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Abstract—Online social network platforms have a problem
with misinformation. One popular way of addressing this prob-
lem is via the use of machine learning based automated misinfor-
mation detection systems to classify if a post is misinformation.
Instead of post hoc detection, we propose to predict if a user will
engage with misinformation in advance and design an effective
graph neural network classifier based on ego-graphs for this
task. However, social networks are highly dynamic, reflecting
continual changes in user behaviour, as well as the content being
posted. This is problematic for machine learning models which
are typically trained on a static training dataset, and can thus
become outdated when the social network changes. Inspired by
the success of continual learning on such problems, we propose an
ego-graphs replay strategy in continual learning (EgoCL) using
graph neural networks to effectively address this issue. We have
evaluated the performance of our method on user engagement
with misinformation on two Twitter datasets across nineteen
misinformation and conspiracy topics. Our experimental results
show that our approach EgoCL has better performance in terms
of predictive accuracy and computational resources than the state
of the art.

Index Terms—Continual Learning; Graph Neural Networks;
Social Networks; Misinformation

I. INTRODUCTION

It is widely believed that the prevalence of misinformation,
disinformation and conspiracy theories on online social net-
works is having profound negative effects on society [1].
Sometimes known as ‘fake news’, dealing with this increasing
amount of misinformation is a huge challenge, and numer-
ous automated misinformation detection systems have been
proposed. The variety of methods reflects the diversity in the
way misinformation manifests online. While some approaches
focus solely on the content, for example, the text of a tweet on
Twitter [2], others adapt approaches where the social context
of the misinformation is taken into account [3, 4, 1] and
misinformation is predicted based on the network structure.
However, most systems are concerned with the prediction of
whether an existing post online is misinformation. Instead,
we take a new approach, where we seek to predict whether a
user will engage with misinformation (e.g., post, retweet, like,
comment). This is a foundational step in developing systems
that not only can detect misinformation, but also intervene.

Graph machine learning approaches involving online social
networks typically represent users as nodes in the graph,
with edges representing certain types of relationships between
users. A graph is usually represented as an adjacency matrix

in which each element indicates whether the node pair is
connected. Typical tasks using this representation include node
classification [5, 6] and link prediction [7]. Recently, graph
neural networks (GNNs) [8] have been shown to be effective
in such graph machine learning tasks.

Ego-graphs, also called ego-networks, are an alternative
representation, where nodes are composed of a single central
node (ego) and the neighbours of that node. In general, ego-
graphs focus more on the relevant user instead of studying
the network as a whole, instead of studying the network as a
whole. For tasks where the objective is to predict the behaviour
of a user, this is an appealing formulation. Thus, in this work,
we combine ego-graphs with graph neural networks in our
approach to demonstrate how it can effectively predict whether
a user will engage with misinformation based on their own
ego-graph.

However, as online social networks are continuously chang-
ing by, for example, reacting to major events (e.g., elections,
pandemics), the performance of a static model is expected to
decay over time. At the same time, the social network structure
and attributes can also change rapidly in a short period of time.
In terms of graph representation of social networks, this is
reflected with simple changes such as the addition or removal
of edges and nodes, but potentially also with more complex
high-level changes, such as changes to node attributes. A
naive approach is to simply retrain the model on an updated
training dataset but this has several drawbacks, which are often
addressed by online learning [9]. In online learning, the model
can be updated incrementally with each new data point without
having to (re-)train on the entire dataset at once. However,
without care, deep neural network based online learners tend to
suffer from a problem known as catastrophic forgetting when
learning new tasks, where previous knowledge is forgotten in
the process of learning new knowledge.

Continual learning [10, 11, 12] has been proposed as an
approach to obtain models which can continuously adapt
to new data and tasks, without suffering from catastrophic
forgetting. The aim of continual learning is to learn tasks
sequentially, with two general goals: (1) learning a new task
without leading to catastrophic forgetting of former tasks,
(2) leveraging knowledge from prior tasks to facilitate the
learning of new tasks. As a category of continual learning
methods, experience replay has proven effective in many
research areas [12, 13]



The existing experience replay based on graph neural net-
works [12, 11] have focused on the node replay strategy, which
does not fully capture the neighbourhood information. In order
to overcome this limitation, we first propose an ego-graph
based replay strategy in graph neural networks for continual
learning, called ego-graph replay, which can provide sufficient
neighborhood information during replay. We then demonstrate
the effectiveness of our proposed approach for misinformation
engagement prediction in dynamic social networks. We show
that our proposed novel ego-graph based experience replay
strategy in continual learning is able to adapt to different types
of misinformation and accurately predict user engagement
with nineteen misinformation and conspiracy theories.

