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A Comprehensive and Accurate Energy Model
for Arm’s Cortex-M0 Processor

Kyriakos Georgiou, Zbigniew Chamski, Kris Nikov, Kerstin Eder

University of Bristol, UK

Abstract. Energy modeling can enable energy-aware software develop-
ment and assist the developer in meeting an application’s energy budget.
Although many energy models for embedded processors exist, most do
not account for processor-specific configurations, neither are they suit-
able for static energy consumption estimation. This paper introduces a
comprehensive energy model for Arm’s Cortex-M0 processor, ready to
support energy-aware development of edge computing applications using
either profiling- or static-analysis-based energy consumption estimation.
The model accounts for the Frequency, PreFetch, and WaitState proces-
sor configurations which all have a significant impact on the execution
time and energy consumption of edge computing applications. All models
have a prediction error of less than 5%.

1 Introduction

One trillion new Internet of Things (IoT) devices is predicted to reach the market
by 2035 [ARM]. These devices would be generating an unprecedented amount of
data that would need to be pushed to the cloud for storing and processing [IDC].
Edge computing, however, has enabled a degree of processing at the data-source
that avoids the need for transmitting all collected data to the cloud. Although
this can significantly reduce response time and bandwidth requirements, it re-
sults in increased resource requirements from edge devices, such as processing
power and energy.

Typically, IoT devices are not part of a power grid but rather are scattered
in the environment and powered by limited energy sources, such as batteries
or energy harvesting. Thus, IoT devices are mostly based on small embedded
processors with a tiny energy footprint, such as the Arm Cortex-M0. This kind
of processor is inherently limited in processing power, making edge computing
challenging. Developers must apply extreme optimizations to trim down the
processing time, memory, and energy consumption of algorithms to enable their
execution on small embedded devices. A trending example of such optimization
is the streaming down of traditional machine learning algorithms to enable their
execution on tiny IoT devices [NS].

The burden now lies with the software engineers to develop edge computing
applications that can fit on the limited memory of the IoT embedded devices, ex-
ecute within reasonable timeframes, and run within the available energy budget.
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Balancing the resource usage of an IoT application is a challenging act and typ-
ically a manual trial-and-error process that costs significant development time.
Thus, practical methodologies that enable resource-aware software development
will significantly help to tackle the challenges associated with the development
of edge computing applications.

Execution time and code size are easy to measure and well understood by
the typical software developer. On the contrary, energy consumption information
is not readily accessible, and something most software developers never had to
account for. For edge computing, however, energy consumption feedback during
the applications’ development cycle is at least equally important as execution
time and code size. Even when the energy consumption is directly proportional
to time, energy consumption figures are still needed to ensure that the appli-
cation’s available energy budget is met [Eea16, GCAG+20, GBXdSE18]. Thus,
development tools need to enable such feedback [GdSE17].

Hardware measurements are the most accurate way of acquiring a program’s
energy consumption information, but they are not broadly supported by the
hardware vendors and not within the know-how of typical software developers.
Energy modelling and the integration of energy models into the development
toolchains can solve both of these issues [GdSE17]. Once an accurate energy
model has been developed for a particular platform, it can be integrated into a
toolchain to allow for energy estimations with each compilation.

The literature offers a plethora of energy consumption models for embedded
processors [PBH09, BCF11, KE15b, GKCE17, YJK+20]. For an energy model to
be useful to the software developer, it must be able to convey energy consumption
information at the source-code level. Thus, Instruction-Set-Architecture-based
(ISA) energy models [TMWT96] became the most popular because modeling at
the ISA level allows for attributing energy costs to software components, such
as ISA Control Flow Graph (CFG) basic blocks. Therefore, ISA-based energy
models can be utilized by compiler autotuning techniques to discover energy
targeted compiler optimizations [GCAG+20, GBXdSE18], and by static analysis
tools [GKCE17, GKE15] that estimate the energy consumption of programs.

Although ISA-based energy modeling approaches have benefits, extracting
such models is time-consuming and challenging. It requires devising often com-
plex energy measuring procedures to capture the energy consumption of each
instruction in the ISA. Typically, an instruction is executed in a tight loop
while measuring the power dissipated together with the execution time. For in-
structions that can not be measured within such a loop, for example, branch
instructions, regression analysis is needed to capture their energy consumption.

On the other hand, energy modeling using Performance Monitoring Coun-
ters (PMCs), also named event counters, is a simpler approach than ISA-level
modeling. It requires measuring the energy consumption of representative pro-
grams, collecting execution statistics from PMCs and then deducting energy
consumption coefficients for each counter via regression analysis [LEMC01].

