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1  |  INTRODUC TION

Forest ecology has long relied on a simple measure—the diameter 
of the trunk of a tree at breast height (dbh)—as a way to summarise 
individual tree status and performance. This measurement, with its 
origins in forestry, is non-destructive and quick to take, requiring no 

special equipment or extensive training, and this ease of use has led 
dbh to be widely adopted as the key measure of an individual tree in 
forest ecology. It is used to quantify and predict individual tree de-
mography (Lines et al., 2010; Ruiz-Benito et al., 2013), as a proxy for 
tree age (Stephenson et al., 2014), to estimate key properties includ-
ing leaf area, height, crown shape and biomass (Chave et al., 2014; 
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Abstract
1.	 How ecologists think about above-ground forest structure and dynamics is fun-

damentally shaped by the data we can collect. This has historically been limited 
to what is possible with simple equipment such as a tape measure, which has 
often led to the three-dimensional complexity of the form of trees being reduced 
to the diameter of a trunk, and perhaps the height of the tree. While simple and 
pragmatic, this trunk-centric framework has some obvious limitations, as many of 
the major processes that influence how trees grow and interact with one another 
happen up in the canopy. For instance, the structural complexity of individual 
trees' leaf and branch arrangements and how trees fill canopy space are direct 
drivers of individual tree and whole-forest productivity and dynamics, but remain 
poorly studied because they have traditionally been challenging to measure.

2.	 However, recent advances in remote sensing and data processing are revolu-
tionising our ability to accurately measure tree and forest structure from leaves 
to landscapes. Not only do we have access to more accurate data on structure, 
but we also have data spanning a much broader range of spatial, temporal and 
ecological scales, and new avenues of research that challenge how we under-
stand forests are emerging.

3.	 Synthesis. Here, we review the new opportunities these technologies bring us to 
measure the physical structure of trees and highlight the technological devel-
opments needed to maximise their value to the field of forest ecology. Today, 
perhaps for the first time, how ecologists choose to study above-ground for-
est structure and dynamics is limited more by creativity than by what we can 
measure.
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Lines et al., 2012; Vertessy et al., 1995), to describe the properties of 
neighbourhoods and whole stands, such as basal area and stem size 
distributions, and to understand competitive interactions, popula-
tion dynamics, succession processes and carbon storage (Contreras 
et al., 2011; Coomes et al., 2014; Purves et al., 2008). Yet, trunk di-
ameter is not a direct measurement of any of these properties and is 
only one of many dimensions with which we can summarise a tree's 
size and shape. The widespread reliance on this simple proxy intro-
duces not only errors and biases into quantitative assessments and 
predictions (Molto et al.,  2013), but has also encouraged a trunk-
centred view of trees and forests that has shaped the way ecolo-
gists have thought about these ecosystems for the better part of a 
century.

High-resolution remote sensing technologies offer the opportu-
nity to measure the full three-dimensional shape and size of trees 
and all their component parts—from leaves and leaf arrangement, 
twigs and branching, to crown morphology, the whole trunk and 
buttresses (Burt et al.,  2021; Jiménez-Brenes et al.,  2017; Stovall 
et al., 2021; Wilkes et al., 2021; Figure 1). While measuring these 
attributes by hand is possible, this has historically only been done 
through painstaking and often destructive sampling, resulting in re-
strictively small sample sizes from a handful of locations, often biased 
towards small trees (e.g. Bentley et al., 2013). But remote sensing 
technologies, and crucially the most recently developed analytical 
tools to process their data, are capable of highly accurate estimates 
of three-dimensional tree architecture far beyond dbh. Relying on 
simple trunk measurements to capture the structure of trees and 
forests is no longer necessary, and a reimagining of individual-based 
forest ecology away from a dbh-centric framework is possible. We 
are starting to witness a transition, most notably the use of high-
resolution remote sensing for biomass and carbon estimation; for 
example the direct measurement of individual tree above-ground 
volume to estimate biomass (Calders et al., 2015) and its upscaling 
at a landscape level (Asner et al., 2014), but also in the emergence of 
new avenues of research, including the use of LiDAR to characterise 
canopy microclimates and wind effects (Jackson et al., 2019; Jucker, 
Bongalov, et al.,  2018; Jucker, Hardwick, et al.,  2018; Zellweger 
et al., 2019). Yet, there remain many areas within forest ecology that 
could benefit substantially from increased use of three-dimensional 
data on tree and forest structure. Excitingly, the adoption of these 
technologies is also driving the development of data-driven for-
est ecology, and generating new disciplinary interfaces with data 

science, machine learning and artificial intelligence. Here, we argue 
for an expansion in the framing of forest ecology beyond the clas-
sical trunk-centred view, to capitalise on the ability of remote sen-
sor data to capture the full form of a tree. We argue that doing so, 
and so bypassing common simplifying assumptions about structure, 
will open new avenues of research on structural traits, structural 
dynamics and links between tree structure and the wider biotic 
and abiotic environment. We discuss how doing so will bring new 
insights on individuals, whole canopies and ecosystem dynamics, 
and on the way we explore how some of the classic topics that have 
captivated forest ecologists for decades can be revisited through the 
use of three-dimensional remote sensing data. Finally, we discuss 
the developments needed towards widespread adoption of these 
approaches and full realisation of the potential of these data within 
forest ecology.