a) Contributions: Firstly, we provide a new formulation
of the problem to facilitate future interventions on misinfor-
mation where the objective is to predict whether users will
engage with misinformation. Secondly, using this formulation,
we demonstrate how an ego-graph based graph neural network
can accurately predict whether users will engage with nineteen
categories of misinformation and conspiracy theories across
two different datasets. Further, we reveal how this model
could suffer from catastrophic forgetting when exposed to the
dynamic nature of online social networks and misinforma-
tion. Finally, to address this we propose a novel ego-graph
based experience replay approach using GNNs (EgoCL) that
can effectively address this issue, and show how our novel
approach out-performs the state of the art on two different
Twitter datasets.

II. RELATED WORK

a) Graph Neural Networks: Graph neural networks
(GNNs) have rapidly grown to become a popular research
area and have been used in supervised and unsupervised tasks,
such as node and graph classification, graph generation and
clustering. For the node classification problem, supervised
GNNs have shown impressive levels of performance, such as
GCN [5] and GAT [6].

b) Social Networks and Ego-graphs: Since ego-graphs
(ego-networks) can provide locality-sensitive information, they
are widely used in social network analysis, such as community
detection [14] and social influence prediction [15, 16, 17].
Some of the research focuses on the ego-graph itself. In
[18] the ego-graph is layered into different circles and used
for information diffusion. In [19] differences in sizes and
structures of the Twitter ego-networks are analysed when the
users have strong connections.

c) Continual Learning: One line of continual learning
focuses on regularization-based strategies. The regularization
is introduced to maintain the stability of the model parameters
that make contributions to the previous tasks, so that the
trained model does not forget knowledge from previous tasks
when learning new tasks. Examples include EWC [10] and
GCL [20]. Another line of research focuses on experience
replay strategies [21]. Replay-based methods use limited data
from the previous tasks or have a generator to simulate data

from the previous tasks as part of the input to the current task,
such as ER-GNN [12] and GEM [13].

d) Misinformation Detection: Misinformation detection
on social networks has already attracted a lot of attention in
the research community. The key difference in our research is
that we propose to predict whether a user will engage with
misinformation, while previous research mostly focuses on
the detection of misinformation itself. In the misinformation
detection work, graph structures have been used successfully
in BiGCN [4] and GCNFN [1], with both using the GCNs
to detect the misinformation spreading patterns. In UPFD [3],
various user preferences have been captured simultaneously
by joint content and graph modelling. Continual learning has
also been used in misinformation detection by GNN-CL [22]
where they utilize the GEM [13] and EWC [10] to detect ‘fake
news’ in a continual learning setting.

III. PREDICTING USER ENGAGEMENT WITH
MISINFORMATION

In this section, we first formulate our problem of predicting
if a user will engage with misinformation. We then describe
how social network data can be processed such that it can
be used within this formulation. Finally, we will describe our
proposed ego-graph based graph neural network classifier for
this problem.

A. Problem Definition

Let G = (V,E) be a graph which consists of a set of nodes
V and a set of edges E, where E ∈ V ×V . A social network
can be represented by a graph G, where V represents users and
E is the set of edges representing how the users are connected.
As an input to the graph neural network, a graph can also be
represented as G = (A,X), where A|V |×|V | ∈ {0, 1} is the
adjacency matrix and X|V |×d is the d-dimensional matrix of
node features which can be customized for specific problems.

Users in social networks perform social actions, such as
posting a tweet, retweeting an existing tweet. We call a social
action that results in the user acting on misinformation a
misinformation action.

Definition 1: Misinformation Actor: A user v is called a
misinformation actor when the user has performed a misin-
formation action; otherwise v is called a non-misinformation
actor. sv ∈ {0, 1} is the label of user v, where sv = 1 indicates
the user has performed the misinformation action and sv = 0
indicates otherwise.
Given a social network, we aim to build a classifier that is
able to predict whether each user in the network will engage
in a misinformation action and hence will be identified as a
misinformation actor.

Problem 1: Misinformation Engagement Prediction:
Given a social network G for a specific type of misinformation,
the misinformation engagement prediction problem is formu-
lated as a binary node classification problem which predicts
S = {sv : v ∈ V } by learning a classifier on G.



