
                          Bann, D., Wright, L., Hardy, R., Williams, D., & Davies, N. M. (2022).
Polygenic and socioeconomic risk for high body mass index: 69 years
of follow-up across life. PLoS Genetics, 18(7 July), [ e1010233].
https://doi.org/10.1371/journal.pgen.1010233

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1371/journal.pgen.1010233

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Public Library of
Science at https://doi.org/10.1371/journal.pgen.1010233 . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1371/journal.pgen.1010233
https://doi.org/10.1371/journal.pgen.1010233
https://research-information.bris.ac.uk/en/publications/05bf86a5-36d8-49af-b647-56cd7acf59ce
https://research-information.bris.ac.uk/en/publications/05bf86a5-36d8-49af-b647-56cd7acf59ce


RESEARCH ARTICLE

Polygenic and socioeconomic risk for high

body mass index: 69 years of follow-up across

life

David BannID
1*, Liam WrightID

1*, Rebecca HardyID
2,3, Dylan M. WilliamsID

4,5, Neil

M. DaviesID
6,7,8

1 Centre for Longitudinal Studies, Social Research Institute, UCL, London, United Kingdom, 2 School of

Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom, 3 Social

Research Institute, UCL, London, United Kingdom, 4 MRC Unit for Lifelong Health and Ageing at UCL,

London, United Kingdom, 5 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet,

Stockholm, Sweden, 6 MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom,

7 Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom, 8 K.G.

Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian

University of Science and Technology, Trondheim, Norway

* david.bann@ucl.ac.uk (DB); liam.wright@ucl.ac.uk (LW)

Abstract

Genetic influences on body mass index (BMI) appear to markedly differ across life, yet exist-

ing research is equivocal and limited by a paucity of life course data. We thus used a birth

cohort study to investigate differences in association and explained variance in polygenic

risk for high BMI across infancy to old age (2–69 years). A secondary aim was to investigate

how the association between BMI and a key purported environmental determinant (child-

hood socioeconomic position) differed across life, and whether this operated independently

and/or multiplicatively of genetic influences. Data were from up to 2677 participants in the

MRC National Survey of Health and Development, with measured BMI at 12 timepoints

from 2–69 years. We used multiple polygenic indices from GWAS of adult and childhood

BMI, and investigated their associations with BMI at each age. For polygenic liability to

higher adult BMI, the trajectories of effect size (β) and explained variance (R2) diverged:

explained variance peaked in early adulthood and plateaued thereafter, while absolute

effect sizes increased throughout adulthood. For polygenic liability to higher childhood BMI,

explained variance was largest in adolescence and early adulthood; effect sizes were mar-

ginally smaller in absolute terms from adolescence to adulthood. All polygenic indices were

related to higher variation in BMI; quantile regression analyses showed that effect sizes

were sizably larger at the upper end of the BMI distribution. Socioeconomic and polygenic

risk for higher BMI across life appear to operate additively; we found little evidence of inter-

action. Our findings highlight the likely independent influences of polygenic and socioeco-

nomic factors on BMI across life. Despite sizable associations, the BMI variance explained

by each plateaued or declined across adulthood while BMI variance itself increased. This is

suggestive of the increasing importance of chance (‘non-shared’) environmental influences

on BMI across life.
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Author summary

We sought to better understand how polygenic and socioeconomic risk for high body

mass index (BMI) differed across life, using data from a birth cohort followed-up from 2

to 69 years. High polygenic risk for adult BMI was associated with greater absolute differ-

ences in BMI at older ages, yet the explained variance peaked in early adulthood and pla-

teaued thereafter. For polygenic risk for high childhood BMI, explained variance was

largest in adolescence and early adulthood; effect sizes were marginally smaller from ado-

lescence to adulthood. Low socioeconomic position was also associated with high BMI—

effect sizes increased across life yet explained variance plateaued across adulthood. The

discrepancy between effect sizes and explained variance was likely due to the phenotypic

variance in BMI increasing across life: the increase in BMI variance matched or exceeded

the increase in effect sizes. Inasmuch as our study captured key genetic and shared envi-

ronmental influences on BMI, our findings suggest that chance (‘non-shared’) environ-

mental influences may be increasingly important for BMI at later ages. Finally, we found

little evidence for interactions between socioeconomic position and polygenic indices;

rather, both were independently associated with BMI. Our findings thus highlight the

importance of both environmental and genetic factors for BMI across life.

Introduction

Body mass index (BMI) is an important modifiable determinant of population health—its

prevalence markedly increased from the 1980s onwards, and remains persistently high [1, 2].

This drastic increase demonstrates the importance of environmental influences on BMI—pop-

ulation genetics do not change over such a short time span. Continuing evidence, however,

has emerged on the link between genetic propensities and the level of BMI. For example, twin

study estimates of heritability of BMI range from 47% to 90% [3]–with heritability typically

highest in childhood. Polygenic indices in unrelated individuals predict approximately 8.5% of

the variance in BMI [4, 5].

