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Abstract: The axial-flux permanent magnet (AFPM) machines with yokeless and segmented armature
(YASA) topology are suitable for in-wheel traction systems due to the high power density and
efficiency. To guarantee the reliable operation of the YASA machines, an accurate thermal analysis
should be undertaken in detail during the electrical machine design phase. The technical contribution
of this paper is to establish a detailed thermal analysis model of the YASA machine by the lumped
parameter thermal network (LPTN) method. Compared with the computational fluid dynamics (CFD)
method and the finite element (FE) method, the LPTN method can obtain an accurate temperature
distribution with low time consumption. Firstly, the LPTN model of each component of the YASA
machine is constructed with technical details. Secondly, the losses of the YASA machine are obtained
by the electromagnetic FE analysis. Then, the temperature distribution of the machine can be
calculated by the LPTN model and loss information. Finally, a prototype of the YASA machine is
manufactured and its temperature distribution under different operating conditions is tested by
TT-K-30 thermocouple temperature sensors. The experimental data matches the LPTN results well.

Keywords: lumped parameter thermal network (LPTN); losses; temperature distribution; yokeless
and segmented armature (YASA)

1. Introduction

Electric vehicles driven by four in-wheel electrical machines make the traction system
more simplified and flexible [1]. In the limited volume, the yokeless and segmented
armature (YASA) axial flux machine is capable of producing larger torque compared with
radial flux machines [2–5]. The yokeless segmented stator core and the centralized short-
distance windings make it more efficient and give it a higher power density [6,7]. Therefore,
YASA machines are potential candidates for in-wheel traction applications.

It is well-known that losses cause the temperature rise of electrical machines, which
can weaken the machine’s performance and even damage electrical machines [8]. The
insulation system of armature winding and thermal characteristics of the permanent magnet
limits the maximum temperature of the electrical machines. The YASA machines feature
a high power density, which means a high loss density as well [9,10]. When machines
produce the peak torque under the peak current, a high copper loss is generated, making
the winding temperature rise rapidly. That challenges the insulation system of the electrical
machine. To ensure the reliability of the YASA machine, the thermal performance should
be thoroughly considered [11,12].

There are three typical methods for the thermal analysis of YASA machines, i.e.,
the computational fluid dynamics (CFD) method, the finite element (FE) method, and
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the lumped parameter thermal network (LPTN) method [13–21]. The CFD method can
calculate the convective heat transfer coefficients, which are significant in electrical machine
design [1,13]. However, the CFD model is usually complicated, which means it requires
several days or even a week to establish and calculate the thermal model [14]. In [15], a
novel stator cooling structure is introduced to improve the temperature distribution of the
YASA machine, and the CFD method verifies the proposed cooling structure. The CFD
method is applied in [16] to calculate an innovative water-cooling system for the YASA
machine. The FE method can obtain an accurate temperature distribution, but it requires
several hours to calculate the model and the boundary processing is complicated and
difficult [17,18]. In [17], both analytical and experimental investigations into the air-cooling
of a YASA motor for in-wheel traction are presented. In [18], a stator heat extraction system
for YASA machines is introduced and modeled, and the thermal analysis is calculated
by the FE method. The LPTN method divides the electrical machine into several nodes
corresponding to the machine components and the heat-source distribution [19,20], which
can guarantee the analysis accuracy while keeping it fast compared with the CFD and FE
methods. For machines with complex structures, accurate temperature distribution can
be quickly obtained by LPTN. Therefore, this paper only focuses on a LPTN model of the
YASA machine.

To the best of our knowledge, only a few papers have used the LPTN method to
compute the temperature distribution of YASA machines. For example, in [21], the short-
time duty and the intermittent duty of a 4 kW YASA machine are calculated based on
the LPTN method. In [22], a lumped parameter T-type thermal network model is applied
to the YASA machine temperature calculation, but it mainly focuses on the calculation
of core loss rather than the total losses. In [23], a 3D LPTN model is developed and
experimentally validated, where the air-cooling channels between permanent magnets on
the rotor plates are also considered. However, it only constructs the thermal models of the
stator (including the armature winding and stator core) and rotor without considering the
other components of the YASA machine. The main technical contribution of this paper
is to use the LPTN method to construct a detailed thermal model for the YASA machine
including all components. The temperature distribution of the YASA machine is obtained
rapidly and accurately by considering the losses calculated by the FE method. The LPTN
model can provide a reference for the thermal analysis of YASA machines, which not only
ensures the thermal reliability of the machine, but also saves time and calculation resources
in the machine design phase.