B. Data Processing

In this subsection, we introduce how we process two
datasets into a set of social networks related to different types
of misinformation.

Given the dynamic nature of a social network and misin-
formation on the network, instead of using a single graph
representing the entire social network, we extract a set of
social networks related to different types of misinformation
and conspiracy theories. This way, we are able to analyze and
evaluate whether the properties of these networks are different,
and if a model trained on one network performs well on others.

1) Hashtag Dataset: For the first dataset, we collected
540,042 raw tweets from Twitter. Given the prevalence of mis-
information around COVID-19, we extract tweets mentioning
COVID-19 and a number of hashtags related to different types
of misinformation and conspiracy theories. The list of hashtags
used is shown in Table I.

In order to build a social network (and then ego-graphs),
we extracted the mention relationships from these tweets. On
Twitter, a mention is a specific action a user can take where
they reference other Twitter users in their tweets. A tweet
could be an original post, a retweet, or a retweet with a quote.
If there exists such a relationship between two users in a tweet,
we add an edge between this pair of users in the graph.

Given the collected data including ten types of misinforma-
tion and conspiracy theories (we call them ten misinformation
topics for short), we extract a sub-graph for each misinfor-
mation topic to study misinformation engagement prediction
under each misinformation topic.

As each hashtag sub-graph has heavy class imbalance
towards misinformation in that sub-graph (i.e., in the network
around each topic, many users are misinformation actors),
we augment each misinformation hashtag sub-graph with
10,000 additional mention relationships from the much broader
COVID-19 mention graph in order to make the task more
realistic. For each of the hashtags, the 10,000 additional men-
tion relationships have no overlap with the existing mention
relationships under the hashtag. We choose a certain number of
additional relationships instead of a certain proportion as this
ensures that the proportion of positive labels for each hashtag
is as different as possible to reflect more realistic online social
networks.

Secondly, for each user in the graph we also extract the
user’s follower count, following count, tweet count and listed
count as node features. For each node, we assign a label
1 or 0 depending on whether the user posted, retweeted
(including with a comment), or replied with a hashtag related
to misinformation. The statistics of the 10 extracted graphs are
shown in the Table I.

2) MuMiN Dataset: In the first dataset, we identified tweets
related to different types of misinformation using the known
hashtags, that while useful, is a rather coarse measure. In order
to address this, we use a recent dataset, known as the MuMiN
dataset [23]1, which connects tweets to fact-checked claims

1We used the version 0.1.4

on a broad range of topics. Using this dataset, we process
the data in a similar way, with one significant difference.
In this dataset we aim to predict not only if a user is a
misinformation actor, but also if they are a misinformation
actor within a specific topic of misinformation. Therefore,
for each topic, we will add additional users into the graph
who have engaged with other misinformation topics outside
of those included in the tasks. This allows us to study not
only if we can detect misinformation actors, but also if we
can detect misinformation actors for a specific misinformation
topic. We end up with a further nine misinformation topics to
study, which are shown in Table II and we will refer to our
processed version as MuMiN-mentions.

TABLE I
THE STATISTICS OF THE HASHTAG DATASET. THE COLUMNS REPRESENT

THE NAMES OF THE HASHTAGS, NUMBERS OF NODES, NUMBERS OF
LINKS, AVERAGE DEGREE AND PERCENTAGE OF POSITIVE LABELS.

Hashtags Nodes Links Degree Pos. Labels(%)
plandemic 31,464 42,609 2.708 62.89
darktolight 8,207 12,125 2.954 9.18
wwg1wga 20,118 37,680 3.745 36.25
scamdemic 13,787 18,030 2.615 20.73
greatreset 14,366 18,989 2.643 27.32
thegreatreset 12,207 17,655 2.892 22.14
greatawakening 10,964 14,385 2.624 18.25
agenda2030 31,604 62,552 3.958 33.37
agenda21 8,292 13,090 3.157 9.03
chinesevirus 19,781 32,341 3.269 34.89

TABLE II
THE STATISTICS OF THE MUMIN-MENTIONS GRAPHS: THE COLUMNS ARE
THE SAME AS IN TABLE I, EXCEPT THAT THE FIRST COLUMN REPRESENTS

TOPICS.