Better understanding changes across life in the genetic determinants of BMI may inform

etiology, the timing of preventative or weight loss efforts, and the interpretation of increasing

number of studies utilizing genetically-informed designs to study BMI as either an exposure or

outcome of interest [6–8]. Studies investigating genetic variation in the gene FTO—the first

variant reliably linked to higher BMI—have repeatedly found that effect sizes are largest in ear-

lier adulthood [9]. However, BMI is a complex and polygenic trait [4, 7, 10], necessitating a

need to investigate how polygenic predictors of BMI differ across life.

Recent studies have used polygenic indices (also referred to as polygenic scores) to investi-

gate associations with BMI at different life stages [6]. However, interpretation is hampered by

a paucity of data across life on the same individuals. While samples of multiple birth cohorts

can be used to approximate how associations differ by age, they may be confounded by the siz-

able cohort differences in links between polygenic indices and BMI [11]. Further, multiple

polygenic indices now exist for both childhood and adulthood BMI; assessment of these across

a large age span in a single cohort would aid interpretation of their use. Indeed, it has been

argued that the genetic underpinning of obesity is relatively constant across life [10][4, 7].

Other gaps in evidence motivate the need for future work. First, increases in BMI across life

are marked by increases in its mean and its variance, and corresponding increases in BMI at

upper values (above overweight and obesity thresholds) [12]. Conventional analytical

approaches such as linear regression solely investigate mean differences. There is suggestive
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evidence that the influence of genetic factors is strongest amongst those already higher in

weight where health risks are greatest [13, 14], yet this requires replication and formal testing.

Second, it is unclear how genetic and socioeconomic position (SEP) [15–17] influences on

BMI operate together. It has been suggested that there may be multiplicative effects [18–20],

such that genetic influences are largest amongst those in disadvantaged SEP whom have fewer

resources available to protect against weight gain or to initiate/maintain weight loss [18, 19].

While this is a compelling narrative, evidence for this suggestion is equivocal, with some stud-

ies reporting weak [19] or mixed [18] results. Further, lack of replication in early gene x envi-

ronment interaction studies [21] suggests that publication bias could have occurred.

Large SEP differences in BMI exist in high income countries [15–17]—those with more dis-

advantaged SEP typically have higher BMI, with the strength of this association widening

across childhood, adolescence and adulthood [15, 16] [22]. There is also evidence that such

links are causal in nature [20, 23–27], although this is not universally found [28–30]. If these

associations are indeed causal, they would be anticipated to operate independently of genetic

influences on BMI (e.g., be evident before and after mutual adjustment). Some [31] [32] but

not all [33] recent studies which incorporate polygenic scores in their analyses provide evi-

dence for this, while a pooled analysis of 45 twin cohorts suggested that shared environmental

factors (such as SEP) may have little-to-no influence on adolescent BMI [34]. SEP is a multidi-

mensional construct, yet previous studies typically examine a limited number of indicators of

SEP. As such, it remains unclear whether SEP influences BMI across life independently of

genetic influences, whether SEP and genetic effects are multiplicative, or how such processes

may change across life or by SEP indicator.

We sought to address the above gaps in evidence using life course BMI data from a single

national birth cohort study—this study, initiated in 1946, contains BMI data from infancy to

old age. We used multiple polygenic indices, thought to indicate liability for either childhood

or adult BMI. We investigated change across age in effect size and explained variance since

each is likely to be informative; we also investigated the additive/multiplicative role of child-

hood SEP and polygenic indices for BMI, and used quantile regression analysis to investigate

associations across the BMI distribution.

Methods

Ethics statement

The study has received ethical approval from the North Thames Multicentre Research Ethics

Committee (reference 98/2/121 and 07/H1008/168) and written informed consent was

provided.

Participants

The MRC National Survey of Health and Development [NSHD] (also known as the 1946 Brit-

ish birth cohort) is a longitudinal birth cohort study comprised of 5362 singleton births in

mainland Britain born in a single week during March 1946 [35]. The cohort has been fol-

lowed-up repeatedly across life, with blood samples obtained at 53 years and subsequently

used for genotyping of common genome-wide genetic variation. As previously described [36],

2989 participants were interviewed and examined in their own homes by trained research

nurses at age 53; we restricted our analyses to those with valid DNA and BMI data at each age.

Those interviewed were considered broadly representative of the native born population of

that age [37], yet loss to follow-up has been most frequent amongst those from disadvantaged

SEP groups and those in worse health [38]. As with other cohorts, mortality rates are also high-

est in disadvantaged SEP groups [39]. DNA was extracted from whole blood samples and
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purified using the Puregene DNA Isolation Kit (Flowgen, Leicestershire, UK) according to the

manufacturer’s protocol.