2  |  SENSING THE INDIVIDUAL: 
MORPHOLOGY, FOLIAGE ,  CROWNS AND 
BIOMA SS

The advent of ground-based and airborne light detection and rang-
ing (LiDAR) and photogrammetry technologies has made possible 
direct measurement of the three-dimensional architecture of a tree 
(Figure 2). Mounted on an aircraft, airborne laser scanning (ALS) can 
cover large and inaccessible areas, and has been used in a wide va-
riety of ecological studies and across a wide range of forest types 
to extract individual tree height and crown shape (Aubry-Kientz 
et al.,  2019; Dalponte et al.,  2015; Ferraz et al.,  2020; Weinstein 
et al., 2021) and, when combined with optical and hyperspectral im-
agery, can be used to identify individual species (Deng et al., 2016; 
Yu et al., 2014) and individual functional traits (Zheng et al., 2021). 
With their view from above and lack of wide angle beams which can 
penetrate the sub-canopy, airborne methods to monitor whole-tree 
shape typically suffer from occlusion, missing fine branching detail 
and sufficient data to characterise trees below the upper canopy; 
such problems can be reduced through collection of point cloud 
data at densities many times higher than what is required for canopy 
trees (Aubry-Kientz et al., 2019; Hamraz et al., 2017), or scanners are 
mounted on lower flying unmanned aerial vehicles (UAVs) with more 
wide angle views (Kuželka et al., 2020) and narrow beam divergence. 
In contrast, terrestrial laser scanners (TLS), with comparatively much 

F I G U R E  1  Recent developments in 
remote sensing technologies and analysis 
tools offer new ways to conceptualise 
forest ecology with data from (a) within 
tree branch and foliage arrangement, to 
(b) tree–tree interactions and (c) whole-
stand properties. Images adapted with 
permission from (a) Wilkes et al. (2021), 
(b) Burt et al. (2021) and (c) Calders et 
al. (2018).
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higher point density and a viewpoint from below, create a rich and 
highly detailed three-dimensional representation of branch and 
crown structure (Morsdorf et al., 2018). Much of the earliest work 
with TLS in forests was focussed on using the technology to im-
prove existing monitoring of structure, including those traditionally 
taken in ground-based forest inventories (Maas et al., 2008; Thies 
& Spiecker, 2004; Watt & Donoghue, 2005), or to replace passive 
instruments to derive gap fraction (Danson et al., 2007).

Tree height and crown area—two morphological metrics that can 
be obtained from both airborne and terrestrial laser scanning—can 
improve estimates of large-scale whole-forest properties such as 
biomass and carbon (though ground measurements of wood proper-
ties are still necessary), and allow individual tree monitoring at large 
scale (Jucker et al., 2017). Tree height can be extracted from ALS data 
with higher accuracy than in the field (Zolkos et al., 2013), and ALS 
can provide surface heights at sub-metre resolution (Lee et al., 2010; 
Lefsky et al., 2005). However, retrieval accuracy can be affected by 
canopy height and distribution (Hopkinson & Chasmer, 2009), slope 
of the terrain (Breidenbach et al., 2008), and properties of the sen-
sor including sampling point density (Hyyppä et al., 2000; Roussel 
et al.,  2018) and scanning angle (Qin et al.,  2017). Nevertheless, 
reliable retrievals of stem density, vertical foliage profile (Coops 
et al., 2007), basal area (Lee & Lucas, 2007) and above-ground bio-
mass measurements (Mascaro et al.,  2011; Simonson et al.,  2016) 
have been made using low-density ALS data (e.g. 1–2 points/
m2). Crown metrics can be estimated from high point density dis-
crete ALS platforms (~8–20 points m2; Wu et al.,  2016), including 
crown volume (Korhonen et al., 2013), depth (Lee et al., 2010), di-
ameter (Jucker et al.,  2017; Morsdorf et al.,  2004), cover (Lee & 
Lucas, 2007), and such data can be used to infer height and crown 
allometry (Fischer et al., 2020). Full waveform datasets can go a step 

further by describing vertical structural complexity (Nie et al., 2017), 
including understorey characterisation (Hancock et al.,  2017) and 
crown morphology (Lindberg et al., 2012). The inclusion of more in-
dividual morphological metrics has been shown to improve whole-
forest property estimates; for example, trees vary substantially in 
their crown mass, and accounting for crown dimensions in allome-
tric models can reduce both uncertainty and bias, particularly for 
the largest trees which contribute the most to biomass at the plot 
level (Goodman et al., 2014; Ploton et al., 2016). However, issues of 
data interpretation persist; Hastings et al. (2020) show that tree size 
and plot diversity can determine the success of LiDAR-based crown 
mapping in mixed temperate forests, affecting its applicability in 
drawing widespread ecological conclusions. Nevertheless, ALS has 
the major strength in that it can be used to collect data at very large 
spatial scales, and though it fails to capture smaller trees occluded 
in the understorey (Donager et al., 2021), this can be addressed with 
integration of small-scale TLS data within larger ALS surveys to bet-
ter monitor understorey volume (Liu et al., 2017) and improve bio-
mass calculations (Stovall & Shugart, 2018).

