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Abstract
Robot swarms have the potential to be used as an out-of-the-box solution for storage and retrieval that is low cost, scalable to 
the needs of the task, and would require minimal set up and training for the users. Swarms are adaptable, robust and scalable 
with a relatively low computational cost which makes them appropriate for this purpose. This project simulated a robot swarm 
with simple sensors and stochastic movement, collecting boxes from storage to deliver them to the user. We show in simula-
tion that stochastic strategies based on random walk and probabilistic sampling of local boxes could give rise to competitive 
solutions to retrieve boxes and deliver them unordered, or following a predetermined order, within a storage scenario. The 
performance of the task is drastically improved using an additional simple bias rule which uses compass measurements and 
does not reduce the minimalism of the control. It is shown that swarm technology could provide an out-of-the-box system 
for storage and retrieval using only information local to each robot and with distributed control.

Keywords Swarm · Collective retrieval · Stochastic · Automated storage · Retrieval systems

1 Introduction

A use case study investigating the use of robot swarms for 
storage and retrieval found that there was an unmet need 
for an automated system to perform storage tasks instead 
of manual inventory without extensive set-up costs, main-
tenance or infrastructure [1, 2]. The use cases considered 
ranged from museum archives, to charity shops, to food 
banks, most of which said they were understaffed and 
lacked the time to organise their storage spaces to be effi-
cient. This lead to errors and waste of stock. These use cases 

highlighted the need for out-of-the-box solutions [1]. Large 
commercial companies, such as Amazon or Ocado, already 
use multi-agent systems for automated storage and retrieval 
[4]. These solutions improve productivity and increase space 
for inventory [3]. While these centralised multi-agent solu-
tions work well in controlled settings, they require extensive 
set up with bespoke infrastructure and high installation costs 
[5]. Robot swarm control instead is distributed among the 
robots and does not require instructions from a central com-
puter to perform tasks. Swarm robots use only local sensory 
information to drive their behaviour. The collective group 
behaviour then emerges from the interaction between all 
robots and their environment. Swarms have the potential to 
be robust to failures and capable of scaling up and down in 
numbers. Individual robots can be made relatively cheap, 
and without large upfront investment in infrastructure or 
time [6]. Users (such as shop workers) could put the swarm 
in their stock room and leave it to react to their new environ-
ment and task. To be useful, the technology should require 
minimal technological expertise and set up, including no 
information about the inventory of the warehouse or the 
layout. In this paper, the authors show in simulation that a 
swarm of robots with simple, stochastic behaviours may pro-
vide solutions for storage tasks. The controllers are random 
walkers which perform probabilistic sampling of boxes. The 
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random movement and sampling means that no positional 
information, such as an inventory map, is required.

2  Related work

Centralised multi-robot systems are used for storage and 
retrieval tasks to improve storage efficiency. In current 
deployments, they are often used to speed up the order pick-
ing process whereby an item it transferred from storage to 
a human who packages it. Amazon and Ocado are famous 
users of these automated warehouses [4]. In the original 
Amazon Robotics system (Kiva Systems), the central job 
manager recorded the state of each robot and inventory sta-
tions and coordinated actions [7]. Such solutions typically 
require expensive set up of dedicated infrastructure [5]. With 
centralised control, research questions often focus on robot 
task allocation, path planning, and navigation [8]. These 
centrally controlled solutions improve warehouse logistics 
by optimising routes taken for faster delivery times and can 
increase inventory storage space by up to 50% [3]. However, 
they have disadvantages due to their centralised control. 
Reliance on a central computer to control the whole ware-
house means that it can be vulnerable to technical failures 
with important consequences. For example, online clothing 
company ‘ASOS’ reported a 68% drop in pretax profits for 
the 2019 financial year, compared to 2018, which was attrib-
uted in part to an IT glitch in their automated warehouse that 
caused a backlog of items to be stored [14]. For more infor-
mation on existing warehouse solutions, see a recent review 
by Custodio and Machado [9]. Interestingly, another recent 
review looking at multi-agent solutions for automated order 
picking makes no mention of decentralised, distributed, or 
swarm approaches, even though they covered 74 papers in 
the area [10]. This shows that swarm solutions to warehouse 
automation have largely remained untapped. A few solutions 
do make use of decentralisation. Draganjac et al. [11] for 
example present an algorithm for decentralised path plan-
ning and motion coordination control for multi-mobile robot 
systems in warehouses. They demonstrate benefits in scal-
ability, as each vehicle makes its own path plan and negoti-
ates for priority with other robots. The allocation of tasks 
however is still centralised. Hao et al. [12] demonstrate in 
simulation a decentralised retrieval system called GridHub 
which uses modular, conveyor units to move requested items 
from the storage grid to pickers. The GridHub storage space 
can deliver items in a desired sequence with no deadlock-
ing but requires dedicated infrastructure. Following another 
approach, swarm algorithms have been applied to schedule 
tasks (e.g. Particle Swarm Optimisation and Ant Colony 
Optimisation). The execution of these swarm algorithms is 
however still run on a centralised system [13]. For these cen-
tralised systems to work well, they typically store and record 