Measures

BMI. BMI (kg/m2) was derived from weight and height at 12 timepoints from 2–69 years

of age (see Fig 1 for all ages); these were measured by health visitors, doctors, or nurses at all

ages except 20 and 26 years where only self-reported data were available.

Fig 1. Histograms of body mass index from infancy to old age in the 1946 British birth cohort sample.

https://doi.org/10.1371/journal.pgen.1010233.g001
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Polygenic indices

A total of 2851 individuals were genotyped using the DrugDev microarray (assaying 476,728

SNPs) platform. Quality control (QC) analyses were performed using PLINK 1.9 [40]. Sample

QC removed data on individuals with call rates < 95%, extreme heterozygosity (μ ± 3 standard

deviations), sex mismatches, relatedness and duplicates (p̂ > 2), and principal component

analysis (PCA) outliers. All participants were of European ancestry. Genotyped SNPs were

excluded on the basis of the following parameters: call rate< 95%, MAF < 0.01 or HWE

P< 1e-4. The genotyped SNPs were used to impute information on missing common variants

using the Haplotype Reference Consortium v1.1 reference panel, accessed via the Michigan

Imputation Server [41]. QC of imputed data led to SNPs being excluded with INFO

score < 0.3 and MAF < 0.005. Only biallelic SNPs were retained. Following these steps, data

for 2794 individuals and 8,755,070 variants were retained for polygenic score calculations. We

extracted the first 10 principal components based on an LD-pruned (10kb windows; r2 = 0.2)

and MAF-filtered (< 0.005) variants set in approximately unrelated individuals (KING relat-

edness cut-off = 0.177), and projected these onto genotypes from samples in the 1000

Genomes project, phase 3 release to examine for potential sample outliers (no samples

required exclusion).

In main analyses, we used a polygenic index derived by Khera et al (2019) [4] for measured

BMI in adulthood which was subsequently found to strongly predict childhood BMI in inde-

pendent samples and adiposity-related health outcomes. It was, at the time of writing, the poly-

genic index with the highest predictive capacity. This was derived using the largest GWAS

available at the time [42], validated in UK Biobank data (N = 119,951), and then tested in 4

independent cohorts from birth to adulthood; N = 306,135 [4]. This yielded a score composed

of 2,100,302 SNPs (not restricted to those with genome-wide significant BMI associations and

including variants in linkage disequilibrium; LD).

In addition to the above, we compared analyses with other polygenic indices for high BMI.

These provide alternative exposures to test how polygenic scores relate to measured BMI

across life; each has relative strengths and weaknesses, and since there is no consensus on

which score is most suitable for use, a comparison of findings across these indices is warranted.

First, we used an alternative score for adult BMI derived from adults in UK Biobank

(N = 453,169) by Richardson et al (2020) [7]. This used independent, genome-wide significant

hits only for measured adult BMI (557 SNPs)—it thus provided a less predictive polygenic

index, but aided comparison with other indices for childhood BMI which were also derived

using significant hits only. Second, we used a score for directly measured childhood BMI

derived from a meta-analysis of 41 childhood GWAS samples between ages 2 and 10

(N = 61,111) from Vogelezang et al (2020) [8]. This yielded 25 SNPs (significant independent

hits only). Third, we used an additional index for high childhood BMI also based on Richard-

son et al (2020)[7]: adults in UK Biobank were asked to retrospectively report their weight at

age 10 in categories of “thinner, plumper, or about average”, yielding 295 SNPs (significant

independent hits only).

SNP data and weights for the adult BMI score and retrospective childhood body size score

were downloaded from the PGS Catalog using trait PGS IDs PGS000027, PGS000716 and

PGS000717, respectively [5]. Equivalent data for the direct childhood scores were extracted

from the relevant publication and reformatted manually. To avoid strand ambiguities in each

score, we removed palindromic SNPs from the two childhood scores (palindromic SNPs were

already excluded by the authors of the adulthood BMI polygenic score prior to derivation).

The three scores were then calculated from NSHD genotypes using Plink 2.0 [43], assuming

additive genetic effects. Scores were based on 2,083,940 SNPs (99.2%) available from the ‘wide’
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adult BMI score, 410 of 557 SNPs (73.6%) from the ‘significant hits’ adult BMI score, 234 SNPs

(79.3%) of the retrospective childhood body size score, and 21 SNPs (84.0%) of the measured

childhood BMI score.

Socioeconomic position

We used childhood SEP in main analyses to reduce bias due to reverse causality, since later life

BMI may affect subsequent SEP [44]. Parental social class was measured using paternal occu-

pational class at 4 years (Registrar General’s classification [RGSC]–I professional, II intermedi-

ate, III skilled non-manual, III skilled manual, IV semi-skilled, and V unskilled). This schema

was used as the primary measure of social class in the UK during the period of investigation,

[45] and has previously been strongly related to BMI across life [16] in this cohort. To mini-

mize missing data, we used information at 11 years for individuals missing SEP at age 4

(n = 125). We used six other measures of SEP previously found to be related to adiposity in

this cohort [46]: maternal and paternal age at leaving education at age 6 (years), maternal and

paternal highest qualification (primary to secondary or higher), own highest qualification at

age 26 (none to degree or higher), and own social class at age 53 (RGSC).

