decision boundaries is that they can have implicit temporal
dynamics that could in part contribute to apparent urgency signals in
decisions with more than two choices. In addition, we proved analy-
tically that the properties of evidence accumulation encoded by pos-
terior probabilities are sufficient to account for a decreased offset in
neural activity prior to evidence accumulation as the number of
options increases, the violation of IIA and of the regularity principle,
and that our model follows Hick’s law, one of the most robust phe-
nomena of perceptual decision-making50. However, our results do not
address hownonlinearmultiple-choice boundariesmay be learned nor
investigate the effects of choice similarity for multiple choices51.

Our model casts light on the discussion around urgency signals
and dynamic decision boundaries, along with their implications. This
study demonstrates that thresholddynamics canbe an implicit feature
of the structure of static, high-dimensional, nonlinear decision
boundaries, implemented mechanistically by either a decision
boundary or a gain on evidence accumulation.

The implication is that the urgency signals reported in neural
recordings of decision-making tasks with more than two alternatives,
such as those recorded in area LIP8,9, could in part be the result of a
more complex decision rule. Moreover, features of the apparent
urgency signal serve as an indication of the boundary shape: collapsing
thresholds indicate concavity, whereas increasing thresholds (or a
negative evidence gain) suggest convexity (Figs. 7 and 8). In previous
work with the drift-diffusionmodel, increasing andmixed slopes were
associated with optimality in mixed-difficulty trials17, which gives an
interpretation that some forms of convex static optimal decision rules

Fig. 9 | Hick’s law and SAT offset and slope. a shows Hick's law for optimal
boundaries for the examples shown in Fig. 5. Decision times are represented as
mean values where error bars show the distribution (minimum/maximum)

generated by the set of optimized boundaries where n = 10,000 independent
decision trajectory samples. All three lines are linear and so satisfy Hick's law.
b shows how the speed-accuracy curve varies with the number of choices N.
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may generalize to mixed-difficulty trials. One way to disambiguate
nonlinear decision boundaries from urgency signals is to use that this
complexity only applies for multiple n > 2 choices, which should be
apparent in neurophysiological data. However, a consensus has yet to
be reached15,16 and, as shown by ref. 7, optimal decision boundaries
may be both complex and time-dependent. Thus, we predict dynamic
signals on two timescales: a faster timescale for implicit dynamics from
a nonlinear boundary and a slower timescale for explicit threshold
dynamics that is more consistent from trial to trial.

A fundamental point is that thephysical limitations of humans and
animals prevent extensive reward sampling, so under such a volatile
reward structure, shallow reward landscapes such as those we gener-
ated here suggest boundary parameterizations that are equally “good”
in practice. A possible issue with our approach is that we have chosen
sub-optimal parameterizations by limiting our cases of nonlinear
boundary to curved, power-law, and oscillatory forms. However, we
chose these to include the standard flat boundary case, which we find
to always lie in the close-to-optimal set; moreover, our parameteriza-
tions span a broad range of nonlinear boundary shapes (Figs. 2 and 3).

In our view, the existence of a set of close-to-optimal boundaries
undermines the significance of learning precise thresholds to perform
multiple-choice tasks optimally. This has two implications. Firstly,
emphasis is shifted onto the role of inference and normalization for
multiple choices, with the shape of the boundary a secondary aspectof
optimality. Secondly, this hierarchy of mechanisms for optimality, in
which inference has more impact than normalization that in turn has
more impact than boundary shape, has advantages for generalization
and learning. There is a growing body of work demonstrating how
complex behaviors can be explained through a system of inference
across a range of tasks, such as the free energy principle52. In such
systems, decision boundaries would exist implicitly as an upper bound
on surprisal, while action acts as a gain on the evidence much like the
neural implementation described above. We propose that close-to-
optimal decision boundaries may reflect the set of actions that effec-
tivelyminimize surprisal. Thismirrors the hierarchy ofmechanisms for
optimization we have found, as well as its power for generalization.
Finally, the advantage for learning comes fromeliminating theneed for
precise boundary shapes so that optimality becomesmore heuristic in
nature, requiring less sampling to adapt to novel tasks. The ability to
generalize well to similar yet novel tasks is a generic aspect of animal
behavior that is not well understood, on which the wide range of
redundant near-optimal boundaries demonstrated here offers a view
as to how that may be achieved.

Methods
Model of evidence accumulation
We consider independent n-choice perceptual decision tasks in which
the decision-maker accumulates evidence to a boundary. To model
evidence accumulation, we thus consider: (i) how the choices are
represented; (ii) how evidence is sampled; and (iii) how inference is
performed on the evidence to form the decision trajectories.