This paper demonstrates how to build PMC-based models for multiple em-
bedded processor configurations. The models can be used to attribute energy
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costs to software components and facilitate both profiling-based and static-
analysis-based energy consumption estimation, similar to ISA-based models. Our
main contributions are:

1. Because many deeply embedded processors used for IoT devices, such as
the ARM Cortex-M0, do not support hardware PMCs, we customized an
open-source Instruction Set Simulator (ISS) of the Arm thumb ISA, namely
the Thumbulator [Thu], to produce accurate execution statistics needed for
a PMC-style energy model.

2. We identified a set of PMCs that are both statically predictable at ISA basic
block level, and at the same time offer a low energy consumption estimation
error (a Mean Absolute Percentage Error (MAPE) of less than 5%).

Only a few of the existing ISA models for deeply embedded processors are pa-
rameterized by hardware configurations, but only cover the processor’s frequency
and voltage [YJK+20]. Other processor configurations, such as instruction buffer
configurations, are equally important as they have a major impact on both the
execution time and the energy consumption of an embedded processor.

3. Thus, we enhanced Thumbulator to include such configurations for the STM-
32F0xx family of processors [STMb]. We tracked the use of the instruction
PreFetch buffer (ON/OFF) which aims at increasing the efficiency of in-
struction fetching, and the number of WaitStates (0/1) required to correctly
perform read operations from Flash memory [STMa]. Our energy models
include all the permitted combinations of the selected configurations for a
set of commonly used processor frequencies: 20, 24, and 48 MHz. These en-
ergy models allow software developers to select the configuration that will
meet their application’s energy consumption and execution time goals. They
can also potentially be used to assess the application’s risk of exposure to
side-channel attacks (see Section 2.3).

2 Energy Modeling Methodology

Counter Description

C1 Executed instructions (no Muls)

C2 Multiplication instructions - Muls

C3 Taken branches

C4 RAM data reads

C5 RAM writes

C6 Flash data reads

Table 1: Statically predictable PMCs for energy-modeling.
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Two sets of benchmarks were used for model characterization and validation.
First, the BEEBS benchmark suite [PHB13]; an open-source embedded-system
benchmark suite designed for exploring the performance and energy consumption
characteristics of embedded architectures. BEEBS supports the MAGEEC open-
source energy measurement framework [Mag]. The framework provides triggers
to start and end the measurements and a calibration factor for each benchmark.
This ensures that the benchmark is repeatedly executed in a loop until an ade-
quate sampling number is achieved, and thus, the measurements can be trusted.
76 out of the 88 BEEBS benchmarks have been used. The remaining twelve do
not fit in the available memory of our STM32F051 target chip. The second set
of benchmarks is based on an industrial edge computing application [Tea19a],
developed by Irida Labs [IRI]. The application uses a Convolutional Neural Net-
work (CNN) and implements a smart car-parking monitoring system that can
monitor, in real-time, a car parking lot with multiple parking slots to deter-
mine whether a slot is occupied or not. The different layers of the CNN, namely
convolutional, MaxPool, and Full-Connected, were isolated and configured with
different hyper-parameters and optimizations, resulting in 154 distinct bench-
marks [Tea19b]. The MAGEEC energy measurement framework was adapted to
support the CNN benchmarks. Overall, a total of 230 benchmarks were used
for the training and validation of our energy model. This number goes signif-
icantly beyond the average number of used benchmarks reported for existing
energy models of embedded processors, ranging between 10-20 benchmarks (see
[Ke15a], pages 22-23, Table 5.1).

Hardware Configuration Energy Consumption Model [nJ] MAPE [%] RESD [%]