High-resolution remote sensing—including such as may be ob-
tained from sensors on the ground or mounted on drones—offers 
not only the opportunity to map large numbers of individuals (e.g. 
to identify single crowns and individual species; Ferraz et al., 2020; 
Weinstein et al., 2021), but also to quantify many aspects of an in-
dividual tree's structure and shape. It is here that the real value of 
high-resolution remote sensing is evident, demonstrated by develop-
ments that use the full three-dimensional data to quantify features 
that have been impossible to measure without simplifying assump-
tions, including crown volume (Zheng & Moskal, 2009), vertical pro-
file (Quan et al.,  2020) and morphology (Kunz et al.,  2019; Owen 
et al., 2021), above-ground volume and biomass (Brede et al., 2019; 

F I G U R E  2  Raw point clouds from which structural attributes of a tree may be derived. Data from a single Pinus sylvestris in a low-density 
forest plot in Alto Tajo Natural Park, Spain, surveyed in September 2021 using three different high-resolution remote sensing technologies 
discussed in this review: (a) a terrestrial laser scanner (Riegl VZ-400i); (b) a UAV LiDAR (Routescene Lidarpod mounted to a DJI M600 Pro 
UAV) and (c) UAV structure from motion photogrammetry (RGB camera on DJI Mavic Mini UAV). We scanned using TLS (a) from several 
locations around the tree, generating the highest point density of the three approaches; occlusion effects are evident at the top of the tree 
and point density is lower. UAV flights (b and c) were conducted at 40 m above surface level, with dense flight lines and high image overlap, 
and while the top of canopy is well represented for both UAV-borne technologies, occlusion effects mean point density is lower inside the 
crown and on the trunk.
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Calders et al., 2015; Disney et al., 2018), and its temporal dynamics 
(Kaasalainen et al., 2014). TLS data in particular have been used to 
quantify the properties of crown interiors, including branching size 
and angle (Lau et al., 2018; Li et al., 2020), fractal space filling (Seidel 
et al., 2019) and clustering (Béland & Baldocchi, 2020). Observations 
of crown properties at these fine scales are key to understand-
ing and quantifying fundamental aspects of tree function, such as 
within crown leaf arrangement to optimise light capture (Valladares 
& Niinemets,  2007) and reduce it through self-shading (Pearcy 
et al., 2005), and the impact of three-dimensional crown structural 
heterogeneity on the light environment of competitors (Kükenbrink 
et al., 2021). Reconstruction methods such as quantitative structural 
models (QSMs; see Figure  1a,b) allow the measurement of fine-
scale structural details such as twigs, leaves and branches, and how 
they change through time, from TLS data (Kaasalainen et al., 2014; 
Raumonen et al.,  2013; Wilkes et al.,  2021). Furthermore, such 
data enable new ways to explicitly test theories on crown resource 
optimisation, light use efficiency and self-shading (Niinemets & 
Anten,  2009) and pair these to structural-functional plant models 
(O'Sullivan et al.,  2021), leading to new knowledge of structural 
trade-offs complimentary to well-established leaf and wood eco-
nomics spectra (Verbeeck et al., 2019). Very high-resolution recon-
structions of single trees that reliably preserve fine-scale internal 
structure may also open new avenues of research to understand the 
fundamental relationships between genetics, plant morphogenesis 
and architecture, including testing theories of nested levels of archi-
tectural organisation (Barthélémy & Caraglio, 2007), revisiting geo-
metric theories of plant architectural growth (Godin et al., 1999), and 
improving understanding genetic controls on branching architecture 
in woody plants (Teichmann & Muhr, 2015).

High-resolution remote sensing can monitor leaf and fine-
structural properties relevant to productivity, light environment, 
structural allocation and stress responses. TLS data can be used to 
determine leaf angle distributions which drive within-crown light 
distribution (Stovall et al.,  2021; Vicari et al.,  2019) and to input 
into radiative transfer and gas exchange models to predict the spa-
tiotemporal dynamics of forest gas exchange (Damm et al., 2020). 
Furthermore, dual-wavelength TLS can measure within-crown varia-
tion in leaf water, and detect differences between sunlit and shaded 
leaves (Elsherif et al.,  2019). Structural quantification through re-
mote sensing also offers new opportunities to confront widely used 
allometric theories and geometric assumptions with data (Metz 
et al., 2013; Owen et al., 2021), to determine understanding of the 
macroecological drivers of shape branching architecture in plants 
(Chomicki et al., 2017), to understand the role of abiotic conditions on 
tree shape, including driving intraspecific variation (Guillén-Escribà 
et al., 2021) and structural convergence (MacFarlane & Kane, 2017; 
Martin-Ducup et al., 2020), and the impact of extreme events such 
as drought on tree shape (Jacobs et al., 2021). High-resolution UAV 
data can also offer individual structural information, and across 
larger numbers of trees than TLS. For example UAV-LiDAR can de-
tect phenotypic variation in tree architecture to predict productiv-
ity (Camarretta et al., 2020), and produces high enough resolution 

information to both discriminate individuals and detect species 
identity (Apostol et al., 2020). In enabling the quantification of new 
high-resolution crown morphological metrics at scale, both UAV and 
TLS allow the expansion of measurement and understanding of mul-
tidimensional tree growth, through repeat measurements (Campos 
et al., 2021; Guerra-Hernández et al., 2017). Though examples are as 
yet few, such measurements could cast new light on understanding 
of ontogeny, allocation of resources through changes in leaf distribu-
tion and biomass, and fine-scale structural dynamics and plasticity.