Topics Nodes Links Degree Pos. Labels(%)
violence police 11,179 15,963 2.855 3.92
military reports 13,257 18,421 2.779 3.18
narendra modi 7,290 13,238 3.631 3.38
reduce population 16,197 22,033 2.720 3.00
fires australia 20,195 26,954 2.669 3.08
biden said 15,695 20,828 2.654 3.61
wisconsin voted 10267 13749 2.678 5.19
martian sunset 11366 13715 2.413 2.74
syrian air defense 23682 32651 2.76 3.55

C. Misinformation Engagement Prediction

In this section we describe the proposed system, and its
variants that are evaluated, for the problem of predicting
misinformation engagement on social networks.

1) Graph Neural Network: We will first describe the GNN
used to predict misinformation engagement.

a) Input layer: The input layer of the GNN has a fea-
ture vector for each node representing a 64-dimensional pre-
trained DeepWalk embedding with additional node features,
specifically, following count, follower count, tweet count and
list count (list count was not available in the MuMiN dataset).

b) GNN layer(s): While there is no restriction on the
GNNs architecture we could use, we will experiment with a
common approach. A GNN model is defined as a function



f(X,A), where X is the node feature matrix of the adjacency
matrix A. For the node classification task, we will use a graph
attention network (GAT) [6]. The (l + 1)

th hidden GNN layer
H can be defined as:

H(l+1) = σ(ÃH(l)W (l)), (1)

where σ(·) denotes an activation function, W (l) is the weight
matrix and Ã is the adjacency matrix that defines the aggre-
gation strategy from neighbors. The input layer H(0) = X . In
our experiments we use a GAT and the element αij ∈ Ã in a
GAT layer is computed as:

eij = attn(W (l)hi,W
(l)hj), (2)

αij = softmaxj(eij) =
Exp(eij)∑

k∈Ni
Exp(eik)

, (3)

where hi, hj ∈ H(l) and the attention function attn is
instantiated with a dot product and a LeakyReLU [24] non-
linearity.

c) Output layer: The output layer will be activated by
the log-softmax function which will output a two-dimensional
vector for each user. We compare the vectors of the users
with the ground truth set Y , and then optimize the negative
log-likelihood loss.

2) Ego-Graphs: Inspired by DeepInf [15], we extract ego-
graphs from each graph, but experiment with two different
ego-graph extraction strategies. An ego-graph [25] is typically
the graph of all nodes that are within a certain distance from
a node, which means ego-graphs have the same radius length
but different graph sizes. However, for GNN-based mini-batch
training, it is more convenient if input graphs are of the same
size, so we propose two extraction strategies for building fixed-
size ego-graphs.

a) Breadth-first search (BFS): Breadth-first search (BFS)
is a search strategy which starts from a node in the graph,
finds all the adjacent nodes to that node, and then finds all the
adjacent nodes of each adjacent node in turn, and so on. For
each social network G, we use BFS to extract the ego-graph
of each node with a fixed ego-graph size n, instead of a fixed
distance. In this way, we can ensure the nearest n − 1 nodes
to the central node are added to the ego-graph.

b) Random walk with restart (RWR): Random walk with
restart (RWR) randomly samples several different paths from
an initial node through a network with a fixed walk length. We
use RWR to extract the ego-graph of each node and ensure
each ego-graph will have the same radius length, but we note
that this does not ensure the nearest nodes have been added.

If during the BFS or RWR ego-graph extraction process we
cannot find enough neighbour nodes to build ego-graphs, we
add some dummy nodes (to make up to ego-graph size) and
add 0 to indicate relationships between the ego node and these
dummy nodes.

D. Evaluation

We use the Hashtag dataset and MuMiN-mentions dataset
described in Section III-B to evaluate the proposed ego-graph

based approach to classify whether users are misinformation
actors. For comparison, we compare this approach with a
standard GAT, which does not make use of ego-graphs. The
results are shown in Table III and Table IV . For both the
GAT and ego-graphs based GATs, we divide the dataset into
75%, 12.5%, and 12.5% splits for training, validation and
test sets respectively. We use two layer GATs with each
layer containing 128 hidden units with 8 attention heads. The
learning rate is 0.01 and the number of training epochs is set
as 100. For both BFS and RWR, the ego-graph size is set as
50.

As shown in Table III, we can see the ego-graph GAT model
with the BFS strategy has the best performance on most types
of misinformation in the Hashtag dataset where it achieves
better performance in 7 of 10 hashtags. In the second dataset,
as shown in Table IV, we can see that ego-graph based
methods exhibit excellent results compared to a regular GAT.
In the MuMiN dataset we are addressing a more challenging
problem, not only the prediction of whether a user is involved
in misinformation, but also if they are involved in a specific
type of misinformation. In this task, Ego-BFS again works
very well.

