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ABSTRACT Hepatitis B virus (HBV) polymerase is divided into terminal protein,
spacer, reverse transcriptase, and RNase domains. Spacer has previously been consid-
ered dispensable, merely acting as a tether between other domains or providing
plasticity to accommodate deletions and mutations. We explore evidence for the
role of spacer sequence, structure, and function in HBV evolution and lineage, con-
sider its associations with escape from drugs, vaccines, and immune responses, and
review its potential impacts on disease outcomes.
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Hepatitis B virus (HBV) is a hepadnavirus responsible for 300 million chronic infec-
tions worldwide (1). A better understanding of HBV biology can provide improved

insights into viral diversity and epidemiology and underpin refined approaches to
treatment and prevention. The tiny genome (;3.2 kb) is organized into four overlap-
ping open reading frames (ORFs) (Fig. 1A), compressing a high density of genetic infor-
mation (2–4). The HBV replication cycle is dependent on the viral polymerase protein
(P), a polyfunctional protein composed of 4 subdomains: terminal protein (TP), spacer,
reverse transcriptase (RT), and RNase H (Fig. 1B).

The spacer domain spans amino acids (aa) 184 to 348 of P (based on GenBank ref-
erence sequence X02763), sandwiched between TP and RT (5). Spacer has long been
considered a dispensable subdomain, and the structure and function of this region
therefore has not been investigated in detail. However, the question arises as to
why a conserved spacer domain would have evolved and persisted if it had no spe-
cific function. More recent evidence is accumulating to suggest that spacer has a
role in the HBV replication cycle, is subject to positive selection (as a result of eva-
sion of therapy, vaccines, and host immune responses), is relevant for distinguishing
between viral lineages, and can be associated with different outcomes of HBV
infection.

Here, we synthesize evidence for the roles and significance of spacer and high-
light gaps in our knowledge about this small but potentially influential region. We
consider evidence from the older literature and assess how new insights can contrib-
ute to a refined understanding of spacer biology with practical relevance to patho-
physiology, genotyping, determination of drug resistance, and sequence-based clini-
cal stratification.
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FIG 1 Genomic and functional roles of HBV spacer domain. (A) Structure of overlapping ORFs in the HBV 3.2-kb partially double-
stranded circular genome. The entire length of surface (S) (400 aa) is encoded on an alternate frame within the length of Polymerase
(P), making it the longest known overlap of any animal virus. (B) HBV P polyprotein, showing subdomains TP (terminal protein),
spacer, RT (reverse transcriptase), and RNase H. (C) Model to illustrate overlapping reading frames (ORF) with different codon usage
by overlapping genes and modular evolution theory due to imprinting. (D) Annotation of spacer domain (165 aa), illustrating
examples of sequence polymorphisms associated with lineage (genotype), enzymatic function, and key functional outcomes.
Deletions are best tolerated in the N-terminal 2/3 of the protein, while the C-terminal 1/3 contains the majority of residues with
established functional roles. Numbering and sequence are based on genotype A reference genome accession no. X02763. Cysteine
residues in the putative zinc finger DNA-binding motif are marked with a star at aa 325, 336, and 340 (equating to previously
described positions 312, 323, and 327 in a genotype D strain). Coloured underlining of the sequence matches the annotation in the
schematic lay-out above, as follows: turquoise, gtA; green, gtD; red, gtE; purple, B cell epitope; pink, key regions in C-terminus.
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DEFINITIONS AND TERMINOLOGY

The following terms are used here: adaptive evolution, changes in the frequency of
beneficial variants and of deleterious variants due to selection; dN/dS ratio, the ratio of
observed substitution rates of nonsynonymous versus synonymous genetic changes
(dN/dS . 1 is generally interpreted as a proxy for the past occurrence of positive selec-
tion); negative selection, change in the frequency of variants within a population that
may be harmful to fitness of the organism; neutral selection, stable frequency of var-
iants within a population that have no effect on the fitness of the organism; nonsynon-
ymous mutations, changes in the nucleotide sequence that result in changes in the
amino acid sequence of a protein or introduce a premature stop codon; occult HBV,
detectable HBV DNA in the absence of HBV surface antigen (HBsAg) in the serum;
open reading frame (ORF), portions of DNA/RNA that contain no stop codons and can
be translated to form amino acid sequences; phylogeny, the evolutionary history of a
group of organisms or samples of the same organism; positive selection, changes in
the frequency of variants within a population that may be beneficial to the fitness of
the organism, e.g., replicative capacity, persistence, or transmissibility; synonymous
mutations, changes in the nucleotide sequence that cause no change in the amino
acids sequence of the protein due to codon redundancy.