3  |  SENSING THE THREE- DIMENSIONAL 
C ANOPY: COMPETITION FOR LIGHT, 
CROWN PL A STICIT Y AND PACKING

Tree–tree interactions are fundamental to understanding forest 
ecosystem functions (Trogisch et al., 2021), drive demography and 
competition (Kunstler et al., 2016; Pacala et al., 1993), and have long 
formed the basis of simulation models predicting temporal changes 
in species dominance, stand structure, biomass and carbon (e.g. 
Coomes et al., 2014; Ménard et al., 2002; Pacala et al., 1996; Purves 
& Pacala, 2008). Competitive interactions such as asymmetric com-
petition for light are key drivers of forest structure and dynamics 
(Weiner,  1990), and species' differences in light interception and 
plasticity create crown complementarity, driving overyielding in di-
verse plots (Williams et al., 2020). However, tree–tree interactions 
are typically inferred through strongly simplifying assumptions; for 
example, the strength of asymmetric competition is typically esti-
mated as some function of density of either taller or larger neigh-
bours (Lines et al.,  2012; Lorimer,  1983; Pretzsch & Biber,  2010). 
These ground measurements provide only a proxy for actual light 
environments within the canopy as they make simple geometric as-
sumptions about the shape, size and density of tree crowns based on 
allometry; and the implications of these for understanding competi-
tion for light remain poorly understood.

High-resolution remote sensing opens a wide range of oppor-
tunities for understanding competition as a driver of ecological 
dynamics, and for revisiting and refining assumptions. TLS-derived 
competitive indices have, for example, been shown to outperform 
those based on traditional standard geometric assumptions to pre-
dict growth (Metz et al.,  2013). TLS can also quantify the role of 
competition on crown shape and crown packing, and how these are 
influenced by shade and drought tolerance (Owen et al., 2021), and 
disentangle the relative roles of competition and genetics on crown 
shape (Burkardt et al.,  2021). UAV-mounted sensors can quantify 
structural interactions at much larger scales than is possible through 
TLS. For example, LiDAR-derived crown properties can predict 
how neighbourhood competition drives tree growth (Vanderwel 
et al., 2020), and UAV photogrammetry-derived crowns can be used 
to determine the relative strength of interspecific vs intraspecific 
competition on growth (Erfanifard et al.,  2021). New insights into 
how individual shape and competitive interactions affect whole-
canopy properties are also emerging; for example, TLS data have 
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shown how crown shape, branching topology and shade tolerance 
influence crown position and shading interactions (Martin-Ducup 
et al., 2021).

Mapping large numbers of individuals, through ALS or UAVs in 
particular, allows us to ask new questions about the underlying driv-
ers of spatial distribution of trees at scales orders of magnitude larger 
than ground surveying allows; for example to retrieve stem density 
(Shang et al., 2019), to demonstrate the regularity of stem clustering 
patterns across tens of thousands of hectares (Staver et al., 2019), 
or to map the relationships between crown morphological traits and 
diversity and elevation (Zheng et al., 2021). Going further, mapping 
of individual crowns allows us to shift focus from looking at spatial 
patterning of stems in space (over which each individual tree has 
little control), to that of crowns (whose positioning can be shifted 
over a tree's lifetime), uncovering evidence of interspecific varia-
tion in crown placement and shyness effects (Disney, 2019; Owen 
et al., 2021; van der Zee et al., 2021).

4  |  SENSING DYNAMIC S,  DEMOGR APHY 
AND ECOSYSTEM FUNC TION

As remote sensors increasingly allow us to map individual trees at 
large scales in automatic or semi-automatic ways, they are becom-
ing powerful tools to monitor the development of plant populations 
over time, offering new methods to inform large-scale individual-
based forest models. For example, multi-temporal airborne laser 
scanning has been used to monitor tree migration in transition zones 
between ecosystems (Næsset & Nelson, 2007), to assess structural 
dynamics and growth (Duncanson & Dubayah,  2018; Simonson 
et al., 2016; Yu et al., 2004), to characterise gaps and treefall (Bohlin 
et al., 2017; White et al., 2018), to detect properties including spe-
cies identity and size classes for disturbance monitoring (Duncanson 
& Dubayah, 2018; Levick et al., 2015; Zhao et al., 2018), and to de-
termine individual tree mortality at large scales from crown loss 
(Aubry-Kientz et al., 2019).