Choices are represented by Gaussian distributions with mean μi
and variance σi, such that ith hypothesis Hi is defined by N ðμi,σiÞ. For
more than one choice, the relative values of the means and variances
determine the difficulty of the task: more overlap between distribu-
tions reduces their discriminability. We set the difficulty of all tasks
using a constant difference in means Δμ and σ = 1.

Considering n ≥ 3 alternatives has implications for representing
the sampled variable x(t). In the SPRT, x(t) was drawn from one of two
equivariant normal distributions N(μi, σ), i =0, 1, leading to a choice
symmetry that underpins the use of a single threshold for equal
decision costs. However, it is impossible to maintain a symmetric
overlap between three ormore distributions on a line. Instead, one can
only maintain symmetry by having x(t) be a vector of samples with
symmetric mean vectors. For simplicity, we take the means of the

equivariant normal distributions as the vertices of the (n − 1)-simplex,
with n the number of hypotheses, with center at the origin and unit
edge length.

Decision trajectories are generated by a series of observations on
which inference is performed. Observations occur once per time step t
and take the form of decision evidence x(t), a sample from the dis-
tribution representing the ‘correct’ choice. For each sample, condi-
tional probabilities P(x(t)∣Hi) are calculated per hypothesis Hi,
implicitly assuming that the number and distribution of alternatives
are known to the decision-maker. The decision trajectories comprise
the posterior probabilities inferred from evidence sampling, the deri-
vation of which follows.

The SPRT is a statistical test for hypothesis testing based on the
likelihood-ratio (LR) test29. The LR test rejects a hypothesis H1 in favor
of an alternative hypothesis H0 if the LR is below a boundary. By the
Neyman–Pearson lemma, it is the most powerful test at significance
α =Pðlog LR < θ∣H1Þ. In the SPRT, sequential LRs of independent sam-
ples x(t) are combined iteratively into a probability ratio (PR) that is a
product of the LR:

log PRðt + 1Þ= logPRðtÞ+ log LRðtÞ; LRðtÞ= PðxðtÞ∣H0Þ
PðxðtÞ∣H1Þ

, ð7Þ

which is equivalent to summing the log LRs. The SPRT continues until
crossing one of two boundaries log PRðtÞ_±θ, relating to the sig-
nificance of rejecting H0 for H1 and H1 for H0. (For simplicity, we con-
sider equal-and-opposite boundaries, equivalent to equal type I and II
error rates). Then SPRT is an optimal test: the optimal boundary
minimizes a cost function linear in error rate and mean sample
number, optimizing the trade-off between decision time and accuracy.

Sequential Bayesian inference, or Bayesian updating, is given by
the Bayes rule, which updates posteriors for the two hypotheses H0

and H1 by combining likelihoods of the tth sample with priors equal to
the preceding posteriors:

PiðtÞ= PðHi∣xð1 : tÞÞ=
PðxðtÞ∣HiÞPðHi∣xð1 : t � 1ÞÞ

∑iPðxðtÞ∣HiÞPðHi∣xð1 : t � 1ÞÞ , i= f0, 1g: ð8Þ

This sequential update (8) is equivalent to the SPRT update (7), as ver-
ified with some simple algebra (taking logs of equation (8) and sub-
tracting the two components, so that the denominators cancel). Then
the probability ratio PR(t) in SPRT is recognized as the posterior ratio:
the SPRT decision boundaries are equivalent to posterior thresholds
P(Hi∣x(1: t)) >Θ, where θ= logðΘ=1�ΘÞ, and sequential Bayesian infer-
ence is identical to SPRT with the same optimality properties, suffering
only from the extra computation of the marginal term in Bayes rule.

Sequential Bayesian inference can be rewritten in a form that
more closely resembles a sum of evidence by taking the logarithm of
equation (8):

log Piðt + 1Þ= logPiðtÞ+ log LiðtÞ � logMðtÞ, LiðtÞ=PðxðtÞ∣HiÞ, ð9Þ

MðtÞ= ∑
i
expðlogPiðtÞ+ log LiðtÞÞ: ð10Þ

For each of the n-choices, the accumulated evidence is the log pos-
terior, logPiðtÞ= logPðHi∣xð1 : tÞÞ, with n distinct evidence increments
log LiðtÞ and a common subtractive log-marginal term logMðtÞ.
Calculation of this log-marginal is necessary formultiple (n > 3) choice
optimal decision-making, but can be avoided for n = 2 by using the
SPRT as mentioned above. A similar logMðtÞ term in a theory of basal
ganglia function has been interpreted as suppressing evidence
accumulation when choices are ambiguous53–55.