TABLE III
THE PERFORMANCE OF GATS FRAMEWORK AND EGO-GRAPHS GATS

BASED FRAMEWORK ON HASHTAG DATASET.

Hashtags GAT Ego-RWR Ego-BFS
scamdemic 0.7578 0.7659 0.7951
wwg1wga 0.8173 0.8829 0.8893
agenda21 0.7492 0.6435 0.7911
greatawakening 0.7331 0.6526 0.7668
plandemic 0.8635 0.9050 0.9161
thegreatreset 0.7979 0.7414 0.7838
greatreset 0.7557 0.6880 0.7287
chinesevirus 0.764 0.8219 0.8361
darktolight 0.8414 0.6799 0.8321
agenda2030 0.7413 0.8036 0.8292

TABLE IV
THE PERFORMANCE OF GATS FRAMEWORK AND EGO-GRAPHS GATS

BASED FRAMEWORK ON MUMIN-MENTIONS DATASET.

Topics GAT Ego-RWR Ego-BFS
violence police 0.6198 0.7663 0.8426
military reports 0.6667 0.7267 0.8783
narendra modi 0.6967 0.8151 0.9825
reduce population 0.6422 0.7336 0.8524
fires australia 0.6668 0.8810 0.9289
biden said 0.6371 0.8845 0.8802
wisconsin voted 0.6188 0.7763 0.8433
martian sunset 0.6269 0.9523 0.9304
syrian air defense 0.6250 0.8575 0.9085

IV. CONTINUAL MISINFORMATION ENGAGEMENT
PREDICTION

While these results are promising and show the effectiveness
of an ego-graph based approach for the task, the static setting
in which we evaluated the systems are not reflective of the
previously discussed dynamic and evolving nature of social



networks and misinformation topics. In order to verify this,
we will simulate the emergence of different misinformation
topics, incrementally training each of the deep neural networks
on the topics as they emerge.

We adapt the Hashtag and MuMiN-mentions datasets
for this setting. We first create a series of graphs G =
{G1, G2, ..., GN} corresponding to a series of tasks T =
{T 1, T 2, ..., TN} which are encountered sequentially. The
prediction problem is defined as:

Problem 2: Incremental Misinformation Engagement
Prediction For each task T i, where i = 1, 2, ..., N , we have
the social network Gi. Misinformation engagement prediction
is a binary node classification problem which aims to predict
Si = {siv : v ∈ V i} by learning a classifier Ci by
incrementally training Ci−1 on Gi.

When a model has been trained on task T i, we will use
all of the previous tasks from T 1 to T i−1 as the test sets,
and measure the Area Under Curve (AUC). Specifically, we
are interested in understanding if the model is able to retain
performance on previous misinformation topics (tasks) as it
is trained on a new topic of misinformation. We calculate the
average AUC over 10 runs and show the results in Figure 1.
In the figure, ‘fully retrained’ describes a model retrained on
all of the data so far. The ‘incrementally trained’ model is
trained in an online manner, without retraining on previous
data. From this it is clear that the model that is incrementally
trained suffers from a drop in performance as soon as it is
incrementally trained on a new task. The same problem exists
for the proposed ego-graph approaches.

Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9Task100.4
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Fig. 1. The catastrophic forgetting in GAT, ego-graphs (BFS) GAT, and ego-
graphs (RWR) GAT on Hashtag dataset. The incrementally trained models
are in green while fully retrained models in red.

This is an example of catastrophic forgetting [26] which
refers to the tendency that a model ‘forgets’ previously learned
knowledge upon learning new knowledge. The most intuitive
cause of catastrophic forgetting is that model parameters tend
to adapt towards fitting new data from a new task and thus
deviate from optimal values of previously learned tasks. A
common approach to deal with this issue is continual learning.

In the setting of continual learning, the objective is to
continually train a classifier that can effectively learn a series
of tasks T instead of only an individual task typical in
traditional settings. For each new task T i, the input data
contains not only the data for the new task but also some replay

data from the previous tasks. For example, the misinformation
content in a previous task may be the #chinesevirus, whilst the
current task could be about #thegreatreset. Due to the inherent
constraint in continual learning that once the learning of a
task is completed, the full dataset from this task is no longer
available, methods need some measure to ensure that what
is subsequently learned does not negatively impact what was
previously learned.