Beyond better monitoring, remote sensing technologies—and 
the new metrics of structure and competition they reveal—should 
be capable of generating new knowledge on the causal links be-
tween forest structure and demography. The growth and survival 
of populations is inherently linked to their ability to grow into avail-
able space and forage for light (MacFarlane et al., 2011), but growth, 
mortality and fecundity models usually rely on diameter and/or 
height to estimate tree performance, even using it to estimate crown 
properties such as LAI, shading and plasticity (Condit et al., 1998; 
Lines et al., 2020; Needham et al., 2018; Pacala et al., 1993; Purves 
et al., 2008). Crown traits have been shown to be good predictors 
of survival and growth (Kitajima et al.,  2005; Smith,  1994; Sterck 
et al., 2003), and competitive dominance through leaf arrangement 
and light use (Kitajima et al., 2005). But when the light captured or 
shaded by individual trees is field assessed for traditional demog-
raphy studies, this has largely been restricted to classifying trees 
according to discrete light categories, or using basal-area-derived 

crowding indices to assess access to space and light and expo-
sure to stressors (Kohyama, 1993; Metcalf et al., 2009; Zambrano 
et al.,  2019). Improved understanding of light and microclimate 
from remote sensing that can be used to assess the link between 
structure and vital rates (Stark et al., 2015) may lead to better rep-
resentation of the impact of small-scale heterogeneity in the abiotic 
environment, or even direct inclusion of light and microclimate prop-
erties, within forest models. For example, three-dimensional foliage 
distribution obtained from TLS and UAV LiDAR has been used to 
show trade-offs between light interception and light use efficiency 
(Onoda et al.,  2013), to quantify whole-forest light distribution 
(Kükenbrink et al., 2021), predict interspecific differences in micro-
climate (Kong et al., 2016), and model of aerodynamic flow of wind 
over forest canopies (Floors et al., 2018), and wind and storm dam-
age to trees (Jackson et al., 2019), a leading cause of tree mortality 
globally (Esquivel-Muelbert et al., 2020; Senf & Seidl, 2021).

Studies using high-resolution remote sensing increasingly show 
the importance of considering crown complexity and branching to 
understand how diversity drives forest dynamics. Higher biodiver-
sity promotes more structurally diverse forests, with higher variation 
in light interception as well as partitioning of space through inter-
specific variation in crown shape and plasticity, increased light cap-
ture and higher biomass accumulation (Fichtner et al., 2018; Jucker 
et al., 2015; Pretzsch, 2014; Sapijanskas et al., 2014). Furthermore, 
canopy structural complexity metrics have recently been identified 
as strong indicators of productivity, outperforming conventional 
vegetation indices and diversity measures (Gough et al., 2019), but 
analysis has often been limited by a lack of precise structural data 
(Dănescu et al., 2016). Both terrestrial and airborne laser scanning 
provide a wealth of new data that can offer new insights into how 
plants mix in space (Kamoske et al., 2021; Schneider et al., 2017), 
and on relationships between diversity and productivity (LaRue 
et al., 2019). For example, TLS-derived metrics of canopy properties 
including allocation patterns and internal crown structural complex-
ity show stronger correlations to biodiversity than traditional struc-
tural metrics and reveal higher complexity and greater investment 
towards lateral branch extension in mixed-species forests (Kunz 
et al., 2019; Walter et al., 2021), leading to new knowledge on the 
relative importance of functional diversity and morphological plas-
ticity on canopy space optimisation in diverse stands (Hildebrand 
et al.,  2021). TLS has also been used to demonstrate interaction 
effects (Guimarães-Steinicke et al.,  2021; Hildebrand et al.,  2021) 
and the relationships between overyielding and crown comple-
mentarity (Guillemot et al., 2020) and diversity in phenological pat-
terns (Lu et al.,  2016). Such insights could be used to tease apart 
structural diversity from other forms of diversity, such as species or 
functional diversity (Williams et al., 2020), test new theories about 
how diversity–productivity relationships scale spatially (Gonzalez 
et al., 2020), and improve understanding on relationships between 
structural diversity and ecosystem function (LaRue et al.,  2019). 
Combined with ray tracing approaches it will also be possible to 
directly test species-specific competitive and facilitative shading 
effects (Kothari et al., 2021), and the relative importance of shade 
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persistence and structural plasticity as mechanisms driving higher 
crown packing in mixtures (Williams et al., 2020).

Capturing these processes is key not only to advancing ecolog-
ical understanding, but also to developing more realistic models 
that capture the structure and dynamics of forests. Remote sensing 
technologies such as LiDAR already play an important role in the 
calibration and up-scaling of forest models (Antonarakis et al., 2014; 
Fischer et al., 2019; Hurtt et al., 2010; Rödig et al., 2019; Shugart 
et al., 2015). But they also have the potential to drive the develop-
ment a completely new generation of forest models that reimagines 
above-ground forest dynamics from the perspective of tree crowns 
(Purves et al., 2007). However, these new data streams also pose a 
challenge for ecological modellers (Fisher et al., 2018), and it remains 
unclear whether including a representation of three-dimensional 
complexity in crown architecture and arrangement compared to 
more traditional measures of competition, such as stand basal area, 
is worth the increase in model complexity.

5  |  SENSING DRIVERS OF C ANOPY 
STRUC TURE AND COMPLE XIT Y FROM 
LOC AL TO GLOBAL SC ALES

While there is growing interest in developing instruments and data 
processing pipelines that allow us to use high-resolution remote 
sensing to study the architecture and growth of individual trees, in 
ecology their original application was to measure forest structure at 
a canopy level (Lefsky et al., 1999, 2002). Individual trees aggregate 
to form canopies, which are a complex emergent property of forests 
and are the primary interface between the biosphere and the atmos-
phere for carbon, water and energy exchange. Ecological theories 
on canopy packing optimisation, and how this is affected by diver-
sity (Coomes et al.,  2012; Horn,  1971; Jucker et al.,  2015; Purves 
et al., 2008; Taubert et al., 2015), are influential in quantifying forest 
biomass dynamics and ecosystem services, but have been developed 
using geometric assumptions and simple ground data. At a planetary 
scale, satellite LiDAR instruments such as the Geoscience Laser 
Altimeter System (GLAS), and more recently the Global Ecosystem 
Dynamics Investigation (GEDI; Dubayah et al., 2020), have allowed 
us to capture the first picture of how forest canopy height varies 
globally (Lang et al., 2022; Simard et al., 2011). Using canopy height 
observations from GLAS, multiple studies have highlighted the criti-
cal role of water availability (measured either as annual rainfall or 
climatic water deficit) in constraining the distribution of the world's 
tallest forests (Scheffer et al., 2018; Tao et al., 2016).