information about every part of the system to coordinate the 
robots [4]. When the system scales up in component parts, so 
does this computational demand. Commercial solutions are 
starting to emerge that make use of swarm technology. For 
example, Agilox’s Intelligent Guided Vehicles (IGVs) claim 
to operate without an external control system, instead using 
distributed control for autonomous routing and task alloca-
tion, and exchanging information with other members of the 
swarm about the environment [17]. Although this work has 
not been published, it seems the system calculates individual 
routes and has a high rate of information exchange between 
robots. This makes them useful, but it also means that the 
on board computational cost is high and the machines them-
selves can be complex and expensive. Additionally, their 
implementation times are a minimum of 6–12 weeks [16].

Overall, the current literature lacks simple machines that 
utilise swarm intelligence to perform retrieval tasks in an 
out-of-the-box way, without the need for any set up. This 
project suggests a stochastic swarm for retrieval tasks that 
can maximise the benefits of minimal set up and information 
exchange as well as flexibility, robustness, and scalability by 
using simple robots with distributed control. Their resource 
requirements are at a minimum due to their having no need 
for information about their task or environment.

3  Methodology

3.1  Simulated experiment

To systematically investigate the performance of a stochastic 
swarm for storage and retrieval tasks, a rapid 2D physics-
based simulation was designed in Python. It can be down-
loaded at https:// bitbu cket. org/ hauer tlab/ works pace/ snipp ets/ 
bxqKXq. A robot swarm made up of homogeneous agents 
is simulated. Stored items, known as boxes, to be collected 
and delivered are simulated as circles of the same size as 
the robots (although in the images shown here, Fig. 5, boxes 
are represented as squares to distinguish them from robots). 
Each robot is approximated to a 2D circle (as seen from a 
bird’s eye view) of radius 12.5 cm and has sensory range 
of radius 35.0 cm, measured from the centre of the robot, 
which is used for collision avoidance. They sense and pick 
up a box if they make contact with it, which is represented 
by the robot centre being within a 25.0 cm radius of the 
box centre. The robots can move in any direction and do so 
with speed equal to 100 cm/s (acceleration is not considered 
in this case). The update frequency is once every 0.02 s. 
Robot parameters and motion specifications are based on a 
new physical platform produced in our laboratory and yet 
unpublished.

The storage space is simulated as a bounded 500 cm 
x 500 cm square. This size was chosen to represent the 

https://bitbucket.org/hauertlab/workspace/snippets/bxqKXq
https://bitbucket.org/hauertlab/workspace/snippets/bxqKXq
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storage area of a small shop. At the upper bound of the 
x axis is a rectangular area of 100 cm width and 500 cm 
length, designated as the delivery area (seen in Fig. 5 as 
the area to the right of the dotted line). This is where the 
boxes are deposited for the user.