EVOLUTION OF HBV SPACER

Due to the intimate relationship between a pathogen’s genetic sequence and pro-
tein structure and function, here we consider the evolutionary pressures that may be
relevant in driving sequence change in spacer and review the genotype specificity of
observed polymorphisms.

The spacer domain evolved through modular evolution. Overlapping ORFs typi-
cally consist of an ancestral gene (encoding essential proteins) and a de novo gene
that evolved subsequently through overprinting (6, 7), encoding accessory protein(s)
(8, 9). A sequence analysis of 43 genera of RNA viruses infecting eukaryotes showed
that most proteins created de novo are accessory proteins and are predicted to be fully
disordered, similar to the spacer region of HBV P (8).

Methods developed for deltaretroviruses show that codon usage can distinguish ances-
tral genes (which have codon usage similar to nonoverlapping regions of the viral ge-
nome) from de novo genes (with codon usage very different from the rest of the genome)
with high specificity (6, 10). Within HBV genomes, the entire length of surface (S) (400 aa)
is on an alternate frame overlapping P (Fig. 1A) (11). However, analyses of P and S have
been inconclusive in determining which of the two genes is ancestral, as both are essential
for virus survival (11). Comparing the codon usage of the overlapping P and S ORFs has
shown that codon usage of the entire overlapping frame (.1,000 nucleotides [nt]) com-
pared to the nonoverlapping region is not significantly different for P and S (11). However,
under a sliding window model, two regions of different codon usage can be identified,
one in the 59 third of the overlap and another in the 39 two-thirds; these regions are con-
served across hepadnavirus genomes (11). This suggests a modular evolution model for
the P/S overlap, according to which the PreS1 domain, most of PreS2, and the RT domain
of P are ancestral, while the spacer domain, the C-terminal third of PreS2, and the S do-
main evolved de novo by overprinting (Fig. 1C). This theory is consistent with an under-
standing of the functions of these domains, with essential roles of PreS1 in infectivity (12,
13) and RT in replication (14).

This proposed model of the primordial structure of the HBV genome may also
explain why the P polyprotein contains RT and RNase H domains with retroviral homo-
logues (15) but differs in having TP and a spacer domain. Congruent with the theory
that spacer evolved later than other P domains, it is thought to have an intrinsically dis-
ordered structure (8, 16) (also see “Structure and Function,” below).

Spacer is under positive selection. It is generally understood that positive selec-
tion in one reading frame should be mirrored by negative selection in the overlapping
frame (7, 17–20). Accordingly, calculation of the nonsynonymous to synonymous
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mutation ratio (dN/dS) of the S, core (C), and P genes of HBV can show that while S
holds evidence of positive selection, C and P undergo negative selection (21).
However, positive selection in S does not necessitate relaxed or negative selection in P;
the frameshift between the two genes allows them to evolve independently, accom-
modating different evolutionary pressures (22).

Findings that dN/dS is .1 in significant segments of either P or S in the overlapping
region and .1 in both genes in only a few key regions indicate that selection pressures
fluctuate throughout the region (22). In the P/S overlap, the S ORF is shifted by 1 nt,
meaning that the first codon position of P (p1) overlaps the third codon position of S
(s3). Degeneracy within the nucleotide code means that changes to the first and second
codon positions more frequently result in amino acid changes. Thus, adaptive evolution
in P occurs through p1/s3 substitutions that cause an amino acid change in P but rarely
in S, and adaptive evolution in S occurs through p3/s2 substitutions that cause an amino
acid change in S but infrequently in P. Substitutions resulting in an amino acid change in
both genes (p2/s1) are rare and contribute little to entropy across the sequence (22).
Thus, while P and S genes are overall both under negative selection, to preserve their im-
portant roles in infectivity and replication, parts of both (particularly PreS and spacer) are
subject to positive selection to evade the host immune system as well as to withstand
anthropogenic pressures, such as vaccine-induced antibodies and antivirals (22) (dis-
cussed further in “Host-virus interaction and outcomes of infection,” below).