However, in addition to these macroscale climatic drivers of 
forest height, the three-dimensional structure, species composi-
tion and diversity of forests vary tremendously within regions and 
landscapes due to factors unrelated to climate (Gorgens et al., 2019; 
Jucker, Bongalov, et al., 2018; Jucker, Hardwick, et al., 2018). One 
key driver of this variation is landscape geomorphology and its influ-
ence on local topography and soil chemistry, which LiDAR is particu-
larly well suited to measure (Chadwick & Asner, 2018, 2020; Jucker, 

Bongalov, et al.,  2018; Jucker, Hardwick, et al.,  2018; Muscarella 
et al.,  2020; Walter et al.,  2021). Using a combination of airborne 
LiDAR and hyperspectral imaging, Chadwick and Asner (2018, 2020) 
showed that, in both the Amazon and Borneo, landscape dynam-
ics linked to erosion, aggrading and soil weathering leave a distinct 
fingerprint on canopy foliar traits. In turn, these shifts in species 
composition and diversity along fine-scale topo-edaphic gradients 
are linked to marked changes in both canopy three-dimensional 
structure and above-ground carbon stocks in these forests (Jucker, 
Bongalov, et al., 2018; Jucker, Hardwick, et al., 2018). Moreover, the 
strength of these topographic effects on canopy structure varies 
predictably at regional scales due to interactions with climate, with 
more pronounced differences between forests on steep slopes or 
ridges and those in valleys in drier environments where soil moisture 
gradients are most accentuated (Muscarella et al., 2020).

Another key driver of local and regional variation in forest struc-
ture, which LiDAR captures the impact of, is disturbance (whether 
natural or human driven). Canopy gaps, which directly reflect the 
process of one or more trees dying, have attracted particular atten-
tion (Goodbody et al., 2020; Jucker, 2021; Kellner & Asner, 2009). 
For instance, total gap fraction and gap size frequency distribu-
tions have been shown to closely reflect tree mortality rates and 
reliably detect the effects of selective logging in tropical forests 
(Dalagnol et al., 2021; Kent et al., 2015; Reis et al., 2021; Wedeux 
& Coomes, 2015). Beyond gaps, the impacts of logging and habitat 
fragmentation can also be seen in dramatic changes in the vertical 
distribution and density of foliage and woody biomass captured by 
LiDAR (Milodowski et al., 2021), and the spatial and temporal extent 
of structural change due to habitat fragmentation. A combination 
of airborne LiDAR and hyperspectral imaging in Borneo has shown 
that above-ground carbon stocks are >20% lower in the first 100 m 
from a forest edge, and that these changes are linked to declines 
in canopy height and shifts in foliar traits related to light capture, 
growth and longevity such as leaf mass per area and phosphorus 
content (Ordway & Asner, 2020). Moreover, work using repeat air-
borne LiDAR acquired before and after the global El Niño event 
of 2015–2016 has shown that these edge effects can amplify the 
impacts of drought, as do LiDAR-detectable fine-scale topographic 
features such as steep slopes and ridges (Leitold et al., 2018; Nunes 
et al.,  2021). A similar before–after approach has been used to 
quantify the impact of tropical storms on forest biomass stocks and 
show how biomass losses vary predictably across landscapes with 
flood risk and exposure to high winds (Cushman et al.,  2021; Hall 
et al., 2020). In the near future, repeat airborne surveys may provide 
a unique opportunity to study other important but historically over-
looked drivers of forest disturbance; for example lightning strikes, 
which at Barro Colorado Island in Panama have been shown to cause 
40% of large tree mortality and 20% of annual gap formation (Gora 
et al., 2021; Yanoviak et al., 2020).

As access to LiDAR continues to grow, so too do opportunities 
to leverage these data to advance our understanding of the pro-
cesses that shape the structure and function of forests at large 
scales. In particular, we are beginning to see the first real efforts 



1736  |   Journal of Ecology LINES et al.

to bring together high-resolution datasets that capture the full ex-
tent to which structural complexity and diversity vary across the 
world's forests. For example, Ehbrecht et al.  (2021) recently used 
terrestrial LiDAR data from 294 1-ha plots distributed across five 
biomes to show that canopy structural complexity (quantified using 
an index based on fractal geometry) is controlled by a combination 
of broad-scale aridity and rainfall seasonality gradients, soil fertil-
ity and water-holding capacity. Equally exciting are the potential to 
leverage the near-global coverage of GEDI (51.6° north and south 
of the equator) to capture the diversity of canopy structure from 
space (Schneider et al.,  2020), and potential synergies with other 
space-borne instruments, such as optical sensors that allow for the 
mapping of trees at large scales (Brandt et al., 2020), or SAR systems 
which have been shown to be sensitive to diversity-driven structural 
variation (Sentinel-1; Bae et al., 2019).