This report is arranged as follows: In Section 2, the topology of the YASA machine
is introduced, and the corresponding design parameters are listed. Then, in Section 3,
the detailed thermal model of the YASA machine is established, and the corresponding
thermal resistance of all components is deduced. To obtain the temperature distribution,
the calculated losses are introduced into the entire thermal model of the YASA machine, as
described in Section 4. After that, in Section 5, the prototype test proves the accuracy of the
thermal network model. Finally, this paper is concluded in Section 6.

2. Topology of the Studied YASA Machine

In this section, the structure and design parameters of the YASA machine are introduced.

2.1. Structure

Similar to the radial-flux permanent magnet (RFPM) machines, the YASA machines
belong to the category of permanent magnet (PM) machines. However, the magnetic flux in
the air gap of YASA machines is different from that of the RFPM machines. The magnetic
flux of the YASA machines is along the axial direction in the air gap, while that of the RFPM
machines is along the radial direction. Compared with the conventional RFPM machines,
the YASA machines can generate a higher performance when the radial diameter is larger
than the axial length [1,8,17].
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The YASA machines consist of a yokeless and segmented stator and double external
rotors [8]. The main magnetic flux of YASA machines, shown in Figure 1, starts from the
N-pole permanent magnet and passes through the stator core to the S-pole on the other
side. After passing through the rotor core on the second side, the flux starts from the N-pole
on the second side and passes through the stator core to the S-pole of the first side. Finally,
the main magnetic flux forms a closed loop.
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Figure 1. The main magnetic flux of the YASA machines.

The construction of YASA machines possesses many significant advantages. The
segmented stator core equipped with a concentrated winding having short end-windings
that result in a high filling factor and low copper losses. The structure of a yokeless stator is
beneficial to decreasing mass and core loss [1,8,17]. In addition, YASA machines generally
exhibit low self-inductance and mutual inductances among the phases, which improve
fault tolerance and operation reliability [16,19].

The YASA machine investigated in this paper is shown in Figure 2, where the x-axis,
y-axis, and z-axis, respectively, represent the circumferential direction, axial direction, and
radical direction. The YASA machine can be divided into the stationary part and rotating
part, where the stationary part includes the stator core, armature winding, supporting
frame, and shaft, and the rotating part includes permanent magnets, rotor core, and the
housing.
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Figure 2. Structure of the YASA machine: (a) 3-dimensional structure; (b) view of the cross-section.

2.2. Design Parameters

A 5 kW prototyped machine was developed to validate the thermal analysis of the
YASA machine. The main performance and geometric parameters are listed in Table 1.

Table 1. Key parameters of the studied YASA machine.

Parameters Values Parameters Values

DC voltage (V) 72 Active outer diameter (mm) 270
Rated power (kW) 5 Active internal diameter (mm) 190

Rated speed (r/min) 480 Active axial length (mm) 45
Rated torque (Nm) 99 Rotor core thickness (mm) 4.8

Rated current (Arms) 17 Permanent magnet thickness (mm) 3.4
Slot number 36 Pole arc coefficient 0.83
Pole number 32 Air gap (mm) 0.9
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3. Construction of the LPTN Model

In this section, the LPTN models of different components of the YASA machine are
constructed. Generally, there are three main parts taken into account, i.e., the stationary
part, the rotating part, and the YASA machine assembly. The thermal model of the YASA
machine involves many parameters (including geometric parameters and heat transfer
coefficients). The geometric parameters of the YASA machine are determined by the
intelligent optimization algorithm in the machine design process. Additionally, the heat
transfer coefficients are identified by fine-tuning against simple test data through a genetic
algorithm [24].

3.1. Thermal Model of the Stationary Part

In this subsection, the thermal model of the stationary part is introduced, which
includes the armature winding, stator core, support frame, and shaft.