Although a high dN/dS ratio is observed in spacer compared to other domains in P
and S, this does not conclusively determine whether spacer is undergoing true positive
selection or is merely tolerant of nonsynonymous mutation (relaxed selection) (23).
The variant degree (VD), a parameter used to evaluate the evolutionary selection of a
sequence, is thought to negatively correlate with the importance of biological func-
tion. The VD of spacer and PreS2 of .20% contrasts with PreS1, S, and RT VD values of
,10% (23), increasing the likelihood that spacer and PreS2 are undergoing relaxed
selection (23). At the same time, PreS1, S, and RT are under stricter selection due to
their critical roles in hepatocyte binding, cell entry (12, 13, 24–26), and genome replica-
tion and packaging, respectively (14, 27, 28).

Spacer reflects HBV sequence diversity and lineage. The spacer domain shows a
high degree of nucleotide variation between different hepadnaviruses and between
genotypes and subgenotypes of HBV (29–33), indicating that despite being evolutio-
narily newer than other regions of the genome, this domain has undergone extensive
divergence over time (32, 33). This striking diversity may be enabled by the domain's
disordered structure (16).

Pairwise analysis of nucleotide sequence space in P indicates that spacer holds low
within-genotype diversity but high between-genotype diversity, contrasting with other
regions of the protein (Fig. 2). If spacer is an inherently plastic region where mutations
can accumulate without significantly affecting virus viability, one might expect variants
to be stochastically distributed across phylogenies. However, there is accumulating evi-
dence that spacer polymorphisms and deletions are sufficient to distinguish between
HBV lineages (Table 1, Fig. 1D). Due to the frameshift between the P and S reading
frames, the majority of nucleotide substitutions that result in amino acid changes in
spacer will be synonymous in PreS1/2. Therefore, this phenomenon may not be fully
explained through the well-recognized selection pressure acting on S (further dis-
cussed in “Genetic plasticity of HBV spacer,” below), and there may be incompletely
understood selection pressures acting on spacer that result in lineage-specific motifs.

GENETIC PLASTICITY OF HBV SPACER
Spacer can accommodate insertions and deletions without functional impact. P

can accommodate large insertions and deletions in spacer and can maintain catalytic
function, including protein priming, synthesis of the DNA minus strand, removing pre-
genomic RNA (pgRNA), and synthesizing plus-strand DNA (34, 35). In one of the first
investigations of spacer function, 52 aa were deleted from duck HBV (DHBV) spacer
with endogenous polymerase activity largely unaffected and without a quantifiable

Gem Journal of Virology

May 2022 Volume 96 Issue 9 10.1128/jvi.00051-22 4

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/j

vi
 o

n 
21

 J
un

e 
20

22
 b

y 
10

9.
18

0.
13

3.
91

.

https://journals.asm.org/journal/jvi
https://doi.org/10.1128/jvi.00051-22


impact on DNA synthesis (5). Subsequent experiments have deleted large regions of
spacer (e.g., amino acids 201 to 292) without affecting endogenous polymerase activ-
ity, with only residues 293 to 335 required to maintain enzymatic function (14).
Furthermore, naturally occurring spacer variants with large in-frame deletions have
replication competence similar to that of wild-type strains (36–38). For example, a
sequence with a 69-amino-acid deletion in PreS1/spacer had wild-type (WT)-like poly-
merase activity, substantiating previous findings that the N-terminal portion of spacer
is not essential for replication (36). Similarly, large insertions in spacer have been toler-
ated without an impact on DNA synthesis activity and RNA packaging capacity (33).
Based on this evidence that spacer is capable of withstanding insertion, deletion, and
substitution mutations without an impact on viral replication capacity, it is possible to
conclude that spacer is a nonessential, or even entirely dispensable, subdomain of P
that merely exists as a mechanical tether between TP and RT (5, 14, 23, 27, 33–35, 39–
43). Table 2 provides a summary of spacer mutagenesis studies.