6  |  DE VELOPMENTS TOWARDS 
WIDESPRE AD ADOPTION OF REMOTE 
SENSING IN FOREST ECOLOGY

Many of the technologies described in this review have been shown 
to be operational within forest monitoring for over a decade, and 
despite their demonstrated promise, and the wide range of open-
source analysis tools available (Atkins et al., 2022), they have not yet 
become widespread or standard tools within the forest ecological 
community. Where these data are used, much of the work has re-
produced metrics possible from ground measurements (e.g. height), 
or concentrated on a small number of metrics easily producible from 
common open-source analysis tools. Obstacles to progress arise for 
a number of reasons, including complexities in data processing to 
extract ecologically meaningful information, issues of method com-
parison and a lack of benchmarking activities, and practical consider-
ations such as high costs associated with data collection, particularly 
for LiDAR.

Working with three-dimensional data brings unique challenges, 
so high-resolution remote sensing studies using data processed to 
individual tree level are often ‘proof-of-concept’ studies with small 
sample sizes (<100 trees). A major challenge is the labour-intensive 
nature of individual tree extraction from point clouds with the most 
widely used methods still requiring substantial manual processing 
(Martin-Ducup et al.,  2021), leading to many users circumvent-
ing automation altogether for a fully manual approach (Guillemot 
et al., 2020; Kunz et al., 2019). And despite the high-tech nature of 
sensors, the need to identify the species of scanned trees means 
hand-drawn stem maps are often still required, bringing additional 
challenges of stem-matching during post-processing (Guillén-Escribà 
et al., 2021). The newest deep learning-driven techniques for point 
cloud classification, tree segmentation, species identification and 
metric extraction (e.g. Ayrey & Hayes,  2018; Chen et al.,  2021; 
Krisanski et al., 2021; Luo et al., 2021; Xi & Hopkinson, 2021) pro-
vide the most promising way forward to increase automation within 
the processing workflows needed to make use of three-dimensional 

data practical at scale. For example, neural network approaches 
have been used to automate tree crown detection from both RGB 
aerial imagery (Bosch, 2020; Weinstein et al., 2019), and from aerial 
LiDAR (Windrim & Bryson, 2020), and to identify species based on 
whole tree point clouds (Seidel et al., 2021), stem and bark proper-
ties (Mizoguchi et al.,  2019) and processed, interpretable features 
(Terryn et al., 2020). The additional inclusion of ecologically realistic 
information to constrain processing algorithms, including through 
the use of scaling rules, can further improve performance (Brummer 
et al., 2021; Tao et al., 2015); however, the need for training data 
to build these models means that increased data sharing across the 
community may be needed, as well as adoption of approaches such 
as transfer learning and data augmentation.

Inevitably, increased access to high-resolution 3D data in the 
environmental sciences has led to the proliferation of different al-
gorithms for processing the data. While this is essential to move the 
field forward, many methods exist to calculate the same metrics 
in different ways, many are tailored to specific sensors, and most 
methods are developed and tested on small datasets from single 
forest types with success in processing often dependent on the 
properties of the ecosystem studied. As a result, approaches may 
not always be transferable across forest types. For example, species 
traits and forest structure can determine the success of crown map-
ping from UAVs (Hastings et al., 2020), and the relative strength of 
interspecific versus intraspecific variation can complicate automatic 
identification of species identity (Terryn et al., 2020). Automated ap-
proaches are particularly challenging in dense, multi-layered forests 
where occlusion may be considerable (Aubry-Kientz et al.,  2019), 
though segmenting in simulated leaf-off conditions may improve 
this, for example using segmentation of leaf and wood points in TLS 
data through clustering analysis (Ferrara et al., 2018) or supervised 
learning (Moorthy et al., 2019). Furthermore, different scanners and 
sampling strategies can lead to highly varying data quality; for exam-
ple, occlusion effects mean that the number and location of LiDAR 
scans around a tree strongly influences leaf area retrieval accuracy 
(Yun et al.,  2019), and drones and TLS suffer opposing occlusion 
effects (Schneider et al.,  2019), making them suitable for deriving 
different metrics. Fine-scale details, even in low-occlusion measure-
ment settings, can be challenging to accurately measure, for exam-
ple, QSMs have been shown to overestimate small branch diameters 
(Demol et al.,  2022) and taper (Wilkes et al.,  2021), so work that 
explicitly tests the ability of different sensors, sampling strategies 
and analysis approaches to reliably produce different metrics is in-
valuable (Boucher et al., 2021; Disney, 2021; Schneider et al., 2019; 
Wilkes et al., 2017). Navigating the rapidly advancing landscape of 
developments to identify the best approach is challenging, partic-
ularly given the specialist nature of these data. It is clear therefore 
that in order to advance the adoption of three-dimensional data in 
forest ecology, improved benchmarking of new methods and im-
proved methodological comparison are sorely needed. New initia-
tives are opening up access to data collected across a wide range 
of forest types, including the Global TLS Database (Stovall, 2021), 
and free airborne LiDAR data across forest sites in the United States 
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(NEON; Kao et al., 2012) and many European countries (see Ruiz-
Benito et al.,  2020), bringing new opportunities to demonstrate 
suitability of methods, and sensor agnostic approaches (Krisanski 
et al., 2021). Moreover, the cost of sensors and complexity of data 
acquisition is a barrier to uptake for many, leading to a concentration 
of work in the best funded universities and institutions. Improved 
open access to large datasets, particularly when accessible through 
cloud services with off-site processing, will also improve the number 
of researchers able to participate in driving forward advances, while 
improved benchmarking will make clear the effectiveness of differ-
ent sensors to measure metrics of interest, making infrastructure 
investment more efficient.

