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Abstract — In order to assess the performance of an 

extremum seeking controllers, many restrictive assumptions 

have to be made due to the presence of a harmonic forcing signal, 

and the process remains mathematically intensive. We propose 

the use of bifurcation analysis and numerical continuation to 

provide a simple numerical framework to investigate the 

dynamics of an extremum seeking system. Using the example of 

a poorly-tuned auto-trim system on a nonlinear airliner model, 

the advantage of bifurcation analysis and continuation is 

demonstrated, including the ability to directly identify the 

oscillation amplitude and stability information. Other 

behaviours common in nonlinear harmonically-forced systems, 

such as existence of multiple solutions and bifurcations leading 

to multi-harmonic responses, are also detected. The purpose of 

this paper is to demonstrate the advantages of continuation in 

characterising the dynamics of an extremum seeking controller 

and to present this promising controller scheme to the wider 

aeronautics audience. 

I. INTRODUCTION 

Extremum seeking control is a form of model-free adaptive 
control that automatically seeks out the extremum point(s) 
(maxima or minima) of an objective function. This is done via 
a ‘perturb and observe’ scheme, which injects a sinusoidal 
perturbation to the control signal and observes the subsequent 
changes in the objective function. An online estimation of the 
objective function’s slope can then be inferred, which in turn 
drives the control input to the point at which the slope is zero 
(i.e., the extremum). As the whole process is done online and 
does not require any knowledge of the plant, extremum 
seeking control is especially useful in cases where the optimal 
set point is either not known or is highly sensitive to changes 
in parameters, as often seen in many real-world applications.  

Extremum seeking control has attracted significant 
attention from researchers in recent years. Specifically, the 
number of publications on the topic between 2000 and 2009 
alone exceeded those from the year 1960 to 2000 combined 
[1]. Part of the reason for this sudden surge in interest is due 
to a pivotal paper in 2000, which provided the first rigorous 
mathematical proof of stability in a general nonlinear 
extremum-seeking system [2]. Since then, various engineering 
and industrial applications of extremum seeking control have 
been explored, including maximising pressure rise in an aero-
engine compressor [3], optimising power output of wind 
turbines [4], and minimising power demand during formation 
flight [5], to name a few. On the theoretical front, some notable 
works include automatic tuning of PID gains [6], limit cycle 
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amplitude minimisation [7], convergence analysis [8], and 
optimising systems with only periodic solutions [9]. Another 
recent development is the addition of a built-in extremum-
seeking block in the Simulink Control Design toolbox of 
MATLAB R2021a [10]. This reflects the increasing popularity 
of the method and will further introduce extremum seeking 
control to many new users through a user-friendly 
environment. For a formal introduction to extremum seeking 
control and its applications, readers are referred to papers 
[1,11] and textbooks [12,13]. 

Despite these developments, the current procedures for 
analysing an extremum-seeking system remain 
mathematically challenging and involve a number of 
assumptions that may prove impractical in many engineering 
systems. This in large part is due to the presence of the 
harmonic perturbation, which results in periodic motions and 
poses a major challenge to both analytical and numerical 
analyses. Regarding the analytical side, the method of 
averaging and the singular perturbation method are employed 
to reduce the system under investigation and approximate it as 
an equilibrium map [2]. The assumptions involved in these 
approaches require that the frequencies of the three main 
elements (the perturbation signal, the filters in the extremum 
controller, and the plant’s dynamics) are well separated [7] – 
usually by an order of magnitude each. Considering the 
example of a generic flight dynamics model, these 
requirements are already limiting since a simple longitudinal 
(4th-order) aircraft model with actuator already spans three 
orders of magnitude on the frequency spectrum: 10-1-100 rad/s 
for the two rigid-body modes and 101 rad/s for the actuator. 
The impact of higher-order harmonic terms is also neglected 
in these approximations, which may further invalidate the 
results in highly nonlinear applications. On the numerical 
front, recent works have successfully employed numerical 
continuation using the AUTO-07P software to analyse 
extremum seeking controllers [14-17]. Various nonlinear 
phenomena have been characterised using this continuation-
based scheme, including existence of multiple stable solutions, 
unstable solutions, and loss of stability. However, the 
underlying equations used by the numerical solver in [14-17] 
are equilibrium approximations of the full harmonically-
forced systems, so the limitations listed above still apply.  