Spacer tolerates polymorphisms to accommodate positive selection in PreS.
Large parts of the S gene undergo positive selection to evade host immune responses,
in contrast to the TP, RT, and RNase H domains, which are under negative selection to
preserve important replicative functions (21). Most of the variability in S lies in the PreS
domains, the “a” (major antigenic) determinant, and the C terminus (44). Positive selec-
tion in S occurs almost exclusively in known T and B cell epitopes, suggesting adaptive
evolution to evade natural or vaccine-mediated immune responses (44) (also see
“Host-virus interaction and outcomes of infection,” below). Due to the frameshift
between the overlapping P and S reading frames, many nonsynonymous mutations in
PreS (p3s2) result in synonymous mutations in spacer. Thus, spacer may mediate the

FIG 2 Nucleotide pairwise distances within and between genotypes in HBV polymerase. Representative HBV
genotype sequences for genotypes A to I (129) were analyzed using a sliding window size of 100 bp and
increments of 25 bp in SSE v1.3 (130). Putative genotype J was excluded, as regions of the genotype are
thought to originate from nonhuman HBV sequences.
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conflict between diversifying and constraining forces in S and P, respectively. However,
most positive selection sites in P are concentrated in spacer, indicating that spacer is
not undergoing merely neutral selection or random evolution but may in fact be im-
portant for the HBV replication cycle beyond a role facilitating changes in PreS (44).

STRUCTURE AND FUNCTION
Spacer is characterized by a disordered protein structure incorporating protease

digestion sites. Spacer's secondary and tertiary protein structure has not been eluci-
dated, and there is a growing recognition that spacer is likely to be an intrinsically
disordered protein region (IDPR) (16), together with overlapping pre-S regions with
which it overlaps (45). IDPRs can deliver important biological roles even in the ab-
sence of a stable physical structure; indeed, conformational flexibility may itself be
a functional attribute, allowing them to perform “impossible tricks” that would not
be possible for a molecule with a stable, rigid structure (46). Such regions may have
specific characteristics (for example, in diversity, charge, and polarity) and are com-
mon in viruses, with potentially key roles in protein-protein interaction (PPI) net-
works (47, 48).

Crystal structures have not been solved for HBV P, with challenges including the
multidomain nature of the polyprotein, the possibility of more than one structural con-
figuration, and its hybrid nature incorporating regions that are structurally ordered
(such as RT), combined with IDPRs (46, 49). In addition to spatial flexibility, spacer’s dis-
ordered structure may render it highly sensitive to protease digestion (42, 50). Spacer
has a cleavage site for thrombin, deduced by adding thrombin to Pol proteins of vari-
ous lengths, and can be cleaved by cellular proteases in rat hepatocytes and human
hepatoma cells in vitro (51, 52). Critically, these cleavage sites are conserved across
hepadnaviridae (52), providing some evidence for a functional role. In theory, protease

TABLE 1 Examples of evidence that spacer residues can be used to distinguish between HBV genotypes, subgenotypes, and geographic
distribution of lineagesa

HBV genotype Location Observation(s) Reference
A, subgenotype A1 Brazil Four amino acids in the polymerase, of which two (Pro18 and His90) are in spacer,

and one in the core antigen were sufficient to determine sequence clustering
with isolates from Asia but not with A1 isolates from Southern and East Africa

131

These five amino acids supported Bayesian analysis, concluding that the Brazilian
isolates formed part of the Asian-American clade of subgenotype A1 (posterior
probability value, 0.996).

A, subgenotype A1 Zimbabwe Characteristic shared residues in PreS1, PreS2, and spacer associated with
clustering of sequences as part of the South African A1 clade

132

Spacer was relatively well conserved among the Zimbabwean isolates
Two spacer motifs (Ser9Gln10 and Glu18Ser19Phe20) could distinguish
Zimbabwean isolates from clades found in other African and Asian countries
where HBV/A1 is endemic but were shared with the South African HBV/A1 clade

B and C China Genotype-specific mutations that distinguished genotypes B and C were found to
be nonrandomly clustered in spacer

23

56 of the 85 genotype-specific mutations were distributed in the 59 half of the P/S
overlap, of which 42 mutations led to amino acid changes in spacer, and 23
mutations caused amino acid changes in PreS

Only 29 mutations were present in the 39 half of the overlapping reading frame, of
which 13 caused residue changes in RT and 18 caused residue changes in S

D, subgenotype D1/D4 Russia and the Baltic Amino acids 58–128 of spacer contain subgenotype-specific mutations capable of
reliably differentiating between D1 and D4 isolates

133

E West Africa Despite low intragenotype diversity of genotype E, the spacer region contained
eight unique amino acid residues (Glu16, His21, Arg52, Asp55, Met64, Lys88,
Asn110, and His111)

134

A conserved genotype-specific signature motif was also discovered in PreS1
Multiple All Deletions at the start of spacer (predicted to start at nt 2856 in the X02763

reference sequence) are highly conserved within genotypes
129

Known conserved deletions in PreS1, D2861–3 in genotypes E and G, and D2854–
2886 in genotypes D and J result in deletions at the start of spacer

aLocations of the residues are given by numbering the start of the spacer domain as the first amino acid.
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digestion could separate functional TP and RT/RNase, facilitating movement of the po-
lymerase down the RNA while TP remains bound at the 59 end (5).