The aim of the tasks was to minimise the total time 
taken to deliver all the boxes. The robots are not given 
any information about their position, the box positions 
or the location of the delivery area. They also cannot 
exchange information except to sense their vector rela-
tive to nearby objects within sensory range and assign an 
obstacle type (i.e. robot, box or wall). Two tasks were per-
formed in simulations. In Unordered retrieval, the swarm 
must retrieve all the boxes from storage and bring them 
to the delivery area. This represents scenarios were boxes 
are retrieved in parallel because they are not dependent on 
each other. In the second task, Ordered retrieval, items 
must be retrieved in a given sequence of box IDs. Each 
of the boxes are given unique ID numbers that can be 
read by a robot that is within sensory range of the box. 
In this task box i is not requested until box i − 1 has been 
delivered. A real example of this task could be a luggage 
store where customers can request their own luggage be 
brought to them from the storage room, such as the use 
case outlined in [1]. The size of the swarms tested ( Nr ) 
and the number of boxes ( Nb ) to collect are in the range 
10 ≤ Nr,Nb ≤ 50 . Each combination of parameters Nr and 
Nb is tested in each of the two tasks. Each unique param-
eter pair is tested 10 times and then the resulting perfor-
mance averaged over the 10 trials. Different numbers of 
boxes to collect are tested because this can be taken as 
analogous with changes in demand, where demand can be 
represented by more or fewer boxes requested to be deliv-
ered. The boxes and the robots start at randomly chosen 
positions within the storage space but none of them begin 
in the delivery area. Each task was tested with purely ran-
dom walk and then with an additional behaviour named 
Biased Heading Behaviour (BHB). This is intended as 
a helpful behaviour that could improve the task perfor-
mance without complicating the swarm behaviours and 
hardware. BHB uses an on board compass to influence 
the robot to move towards the delivery area when it has 
a box (in the Ordered task, this would only occur when 
the robot has the correct box for the given sequence). 
An additional heading vector with a magnitude of 1 and 
entirely positive x direction (following the convention 
in Fig. 5) is added to the heading, which influences the 
robot to move towards the delivery area. Once the box is 
delivered, BHB is no longer used and it returns to ran-
dom motion. Note that the compass sensor could also be 
replaced by a means to locally measure a gradient (e.g. 
light or radio) guiding the robot to the delivery area.

3.2  Controllers

The equation of motion for a robot used every time step is 
given in Equation 1 where speed Sp = 100 cm/s and the 
update frequency is once every 0.02 s (time step, ts = 0.02 
s). ���⃗Ht  is a column vector made up of the x and y compo-
nents of the heading of the robot at time t ( ���⃗Ht = [Ht,x,Ht,y] , 
see Equation 6).

The robot heading ���⃗Ht  is determined by a combination of 
calculated headings due to random walk ( ���������⃗Hnoise ), collision 
avoidance ( �����⃗Hr,b,

�����⃗Hw ) and the Biased Heading Behaviour 
( �������⃗Hbias ). Each time step, these headings are calculated as fol-
lows. Collision avoidance of robots and boxes is described 
by Equation 2 and 3. In Equation 2 the �����⃗Hr,b of a given robot 
is the sum of the vectors from that robot to all of the robots 
and boxes within its object detection sensory range (SR = 35 
cm). If the robot is not carrying a box then it will not include 
boxes in this calculation ( |�����⃗Hb| = 0 ) because it does not 
intend to avoid any boxes detected, it intends to pick them 
up. In Equation 2, [dr,x, dr,y]<SR is x and y distances to each 
robot within sensory range of the robot and [db,x, db,y]<SR is 
to each box. The signs of the vectors are negatives to induce 
the robot to move away from these obstacles.

Collision avoidance of the walls is triggered if the robot is 
touching the wall (i.e. the distance to the wall is one robot 
radius length (r = 12.5 cm)) in which case | ��������⃗Hwall| = 100 in 
the direction perpendicular to the wall it has hit. In Equa-
tion 3, W, E, N, S represent the West ( x = 0 ), East ( x = 500 ), 
North ( y = 500 ) and South ( y = 0 ) walls, respectively, fol-
lowing the convention displayed in Fig. 5. These values are 
binary whereby (e.g.) if W = 1 then the robot is touching 
the West wall and if S = 0 then the robot is not touching the 
South wall.

BHB is included in the robot behaviour through �������⃗Hbias (Equa-
tion 4) which has an x component of 1 when the robot has 
a box and 0 otherwise. It always has a y component of 0 
and this combination forms a locomotion effect towards the 
delivery area which is at the upper bound of the x axis, in 
the warehouse (convention given in Fig. 5).

(1)

[
X

Y

]

t+ts

=

[
Xt + Sp ∗ ts ∗ cos(H(t+ts),x

)

Yt + Sp ∗ ts ∗ sin(H(t+ts),y
)

]

(2)�����⃗Hr,b =
���⃗Hr +

�����⃗Hb = −
∑ [

dr,x
dr,y

]

<SR

−
∑ [

db,x
db,y

]

<SR

(3)�������⃗Hwall = 100 ∗

[
(W − E)

(S − N)

]
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Finally, the random walk is implemented using ���������⃗Hnoise 
(Equation  5) which selects a perturbation, p, of a ran-
dom number to add to the current heading, in the range 
−0.5rad ≤ p ≤ 0.5rad . This random perturbation has the 
biggest influence on the heading of the robot when there 
are no nearby obstacles and the robot does not have a box.