To fill in this gap, we present here an example of how 
harmonically-forced bifurcation analysis can be employed to 
analyse an extremum seeking controller on a highly nonlinear 
system with no closed-form solutions. This method effectively 
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converts the harmonically-forced plant into an autonomous 
self-oscillating system, which can then be easily solved by 
continuation. Past applications of harmonically-forced 
bifurcation analysis have focused on examining the frequency 
response of nonlinear systems, most famously the Duffing 
equation (see section II in [18] for a brief introduction), along 
with some recent developments in the field of flight dynamics 
and control [18,19]. In presenting this work, we hope that the 
combination of bifurcation analysis and extremum seeking 
control will provide a powerful framework for future 
researchers and engineers to design and test many advanced 
implementations of this controller scheme. The example 
problem shown here can also be another contribution to the 
ever-expanding literature on dynamics of nonlinear 
harmonically-forced systems.  

II. PROBLEM DESCRIPTION 

In this paper, we consider a fourth-order longitudinal 
aircraft model coupled with a conventional manoeuvre-
demand controller and an auto-trim system – the latter uses 
extremum seeking. Although both controllers provide stability 
and accomplish their objectives, they have been intentionally 
tuned to achieve poor performance. This provides the 
backdrop to demonstrate the capability of harmonically-forced 
bifurcation analysis to identify the stability boundaries and 
revealing the wide variety of dynamics that can be encountered 
in a poorly-designed controller or on a highly nonlinear plant. 

A. Aircraft Model and the Manoeuvre-Demand Controller 

Using the notations in Table I, the open-loop equations of 
motion for the longitudinal rigid-body modes of an aircraft can 
be written 

1  
 �̇� =

1

𝑚𝑉
[

1

2
𝜌𝑉2𝑆(𝐶𝑧 cos 𝛼 − 𝐶𝑥 sin 𝛼) − 𝑇 sin 𝛼 +

𝑚𝑔 cos(𝜃 − 𝛼)] + 𝑞 
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4   �̇� = 𝑞 (4) 

in which the coefficients of aerodynamic force along the body 
x and z axes 𝐶𝑥 and 𝐶𝑧 (forwards along the fuselage and 
downwards respectively) and the moment coefficient in pitch 
𝐶𝑚 are represented as follows: 

5   𝐶𝑖 = 𝐶𝑖0
(𝛼) + 𝐶𝑖1

(𝛼, 𝛿𝑒, 𝛿𝑡) + 𝐶𝑖2
(𝛼)

𝑐𝑞

2𝑉
 (5) 

where 𝑖 = [𝑥, 𝑧, 𝑚]. 𝛿𝑒 and 𝛿𝑡 are the two control inputs, 
representing the elevator and the all-moving tailplane 
deflections, respectively. Either input can be used to control 
the aircraft’s attitude in the longitudinal plane. The force and 
moment coefficients in (5) are shown in Figure 1, depicting 
data from the NASA Generic T-tail Model (GTT) created to 
represent a generic mid-sized regional airliner. pchip and 
spline interpolation/extrapolation are used to make the model 
smooth, which is beneficial for bifurcation analysis. The 
remaining terms in (1-4) are constants listed in Table I. 

TABLE I.  AIRCRAFT STATES AND PARAMETERS 

𝛼 angle of attack 

STATES 
𝑉 velocity 

𝑞 pitch rate 

𝜃 pitch angle 

𝛿𝑒 elevator deflection 
INPUTS 

𝛿𝑡 tailplane deflection 

𝑐 mean aerodynamic chord 3.37 m 

𝑔 gravitational acceleration 9.81 m/s2 

ℎ thrust line distance above CG 2.02 m 

𝐼𝑦  pitch moment of inertia 1,510,624 kg m2 

𝑚 mass  25,332 kg 

𝑆 wing area 70.1 m2 

𝑇 thrust  29,982 N 

𝜌 air density (at 10,000 ft) 0.905 kg/m3 

 

 

Figure 1.  Aerodynamic coefficients of the GTT.