Statistical analysis

First, we estimated the association of each polygenic index with BMI separately at each age

(adjusted for sex) using linear regression. From these regressions, we extracted coefficients

and incremental R2 values to examine the size of the association and the variance explained by

age. We investigated associations on the absolute (kg/m2) and relative (percentage, percentile

rank and standardized score) scales separately, since each may be informative; the absolute

scale may aid comparability of effect sizes across adulthood as a 1 unit increase in BMI may

have equivalent health risk; the relative scale may aid comparability across childhood and

adulthood given sizable differences in mean BMI and its variation across age.

Second, we used quantile regression [47] to examine whether the association of BMI with

polygenic indices differed across the distribution of BMI. Unlike linear regression, which esti-

mates differences in the conditional mean of a distribution, quantile regression estimates dif-

ferences in conditional quantiles of a distribution. Repeated across different quantiles, the

method allowed us to examine differences in the shape (variability) and location (central ten-

dency) of a distribution according to the values of an independent variable. We estimated

quantile regressions at each decile (10th, 20th, . . ., 90th) for each polygenic index.

Third, we tested whether the relationship between SEP, polygenic indices and BMI was

additive or multiplicative by regressing BMI on SEP and by including SEP × polygenic index

interaction terms. We again repeated these regressions for absolute and standardized BMI

indices, each polygenic index, and each measure of SEP. To simplify interpretation, we con-

verted SEP measures in these regressions to ridit scores such that the resulting quantity in

regression models shows the difference in BMI between the hypothetical top and bottom of

the SEP gradient. Fourth, we examined the incremental variance in BMI explained by SEP at

each age with regressions adjusting for sex, the Khera et al. index [4], and the first 10 genetic

principal components. We repeated these regressions for each measure of SEP separately and

also adding all measures of SEP simultaneously.

Data cleaning and analysis was conducted using R version 4.1.0 [48]. We focused interpre-

tation on estimates and measures of precision (95% CI) rather than binary interpretation of p-

values [49]. To maximise power, those with valid data for each polygenic index and BMI at

each age were used in analysis with no further restrictions. Sample sizes therefore differ across

analyses due to missing data for polygenic scores or BMI, loss to follow-up, death, and
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emigration. All analyses using polygenic indices were adjusted for 10 principal components to

help account for population stratification.

Supplemental and sensitivity analyses

We first tested whether results differed by sex by conducting sex-stratified analyses. We then

investigated if the associations were driven by weight and/or height–BMI (kg/m2) is a ratio

measure and thus could reflect associations with height, particularly at younger ages. To

account for this, we estimated separate associations with weight, height, and BMI; we also cal-

culated a corrected weight-for-height index, dividing weight (kg) by height raised to a power

that minimized the correlation between height and the index at each age.

To explore whether focusing on complete cases at each age influenced our results, we 1) inves-

tigated whether polygenic indices were related to whether the participant had observed BMI at a

given age; and 2) repeated analyses in samples with valid data for all follow-ups from a given age

up to age 69, iterating across follow-ups (e.g., those followed from age 2 had complete case data at

all timepoints, while those followed-up from 53 years had valid data from 53–69 years).

Results

Descriptive statistics

From age 7 onwards, BMI indices increased and exhibited more variability (higher SD); see

Fig 1. All polygenic indices were moderately-strongly positively correlated. The Khera et al.

adult index [4] was correlated with the Richardson et al. [7] (adulthood) index at r = 0.43 and

at r = 0.38–0.39 with both childhood indices. The childhood indices were correlated at 0.56

with each other. There was some evidence that polygenic indices differed by childhood social

class, indicating social patterning of genetic risk (S1 Fig). Notably, participants from profes-

sional backgrounds have approximately 0.2 SD lower polygenic index values (for all indices)

relative to sample averages.

Polygenic index and BMI across life

The polygenic index for BMI derived from Khera et al. [4] was positively associated with BMI

at all ages; Fig 2. The size of the association was small in infancy and childhood and increased

in strength from early adolescence (age 11) to older adulthood (age 69). Effects sizes were larg-

est at age 53 and remained similarly large at ages 63 and 69. A 1 SD increase in polygenic index

was associated with 1.46 (95% CI: 1.24, 1.69) kg/m2 higher BMI at age 69. Findings were simi-

lar when examined in terms of percentage BMI (log transformed�100) differences (S2 Fig).