A. Ego-graphs replay: EgoCL

In order to deal with the catastrophic forgetting in continual
misinformation engagement prediction, we propose our novel
framework EgoCL based on the ego-graph replay strategy.
The framework is shown in Figure 2.

Input

Task: 
𝑇1

Ego-graphs GNN Layers

Task: 
𝑇2

Replay 

Task: 
𝑇𝑛

… Replay 

Prediction

Fig. 2. The EgoCL framework. For each task, ego-graphs will be extracted
from the entire input graph and then combined with the replay samples from
the previous tasks as input to the GNNs.

Algorithm 1 EgoCL
Input: The processed graph Gi of each continual task T i with

features; sample rate r; ego-graph size n.
Output: Model which can mitigate catastrophic forgetting of

preceding tasks.
1: Initial empty replay set Rs;
2: Initial GNN model;
3: Train:
4: for task T i, i = 1...N do
5: Sample the size n ego-graphs Gi

ego from Gi

6: Train model by the combined set Gi
ego ∪Rs ;

7: Randomly select samples Ri
s from Gi

ego according to
r ∗ |Gi

ego|;
8: Rs = Rs ∪Ri

s;
9: end for

a) Ego-graph replay: For the current learning task, the
input data will be extended to include sample ego-graphs
extracted from the previous tasks randomly. The process is
shown in Algorithm 1:

B. Experimental Evaluation

1) Experiment Setup: Our experimental evaluation aims to
evaluate two important aspects of our proposed method. We



would first like to measure the effectiveness of the proposed
continual learning strategy by comparing its performance with
the non-continual learning models discussed in Section III-C.
Specifically, we will compare with a graph attention network
(GAT), BFS ego-graph based GAT (Ego-BFS-GAT) and RWR
ego-graph based GAT (Ego-RWR-GAT).

Secondly, we would also like to compare the effectiveness
of the proposed ego-graphs based experience replay with other
previously proposed continual learning strategies.
• Node replay: Random node replay is in general used as a

baseline in graph continual learning research [12, 11].
We introduce the experience replay strategy into the
implementation of the GATs framework with a random
node selection scheme. For each task T i, we randomly
select r ∗ |Gi| replay nodes, where r is the sample rate
and |Gi| is the number of nodes in graph Gi.

• EWC: Elastic weight consolidation [10] is an importance-
based weight regularization continual learning method
that can reduce catastrophic forgetting by strengthening
the restriction for the important parameters in previous
tasks.

• ER-GAT-MF: This [12] is a continual learning GNN with
an experience replay-based method which replays nodes
closest to the average feature vector calculated by ‘Mean
of Feature’. In our experiments, we use a GAT as the
GNN layers in ER-GNN-MF.

Thirdly, to demonstrate the scalability of EgoCL with other
GNNs, we tested EgoCL by using GCN [5] as the classifica-
tion network.

The performance is evaluated with two metrics, the average
AUC score (Equation 4) as well as the average forgetting
(FGT) of each model (Equation 5). The average AUC score
measures the model classification performance in which the
higher the AUC is, the better the model’s performance. The av-
erage FGT measures the catastrophic forgetting phenomenon
of the model and the lower the FGT is, the better the model’s
ability in dealing with forgetting.

1

N

N∑
i=1

AUCN,i (4)

1

N − 1

N−1∑
i=1

(AUCi,i −AUCN,i) (5)

where AUCi,j denotes the test AUC score on task T j after
the model has finished task T i training.

The baseline methods and our methods are all based on
2 layer GAT models where each layer contains 128 hidden
units with 8 attention heads. The learning rate is 0.01 with
1e−3 decay rate and trained for 100 epochs. For all replay-
based methods, the replay rate r (in algorithm 1) is set as 0.1.
The ego-graph size is 50.

2) Experimental Results: The experimental results are
shown in Table V. For both datasets and tasks, our proposed
continual learning ego-graph neural networks, EgoCL-BFS
and EgoCL-RWR, show better performance over most of the

baselines in term of AUC. Further, when we compare our
two proposed methods, EgoCL-RWR performs slightly worse
than EgoCL-BFS. We think that this is because the nearest
neighbours of a user provide the most information for this
task, which BFS specifically captures, while RWR does not.