 

 

 

A simple angle-of-attack demand controller as shown in 
Figure 2a is used in our analysis. The reference input is 
demanded angle of attack 𝛼𝑑, which is subtracted from the 
actual angle of attack in the outer loop and then integrated. In 
the inner loop, a proportional stability augmentation system is 
included using pitch rate 𝑞 and pitch angle 𝜃 feedback, 
providing pitch damping and stiffness, respectively. All three 
gains 𝐾𝐼 , 𝐾𝑞 , and 𝐾𝜃  are fixed gains. The block 𝐶𝐸 is the 

extremum-seeking controller used for auto-trim. Its input is the 
elevator deflection 𝛿𝑒 and the output is tailplane deflection 𝛿𝑡. 
The details of 𝐶𝐸 are presented in the next section. As 
mentioned, the closed-loop system is stable, although the gains 
have been selected to give poor performance.  

 

 

Figure 2.  Closed-loop block diagrams. 

 

 

Figure 3.  Static relationship between elevator and tailplane for trimmed 

flight at α = 2o (a) and the objective function (b). 

B. The Extremum-Seeking Auto-Trim Controller 

An extremum-seeking controller will automatically seek 
out the maxima or minima of an objective function, which is 
usually the points with zero slope. In this example, the 
objective function is defined as 𝐽 = 𝛿𝑒

2. The idea is that the 
controller will adjust the tailplane deflection until 𝛿𝑒

2 reaches 
its minimum at zero. When this condition is achieved, the 
aircraft will be flying at the commanded angle of attack using 
only tailplane for trim, which could represent minimum drag 
trim for the specific flight condition.  

Since pitch control can be achieved using either elevator or 
tailplane deflection, there are multiple combinations of these 
control inputs that can be used to keep the aircraft flying at a 
constant angle of attack. The static relationship between 
elevator and tailplane deflections that maintains flight at 𝛼 = 2 
deg is shown as the solid line in Figure 3a, with the inset 
showing a magnified view. Only aerodynamic data for 
tailplane between –10 and +5 deg are available. However, they 
can be spline-extrapolated as shown by the dashed lines. This 
artificially creates a peak and a trough with zero slopes that 
can potentially draw the auto-trim controller toward them 
instead of the desired 𝛿𝑒

2 = 0 point. For our purpose, this 
artificial peak/trough pair is desirable as it allows us to 
demonstrate the full capability of continuation methods in 
identifying additional attractors that may be hard to detect. 
Therefore, spline extrapolation is used for the tailplane 
aerodynamic data. This results in the objective function 𝐽 =
𝛿𝑒

2 as shown in Figure 3b, with the three zero-slope points 
labelled A-C; point B is the desired target for the auto-trim 
controller. 

A brief introduction to the principles of extremum seeking 
control is now presented, although readers are referred to 
sources such as [12,13] for a more formal introduction. Figure 
2b is the block diagram of the auto-trim controller. The input 
to the controller is elevator, which is automatically controlled 
by the 𝛼-demand system. 𝐽 = 𝛿𝑒

2 is the objective function as 
defined, which passes through a high pass filter to remove the 
bias. This signal is multiplied by a sinusoidal perturbation of 
the form 𝐴 sin(𝜔𝑡) and a proportional gain 𝐾𝐸  and then 
integrated. Finally, another sinusoidal perturbation is added 
with a phase lag 𝜑, giving us the tailplane deflection. In this 
scheme, the controller will continuously perturb the tailplane 
𝛿𝑠 at a frequency 𝜔 rad/s, thereby causing 𝐽 to vary 
sinusoidally at the same frequency. The 𝛼-demand controller 
will adjust 𝛿𝑒 in response to changes in 𝛿𝑡 by following the 
static map in Figure 3a to keep the angle-of-attack at 2 deg. 
The set point of 𝛿𝑡 is determined by the integral action, which 
continuously drives 𝛿𝑡 until 𝐽𝐾𝐸𝐴 sin(𝜔𝑡) oscillates 
symmetrically about zero. This only happens when 𝐽 reaches 
one of the inflection points in Figure 3a (so that the product of 
𝐽(𝜔𝑡) and sin(𝜔𝑡) is symmetric about zero). The extremum 
seeking controller therefore has the capability to automatically 
seek out an inflection point in an objective function without 
any knowledge of the model – making it especially useful for 
plants that are sensitive to changes in system parameters. We 
acknowledge that a real-world auto-trim controller does not 
require extremum seeking [20-22] and the example provided 
here is only to exemplify the capability of bifurcation and 
continuation methods. For this study, the extremum controller 

a) 

b) 

a) 

b) 



 

 

 

has the following parameters: 𝐴 = 0.1o, 𝐾𝐸  = 5, 𝜑 = 0o with a 
high-pass filter cut-off frequency of 𝜔𝐹 = 6 rad/s. 