Within this framework, using that probabilities sum to unity
∑iPi(t) = 1, the evidence accumulation takes place within an (n − 1)-
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dimensional linear subspace spanning n vertices {Pi = 1, Pj≠i =0} of an N-
dimensional unit hypercube. This is most easily seen for N = 3 choices,
where the decision variablesP = (P1, P2, P3) varywithin a triangle passing
through three vertices {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of the unit cube (Fig. 1,
top right panel). So rather than representing evidence accumulation
trajectories as a random walk constrained to two dimensions, for mul-
tiple alternatives the random walk moves in higher dimensions (a line
for twoalternatives, aplane/triangle for three, and soon). For simplicity,
this vector is initialized with equal prior probabilities 1/n and updated
sequentially until one of the elements reaches a boundary, Pi > θ.

Both the SPRT and two-choice sequential Bayesian inference give
optimaldecisions in that theygive the fastestdecisions for a given level
of accuracy on single trials of known difficulty5. Formally, they opti-
mize a cost function, the Bayes risk25, that is linear in the mean error
rate e and mean decision time T over many trials

Crisk =WiEðeÞ+ cE½T �, e= f0,1g, ðcorrect=incorrectdecisionÞ, ð11Þ

with error costs Wi >0 and cost of time c, scaling the expected error
and decision time, EðeÞ and E½T �. This cost function represents the
trade-off between speed and accuracy of decision-making: slow but
accurate or fast but inaccurate decisions are both costly, and so a
balance must be found. For equal decision costs, W0 =W1, there is a
single threshold that is free parameter, which for optimal decision-
making is tuned according to the relative cost c/W of accuracy
and time.

An equivalent way of representing this multi-trial cost function is
over single-trial rewards

r =
�Wi � cT , incorrect decision,

�cT , correct decision,

�
ð12Þ

because the mean reward rate over many trials is EðrÞ= � Crisk, the
negative of the Bayes risk. This rewriting of the cost function empha-
sizes that the fundamental problem in optimal decision-making is to
sample decision rewards to learn the appropriate decision boundary
that optimizes the reward rate.

Decision boundary parameterizations
For multiple n ≥ 3 alternatives, a crucial difference from 2AFCs is that
decision boundaries now form hyper-planes across the decision vari-
able space of posterior probabilities (Fig. 1). This raises the intriguing
possibility that the optimal decision boundaries could instead be any
two-dimensional curve for three choices and any hyper-surface for
more choices. Then the boundary is not a single value, but is instead a
function of the evidence, F(P(t)).

Given the scope of possible optimal boundaries, a general para-
meterization is intractable. However, there are constraints that guide
the construction of a familyof possible parameterizations. Consider an
n-dimensional posterior probability vector P(t) = (P0(t), . . . , Pn(t)) at
time t. If any element Pi(t) = 0, then the boundary collapses to a
boundary for n − 1 alternatives. For example, take P0 and P1 as the only
non-zero probabilities, then the decision boundaries are thresholds on
the line P0(t) + P1(t) = 1; these posterior thresholds θ give the edge-
intersection values for higher-dimensional decision boundaries when
the other probabilities Pi, i > 2, are non-zero. Similarly, if P0, P1, and P2
are the only non-zero probabilities, then the decision variables lie on
the 2D simplex, P0(t) + P1(t) + P2(t) = 1, with higher-dimensional
boundaries intersecting with this simplex.

Therefore, we can create a family of possible parameterizations by
constraining the decision boundaries in terms of the posterior prob-
abilities in 3D subspaces: the beliefs within all possible combinations of
three choices of the n alternatives available. In this way, decision
boundaries are defined throughout the decision space and are easily
manipulable. Furthermore, the boundaries are symmetric under

permutations Pi ↔ Pj of the decision variables, which respects the
assumed symmetry of the decision costs. Then we can parameterize in
terms of 3D subspaces representing the outer extent of the decision
space (Fig. 1) given by Pk(t) + Pl(t) + Pm(t) = 1, where k≠ l≠m. So, the
number of outer 3D subspaces within the decision space is the number
of unique unordered combinations of three choices, Cn

3 =n!=3!ðn� 3Þ!
for nAFCs (equaling 1, 4, 10 for n = 3, 4, 5 consistent with Fig. 1). Each
subspace has a three-element belief vector PðtÞj = PkðtÞ, PlðtÞ, PmðtÞ

� �
,

where j represents the triplets (k, l,m), which collectively form the set of
triplet combinations j 2 Cn

3 from the integers {0, …, N − 1}. Thus, for
n = 3 choices, there is just one subspace P(t){0, 1, 2}; and, forn =4 choices,
there are four subspaces, {P(t)(0, 1, 2), P(t)(0, 1, 3), P(t)(0, 2, 3), P(t)(1, 2, 3)}.