3.1.1. Armature Winding

The armature winding is the main heat source, especially when operating at peak
torque with peak current. The heat dissipation of the armature winding is difficult, because
the winding is in the middle of the YASA machine. Additionally, the winding is relatively
dispersed, resulting in uneven temperature distribution. Hence, it is difficult to build a
detailed thermal model.

This paper uses the layered winding model from [25], in which the coil of the armature
winding is regarded as a uniform heat conduction material. The actual thermal conductivity
is replaced by an equivalent thermal conductivity kwd.

The armature winding includes the outer end-winding, inner end-winding, and slot-
winding. Figure 3 shows the specific position of the armature winding. Each section of the
armature winding is represented in Figure 4. The numbers in Figure 4 correspond to those
marked in Figure 3.
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For both the inner and outer end-winding, axial thermal resistances (Rwo−y, Rwoy−air,
Rwo−ya, Rw−y) and radial thermal resistance (Rw−x) are considered. Since the axial cross-
section of the end-windings remains unchanged, the axial thermal resistances are approxi-
mately constant. The radial thermal resistance changes with the radius. For instance, the
axial thermal resistance of the outer end-winding is

Rwo−y =
Lwo−y

kwdSwo−y
(1)

where Lwo−y is the distance of adjacent nodes at the outer end-winding, and Swo−y is the
area of the corresponding region between nodes, as shown in Figure 4.

Between the outer end-winding and inner-air (including the air gap and air inside the
YASA machine), there are axial thermal resistances Rwoy−air and Rwo−ya.

Rwoy−air =
1
2

Rwo−y + Rwo−ya (2)

Rwo−ya =
1

kwdoutSwo−y
(3)

where Rwo−ya is the convective thermal resistance and kwdout is the equivalent convective
heat transfer coefficient.

Similarly, the cross-section of slot-winding is constant. The thermal resistances of the
slot-winding (including the axial thermal resistance Rw−y and radial thermal resistance
Rw−x) are regarded as unchanged. The expressions follow:

Rw−y =
Hwd

2 /5(
Wwd

2 /5× Ls

)
× kwd

(4)

Rw−x =
Wwd

2 /5(
Hwd

2 /5× Ls

)
× kwd

(5)

where Wwd and Hwd represent the width and height of slot-winding, respectively. Ls is the
difference between the outer and inner radius of the stator core.

When calculating the thermal resistance Rwdsc between the slot-winding and stator
core, the thermal resistance of slot insulation should be taken into account:

Rwdsc =
1
2

Rw−x + Rlx−s + Rscx (6)

Rlx−s =
Wl(

Hwd
2 /5× Ls

)
× kl

(7)

where Rlx−s is the thermal resistance of the slot insulation, Wl is the equivalent thickness of
the slot insulation, kl is the equivalent thermal conductivity of the slot insulation, and Rscx
is the thermal resistance of the stator core along the x-axis. In addition, there are thermal
resistances Rwc1 and Rwc2 between the slot-winding and both end-windings, respectively,
as shown in Figure 4.

3.1.2. Stator Core

The complete thermal model of the stator is shown in Figure 5. It should be noted that
the thermal model of the armature winding and segmented stator core can be consolidated
into a single node [19]. Rciax and Rciay are the equivalent thermal resistance of the armature
winding along the x-axis and y-axis, respectively. Rlx is the thermal resistance of the slot
insulation. Rwia is the convective thermal resistance between the armature winding and
inner-air. Pw,slot and Cw,slot represent the loss and heat capacity of the 1/4 slots, respectively.
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Psc,slot and Csc,slot represent the loss and heat capacity of the 1/2 stator core, respectively.
The heat capacity is defined as follows:

Cx = cxmx (8)

where mx and cx are the mass and heat capacity, respectively.

Energies 2022, 15, x FOR PEER REVIEW 6 of 18 
 

 

𝑅𝑙𝑥−𝑠 =  
𝑊𝑙

(
𝐻𝑤𝑑

2
/5×𝐿𝑠)×𝑘𝑙

  (7) 

where Rlx−s is the thermal resistance of the slot insulation, Wl is the equivalent thickness of 

the slot insulation, kl is the equivalent thermal conductivity of the slot insulation, and Rscx 

is the thermal resistance of the stator core along the x-axis. In addition, there are thermal 

resistances Rwc1 and Rwc2 between the slot-winding and both end-windings, respectively, 

as shown in Figure 4. 