However, when examined in terms of standardized BMI differences (i.e., relative to the mean

and SD at each age), effect sizes remained similar from ages 15–69 (S2 Fig). This was likely due

to the increasing variance of BMI across time, such that larger absolute (kg/m2) effects did not

equate to bigger differences relative to the sample SD. Similarly, the incremental variance (R2)

explained by the polygenic index peaked at age 26 and was slightly weaker thereafter—from

0.10 (95% CI: 0.08, 0.12) at age 26 to 0.08 (95% CI: 0.06, 0.10) at age 69 (Fig 2). The figures in

mid-later adulthood are similar to those reported by Khera et al (~ 8.5%). [4,5]

The results of quantile regression analyses are shown in Fig 3. (Results with confidence

intervals shown in S3–S6 Figs) The polygenic index and BMI associations were progressively

stronger at higher BMI quantiles. These results suggest that a higher polygenic index was asso-

ciated with higher variability in BMI. For example, at age 69, the association between polygenic

index and BMI was over twice as large at the 90th percentile (β = 2.0; 95% CI = 1.61, 2.27) as

the 10th percentile (β = 0.9; 95% CI = 0.65, 1.21).
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Fig 2. Association between a polygenic index and body mass index (BMI) across life. Drawn from OLS regressions including adjustment for sex and the

first 10 genetic principal components, repeated for each polygenic index and age at follow up. Left panel: coefficients: difference in BMI per 1 SD increase in

polygenic index (95% CI). Right panel: incremental R2 compared with OLS regression model of BMI on sex and first 10 genetic principal components (95%

CI estimated using bootstrapping [500 replications, percentile method]). Polygenic index from Khera et al [4]; used an initial sample of adults.

https://doi.org/10.1371/journal.pgen.1010233.g002

Fig 3. Heatmap of the association between Khera et al.[4] polygenic index and BMI across life. Drawn from quantile regressions

including adjustment for sex, repeated at each follow up (y-axis) and decile (x-axis). The size of the coefficient is represented by a colour

(see legend). Coefficients are interpreted analogously to linear regression: for example, Q50 shows the median (rather than mean) difference

in body mass index per 1 SD increase in polygenic index.

https://doi.org/10.1371/journal.pgen.1010233.g003
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SEP and polygenic index in relation to BMI across life

More disadvantaged SEP in childhood (father’s social class) was associated with higher BMI

across multiple life stages; this association emerged from adolescence onwards—coefficients

were larger at each subsequent age, and were largely unchanged after adjustment for Khera

et al. [4] polygenic indices and first ten genetic principal components (top panel, Fig 4). Simi-

lar results were observed when other measures of SEP were used (S4–S7 Figs). The incremental

explained variance (R2) attributable to SEP was less than 3% for each indicator at each age (S8

Fig). In a model with multiple SEP indicators added simultaneously, the maximal incremental

explained variance explained was approximately 4% (age 36; S8 Fig). There was little evidence

of SEP (father’s social class) × polygenic index interaction; coefficients for interaction terms

were close to zero at all ages with confidence intervals overlapping the null in almost all cases

Fig 4. Childhood socioeconomic position and polygenic index in relation to body mass index (BMI) across life. Top panel shows the kg/m2 difference in

BMI in the lowest compared with highest socioeconomic position, before and after adjustment for Khera et al. (2019)[4] polygenic index for higher BMI.

Bottom panel shows coefficients for the social class x polygenic index interaction term (null line is evidence for no interaction). SEP measured as father’s

occupational class converted to ridit score. Results from top panel drawn from OLS regression models including adjustment for sex (blue solid line) and further

adjustment for polygenic indices and first ten genetic principal components (orange line). Results from bottom panel drawn from OLS regression models

including adjusted for sex, polygenic index [4], first ten genetic principal components and SEP.

https://doi.org/10.1371/journal.pgen.1010233.g004
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(bottom panel, Fig 4). Findings were similar across multiple specifications, including using dif-

ferent indicators of SEP (S7 Fig). Further robustness checks using standardized or log BMI

yielded qualitatively similar results (data available on request).

Comparisons of multiple polygenic indices

Polygenic indices for adulthood BMI—from Khera et al [4] (genome wide hits) and Richard-

son et al [7] (significant hits only) both showed larger effect sizes in later adulthood (Fig 5),

though effect sizes were smaller for Richardson et al [7] and the trend of decreasing variance

explained during later adulthood was more pronounced (Figs 5 and S10–S12).