The effects of both the 𝛼-demand and the auto-trim 
controllers are now presented. Figure 4 shows the aircraft 
responding to a step change in demanded angle of attack from 
1 to 2 deg using two different forcing frequencies – both are 
under 1 Hz and can therefore be considered realistic. In both 
instances, the angle of attack converges to its commanded 
value of 2 deg. However, the second case with 2.3 rad/s forcing 
fails to drive the elevator to zero, and instead converges to the 
inflection point C in Figure 3b. This does not happen when 𝜔 
is increased to 5 rad/s, as seen in Figure 4a.  

III. HARMONICALLY-FORCED BIFURCATION ANALYSIS 

Having discussed the basics of extremum control and its 
potential shortcomings in highly nonlinear applications, we 
now propose the use of bifurcation analysis and numerical 
continuation as a tool to systematically assess the performance 
in those situations. Since its first application to flight dynamics 
models in the early 80s [23,24], bifurcation analysis has seen 
increasing use in the field of aircraft dynamics and control by 
both the research community and the industry [25]. This 
method is typically used to trace out a map of equilibrium and 
limit cycle solutions – both stable and unstable – in a nonlinear 
system in response to static changes in an input parameter 
(such as control surface deflection). Past studies have 
successfully used bifurcation analysis to characterise various 
nonlinear behaviours of interest such as spin, wing rock, and 
jump phenomenon [26], as well as to assess the performance 
of flight control systems [27,28]. These studies, however, were 
still restricted to analysing quasi-static changes to the input 
parameter. A further extension the method in the flight 
dynamics context has been proposed recently, which permits 
examinations of the aircraft’s responses to a harmonic forcing 
input; the results are then presented in the form of a nonlinear 
Bode plot [18,19]. The same approach is used here to analyse 
a closed-loop system with an extremum seeking controller, 
which is inherently periodic due to the presence of the 
sinusoidal perturbation. We refer to this approach as 
harmonically-forced bifurcation analysis in this paper. 

The method to implement harmonically-forced bifurcation 
analysis in an extremum-seeking system is now presented. In 
general, bifurcation analysis requires that the state equations 
be written as autonomous first-order ordinary-differential 
equations. The harmonic forcing term sin 𝜔𝑡 (or other 
equivalent) can be generated in such an environment by the 
addition of two ‘dummy states’ 

6  �̇�1 =    𝑥1 + 𝜔𝑥2 − 𝑥1(𝑥1
2 + 𝑥2

2) (4) 

7  �̇�2 = −𝜔𝑥1 + 𝑥2 − 𝑥2(𝑥1
2 + 𝑥2

2) (5) 

 
It can be shown that 𝑥1 = sin 𝜔𝑡 and 𝑥2 = cos 𝜔𝑡 are 

asymptotically stable solutions of (4-5). These two states can 
now be used to generate the harmonic forcing signals in an 
extremum seeking controller (i.e., 𝐴 sin 𝜔𝑡 becomes 𝐴𝑥1). 
Accordingly, the whole plant is now a self-oscillating 
autonomous system, for which steady state solutions can be 
found by continuation in the same way as an autonomous 
(non-forced) system can be solved for limit cycle solutions.  

All bifurcation analysis in this paper was done in the 
MATLAB/Simulink environment using the Dynamical 
Systems Toolbox [29], which is the MATLAB 
implementation of the continuation software AUTO-07P [30]. 

 

Figure 4.  Responses to step change in 𝛼𝑑 using two different forcing 

frequencies. 