3.1.2. Stator Core 

The complete thermal model of the stator is shown in Figure 5. It should be noted 

that the thermal model of the armature winding and segmented stator core can be consol-

idated into a single node [19]. Rciax and Rciay are the equivalent thermal resistance of the 

armature winding along the x-axis and y-axis, respectively. Rlx is the thermal resistance of 

the slot insulation. Rwia is the convective thermal resistance between the armature winding 

and inner-air. Pw,slot and Cw,slot represent the loss and heat capacity of the 1/4 slots, respec-

tively. Psc,slot and Csc,slot represent the loss and heat capacity of the 1/2 stator core, respec-

tively. The heat capacity is defined as follows: 

𝐶𝑥 = 𝑐𝑥𝑚𝑥 (8) 

where mx and cx are the mass and heat capacity, respectively. 

Stator 
Core

Rscx Rciax

Rciay

Armature 
WindingRciax Rlx

Rciay

Armature 
Winding Rscx

Supporting 
Frame

Inner-Air

Rscy

Rlx

Pw，slot Cw，slot
Pw，slot Cw，slot

Csc，slot

Psc，slot

Rscia

RwiaRwia

Rscsu

Cia

Supporting Frame

Stator Core

Inner-Air

Armature Winding

 

Figure 5. Thermal model of the single-segmented stator. 
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Figure 5. Thermal model of the single-segmented stator.

Rscx and Rscy are the thermal resistances of the stator core along the x-axis and y-axis,
respectively. The calculations are as follows:

Rscx =
Wst/2

Hst
2 × Lskiron

(9)

Rscy =
Hst/4

WstLskiron
(10)

where Wst and Hst are the width and height of the stator core, respectively, and kiron is the
thermal conductivity of the stator core.

Owing to the symmetrical structure, Figure 5 can be further simplified to Figure 6.
Figure 6 is the thermal model of the stator core, which constitutes the entire thermal model
of the YASA machine (discussed in Section 3.3). Pw and Cw represent half of the copper
loss and heat capacity. Psc and Csc represent half of the stator core loss and heat capacity.
The convective thermal resistance between the stator core and inner-air present is Rscia.
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Figure 6. Simplified thermal model of the segmented stator.

3.1.3. Support Frame

The segmented stator core is shown in Figure 7a. In Figure 7b, there are matched
cages on both sides of the segmented stator cores for support. The cages are connected by a
circular connector with a support frame.
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Figure 7. Stator: (a) segmented stator core; (b) stator core and cages.

The thermal model of the support frame is shown in Figure 8. The support frame
connects with the stator core and shaft. The thermal resistance between the support frame
and stator core is Rscsu, as shown in Figure 6. The thermal resistance between the support
frame and shaft is Rsush. In addition, there is thermal resistance Rsuia between the support
frame and inner-air. The calculation equations follow:

Rscsu =
lscsu

Sscsukair
(11)

Rsush =
lsush

Ssushkair
(12)

Ssush = 2πRsui
Hsu

2
= πRsui Hsu (13)

where lscsu is the tolerance clearance between the support frame and stator core, lsush is the
tolerance clearance between the support frame and shaft, Sscsu is the area of the tolerance
clearance between the support frame and stator core, Ssush is the area of the tolerance
clearance between the support frame and shaft, and kair is the thermal conductivity of air.
Rsui and Hsu are the inner radius and height of the connector.
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Figure 8. The thermal model of the support frame.