Results using the Vogelezang et al. [8] polygenic index for childhood BMI are shown in Fig

5. Findings were similar when using the Richardson et al. [7] child polygenic index (S2 Fig).

Effect sizes were largest in adolescence and early to mid-adulthood; associations were weak

Fig 5. Association between multiple polygenic indices and body mass index (BMI) across life. Drawn from OLS regressions including adjustment for sex

and first 10 genetic principal components, repeated for each polygenic index and age at follow up. Left panel: coefficient difference in BMI per 1 SD increase in

polygenic index (+ 95% CI). Right panel: incremental R2 compared to OLS regression model of BMI on sex and first 10 genetic principal components (95% CI

estimated using bootstrapping [500 replications, percentile method]). Khera et al [4]: 2,100,302 SNPs (genome-wide SNPs); Richardson et al [7]: 557 SNPs

(significant hits only); Vogelezang et al. [8]: 25 SNPs (significant hits only).

https://doi.org/10.1371/journal.pgen.1010233.g005
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from ages 2–7, increased in size at age 11, and were marginally smaller at later ages (Fig 5).

When examined on the relative scale (as percentage or z-score differences in BMI), the peak in

effect size was more clearly evident from 11–20 (S2 Fig), with declines in association thereafter

corresponding to the increased sample BMI mean and SD with age. Similarly, explained vari-

ance was highest in later adolescence to early adulthood (ages 11–20), and declined in mid to

later adulthood (Fig 5). Overall, these polygenic indices explained less than 6% of variance in

BMI at any age.

As with polygenic indices for high adult BMI, associations with polygenic indices for high

childhood BMI were progressively stronger at higher quantiles, particularly in adolescence and

young-to-middle adulthood (S4–S6 Figs); and there was little evidence for interaction with

SEP (S9 Fig).

Supplemental and sensitivity analyses

Patterns of age difference in association between polygenic indices and BMI were similar in

each sex (S11 Fig), with some evidence that the associations were larger among females. Sup-

plementary results suggested that differences in association across life were largely due to dif-

ferences in weight rather than height (S13 Fig); results were also similar when using weight-

for-height indices constructed at each age using an optimal power of height, to remove the

association between BMI and height (S12 Fig).

Polygenic indices were related to missing BMI data at some ages (S14 Fig). Notably, non-

missing BMI data at ages 63 and 69 was related to lower than average Khera et al. [4] polygenic

indices. Investigation of associations between polygenic indices and BMI using samples of the

same participants across time showed broadly similar results as the main analysis (S15–S22

Figs). However, there was some evidence that the plateauing of effect sizes in the Khera et al.

[4] and Richardson et al. [7] (adult) index-BMI associations from 53 to 69 years was an artefact

of differences in the samples at each age—when using the same sample across this age span,

effect sizes were slightly higher at ages 63 and 69 (S15 and S16 Figs).

Discussion

Summary of findings

Using life course BMI data spanning 2–69 years of age, and multiple polygenic indices for

higher childhood and adulthood BMI, we found:

1. For polygenic liability to high adult BMI (Khera et al. [4]), the trajectories of effect size and

explained variance diverged across life: explained variance peaked in early adulthood and

plateaued thereafter, while absolute effect sizes increased throughout adulthood.

2. For polygenic liability to high childhood BMI, explained variance was largest in

adolescence and early adulthood; effect sizes were marginally smaller from adolescence to

adulthood.

3. All polygenic indices were related to higher variation in BMI; effect estimates were sizable

and larger at the upper end of the BMI distribution.

4. Childhood socioeconomic and polygenic risk for higher BMI across life appear to operate

additively; with little evidence of interactions. The explained variance attributable to SEP

on BMI was similar across adulthood.
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Comparison with previous studies and explanation of findings

Our findings are consistent with recent studies which used polygenic indices for higher adult

BMI, typically in separate cohorts of different age spans. For example, Khera et al. [4] reported

increasing effect sizes in regional cohorts followed-up from infancy to early adulthood (18 or

25 years). Sanz-de-Galdeano et al. [50] used separate cohorts and reported increasing strength

of association from adolescence to early adulthood; while findings from another cohort sug-

gested stability of effect sizes across older age. The results here show that these findings may

generalise to a single population born in 1946 and followed across the life course (2 to 69

years). Our finding that explained variance plateaued across adulthood is consistent with

results from twin studies which report declines of broad-sense heritability of BMI from adoles-

cence across adulthood [3][51]. Further research is required to examine how these results may

differ according to factors which could feasibly modify age-related changes in polygenic risk

for high BMI—for instance, year of birth, ancestry, and country; the cohort used in this study

was of European ancestry and was exposed to post-war rationing then an increasingly obeso-

genic environment across midlife [52]. In more recently born cohorts, the mean and variability

of BMI is seemingly higher, yet associations with (and the predictive capacity of) polygenic

indices may differ; evidence from Norway for example suggests that effect sizes for polygenic

indices on BMI increased from 1960s to the 2000s. [11]

Our findings using polygenic indices for higher childhood BMI are also consistent with

existing findings [6, 8]–indices derived using either recalled childhood weight or objectively

measured childhood weight both have larger explained variance in childhood/adolescence/

early adulthood. Our results suggest that such indices remain associated with higher BMI

throughout early, mid and later adulthood; this may limit the power of multivariable Mende-

lian randomization studies using childhood indices of BMI in relation to later outcomes.