These heading vectors are then summed together using vec-
tor addition to form a final robot heading, see Equation 6.

When the robot arrives in the delivery area, a simulated sig-
nal is sent to it to drop the box as it crosses the boundary 
line. The box is then instantly removed from the warehouse 
space. The picking up and dropping of a box is simulated 
as being instantaneous because the mechanical design of 
the lifting mechanisms are beyond the scope of this project 
at this stage, although our designed robot is capable of fast 
pickup and drop off. Box handling differs for the Ordered 
and Unordered retrieval tasks. For the Unordered retrieval 
task, the robots do not drop their box unless they are in the 
delivery area. In the Ordered retrieval task, it was neces-
sary to change this control mechanism to avoid deadlock-
ing which occurred when all the robots are carrying boxes 
but none of them have the correct box in the sequence. To 
address this, a probability based reshuffling of the boxes is 
included in the algorithm for the Ordered task. In this task, 
if a robot has found a box but it is not the next box ID in 

(4)�������⃗Hbias =

[
1

0

]
otherwise

[
0

0

]

(5)���������⃗Hnoise =
����⃗Ht +

[
cos(p)

sin(p)

]
,−0.5rad ≤ p ≤ 0.5rad

(6)���������⃗Ht + ts
= ������⃗Hr,b +

����⃗Hw + ����������⃗Hnoise +
��������⃗Hbias

the sequence to be delivered then they pick it up (if they are 
free) and then each time step there is a probability, P = 0.03 , 
that they will drop the box. The robots keep record of the 
last two box IDs that they have held and put down so that 
they do not get into a loop of continually putting down and 
picking up the same box.

4  Results

4.1  Unordered retrieval

A heatmap for the time taken to complete the Unordered 
task is given in Fig. 1. It displays the average time taken on 
a colour scale for every number of robots in combination 
with a number of boxes.

The best performances for the Biased Heading Behaviour 
(BHB) are seen at larger swarm sizes. This is true across 
the different numbers of boxes tested. For example, it took 
50 robots 13.0 s to collect 10 boxes and 41.6 s to collect 50 
boxes. This is a significant improvement compared to using 
only a random walk algorithm, with no BHB which took a 
swarm of 50 robots 184.6 s to collect 10 boxes and 307.0 
s to collect 50 boxes. The worst performances for BHB are 
seen at low numbers of robots collecting high numbers of 
boxes, for example, it took 10 robots 173.4 s to collect 50 
boxes. This is an increase of 131.8 s compared to a swarm 
of 50 robots. Performances were improved for all numbers 
of boxes by increasing the swarm size. The same pattern of 
improvement in performance by increasing swarm size is not 
seen in the random walk algorithm for the same parameters. 
The times are higher across the range of parameters tested 
for the random walk algorithm, compared to the BHB. For 
example, the range of times seen for random walk is roughly 

Fig. 1  Heatmap displaying the average time taken to complete the 
Unordered retrieval task with and without Biased Heading Behav-
iour (BHB). The results are for each combination of 10 to 50 robots 

and boxes. The random walk results range from 100-420 s. The BHB 
results range from 15-175 s
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100-420 s compared to 15-170 s for BHB. This indicates 
that BHB improves the ability to collect boxes compared to 
a swarm using only random walk.

Figure 2 displays the delivery times for each of the 50 
boxes collected in the case where the swarm size was 50 
robots. These results show that, in the Unordered task, the 
time taken to collect boxes is not linear with the sequence 
number of boxes delivered. As the number of boxes left in 
the storage space decreases, the time taken between boxes 
collected increases exponentially. Most of the total time 
taken to complete the task occurs only for the last 10 boxes. 
For the random walker swarm, the mean time taken to col-
lect the first 40 boxes (100 s) is less than the mean time 
to collect the last 10 (200 s). With BHB, the total time is 
lower but the effect seen is similar. The total mean time 
taken was 50 s, with the last 10 boxes taking longer (33 s) to 

be delivered than the first 40 (17 s). There is a smaller range 
of performance values over the 10 trials when using BHB 
than without, displayed as the cloud around the mean time 
line. This means that the times seen over the 10 trials were 
more similar and consistent between boxes delivered with 
BHB than without. The biggest variation in time results for 
the BHB was 58 s from the minimum to maximum times 
(seen at box 50). This is compared to a variation of 382 s 
for the same parameters, without BHB (with 92 s being the 
second largest variation, seen at 49 boxes and 400 s being 
the largest at 50 boxes).