3.1.4. Shaft

Figure 9 shows the thermal model of shaft, where Rshz1 represents the radial thermal
resistance from the support frame to shaft, Rshz2 is the radial thermal resistance from the
shaft to bearing, Rshy1 is the axial thermal resistance between the shaft and bearing, Rshy2
is the axial thermal resistance from the bearing to shaft end, Rshso is convective thermal
resistance between the shaft and surroundings. Additionally, there is convection thermal
resistance Rshia between the shaft and inner-air. The thermal resistances are calculated
as follows:

Rshz1 =
dsh1/2

(πdsh1/2)Hsh
2 ksh

=
2

πHshksh
(14)

Rshz2 =
dsh2/2

(πdsh2/2)Hbeksh
=

1
πHbeksh

(15)

Rshy1 =
lsh1/4

π(dsh1/2)2ksh
+

lsh2/2

π(dsh2/2)2ksh
(16)

Rshy2 =
lsh2/2

π(dsh2/2)2ksh
+

lsh3/2

π(dsh3/2)2ksh
(17)
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Rshso =
1

Sshsokshso
(18)

Sshso = π(dsh3/2)2 + πdsh3lsh3 (19)

where ksh is the thermal conductivity of the shaft, kshso is the convective heat transfer
coefficient between the shaft and surroundings, and Hbe is the height of the bearing. The
other structural parameters are defined in Figure 10.
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vective thermal resistance between the permanent magnet and inner-air, Rmy is the axial 

Figure 10. Structure of the shaft.

3.2. Thermal Model of the Rotating Part

In this subsection, the thermal model of the rotating part is introduced, which includes
the permanent magnets, bearing, rotor core, and housing.

3.2.1. Permanent Magnet

Figure 11 shows the thermal model of the permanent magnet, where Rmia is the
convective thermal resistance between the permanent magnet and inner-air, Rmy is the axial
thermal resistance of the permanent magnet, Rmrc is the thermal resistance between the
permanent magnet and rotor core, and Rrcy is the axial thermal resistance of rotor core.
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The equations of Rmy, Rmcr and Rrcy follow:

Rmy =
Hm/2
Smkm

(20)

Rmrc =
lmr

Smkair
(21)

Rrcy =
Hrc/2
Srckrc

(22)
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Src = π
(

r2
rco − r2

rci

)
(23)

where Hm and Hrc are the thicknesses of the permanent magnet and rotor core, respectively.
Sm, Src is the radial cross-section area of the permanent magnet and rotor core, respectively;
km, krc is the thermal conductivity of permanent magnet and rotor core, respectively. The
tolerance clearance between the permanent magnet and rotor core is lmr; rrco, rrci is the
outer and inner radius of the rotor core, respectively. The components of the machine
cross-section are illustrated in Figure 12.
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3.2.2. Bearing 

The bearing connects the stationary part and the rotating part. Figure 13 shows the 
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Figure 12. Cross-section of the YASA machine.

3.2.2. Bearing

The bearing connects the stationary part and the rotating part. Figure 13 shows the
thermal model of the bearing. Pb represents the friction loss of the bearing. A part of
the heat transfers from the bearing to the rotor core and is dissipated. Rshb is the thermal
resistance between the bearing and shaft, as shown in Figure 9. Rbrc is the thermal resistance
between the bearing and rotor core, as shown in Figure 13. The equations follow:

Rshb =
(rbo − rbi)/2( rbo+rbi

2 +rbi

)
2 2πHbekbe

=
(rbo − rbi)/2(

rbo+rbi
2 + rbi

)
πHbekbe

(24)

Rbrc =
(rbo − rbi)/2(

rbo+rbi
2 + rbo

)
πHbekbe

(25)

where rbo and rbi are the outer and inner radius of the bearing, respectively, and kbe is the
equivalent thermal conductivity of the bearing.
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Figure 13. Bearing thermal model.

Rrcz1 is the thermal resistance of the rotor core. Assuming the rotor core and the
permanent magnet are the same distance to the shaft, then:

Rrcz1 =
rrcma − rrci

(rrcma + rrci)πHrckrc
(26)

where rrcma is the distance from the permanent magnet to the shaft center, Rrci is the inner
radius of the rotor core, which is equal to the outer radius of the bearing, Hrc is the height
of the rotor core, and krc is the thermal conductivity of the rotor core.