[20, OFF, 0] E = 0.964258 × C1 + 1.652455 × C2 + 2.091986 × C3 + 1.109833 × C4 + 0.650563 × C5 + 0.633621 × C6 2.80 3.60

[20, OFF, 1] E = 1.282474 × C1 + 2.110668 × C2 + 2.191545 × C3 + 1.185609 × C4 + 0.416602 × C5 + 1.178991 × C6 2.97 3.60

[20, ON, 0] E = 1.003378 × C1 + 1.885309 × C2 + 1.802974 × C3 + 1.122833 × C4 + 0.849223 × C5 + 0.475831 × C6 2.86 3.53

[20, ON, 1] E = 0.895879 × C1 + 2.185851 × C2 + 2.001178 × C3 + 1.493364 × C4 + 1.076354 × C5 + 1.573758 × C6 3.68 4.61

[24, OFF, 0] E = 0.959172 × C1 + 1.888565 × C2 + 1.357556 × C3 + 1.089427 × C4 + 0.993145 × C5 + 0.562952 × C6 3.22 3.63

[24, OFF, 1] E = 1.178558 × C1 + 2.540429 × C2 + 2.042475 × C3 + 1.190892 × C4 + 0.979651 × C5 + 0.891088 × C6 3.16 3.90

[24, ON, 0] E = 0.985415 × C1 + 1.933276 × C2 + 1.448160 × C3 + 1.075671 × C4 + 1.011891 × C5 + 0.617510 × C6 3.36 3.88

[24, ON, 1] E = 0.883755 × C1 + 2.156046 × C2 + 1.633465 × C3 + 1.436556 × C4 + 1.152560 × C5 + 1.455166 × C6 4.15 5.02

[48, OFF, 1] E = 1.096677 × C1 + 2.364495 × C2 + 1.627854 × C3 + 1.173680 × C4 + 0.681475 × C5 + 0.652665 × C6 3.65 4.08

[48, ON, 1] E = 0.816331 × C1 + 2.014612 × C2 + 1.372157 × C3 + 1.402116 × C4 + 0.835035 × C5 + 1.250446 × C6 4.33 4.99

Table 2: Energy models for selected Cortex-M0 hardware configurations – Hard-
ware Config. Format: [Frequency (MHz), PreFetch (ON/OFF), WaitState (0/1)],
MAPE: Mean Absolute Percentage Error, and RESD: Relative Error Standard
Deviation

2.1 PMC-based Code-level Energy Modelling

PMC-based energy consumption estimation models are typically obtained via
multi-linear regression analysis, where coefficients, βx, are determined for each
counter, Cx, to predict the overall energy cost, i.e., E =

∑
x(βx × Cx) + α,

with α being the error term. The coefficients βx are the constants in the energy
model that are program independent while the counters Cx are the variables
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that depend on the program and its input. For a specific program with known
counters, the energy model can be used to estimate the energy consumed during
the program’s execution.

For static-analysis-based energy consumption estimation, the overall energy
consumption estimate of a piece of code is typically constructed from the esti-
mates of the ISA basic blocks of the program [GKCE17]. Thus, a PMC-based
energy model can enable energy consumption estimation via static analysis only
if the counters used for the modeling and prediction can be statically predicted
at the ISA basic block level.

2.2 Collection of Cortex-M0 Event Counters

Traditionally, there are two ways to collect execution statistics for an architec-
ture. One is to collect them directly via PMCs while executing a program on the
actual architecture, provided it offers PMCs. For architectures without PMCs,
the second way is via an ISS, preferably cycle-accurate. The ISS simulates the
execution of a program for a specific architecture, and thus, it can collect PMCs.
Since the Cortex-M0 is a deeply embedded architecture with minimal resources
available on-chip, it does not expose any PMCs. Thus, we modified an open-
source ISS, namely Thumbulator [Thu], to extract the necessary event coun-
ters for our energy consumption modelling. The modifications wrt. the reference
Thumbulator implementation [Thu] included four key aspects:

– Adaptation to reflect the memory organisation of the STM32F0xx processor
family;

– Introduction of a model of the instruction fetch mechanism used in the
STM32F0xx processors;

– Implementation of a range of event counters and the associated reporting
mechanism;

– Calibration and improvement of the timing behaviour of the simulation to
match the hardware’s behaviour.

The modified simulator can be used to simulate any of the processors in the
STM32F0xx family [STMb] and can collect a large number of event counters
that represent various aspects of the architecture’s runtime behaviour such as the
effective RAM and Flash memory accesses, taken branches, per-opcode instruc-
tion execution statistics, and interactions between instruction- and data-related
memory accesses. The timing behaviour validation of the modified Thumbulator

against the actual hardware, using all the benchmarks, exposed a correctness
bug in the implementation of the ASR instruction in the original Thumbulator
code and identified a case of incorrect memory access counting. Both problems
have been fixed in the version used to build the final energy model. The exe-
cution time model derived from event counts reported by Thumbulator is fully
cycle-accurate wrt. hardware execution when the instruction PreFetch buffer is
disabled or the WaitState count is 0. When the PreFetch buffer is enabled and
the WaitState count is 1, the MAPE of the Thumbulator-based timing prediction
is 1.55%.
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Using the available architecture documentation and a series of modeling cy-
cles, we constrained the number of event counters used for the modeling to the
set of the counters that have the most significant impact on the energy consump-
tion and are suitable for static analysis. These counters also yield the highest
observed estimation accuracy compared to physical measurements when com-
pared with the retrieved estimations of other event counter combinations. The
selected counters are shown in Table 1.