4.2  Ordered retrieval

The results shown in Fig. 3 give the average time taken 
to complete the Ordered task. The times overall are much 

Fig. 2  Performance profile for the Unordered task using 50 robots. 
The mean time taken is given by the solid line and the transpar-
ent cloud around this line displays the full range of results over the 

course of the 10 trials. Results with random walk have a scale 10x 
higher than results with Biased Heading Behaviour (BHB)

Fig. 3  Heatmap displaying the average time taken to complete the 
Ordered retrieval task. The results are for each combination of 10 to 
50 robots and boxes. Random walk results are from 400-4000 s and 

any above this limit are set to 4000 s. The Biased Heading Behaviour 
(BHB) results are from 70-800 s and any above are set to 800 s
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longer than the Unordered task as would be expected 
because the boxes cannot be delivered in parallel. The results 
that are above 4000 s (1.1 hr) for the random walk and above 
800 s (13.3 min) for BHB are set equal to the limit (4000 s 
or 800 s respectively) in Fig. 3 for clarity of communication 
of the results. Beyond these times the experiment is con-
sidered failed, compared to the rest of the results seen, as it 
took too long to complete the task. It took BHB much less 
time than the random walk algorithm to complete the task 
in every case tested. The performance of the BHB algorithm 
greatly improved above 15 robots, for every box number, 
with no results above the given limit of 800 s seen beyond 
this number of robots. The lowest time taken for the BHB 

was 68.8 s ( Nr = 47, Nb = 10). The lowest time taken for 
the random walk algorithm was 384.2 s ( Nr = 15, Nb = 10). 
To collect the highest number of boxes ( Nb = 50) it took the 
random walk algorithm a best time of 2614.0 s (43.5 min) 
using 13 robots, compared to 423.5 s (7.0 mins) using 50 
robots using BHB.

The performance profile in Fig. 4 displays the time taken 
to deliver each box in a sequence of 50 boxes, by a swarm 
of 50 robots, in 10 trials. The time taken for each box that 
is delivered is measured from the time that it was requested 
by the user. Box i is not requested by the user until box 
i − 1 has been delivered. The range of mean delivery times, 
without BHB, is approximately 20–160 s. This means that 

Fig. 4  Performance profile for the Ordered task with and without Biased Heading Behaviour (BHB). The mean time taken is given by the solid 
line and the transparent cloud displays the full range of results over 10 trials. Times without BHB have a scale 10x higher than results with BHB

Fig. 5  Bird’s eye view of the 2D simulation. A series of screenshots 
displaying the blocking behaviour seen at low robot numbers in com-
bination with high box numbers. The robot trajectory over time is 
shown to be inhibited by static boxes in a. until they are cleared by 

the other robots by b. The squares represent boxes to be delivered and 
the circles are the robots. The 500 cm x 500 cm square represents the 
walls. The dotted line indicates the edge of the delivery area from x = 
400 to 500 cm
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the amount of time expected to receive a requested box is 
quite variable. When BHB is included, the range of mean 
times seen is much smaller, reduced to approximately 3–18 
s. This decrease in variability shows that the BHB makes the 
swarm more consistent and reliable in their delivery time, 
making this approach a viable solution for storage applica-
tions. The largest time taken between subsequent boxes seen 
over the 10 trials is 42 s, compared to 525 s seen for random 
walk only.

5  Discussion

From observations of the simulated tasks it can be seen that 
higher numbers of robots find more boxes sooner. This con-
tributes to their faster completion times compared to low 
numbers of robots. When a small number of robots are col-
lecting many boxes (e.g. 10 robots collecting 50 boxes), the 
robots can be blocked in by surrounding boxes, and will 
then take a much longer time to clear them than when there 
are more robots. An example of this behaviour is shown in 
Fig. 5 where the robots are performing the Unordered task. 
The trajectory of a single robot with a box is shown, dem-
onstrating how it gets trapped in a corner by boxes until they 
are cleared by other robots in the swarm.