Energies 2022, 15, 5431 10 of 18

3.2.3. Rotor Core

The eddy current loss of the rotor core is calculated by the FE method. Figure 14
shows the thermal model of the rotor core, which contacts the inner-air and surroundings
directly. Rrcia is the convective thermal resistance between the rotor core and inner-air, Rrcso
is the convective thermal resistance between the rotor core and surroundings, Rrcz2 is the
thermal resistance of the rotor core, and Rhy is the axial thermal resistance of the housing.
The calculation formulae follow:

Rrcia =
1

krciaSrcia
(27)

Srcia = π
(

r2
hi − r2

mo

)
+ π

(
r2

mi − r2
rci

)
(28)

Rrcso =
1

krcsoSrcso
(29)

Srcso = π
(

r2
rco − r2

rci

)
(30)

Rrcz2 =
rrco − rrcma

(rrcma + rrco)πHrckrc
(31)

Rhy =
Hh/4

π
(
r2

ho − r2
hi
)
kh

(32)

where krci is the convective heat transfer c between the rotor core and inner-air, and krcso is
the convective efficient heat transfer coefficient between the rotor core and surroundings.
Srcia is the contact area between the rotor core and inner-air, Srcso is the contact area between
the rotor core and surroundings; rmo and rmi are the outer and inner radius of the permanent
magnet, respectively; rho and rhi are the outer and inner radius of the housing, respectively;
Hh is the height of the housing; and kh is the thermal conductivity of the housing.
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3.2.4. Housing

There is heat convection between the inner surface of the housing and inner-air. The
outer surface contacts with the surroundings, which dissipate heat directly. Figure 15 shows
the thermal model of the housing. Rhz is the radial thermal resistance of housing, Rhia is the
convective thermal resistance between the housing and inner-air, and Rhso is the convective
thermal resistance between the housing and surroundings. The formulas follow:

Rhia =
1

Shiakhia
(33)

Shia = πrhi Hh (34)

Rhso =
1

Shsokhso
(35)

Shso = πrho Hh (36)
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Rhz =
(rho − rhi)/2(
rho+rhi

2

)
2π Hh

2 kh

=
rho − rhi

(rho + rhi)πHhkh
(37)

where khia is the convective heat transfer coefficient between the housing and inner-air, khso
is the convective heat transfer coefficient between the housing and surroundings, Shia is the
contact area between the housing and inner-air, and Shso is the contact area between the
housing and surroundings.
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Figure 15. Housing thermal model.

3.3. Entire Thermal Model of the YASA Machine

Based on the thermal models of all the components described above, the entire thermal
model of the YASA machine can be obtained by simply integrating all of them, as shown in
Figure 16. The thermal model of each component marked with different colors is connected
by thermal resistances (including conduction thermal resistance and convective thermal
resistance). Between the shaft and the supporting frame, there is the conduction thermal
resistance Rsush. The thermal model of the bearing and shaft is connected by the thermal
resistance Rshb. The permanent magnet adheres to the rotor core, so there is the conduction
thermal resistance Rmrc. Additionally, there are the convective thermal resistances (includ-
ing Rmia, Rscia/Q, and Rwia/Q) of the YASA machine between the permanent magnet, stator
core, armature winding, and inner-air. These thermal resistances are calculated by the
formulae given above.
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Figure 16. Entire thermal model of the YASA machine.

4. Parameter Calculation of the Thermal Network Model

In this section, the losses of the YASA machine (including the armature winding loss,
stator core loss, rotor core loss, permanent magnet eddy current loss, and mechanical loss),
the thermal resistance of the air gap, and convective heat transfer coefficient on the hub
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surface are calculated. Finally, the detailed temperature distribution of the YASA machine
is obtained.

4.1. Losses Calculation

The copper loss is calculated by

Pcopper = mI2
s Rs (38)

where m is the phase number, Rs is the phase resistance, and Is is the effective value of
phase current.

The core loss separation model proposed by Italian scholar Bertotti [26] is widely used.
It mainly includes hysteresis loss, classical eddy current loss, and excess loss:

PFe = Ph + Pc + Pe = Kh f B∝
m +

σd2

12ρ

1
T

∫ T

0

(
dB(t)

dt

)2

dt +
√

σGV0S
ρ

1
T

∫ T

0

(
dB(t)

dt

)1.5

dt (39)

The core loss is related to magnetic flux density. When the magnetic flux density
changes sinusoidally and remagnetization is adopted, Equation (39) can be simplified as

PFe = Kh f B∝
m + Kc f 2B2

m + Ke f 1.5B1.5
m (40)

where Kh, Kc, and Ke are the coefficient of hysteresis loss, eddy current loss, and excess loss,
respectively; f is the electrical frequency and Bm is the amplitude of magnetic flux density.