However, while multiple studies have observed smaller molecular forms of P in
vitro using a variety of assays (5, 52–54), and proteolytic cleavage is a known mecha-
nism of protein activation in other viral proteins (55–57) (including the generation
of HBe antigen [HBeAg] through cleavage of the precore/core fusion protein [58]),
there is no protease requirement for functional activity of P (59, 60). The intact poly-
protein demonstrates RT activity in vitro (59), and full-length P can be found intact
in virions while carrying out the essential function of genome encapsidation (60).
Furthermore, there is no evidence to suggest that protease digestion plays a role in
later stages of the HBV replication cycle, such as cccDNA formation (52). A contin-
ued linkage model is based on evidence that TP and RT remain connected during
replication, explaining second-strand initiation and conversion from a linear to a cir-
cular genome (5, 42, 43).

Spacer provides protein flexibility. Spacer may be crucial in providing flexibility
for the TP and RT domains to assume the structural conformations needed to perform
diverse functions, including RNA 59 epsilon binding, pgRNA encapsidation, and DNA
synthesis. For these events to occur, P must switch from a stable (inactive) configura-
tion to its active state, the kinetics of which may be enabled by spacer and facilitated
by a variety of host cellular chaperones (44), such as heat shock protein 40 (hsp40),
hsp70, and hsp90 (61–64), although a direct host-virus interaction has not been eluci-
dated. This flexible, dynamic structure is typical of an IDPR, with interplay between

TABLE 2 Summary of HBV mutagenesis studies in spacer and the resultant phenotypea

Virus Spacer residues Phenotype Reference
Deletions
HBV aa 175–300 No ability to engage in RNA binding, RNA packaging, or protein priming 69
HBV aa 178–336 Reduced polymerase activity (70% of WT) 65
HBV aa 179–257 No impact on replication capacity and RNA encapsidation 67
HBV aa 196–291 Increased expression; decreased protein priming ability 62
HBV aa 199–300 Incapable of RNA packaging; able to bind RNA and perform protein

priming
69

HBV aa 201–292 Decreased polymerase activity (40% of WT) 14
HBV aa 201–292 Decreased polymerase activity (40% of WT); no impact on RNA packaging 34
HBV aa 201–335 Impaired polymerase activity (,0.3% of WT) 14
HBV aa 258–286 Capable of RNA encapsidation 67
HBV aa 258–336 Incapable of replication and RNA encapsidation 67
HBV aa 287–317 Incapable of RNA encapsidation 67
HBV aa 293–335 Impaired polymerase activity (,0.3% of WT) 14
HBV aa 293–335 Impaired polymerase activity (,0.5% of WT); decrease in RNA packaging

efficiency
34

HBV aa 300–334 Impaired priming function 39
HBV aa 318–336 Incapable of RNA encapsidation 67
HBV nt 2878–129 Increased stability of the P protein 66
DHBV aa 307–356 No impact on polymerase activity 5

Substitutions
HBV C312A, C323A, C327A, C341A Each mutation individually is incapable of RNA binding, RNA packaging,

and protein priming
69

HBV C312A, C323A, C327A Each mutation individually is incapable of RNA encapsidation 67
HBV C326R No detectable replication activity 71
HBV E245L Reduced but still significant level of replication 71
HBV R219S, R246G, G261R, N270S, A272S,

R300H
Decreased replication efficiency 27

Insertions
DHBV Bacterial protein A inserted into

spacer
No impact on DNA synthesis and RNA packaging activities 33

DHBV 12 nt at 1,212 bp (in frame) No impact on replication capacity 40
DHBV 4 nt at 1,212 bp (frameshift) Impaired replication capacity 40

aThe majority of studies were in human HBV, with a small number also carried out using duck HBV (DHBV) as an animal model. Polymorphism locations are provided as cited
in the primary studies, which may differ from reference genotype A sequence X02763. aa, amino acid residue; nt, nucleotide; bp, base pairs; WT, wild type.
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subdomains facilitated by interaction with other viral and host proteins and by charac-
teristics of the environment, such as pH and temperature (46).