Results from the performance profiles (Figs. 2 and 4) 
show that the majority of the time taken is used to collect 
the final few boxes. The reason for this is due to the random 
nature of the robot motion which means that a proportion of 
the box retrievals will take a long time compared to the aver-
age. This effect is lessened with BHB because the delivery 
trajectory is more direct, leading only the collection time to 
rely on random walk. The performance was best when the 
controllers included BHB, compared to pure random walk. 
This did not complicate the control and only requires simple 
compass data to function. The performance in an Amazon 
warehouse is estimated1 to be 600 s (10 mins) to collect 50 
boxes when they are all requested at the same time (Unor-
dered retrieval). It is estimated [3] that Amazon would take 
45,000 s (12.5 hrs)2 to collect 50 boxes if the requests are 
given in a sequence (Ordered task). However the results can 
only be compared to Amazon warehouses and other auto-
mated warehouses with centralised systems qualitatively. 
This is because the differing distances travelled, speeds and 
inventory sizes. The aim of this qualitative analysis is to 
show how long a user would be willing to wait. The swarms 
proposed here are not designed to compete directly with such 
large warehouses. Instead, they are designed to fulfil an as 
yet unmet need for out-of-the-box retrieval systems. The use 

cases where this technology will be most useful are usu-
ally on a smaller scale, such as small retail, a food bank or 
a space station storage [2]. The time results for both tasks 
are reasonable and useful for these scenarios. Additionally, 
these use cases value low maintenance and re-usability as 
much as efficient times, both of which are advantages of 
the swarm system. Compared to similar centralised systems, 
the swarm shown here has greater usability out-of-the-box 
with minimal set up and no information required about the 
environment in order to retrieve items. The Biased Heading 
Behaviour in particular was a non-obvious, useful addition 
to the stochastic controller which reduced the variability and 
length of the times seen to collect all the boxes (Unordered 
task) and for each box collected in a sequence (Ordered 
task). Other simple clever navigation rules should also be 
explored to improve performance while keeping the con-
trol local to the robot. To this end, distributed situational 
awareness could further augment the local knowledge of the 
robot, by making best use of the sensory and computational 
power on board each robot [1]. Using a back of the envelope 
calculation it could be assumed that a perfect centralised 
system in our scenario would take 8 s to collect 50 boxes 
using 50 robots and 40 s using 10 robots. This is based on an 
Unordered task scenario where all robots start at the deposit 
area (x = 400 cm) and all boxes are against the opposite wall 
(the worst case initial positions). The robots would have to 
travel 400 cm to collect a box and 400 cm back to deliver 
them (centrally controlled, best paths planned), taking 8 s. 
If there are more boxes than robots then some would have 
to repeat the trip of 800 cm which would be an additional 8 
s each time. This is a perfect centralised case which would 
use navigation to move in a direct line in x and does not con-
sider collision avoidance effects. It took the BHB 41.6 s to 
collect 50 boxes with 50 robots which is a very similar per-
formance to the ideal 9 s considering the robots use random 
walk when searching for boxes with only direct return jour-
neys and include collision avoidance. In the case of 50 boxes 
using 10 robots, the BHB performance is 173.4 s which is 
still within the region of good performance compared to the 
perfect, centralised case of 40 s. Finally, to examine the per-
formance of the swarm in the real world, further testing will 
be done on board a new physical robot swarm for logistics 
being finalised at our laboratory.

6  Conclusions

Automated storage and retrieval technologies use multi-
agent systems to collect and deliver stock. This is often done 
on a large industrial scale but requires bespoke, expensive 
infrastructure and robust centralised control to work. Instead, 
there is a critical unmet need of smaller storage tasks that 
require out-of-the-box solutions with low setup time, and 

1 300 items per hour according to [15]
2 15 mins to deliver 1 item in Amazon warehouses [3]
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the ability to adapt and scale to the task at hand without any 
central control or infrastructure. In this paper we propose 
that swarm solutions offer these advantages. To demonstrate 
this, we show in simulation a swarm of robots in a 500 cm x 
500 cm storage space. The robots aim to pick up and deliver 
boxes to a delivery area for the user, at their request. Two 
tasks were considered, the first was for all of the boxes to 
be delivered in parallel and the second was for the boxes to 
be delivered one after the other in a given sequence. The 
Unordered task was completed in a reasonable time with 
only the random walker algorithm whereas the Ordered task 
time was too long to be useful. However, competitive perfor-
mance was achieved for both tasks using additional Biased 
Heading Behaviour. The BHB uses an on board compass to 
bias the robot heading in a given direction when it has a box. 
The rest of the robot behaviour was entirely stochastic and 
uncontrolled by the user or a centralised system. This should 
be investigated further as a cheap and easy solution for an 
out-of-the-box retrieval system using distributed controllers.
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