Differences in findings across polygenic indices suggests there may be age-specific effects

via the same pathway, or multiple pathways which link genetic liability to higher BMI, despite

positive correlations between the indices (likely due to some combination of overlapping SNP

coverage and linkage disequilibrium). For example, genetic variants which have particularly

stronger influence in early life may capture accelerated tempo of early life growth [53]. Multi-

ple studies investigating FTO have reported largest effect sizes in early adulthood [9]: this was

also found for the cohort used in this paper for FTO [36] and its nearby variants [53]. Further

work is therefore required to elucidate the biological and behavioural mechanisms which link

these polygenic indices to higher BMI.

Our findings highlight the importance of environmental influences on BMI across life.

First, more disadvantaged childhood SEP was associated with higher adult BMI independently

of polygenic risk—this was evident despite the relative crudeness of SEP measurement (e.g., a

6-category classification system for social class, compared with a polygenic index summarising

information for millions of SNPs; we thus caution against the comparison of explained vari-

ances); second, the mean and variance of BMI increased across life—this may be due to envi-

ronmental influences, since the explained variance attributable to polygenic indices plateaued

in early adulthood. The fact that explained variance attributable to polygenic indices and child-

hood SEP remained similar across adulthood is suggestive of either 1) the increasing impor-

tance of chance or ‘non-shared’ environmental factors being increasingly important causes of

between person in BMI variability across life; or 2) the increasing relative importance of other

factors not measured in this study (e.g., other dimensions of SEP across life, individual behav-

iour independent of childhood SEP, or other genetic effects). It is notable that other traits have

contrasting heritability patterns across life. For example, the heritability of cognitive perfor-

mance appears to strengthen across life [54], potentially due to genetic influences indirectly
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influencing future environments which in turn strengthen genetic influence. In the context of

BMI, such pathways may be sizably weaker relative to the large variability in the environment

which influences BMI. Finally, all polygenic indices were associated with greater variability in

BMI, with effect sizes largest in higher BMI centiles—one possible cause of this is the influence

of unmeasured modifiers of association which may be environmental in origin [55].

Strengths and limitations

Strengths of this study include the use of life course data on a national birth cohort sample and

use of multiple polygenic indices. Further, our analytical strategy enabled estimation of life

course trajectories of effect size and explained variance; previous studies have tended to focus

on either set of results, yet both are informative. Our analysis also enabled formal testing of

distributional effects, and the testing of the independent and/or multiplicative role of child-

hood SEP. Yet the necessary use of historic data had some inherent limitations. First, the

cohort preceded the wider availability of body composition measures—thus, we cannot distin-

guish associations of fat or lean mass across the life course. It is possible that findings with

these phenotypes may differ—lean mass typically declines in older ages [56], a phenomenon

which could influence associations between polygenic indices and BMI (e.g., if polygenic indi-

ces are more strongly related to fat than lean mass associations with BMI would appear to

strengthen at older ages). Second, as in other prospective longitudinal studies missing data

occurred; this is generally highest amongst those from lower SEP groups and those with worse

health outcomes [38]. Genotyping occurred using blood samples measured at 53 years (in

1999); those with valid BMI data in early life yet no genotyping data were not included. How-

ever, we found little evidence that early life BMI was related to likelihood of having valid

genetic data at 53 years (S23 Fig), though there was evidence that higher BMI during middle

adulthood was related to having missing genetic data. Loss to follow-up occurred following

genotyping from 53 to 69 years; our results suggest that the associations at later ages may have

been downwardly biased. Finally, we provided evidence on two main dimensions of childhood

SEP (parental social class and education); while these have been found to strongly predict adi-

posity in this cohort [16, 46], SEP is multidimensional, and it is possible that results may differ

according to other dimensions such as parental disposable income, wealth, or area-level factors

[57], or to SEP exposure across early and later adulthood.

Conclusion

Our findings suggest sizable polygenic effects on BMI which differ in terms of size of associa-

tion and explained variance across life. Findings also highlight the importance of the environ-

ment—adverse early life SEP was associated with higher BMI independently of polygenic risk,

and increases in the population mean and variability of BMI across adulthood lead to stability

of explained variance despite increasing effect sizes.
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tile ranks calculated at each age at follow-up. Drawn from OLS regressions including adjust-

ment for sex and first 10 genetic principal components, repeated for each polygenic index and
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S3 Fig. Association between Khera et al. (2019) [4] polygenic index and (absolute) BMI.
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principal components, repeated at each follow up (panels) and decile (x-axis).
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BMI. Drawn from quantile regressions including adjustment for sex and first 10 genetic prin-

cipal components, repeated at each follow up (panels) and decile (x-axis).
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lute) BMI. Drawn from quantile regressions including adjustment for sex and first 10 genetic

principal components, repeated at each follow up (panels) and decile (x-axis).
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S7 Fig. Association between BMI childhood socioeconomic position and SEP and body

mass index (BMI) across life, by measure of SEP. Top panel shows the kg/m2 difference in