Role of spacer in P function. Mutagenesis studies (Table 2) have investigated the
role of the spacer domain in the function of P. Performing experiments in vitro has
enabled researchers to isolate the effect of mutations on P function, preventing any
confounding effect that the mutations in the overlapping reading frame have on pro-
tein S. Deletion of the spacer domain has generated conflicting evidence, demonstrat-
ing both reduced (65) and increased (66) DNA-dependent DNA-polymerase activity.
However, increased activity following spacer deletion may relate to higher expression
and stability of the P protein without spacer (62, 66). In contrast, replacing the spacer
domain of a less efficiently replicating isolate with the domain of a more efficiently rep-
licating isolate has led to substantial increase in replication efficiency (27); the authors
explained this increase with a point mutation at residue 300, part of the minimal por-
tion of the spacer domain, although the isolated role of residue 300 remains unclear.
Indeed, experiments with spacer deletion mutants have suggested differing signifi-
cance of the N-terminal and C-terminal regions (Fig. 1D). Deletion of the N-terminal
two-thirds of spacer does not affect RNA encapsidation, replicative capacity, or pgRNA
availability (34, 67). Conversely, deletion of the C-terminal third of spacer results in a
drastic decrease in RNA packaging efficiency (34, 67), with residues 300 to 334 being
essential for the priming function of both TP and RT domains (39), suggesting it is
required for replication competence (14).

In addition to the C-terminal region, there is also evidence that other upstream resi-
dues of spacer play a functional role. In a deletion mutant study, the TP domain did
not require spacer to function, but maximal activity of TP required the N-terminal part
of spacer (39). Another study deleted the central part of spacer (aa 196 to 291) and
demonstrated that although the truncated P was more readily expressed than full-
length P, it could not engage in protein priming (62). A successful interaction between
truncated P and the RNA epsilon element could, however, be reconstituted, suggesting
that while the spacer deletion mutant remains capable of binding RNA, mere physical
binding is not sufficient for a functional protein–RNA interaction (62). An intact spacer
domain therefore may be needed for conformational changes required for protein pri-
ming or interaction with essential cellular chaperones.

Three cysteine residues in the C-terminal region of spacer (positions 312, 323, and 327,
based on a genotype D alignment) (Fig. 1D) have been established as essential for RT ac-
tivity (29, 67–69). Together with a fourth cysteine in the N terminus of RT, these residues
form part of a putative zinc finger DNA-binding motif (69, 70) and are conserved across
mammalian hepadnaviridae (67). A C327A substitution in the C-terminal portion of spacer
is lethal for HBV, abolishing endogenous polymerase activity, suggesting that spacer has a
direct role in replication or an essential role in the folding of P to enable replication (71).
Nearly 2 decades after this original research, the essential role of these cysteine residues in
pgRNA encapsidation and for binding of P to the 59 epsilon stem-loop of pgRNA was con-
firmed using alanine-scanning mutagenesis (67). Cotransfection of mutant and WT P in a
3:1 ratio did not have a dominant-negative effect: the mutant protein does not bind
pgRNA or incorporate into nucleocapsids, and WT P binds and carries out replication (67).
Mutating the three C-terminal cysteine residues produces variants that are completely de-
fective in 59 epsilon binding, protein priming, and RNA packaging. Therefore, overall this
putative zinc finger domain is essential for RT catalytic activity (29, 68).

It is noteworthy that data from in vitro HBV replication models have been limited
due to reliance on heavily adapted cell culture systems and with spacer modifications
(e.g., green fluorescent protein insertions and various deletions) that may interfere
with enzymatic function, making it difficult to cross-compare data from different stud-
ies. More recently developed culture approaches offer the potential for studying HBV
replication more reliably (72, 73). Furthermore, while findings from animal models
should always be extrapolated with caution, DHBV and similar animal models are con-
sidered reliable for use in studying viral entry, polymerase function, and immune
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response, although less reliable to study the clinical manifestations of HBV, such as cir-
rhosis and hepatocellular carcinoma (HCC) (74).