IV. RESULTS 

The two different responses observed in Figure 4 suggest 
that there are at least two branches of stable solutions. Using 
these two responses as starting points for the continuation 
solver, the resulting bifurcation diagrams of the elevator and 
stabilator deflections are shown in Figure 5, in which panel a 
is the overal view and panels b and c are the magnified views. 
The forcing frequency 𝜔 is set as the continuation parameter, 
thereby giving us an indication of how our choice of 𝜔 affects 
the oscillation amplitude and stability. All solutions in Figure 
5 are periodic, and both the maxima and the minima of the 
oscillation are shown (although the amplitudes are small so the 
maxima and minima are almost indistinguishable, apart from 
panel b). Therefore, the oscillation amplitudes are easily 
indentified on the diagram – a major advantage over existing 
methods that approximate the responses as equilibrium maps. 
The colours indidacate whether the solutions belong to the 
same family and can therefore be detected in one continuation 
run. In this instance, two separate branches are dectected,   

a) 

b) 



 

 

 

 

Figure 5.  Bifurcation diagrams – 𝜔 continuation. Panels b and c are the magnified views. 

which are henceforth referred to as the red and blue 
branchesPanels a and c indicate that when 𝜔 is sufficiently 
high (above 2.34 rad/s), there is only one stable solution from 
the blue branch corresponding to the 𝐽 = 0 peak in Figure 3 – 
the desirable one. For 𝜔 between 0.33 and 2.34 rad/s, the 
response is either period-1 unstable, or converges to one of the 
stable solutions in the red branch. The high-frequency 
solutions corresponding to peaks A and C on the red branch 
are unstable due to the presence of the high-pass filter. Without 
it, these solutions become stable, resulting in a much more 
degraded controller. Numerical continuation is capable of 
detecting this change in stabilty, although this is not shown for 
brevity. It is also noted that the red and blue branches cross 
each other at a point that resembles a transcritical bifurcation 
(despite all solutions being periodic), although the crossing 
point is not detected by the continuation solver.  

Point F in panel c is the boundary of 𝜔 that ensures the blue 
branch is the only stable solution during operation (unless 𝜔 is 
reduced to below 0.33 rad/s). This point is sensitive to the filter 
cutoff frequency 𝜔𝐹. To investigate this, we trace out the locus 
of point F on the 𝜔-𝜔𝐹 plane using two-parameter 
continuation as shown in Figure 6. This diagram helps us 
determine the minimum safe operating frequency. By staying 
to the right side of this boundary, it is guaranteed that the blue 
branch of the stable solutions is the only attractor present. 
Two-parameter continuation is therefore a powerful technique 
that can be used to aid paramter tuning whilst designing an 
extremum seeking controller.  

Lastly, we further investigate the nature of the instabilities 
in the blue branch using the magnified view in panel b. Two 
resonance peaks are observed. They correspond to the two 
natural frequencies of the open-loop aircraft as shown in 
Figure 7 (obtained using continuation by forcing the elevator 
at 0.5 deg amplitude). In this example, the short period mode 
becomes unstable due to the presence of the extremum seeking 
control and contributes to the formation of multiple stable 

solutions highlighted in panel C. It is known that the forcing 
frequency should be well-separated from the natural 
frequencies. However, we discovered using continuation that 
it is safe to operate around the phugoid frequency, i.e., only the 
short-period region should be avoided. This provides a 
powerful capability for controller design and paramter tuning, 
especially in highly nonlinear systems.  

 

Figure 6.  Two-parameter continuation of point F. 

 

Figure 7.  Open-loop nonlinear frequency response. 

a) b) c) 



 

 

 

Results in this section have exemplified the potentially 
complex dynamics in a harmonically-forced system in general, 
and in an extremum-seeking controller in particular. 
Continuation not only provides a method to systematically 
characterise these behaviours, but can also be used to aid 
controller tuning via running a series of parameter sweeps. 
This argument has been made in previous studies on 
equilibrium bifurcation analysis (no harmonic forcing) [25], 
but it is even more important here because time simulations 
like those shown in Figure 4 are more computationally 
expensive to run due to the wide frequency separation between 
the forcing term and the plant’s dynamics.  

V. CONCLUSION 

The use of harmonically-forced bifurcation analysis to 

analyse a nonlinear extremum seeking controller has been 

presented. Our results have demonstrated that this approach 

provides a powerful framework for analysing complex 

nonlinear extremum seeking systems where existing 

approximations can be mathematically impractical or 

restrictive. Further developments in the topic should explore 

a realistic example, which exemplifies both the capability of 

continuation as well as the advantages of the extremum 

seeking method.  
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