Comparing the performance of GCN- and GAT-based
EgoCL methods, GCN-based achieves the best results, but
GAT-based EgoCL is very close and not much worse. GCN
computes its hidden representation by taking an unweighted
average over its neighbours’ representations and the attention
mechanism of GAT does not play an effect. This indicates that
under a certain misinformation contexts, for an ego-node, there
is no single neighbour node that is particularly important.

3) Hyper-parameters Analysis: We also analyze the hyper-
parameters to test the robustness of our proposed methods. We
compare with the values of the hyper-parameters mentioned in
Section IV-B1 unless stated otherwise,and we use GATs as the
GNN-classifier.

a) Replay rate: We use different replay rates of 0.01,
0.05, 0.1, 0.2 and 0.3 to evaluate the performance of our
proposed ego-graph based experience replay. The results are
shown in Figure 3. We can observe a slow increase in AUC
and decrease of the average FGT performance when we use a
higher replay rate. This is expected as when we increase the
replay rate, we are replaying more data from previous tasks
during the current task. A replay rate of 1 would be equivalent
to fully retraining the model at each task. However, we can
see that with low replay rates it is possible to achieve a high
AUC and low forgetting rate, with higher replay rates resulting
in only marginal improvements.
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(a) EgoCL-BFS-GAT on the Hashtag
dataset.
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(b) EgoCL-RWR-GAT on the Hash-
tag dataset.
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(c) EgoCL-BFS-GAT on the
MuMiN-mentions dataset.
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(d) EgoCL-RWR-GAT on the
MuMiN-mentions dataset.

Fig. 3. Replay rate analysis

b) Ego-graph size: We use RWR to extract different
sizes of ego-graphs (from 20 nodes to 80 nodes) to evaluate
the performance on both datasets and the results are shown



TABLE V
THE PERFORMANCE OF TWO EGOCL MODELS ON TWO DATASETS, ALONG WITH THE PERFORMANCE OF THE BASELINES.

Methods Hashtags MuMin-mentions
AUC FGT(%) AUC FGT(%)

Non-CL
GAT 0.6580±0.0263 13.68±1.90 0.5949±0.0362 4.41±2.03
Ego-BFS-GAT 0.6593±0.0211 17.89±6.31 0.7837±0.0171 6.37±2.10
Ego-RWR-GAT 0.6453±0.0743 17.24±8.13 0.6801±0.0386 7.42±4.07

CL

EgoCL-BFS-GAT 0.7924±0.0109 2.61±1.79 0.8109±0.0232 2.01±1.32
EgoCL-RWR-GAT 0.7471±0.0221 2.86±1.34 0.7390±0.0212 5.23±1.79
Node Replay 0.6774±0.0158 9.90±3.14 0.6106±0.0399 2.90±1.89
EWC 0.6229±0.0522 8.69±2.01 0.6134±0.0319 3.45±1.91
ER-GAT-MF 0.6533±0.0526 9.83±2.61 0.7342±0.0302 6.85±2.70

Other GNN-based EgoCL EgoCL-BFS-GCN 0.7993±0.0091 2.28±1.40 0.8239±0.0413 2.67±1.14
EgoCL-RWR-GCN 0.7539±0.033 5.88±3.17 0.7632±0.0112 4.21±1.76

TABLE VI
RESOURCE COMPARISON OF THE CONTINUAL LEARNING METHODS. THE
VALUES OF EACH COLUMN HAVE BEEN NORMALIZED WITH THE LOWEST
VALUE SET AS 1.00. REPLAY DATA SIZE IS DENOTED AS R AND MODEL

PARAMETER SIZE DENOTED AS M .

GPU Memory Computation Additional
storagetrain test train test

EgoCL 1.00 1.00 2.89 1.00 M +R
Node Replay 4.11 3.38 1.00 3.11 M +R
ER-GAT-MF 1.00 1.00 18.27 1.04 M +R
EWC 3.34 3.33 2.55 46.15 2 ∗M

in Figure 4. We can see that when the size of the ego-
graph increases, the average AUC scores of EgoCL-BFS are
not increased much on both datasets. We believe that this
is because the mention graph is typically sparse, and 20-
node ego-graphs capturing the nearest neighbours of a node
can already provide enough information as to whether the
user will engage with misinformation. We note, however, that
the performance of 80 node ego-graphs obtained by RWR
sampling is worse than that of 20-node ego-graphs obtained
by BFS sampling, indicating that local structure captured by
BFS is more useful.