2.3 Model Training and Validation

Both the BEEBS and CNN-based benchmarks have been compiled into two
kinds of binaries. First, the benchmarks have been compiled for the STM32F0-
DISCOVERY board in order to conduct energy consumption measurements.
The hardware measured energy consumption of the programs provide the data
for the dependent variables of our regression analysis. Second, the benchmarks
have been compiled for the modified Thumbulator ISS in order to derive events
counter values. The counter values provide the data for the independent vari-
ables of our regression analysis. The two sets of binaries are required because
the simulator does not fully handle access to off-core peripherals, e.g., PLL clock
generators; these should be skipped in Thumbulator binaries. However, the same
location and alignment of benchmark code for both types of binaries was main-
tained.

Fig. 1: Relative costs associated with events used in the energy model at distinct
processor configurations.

When using regression modelling, it is critical to include as broad and repre-
sentative a training sample as possible in the training phase. This ensures that
the model is as generic as possible and can capture a large part of the space
being modeled. Thus, instead of splitting our data into predefined training and
testing sets, we included all data into the training, and we used k-fold cross-
validation to ensure the retrieved models avoid overfitting and selection bias. If
the cross-validation demonstrates a good estimation accuracy across all folds,
then the final model using all the available data will exhibit a balanced variance
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and bias. Thus, the model will have a good chance of accurately capturing a big
part of the space being modeled. In our case, we used 10-fold cross-validation
and we used the R2 to evaluate the performance of each of the ten models for
each of the modelling configuration, shown in Table 2 under column Hardware
Configuration. An R2 value close to 1 demonstrates an excellent prediction. The
10-fold cross-validation yielded an R2 mean value of close to 0.99 for all config-
urations, with a standard deviation of around 0.2%. This is a robust result as
the R2 score approaches the value of one across all the different folds, demon-
strating that the counters selected for the model are accurately capturing the
energy consumption of a variety of programs. Thus, for the final model, all the
data points were used for training.

Energy models for the different hardware configurations and their accuracy
are listed in Table 2. For all models the MAPE is less than 5%, with a standard
deviation of less than 5%, compared to hardware energy measurements. An early
version of the model, configured for 20 MHz frequency, PreFetch on, and Wait-
State 1 was evaluated in the context of static energy consumption estimation
in [Tea19b] demonstrating the suitability of our models for static analysis.

2.4 Potential Use-Case in Cyber Attacks

A comparative analysis of energy model coefficients extracted at distinct proces-
sor configurations (see Figure 1) shows significant variation in relative weights of
the different events across the hardware configurations. It follows that by com-
paring the energy consumption of the processor at distinct frequency, PreFetch,
and WaitState settings and by applying statistical model fitting techniques, an
observer can potentially predict the proportion of each event in the program.
Subsequently, the observer will also be able to predict the type of processing
being performed (e.g., data- vs. control-centric). By increasing the time resolu-
tion of analysis (narrowing the observed time window), the observer could also
identify distinct program execution phases. From a security standpoint, such in-
formation leakage forms a potential side-channel for attacks. These attacks can
be directed against the secret information contained in the program code (e.g.,
encryption keys or ciphering algorithms) or against the data being processed,
e.g., in autonomous medical diagnostics devices.

3 Conclusion and future work

This paper offers an open-source, ready-to-use energy model for the Arm Cortex-
M0 processor. The model can be used for profiling-based analysis to estimate
the actual energy consumption, and in static analysis to estimate the energy
consumed by the worst-case execution path of an edge-computing application.
Furthermore, the model accounts for the frequency and the flash instruction-
buffer configurations of the processor that can significantly affect the execution
time and energy consumption of an application, namely, PreFetch, and Wait-
State instruction-buffer configurations. Our customized open-source ISS is also
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readily available to profile the execution time and energy consumption of edge
computing applications for any of the STM32F0xx family of processors. This al-
lows developers to choose the hardware configuration that can meet the resource
requirements. Preliminary analysis indicates that our models can be exploited
for side-channel attacks to reveal information about the type of application and
the processing an application performs. Future work will test these observations.
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