BMI in the lowest compared with highest socioeconomic position. Bottom panel shows coeffi-

cients for the social class x polygenic index interaction term (null line is evidence for no inter-

action). Results from top panel drawn from OLS regression models including adjustment for

sex (blue solid line) and further adjustment for Khera et al. (2019) [4] polygenic index and first

10 genetic principal components (orange dashed line). Results from bottom panel drawn from

OLS regression models including adjusted for sex, polygenic index index (Khera et al., 2019)

[4], first ten genetic principal components and SEP.
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S8 Fig. Proportion of variation in BMI explained by social class. Incremental R2 compared

to OLS regression model of BMI on sex and Khera et al. [4] polygenic index and first 10 genetic

principal components. Multiple adjusted refers to model in which all SEP measures displayed

were added simultaneously.
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and body mass index. Null line is evidence for no interaction. Results drawn from OLS regres-
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OLS regressions including adjustment for sex and first 10 genetic principal components,

repeated for each polygenic index and age at follow up. Left panel: coefficient difference in

BMI per 1 SD increase in polygenic index (95% CI). Right panel: incremental R2 compared to

OLS regression model of BMI on sex and first 10 genetic principal components (95% CI esti-

mated using bootstrapping [500 replications, percentile method]).
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S11 Fig. Association between polygenic indices and BMI. Drawn from OLS regressions

including adjustment for the first 10 genetic principal componetns, repeated for each sex, poly-

genic index, and age at follow up. Left panel: coefficient difference in BMI per 1 SD increase in

polygenic index (95% CI). Right panel: incremental R2 compared to OLS regression model of

BMI on sex and first 10 genetic principal components (95% CI estimated using bootstrapping

[500 replications, percentile method]).

(DOCX)

S12 Fig. Association between polygenic indices and corrected BMI, measured as (left to

right) raw scores, standardized values, logarithms, and percentile ranks. Standardization

and percentile ranks calculated at each age of follow-up. Correction calculated by finding x

such that correlation between corrected BMI (kg/mx) and height is minimized at a given age.

Drawn from OLS regressions including adjustment for sex and first 10 genetic principal com-

ponents and repeated for each polygenic index and age at follow up.
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S13 Fig. Correlation between polygenic indices and BMI, height and weight by follow-up.
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S14 Fig. Difference in average PRS scores (95% CI) by whether participant had observed or

missing BMI scores at a given age. Drawn from separate regressions for each combination of

PRS score (columns) and age of follow-up (rows).
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S15 Fig. Association between Khera et al. (2019) [4] polygenic index and (absolute) BMI.

Drawn from OLS regressions including adjustment for sex and first 10 genetic principal com-

ponents and repeated at each follow up using observed sample and samples of participants

interviewed at each sweep following a given age (panels).
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S16 Fig. Association between Richardson et al. (2020) [7] adult polygenic index and (abso-

lute) BMI. Drawn from OLS regressions including adjustment for sex and first 10 genetic

principal components and repeated at each follow up using observed sample and samples of

participants interviewed at each sweep following a given age (panels).

(DOCX)

S17 Fig. Association between Vogelezang et al. (2020) [8] polygenic index and (absolute)

BMI. Drawn from OLS regressions including adjustment for sex and first 10 genetic principal

components and repeated at each follow up using observed sample and samples of participants

interviewed at each sweep following a given age (panels).
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S18 Fig. Association between Richardson et al. (2020) [7] child polygenic index and (abso-

lute) BMI. Drawn from OLS regressions including adjustment for sex and first 10 genetic

principal components and repeated at each follow up using observed sample and samples of
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S19 Fig. Incremental proportion of variance in (absolute) BMI explained by Khera et al.

(2019) [4] polygenic index. Drawn from OLS regressions compared solely adjusting for sex

and first 10 principal components. Regression models repeated at each follow up using

observed sample and samples of participants interviewed at each sweep following a given age

(panels). Confidence intervals derived from 500 bootstrap replications using the percentile

method.
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S20 Fig. Incremental proportion of variance in (absolute) BMI explained by Richardson

et al. (2020) [7] adult polygenic index. Drawn from OLS regressions compared solely adjust-
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given age (panels). Confidence intervals derived from 500 bootstrap replications using the per-

centile method.
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et al. (2020) [8] polygenic index. Drawn from OLS regressions compared solely adjusting for

sex and first 10 principal components. Regression models repeated at each follow up using

observed sample and samples of participants interviewed at each sweep following a given age

(panels). Confidence intervals derived from 500 bootstrap replications using the percentile

method.
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et al. (2020) [7] child polygenic index. Drawn from OLS regressions compared solely adjust-
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