4) Resource comparison: We also visualize relative GPU
memory requirements and computation time for each of the
methods in Table VI. Due to the fact that EgoCL and ER-
GAT-MF both use mini-batch training on ego-graphs, the GPU
memory costs are low. Node replay and EWC both require
the entire graph as the model input and as such have larger
GPU memory requirements. In terms of computation time, our
proposed EgoCL approach has the second longest training time
but the shortest test time.

5) Timestamp setting: Temporality can be an important
consideration when dealing with misinformation. We redesign
five tasks of the MuMiN-mention dataset based on timestamp
information. In previous experiments, the tasks were designed
to be misinformation content-related; each task of the MuMiN-
mention dataset had a different topic and the topic subgraph
of each task has been sampled into two different ego-graphs
sets (BFS and RWR) which further used for our approach.
However, in the current temporality testing, the new tasks
have been designed to incorporate notions of temporality and
sequences of nodes in the ego-network engaging with each
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(a) EgoCL-BFS on the Hashtag
dataset.
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(b) EgoCL-RWR on the Hashtag
dataset.
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(c) EgoCL-BFS on the MuMiN-
mentions dataset.
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(d) EgoCL-RWR on the MuMiN-
mentions dataset.

Fig. 4. Ego-graph size analysis

other over time, which means each task is time-related. We
blended the instances of topics in the MuMiN-mention dataset
and reconstructed five mention-subgraphs based on the posting
time of each instance-related tweet as our five tasks: We slice a
time period2 for each task and take the users who post or reply
to tweets in this time period as the nodes of the mentioned
subgraph combining with the mentioned relationship between
those users to construct a subgraph. These five time-related
subgraphs are then used for subsequent operations such as ego-
graph sampling and comparative experiments with baselines.
We compare our method EgoCL with other continual learning
methods and the results are shown in Table VII. From the
test results, EgoCL-BFS-GAT has the best performance. The
EgoCL-BFS methods can still make accurate predictions on
social networks that change over time. At the same time, GAT-
based has a lower forgetting rate than GCN-based EgoCL,

2The time period of each task: Task 1: 2018.05.25-2019.08.28; Task 2:
2019.08.28-2020.02.25; Task 3: 2020.02.25-2020.05.06; task 4: 2020.05.06-
2020.07.30; Task 5: 2020.07.30-2020.09.28.



TABLE VII
TEMPORALITY TESTING: THE HYPER-PARAMETERS ARE THE SAME AS

EVALUATION SETTING IN IV-B1

MuMiN-mentions
AUC FGT

EgoCL-BFS-GAT 0.8859±0.0089 4.89±1.12
EgoCL-RWR-GAT 0.7076±0.0132 4.21±1.29
EgoCL-BFS-GCN 0.8239±0.0996 12.58±6.32
EgoCL-RWR-GCN 0.7234±0.0221 12.02±7.71
Node Replay 0.6324±0.0688 6.33±3.26
EWC 0.6518±0.0329 5.12±3.81
ER-GAT-MF 0.7012±0.0210 6.24±2.73

which indicates that EgoCL-GAT produces less forgetting in
time-sequential misinformation engagement prediction tasks.
However, different from the previous experimental results,
the inferiority of EgoCL-GCN is demonstrated in this set of
experiments. We need more experiments to further analyze the
reasons for this situation, which will be our follow-up work.

V. CONCLUSIONS

In this paper, we have proposed a method for predicting
whether users will engage with misinformation and conspiracy
theories on Twitter, and if so, what types of misinformation or
conspiracy theory they will engage with. The proposed method
utilizes ego-graphs with a graph attention network, formulated
as a binary node classification task. We demonstrate the
superiority of an ego-graph approach on two Twitter datasets,
one using hashtags and another using fact-checked claims.
Furthermore, we show how this style of approach is not well
suited for the type of online learning required for online social
networks where the network naturally changes over time, as
well as having the dynamics of misinformation topics, with
the models suffering from catastrophic forgetting. To address
this we propose a novel continual learning based approach,
building on the aforementioned ego-graph neural network and
show how it is able to continually learn to predict if users
will engage with misinformation as new conspiracy theories
and topics arise, while addressing catastrophic forgetting. We
compare our proposed ego-graph replay based continual learn-
ing approach with the state-of-the-art on two different Twitter
datasets and tasks and empirically show that our proposed
method, EgoCL, has better performance in terms of predictive
accuracy and computational resources than the state of the art.
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[9] Ó. Fontenla-Romero, B. Guijarro-Berdiñas, D. Martinez-Rego, B. Pérez-
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