Whilst large-scale initiatives are improving access to data, we 
still lack a robust common approach to measuring and interpreting 
forest structural complexity. Instead, an ever-expanding plethora of 
remote sensing metrics makes comparison across studies, and selec-
tion of ones that are ecologically useful and generalisable, extremely 
challenging. However, there have been attempts to determine the 
most useful structural properties that can be extracted from high-
resolution remote sensing data, including ones which mirror efforts 
at the individual tree scale by defining a plant structural economic 
spectrum (Verbeeck et al.,  2019), an approach that has huge po-
tential to be expanded towards a whole-plant economics spectrum 
integrating across leaf, branch, stem and root traits. For instance, 
terrestrial LiDAR data acquired across multiple sites of the National 
Ecological Observatory Network (NEON) in the United States were 
used to identify major canopy structural types using ordination 
approaches (Fahey et al.,  2019). This and similar efforts suggest 
that there are multiple key axes of canopy structural complexity 
particularly worth focusing on—including height, height variation, 
vegetation density and ‘gappiness’—and that fractal geometry may 
hold the key to bringing these together into an overarching frame-
work (Ehbrecht et al., 2021; Fahey et al., 2019; LaRue et al., 2019; 
Schneider et al., 2020). Large datasets such as these also offer the 
opportunity to determine the distinctiveness or otherwise of the 
wide variety of structural complexity metrics proposed in the litera-
ture, and to determine distinct axes of variation. Here, there may be 
opportunities to draw inspiration from other fields in biology that 
deal with ecosystems that are inherently three-dimensional—such 
as coral reefs, where theoretical frameworks for describing habitat 
complexity have been developed (Torres-Pulliza et al., 2020).

There are, of course, many tree and forest properties for which 
advances from the use of high-resolution remote sensing will pro-
vide only partial improvements in estimates, and the measurement 
of which will continue to need to rely on integration with ground 
data. An obvious example is above-ground biomass, where accurate 
volume estimates or improved allometric equations must still be 
complemented with good wood density data and long-term inven-
tories, particularly in tropical regions (Schepaschenko et al., 2019). 
While structural properties may hint at individual performance and 
response to change, many plant traits critical to responses to global 
change (and all below-ground processes) cannot be sensed with the 

technologies discussed here. Meaningful transition to increased use 
of these technologies will only be successful if we build upon exist-
ing networks, providing clear links with complementary datasets and 
robust continuity to the past.

7  |  CONCLUSION

The unprecedented detail available from the types of high-resolution 
remote sensors discussed here makes their adoption inevitable in 
standard forest ecological research, and will lead beyond improved 
monitoring to the development of new understanding and theory 
about the structure and function of trees and forests. These data are 
beginning to be used to shed new light on classical ecological ques-
tions on allocation of resources, competitive interactions, structural 
optimisation for light capture, and canopy space filling and structural 
plasticity, but this is just the start of the remote sensing revolution in 
forest ecology. To enable rapid development, adoption of these data 
is needed more widely, beyond those groups with access to the re-
sources to collect them, so data sharing with standardised collection 
methods is needed. Equally, the value of using such data to answer a 
broad range of ecological questions must be recognised by research-
ers who have not participated in their collection, and compromise on 
the particular geographical location of data needs to be traded off 
against their information content.

Automation of processing workflows is rapidly reducing the 
time and manual input needed to process point cloud data, and 
these advances will not only increase pragmatic sample sizes, but 
will also lower the expertise required to use these data, improving 
the delivery of information to non-expert end-users. Robust test-
ing of new algorithms is needed, and benchmarking against existing 
methods should become standard practice, particularly when gen-
erating ecological metrics. This could be achieved through reana-
lysing existing datasets, or the establishment of benchmarking sites 
with freely available data in plots with contrasting forest structure 
and diversity. New metrics that describe three-dimensional com-
plexity are needed, and these should be clearly defined, robust to 
variation in instrument and collection method, and, crucially, de-
monstrably ecologically interpretable to be useful to a wide range 
of users.

Here, we find a wide range of exciting uses of these data, and 
the biggest advances for forest ecology from their use will be made 
through broad thinking about their potential to take us beyond the 
framework of a trunk-centred view of forests; many of the studies 
we have reviewed are pushing this boundary. Proactive and early 
collaboration between remote sensing scientists and ecologists will 
lead to the development of new ecologically meaningful metrics far 
beyond more accurate estimates of properties we can measure with 
ground data. The value of these data will increase through a series 
of advances, of course in data availability and technological develop-
ment, but equally as importantly through creativity of use, leading us 
to new ways to understand forests.
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