Eddy current loss of the rotor core and permanent magnet can be calculated by

Peddy =
1
σ

∫
J2dV (41)

where σ is the conductivity, J is the eddy current density, and V is the volume of the component.
Mechanical loss includes bearing loss Pb and wind friction loss Pwind. The formula follows:

Pb = 0.06k f b(mr + msh)ns (42)

where kfb is an empirical coefficient, which in the range 1–3 m2/s2; mr, msh is the mass of
rotor and shaft, respectively; ns is the rotating speed.

Pwind =
1
2

c f ρcm(2πns)
3
(

R5
out − R5

sh

)
(43)

where ωs is electric angular speed; Vair is the dynamic viscosity of air, taken as 2 × 10−5 Pas;
and ρcm is the air density, taken as 1.2 kg/m3. Rout is the outer radius of the rotor and Rsh is
the outer radius of the shaft.

4.2. Air Gap Thermal Resistance and Convective Heat Transfer Coefficient on the Hub Surface

The calculation process of the air gap thermal resistance follows four points:
(1) Reynolds number Reg of the air gap is determined according to machine radius,

speed, and dynamic viscosity of the fluid, as shown in Equation (44) [27].
(2) The fluid types are determined by Reynolds number Reg, which generally includes

laminar flow, transition flow, and turbulent flow [28].
(3) Determination of the Nusselt constant Nu is based on Reynolds number Reg and

the air gap ratio G (G = g/R2, where g is the distance between the stator and rotor plate, R2
is the outer radius of the rotating plate), as shown in Table 2 [29].
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Table 2. Nusselt constant function relationship.

Value Range Fluid Type Formula

G = 0.01 Laminar flow Nu = 7.46Re0.32
g

0.02 ≤ G ≤ 0.06 Laminar flow Nu = 0.50
(
1 + 5.47× 10−4exp(112G)

)
Re0.5

g

G ≥ 0.06 Laminar flow Nu = 0.55
(

1 + 0.462exp
(
−13G

3

))
Re0.5

g

Rotor plate Laminar flow Nu = 0.55Re0.5
g

G = 0.01 Turbulence Nu = 0.044Re0.75
g

0.02 ≤ G ≤ 0.06 Turbulence Nu = 0.033(12.57exp(−33.18G))Re3/5+25G12/7

g

G ≥ 0.06 Turbulence Nu = 0.0208(1 + 0.298exp(−9.27G))Re0.8
g

Rotor plate Turbulence Nu = 0.0208Re0.8
g

(4) According to this derivation, the air-gap equivalent convective heat transfer coefficient
hg and the air-gap thermal resistance Rg can be obtained by Formulae (46) and (47).

Reg =
ωsR2

out
vair

(44)

c f =
3.87√

Reg
(45)

hg =
Nu× kair

R2
(46)

Rg =
1

π
(

R2
2 − R2

1
)
hg

(47)

where kair is the thermal conductivity of air and R1 is the inner radius of the rotating plate.
There is no barrier between the end cap and the surroundings, which belongs to heat

convection. The convective heat transfer coefficient on the surface of the rotor plate can be
obtained by Equation (46).

The average Nusselt constant is obtained from two cases. One is that the airflow type
on the surface of the rotor plate is laminar flow, so the average Nusselt constant Nu1 is
calculated by

Nu1 =
2
5

(
Re2

g + Gr
) 1

4 (48)

Gr =
βgR3π3/2∆T

v2 (49)

where β is the coefficient of thermal expansion; v is the kinematic viscosity coefficient of
the fluid, taken as 1.569 × 10−5 m2/s. ∆T is the temperature difference between the rotor
plate surface and the surroundings.