HOST-VIRUS INTERACTION AND OUTCOMES OF INFECTION

Spacer has been determined to contain the highest number of positively selected
sites of any domain in the HBV genome. Maximum likelihood estimates of codon selec-
tion suggest spacer is at the center of a complex epistatic network coordinating clus-
ters of mutations involved in virulence, immune escape, and drug resistance (16).

Spacer mutations associated with HCC. The incidence of HCC, disease progression,
and treatment outcomes are influenced by a complex interplay of host, viral, and envi-
ronmental factors. Certain viral genotypes (including C and F) are associated with a
higher lifetime risk of HCC (75–80), and mutations in spacer, as well as other regions,
have been associated with HCC (75, 76, 81–83). Next-generation sequencing has identi-
fied multiple HCC-associated single-nucleotide variants (SNVs), concentrated in PreS1
and spacer (84). A mutation at nt 31 was significantly associated with higher alpha-feto-
protein levels, larger tumor size, and shorter postoperative survival (85). However, the
role of these SNVs in hepatocarcinogenesis remains poorly understood, as it is unclear if
oncogenic activity is driven by changes to the PreS1 and/or spacer function (84, 86).

PreS deletions, which also result in deletions within the overlapping spacer, have
been reported as independent risk factors for HCC (81–83, 87–89), potentially as a
result of accumulation of the misfolded mutant surface antigen causing endoplasmic
reticulum stress (87, 90–93). A double-spliced (2.2-kb) HBV variant isolated from liver
tissue had deletions spanning most of spacer and PreS2, and parts of PreS1, S, RT, and
TP (94), and the 2.2-kb variant is increased in HCC tissue compared to peritumor tissue
(95). Although the double-spliced variant is not replication competent, adding it to the
full-length version resulted in dose-dependent enhancement of replication efficiency
(94). Splice variants therefore might contribute to the increased and persistent HBV
replication that leads to HCC in some patients (96, 97). As the S and P proteins are
translated from different RNA transcripts, functional studies of these deletions have
only considered the impact of the deletions in S, but it is possible the corresponding
deletions in spacer also contribute to disease progression.

Spacer mutations associated with OBI. Mutations in spacer have also been
described in the setting of occult HBV infection (OBI), defined as detectable HBV DNA in
the absence of HBsAg in the serum (the marker of active ongoing infection) (98). OBI can
reactivate to cause hepatitis flares (99, 100), can be associated with HCC development
(101–103), and can be a reservoir for transmission (104, 105). In a study reporting 235 OBI-
associated mutations, 151 were in P and 27 in spacer, reflecting immune evasion and lead-
ing to decreased viral replication and reduced immune activation (106). However, the bio-
logical and clinical significance of specific polymorphisms remains to be clearly elucidated.

Escape from the adaptive immune response and vaccine-mediated immunity. P
is an important target of the cellular and humoral immune response (107–115), harboring
epitopes for antibodies and CD41 and CD81 lymphocytes (30, 116–118). While some
regions of P are functionally conserved, variation elsewhere in the polyprotein can con-
tribute to immune evasion. Positive immune selection pressure acts on parts of P, particu-
larly spacer, both in concert with PreS and independent of the overlapping S gene (22,
44). In a study of HBV genotype D, 13 out of 15 sites under positive selection were located
in spacer, and some overlap was detected between positively selected sites in spacer and
in PreS, indicating that positive selection can colocate in overlapping genes (44).

One B cell epitope in spacer (aa 225 to 250) may explain some of the sequence di-
versity of the domain (30) (Fig. 1D). Sequence analysis of P and S genes in vaccine
escape mutants among HBV-vaccinated children (119) detected amino acid substitu-
tions that affect B and T cell epitopes, including 8 amino acid substitutions in this B cell
epitope in spacer (119). However, disaggregating the specific influence of individual
mutations in mediating vaccine escape requires further efforts.

Spacer mutations in the setting of drug resistance and to preserve viral fitness.
There is some evidence that spacer accommodates compensatory mutations to
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ameliorate a fitness detriment caused by mutation(s) elsewhere in the viral genome.
Due to spacer's proximity to key functional residues in TP and RT, it is possible that
amino acid mutations in spacer affect the catalytic activity of P and therefore could
fine-tune or restore changes imposed by other mutations (e.g., see reference 44). A
study of covariance in genotypes B, C, and D found that polymorphisms were concen-
trated in the spacer and PreS1, suggesting a coevolutionary relationship between
these sites and sites elsewhere in the genome (120).