The general decision threshold parameterization is then

PiðtÞ > FðPðtÞ; θ, α, βÞ ð13Þ

where

F =θ 1 +
α

Cn
3
∑
j2Cn

3

f Δ
max

PðtÞj;β
� �Y

i2j
PiðtÞ

2
4

3
5: ð14Þ

Taking the productof all components ofP(t)j accomplishes two things.
Firstly, it reduces threshold dimensionality by one, collapsing the
decision space to the number of alternatives with non-zero belief. For
example, forn = 4, if one alternative has a zeroprobability, thedecision
space and thresholds collapse to the n = 3 case (the planes shown in
Fig. 1), constraining how the decision boundaries intersect with the
outer faces. Secondly, it introduces the simplest form of nonlinearity,
as the product of all elements P(t)j parameterizes curved boundaries.

Overall, the function f ð Δ
max

PðtÞj;βÞ modulates the curve
parameterized by the product of posterior probabilities. The
variable Δ

max
PðtÞj is the maximum absolute difference between the

components of the vector P(t)j, which with the addition of a
parameter β allows a range of boundary shapes, such as those in
equations (15–18) below. Summing these components over all
subspaces generalizes (14) to n-choices, for which it is normalized
by the number of 3D subspaces using the multiplier 1=Cn

3 .
The general parameterization, equation (14), has three para-

meters: θ is the intersection of the boundary with the edges in pos-
terior probability space, because if there are only two choices with
non-zero belief values, then the right-hand side of equation (14) is zero
leaving F = θ; α directly tunes the amplitude of the function f or of the
curve if f = 1; and β is a free parameter whose purpose depends on the
function f. Clearly, we could include additional parameters, but con-
sider only these three for tractability.

There is no prevailing method for learning arbitrary functions
with stochastic rewards, so we use the general form given by equation
(14) and a range of functions f over which to explore the optimality of
nonlinear higher-dimensional decision boundaries. The considered
functions are:

flatðθÞ : F flatðPðtÞ;θÞ, f =0, ð15Þ

curveðθ,αÞ : FcurveðPðtÞ;θ,αÞ, f = 1, ð16Þ

powerðθ,α,βÞ : FpowerðPðtÞ;θ,α,βÞ, f Δ
max

PðtÞj;β
� �

= Δ
max

PðtÞj
� �β

,

ð17Þ

oscilðθ,α,βÞ : FoscilðPðtÞ;θ,α,βÞ, f Δ
max

PðtÞj;β
� �

= cos 2πβ Δ
max

PðtÞj
� �

:

ð18Þ
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Examples are shown in Fig. 2. The constant-valued boundaries are
dashed in all subsequent examples for comparison. Note that setting
α = 0 or β = 0 for any of (16–18) recovers the flat case (15).

Rewards are generated according to the Bayes risk represented
over single trials (equation 12), when stochastic decision trajectories
encounter a decision boundary. A reward landscape can be generated
by systematically varyingdecisionboundaryparameters and averaging
the rewards generated over a large number of simulated trajectories
for each set of parameters. Averaging over many reward outcomes
reduces variance producing a smooth surface and simulates the
expected reward, which coincides with sampling rewards to learn the
decision boundary under equation (11). So each point in the reward
landscape is the mean reward obtained from a distribution of rewards
for that boundary shape (typically from 100,000 samples across the
parameter ranges); differing landscapes with c/W discretized in
1000 steps across its range from 0 to 0.2 were then considered. Each
landscape has a point of mean reward that is an absolute maximum,
whichwewill denote by rmax; however, the landscape is verynoisy even
after this averaging,withmanyother pointswith similarmean rewards.
Therefore, we consider a set of parameters corresponding to multiple
points x∈ X on the landscape, with mean rewards rx and standard
deviations σx according to the distribution of rewards for those para-
meters. This set of parameters is selected such that the maximum
mean reward value of the landscape falls within a δσx of the point, so
that rx > rmax � δσx . Using some example reward landscapes, we
found that as δ decreases, the area designated as maximum also
decreases as expected. However, below δ =0.02, the area of the
maximal region does not appear to change, but the points selected
became more sparse, so we use this value.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study, including the data necessary to
reproduce Figs. 4–6, 8, and 9 are publicly available and have been
deposited in https://doi.org/10.5523/bris.1xrlkxgze3xmu2uqc2du219
wdl.

Code availability
All code to generate and process the data and generate results is
available in the Zenodo repository “DegenerateBoundaries_NatComm
22” at https://doi.org/10.5281/zenodo.662508356.
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