The other airflow type is a combination of laminar flow and turbulence:

Nu1 = 0.15Re
4
5
g − 100

(
rc

R2

)2
(50)

rc =
√

2.5× 105v/ωs (51)

where rc is the transition radius.
In addition, with the help of the naphthalene sublimation experiment and analogy

theory, the relation between the convective heat transfer coefficient and the speed of the
rotor plate is obtained by fitting. This paper refers to this method to obtain the convective
heat transfer coefficient of the end cap:

hg = 8.859ω0.5
s (52)
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The convective heat transfer between the housing and surroundings is calculated by

hp =
kair
D2

Nu2 (53)

Nu2 = 0.133Re2/3
D Pr1/3 (54)

ReD =
ωsD2

2
v

(55)

where hp, Nu2, and ReD are the convective heat transfer coefficient, average Nusselt constant,
and Reynolds number of the rotor plate, respectively. D2 is the outer diameter of the rotor
plate; Pr is the Prandtl number of the air, taken as 0.703.

The inner-air thermal resistance, the convective heat transfer coefficient between
the rotor core and surroundings, and the convective heat transfer coefficient between the
housing and surroundings are 0.7568 K/w, 62.8 w/(m2·K), and 47.8 w/(m2·K), respectively.

4.3. Results of the Thermal Network Model

The temperature distribution of the YASA machine can be obtained by the entire
thermal network model. The temperature of all the components is listed in Table 3.

Table 3. The steady-state temperature of the YASA machine.

Machine Components Steady-State Temperature (◦C)

Winding 127.07
Stator core 100.57

Permanent magnet 54.54
Rotor core 52.00
Housing 49.35
Bearing 63.61

It can be found that the armature winding temperature is the highest and the tem-
perature of the stator core is lower than that of the winding temperature. The lowest
temperature is the housing and rotor core. The armature winding is the main heat source
of the YASA machine. The stator core and winding are located in the center of the machine,
from which dissipation of heat is difficult. The rotor core and the housing are contacted
directly by the surroundings, which makes its lower temperature rise. Under the rated
condition, the temperature of the permanent magnet is 54.54 ◦C. The temperature does not
exceed the allowable working temperature, which ensures reliable operation.

By setting the laboratory temperature at 20 ◦C, all components of the YASA machine
tend to be stable at 80 min, as shown in Figure 17.
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5. Experimental Verification
5.1. Experimental Prototype

The prototype is shown in Figure 18. The segmented stator core and armature winding
are fixed by the support frame, as shown in Figure 18a. Permanent magnets are bonded
to the rotor core, as shown in Figure 18b. The YASA machine assembled is shown in
Figure 18c.
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5.2. Prototype Experiment

The rated 11 A direct current (DC) corresponding 5 A/mm2 current density is applied
to the armature winding. The experimental data of the YASA machine are compared with
the calculated results of the LPTN model, and the results are in good agreement, as shown
in Figure 19.
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Figure 19. Instantaneous temperature-rise test of the prototype under 11 A DC.

Further, the direct current with different values is applied to the windings to measure
the temperature rise of the YASA machine. The current is disconnected after a period
of time, the cooling curve is measured, and the results are compared with the thermal
network, as shown in Figures 20–22. The maximum error is less than 2.5 ◦C, which occurs
in the armature windings. The error mainly comes from the change in environmental
temperature and the given error of heat capacity. The error is smaller than that of the LPTN
model for the single-sided AFPM machine proposed in [17], whose temperature error is
4 ◦C.
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6. Summary

In this paper, the LPTN model of the YASA machine for in-wheel traction application
is developed to calculate the temperature distribution of all components of the YASA
machine. The thermal models of all components in YASA machines, including the stationary
and rotary components, are simplified based on the symmetrical structure, while the
detailed thermal resistance formulae are given. Based on the loss results calculated by
electromagnetic FE analysis, the temperature distribution of the YASA machine is obtained.
Comparing the calculated and experimental results, the maximum temperature difference
is no more than 3.3%, which validates very good accuracy of the proposed thermal model.
The proposed method is considered as a good reference for design engineers of YASA
machines in the applications of in-wheel traction. In addition, this paper is also beneficial
to the research of machine cooling. The advanced cooling technique of the YASA machine
applied on in-wheel traction systems will be investigated in a following study.
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