Lamivudine (3TC) resistance mutations in the YMDD motif of RT, which negatively
affect replicative ability, can be restored by compensatory mutations in the putative
zinc finger subdomains (121), including spacer’s C-terminal cysteines (29, 67–69). Other
mutations can also be relevant in driving resistance; for example, RT (A181T) and
spacer (S331C) polymorphisms together result in a decrease in 3TC susceptibility (122).
A181T, S331C, and A181T1S331C mutants were 82%, 94%, and 96% replication effi-
cient, respectively, compared to the wild type (122). Although the effect is modest, it is
possible that the spacer mutation coevolved to restore a minor fitness detriment
caused by the RT mutation (122), since residue 331 is within the portion of the spacer
important for RT function (39). Furthermore, after 3TC discontinuation (when the mu-
tant strain became undetectable), 3TC readministration has been associated with the
reappearance of both mutations (122). A spacer deletion arising in an adefovir-treated
patient is of uncertain significance in drug resistance (36), while selection of a mutation
(A300E) has also been reported from a patient with clinical evidence of entecavir resist-
ance, although this polymorphism did not alter in vitro resistance or replication
capacity (123). The sparse evidence base for treatment-associated mutations in spacer
is related to the lack of routine investigation of drug resistance in clinical practice and
focus only on RT if sequencing is undertaken (29).

A study of duck HBV provided evidence of spacer's potential reactivity to mutations
elsewhere in the genome, tolerating changes in its own sequence to overcome a fit-
ness detriment by introducing insertions into the distal PreS (40). In vivo, in-frame
mutants retained the inserted nucleotides, while frameshift mutants either reverted to
wild type or selected a deletion in spacer/PreS that shifted the frame back to normal,
restoring infectivity and secondary protein structure and demonstrating compensation
for a fitness cost by deleting a specific nonessential portion of the genome (40).

FUTURE DIRECTIONS AND TRANSLATIONAL APPLICATIONS

HBV sequencing has not been widely applied due to lack of a mandate for genotyping
in clinical guidelines (e.g., see reference 124) and the typically low viral loads of many
chronic infections (125). However, as sequencing methods are improved and there is
increasing interest in the application of sequence data, opportunities will arise to enhance
insights into viral diversity and its impact on disease outcomes (4, 126). Sequencing reposi-
tories contain an untapped resource for spacer data by way of sequences that have been
generated for the S gene but could be mined for analysis of spacer (Fig. 1A).

To date, structural insights for P have been extrapolated from the homologous
regions of the HIV polymerase (127). Determination of crystal structures may provide
insights into the interactions between protein subdomains, including better under-
standing the role of spacer in maintaining integrity, supporting the viral replication
cycle, and accounting for diverse outcomes of infection. The oncogenic mechanism of
viral variants associated with HCC remains to be elucidated, but pathogen genomics
may be relevant for future personalized medicine approaches for cancer surveillance
or risk assessment. More research is needed to determine the specific protein-protein
interactions between spacer and host chaperones and restriction factors. Ultimately,
driving this agenda is important to inform clinical practice, for example, through using
viral sequence to stratify patients for surveillance and/or treatment, to guide public
health interventions, and to inform the development of new therapeutics (128).
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CONCLUSIONS

Spacer is a small but highly diverse and versatile domain, with features of an IDPR.
Earlier studies assumed spacer was a dispensable region, and it is doubtless true that
there is some redundancy, particularly in the N-terminal portion. However, evidence
has also accumulated for important evolutionary and biological roles, more focused in
the C-terminal third, which play essential roles in RNA binding and packaging, protein
priming, and reverse transcription, with a dynamic structure that supports protein
function, including potentially coordinating host-virus interactions. Further research is
required to more definitively elucidate the functions of specific spacer residues.

Spacer sequence variation between and within mammalian hepadnaviridae, as well
as between genotypes and subgenotypes of HBV, is highly lineage specific, overturn-
ing the hypothesis that spacer is diverse because of low functional or evolutionary im-
portance. Rather, spacer may play a crucial role in the evolution of both the P and the
overlapping S genes, influenced by pressure from exposure to drugs, vaccines, and the
host immune response. Through the increasing use of whole-genome sequencing data
and trends in personalized medicine, we are in an era of opportunities to further
unravel the role of spacer in HBV evolution, epidemiology, and pathogenesis, with
potentially important translational implications.
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