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A B S T R A C T   

Although, predicting ischaemic stroke evolution and treatment outcome provide important information one step 
towards individual treatment planning, classifying functional outcome and modelling the brain tissue evolution 
remains a challenge due to data complexity and visually subtle changes in the brain. We propose a novel deep 
learning approach, Feature Matching Auto-encoder (FeMA) that consists of two stages, predicting ischaemic 
stroke evolution at one week without voxel-wise annotation and predicting ischaemic stroke treatment outcome 
at 90 days from a baseline scan. In the first stage, we introduce feature similarity and consistency objective, and 
in the second stage, we show that adding stroke evolution information increase the performance of functional 
outcome prediction. Comparative experiments demonstrate that our proposed method is more effective to extract 
representative follow-up features and achieves the best results for functional outcome of stroke treatment.   

1. Introduction 

Ischaemic stroke, a condition caused by a blockage of a blood vessel 
in the brain due to a blood clot, is the most common type (80 %) of 
stroke disease (Renowden, 2014) which is a leading cause of death in the 
UK (Stroke Association, 2018) and worldwide (WHO, 2018). The most 
effective treatment in the most severe ischaemic stroke cases is me
chanical thrombectomy where thrombi in the large intracranial arteries 
are removed via an intra-arterial catheter to restore blood flow. How
ever, thrombectomy risks include brain haemorrhages and death. 
Hence, the treatment decision is patient-specific and determined by the 
physician after assessment of the potential risks and benefits of func
tional outcome. The purpose of clinicians is to utilise all information 
sources (e.g., imaging and/or clinical information) to decide the most 
optimal treatment option as soon as possible, as the effect of treatment 
highly depends on the time to treatment. 

Modelling the evolution of changes in the brain in the first few weeks 
and months post-stroke is key to establishing methods for predicting the 
effects and outcome of immediate stroke treatment for future patients. 

The functional outcome of treatment is frequently measured in the clinic 
using the modified Rankin Scale (mRS) (Van Swieten et al., 1988), 
starting at 0 for no symptoms, through 1–5 for degree of severity of 
symptoms, and finally 6 for death. However, predicting brain tissue 
changes following a stroke is challenging as it is inherently difficult due 
to the irregularity in lesion shape, size and location. This is sometimes 
the case even for radiologists to spot the damaged tissue from the NCCT 
scan on admission – see examples in Figs. 1, 2. 

Deep learning has shown unparalleled levels of success in various 
image analysis domains, e.g., action recognition, image segmentation 
and classification. In particular, convolutional neural networks (CNNs) 
have been extensively applied to medical image analysis tasks attaining 
state-of-the-art results, for example in stroke-related applications, such 
as lesion detection (Chen et al., 2020; Gautam and Raman, 2021), seg
mentation (Clèrigues et al., 2020; Pinto et al., 2021) and severity predic
tion or prognosis (Samak et al., 2020; Robben et al., 2020). 

In stroke outcome applications, the majority of the studies have 
designed their task as either a segmentation of final stroke lesion (Scalzo 
et al., 2012; Lucas et al., 2018; Pinto et al., 2021) or a prediction of 

* Corresponding authors. 
** Principal corresponding author. 

E-mail addresses: zeynel.samak@bristol.ac.uk (Z.A. Samak), phil.clatworthy@bristol.ac.uk (P. Clatworthy), m.mirmehdi@bristol.ac.uk (M. Mirmehdi).   
1 0000-0002-3835-4811  
2 0000-0002-1206-3573  
3 0000-0002-6478-1403 

Contents lists available at ScienceDirect 

Computerized Medical Imaging and Graphics 

journal homepage: www.elsevier.com/locate/compmedimag 

https://doi.org/10.1016/j.compmedimag.2022.102089 
Received 17 September 2021; Received in revised form 4 May 2022; Accepted 3 June 2022   

mailto:zeynel.samak@bristol.ac.uk
mailto:phil.clatworthy@bristol.ac.uk
mailto:m.mirmehdi@bristol.ac.uk
www.sciencedirect.com/science/journal/08956111
https://www.elsevier.com/locate/compmedimag
https://doi.org/10.1016/j.compmedimag.2022.102089
https://doi.org/10.1016/j.compmedimag.2022.102089
https://doi.org/10.1016/j.compmedimag.2022.102089
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compmedimag.2022.102089&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computerized Medical Imaging and Graphics 99 (2022) 102089

2

functional outcome (via mRS scores) (Bacchi et al., 2019; Hilbert et al., 
2019; Samak et al., 2020). Segmentation approaches require voxel-wise 
annotation, best performed by expert radiologists, which is laborious 
and costly. On the other hand, predicting mRS scores directly from the 
baseline scan and/or clinical information does not provide information 
about the progression of the disease and so is not enough for clinical use. 

Ernst et al. (2017) have shown the importance of the 1-week follow-up 
scan on mRS scores, by investigating the correlation between the lesion 
volume in mRS-relevant brain regions in 1-week follow-up NCCT scans 
with functional outcome. Only relatively few studies have investigated 
the combination or integration of final stroke lesion segmentation and 
mRS prediction, for example (Maier and Handels, 2016; Choi et al., 
2016; Nishi et al., 2020). Although these methods provide information 
both about disease evolution and functional outcome, they still require 
annotations of segmentation maps. 

This work aims to model stroke progression, without manual anno
tations, to build a model capable of predicting the outcome of throm
bectomy treatment on new hospital admissions - with the immediate 
benefit that it would allow clinicians to decide whether to apply 
thrombectomy or not. In the first step, our model predicts the follow-up 
non-contrast computed tomography (NCCT) scan (1-week follow-up) 
from the baseline scan. Then, it combines the baseline scan with the 
predicted follow-up scan to predict the functional outcome of the stroke 
treatment - the mRS scores. Therefore, our model can assist physicians 
both qualitatively by the predicted scans and quantitatively by the 
predicted mRS score. 

There is no universally accepted method of selecting patients for 
thrombectomy. As a minimum, patients should have an identified 

Fig. 1. FeMA predicts ischaemic stroke evolution at one week (short-term 
outcome) and functional outcome of treatment (long-term outcome) leveraging 
only the baseline NCCT scan on Stroke patient’s admission to hospital. 

Fig. 2. Example of stroke NCCT scans (from MR CLEAN), first column is the first scan when the patient was admitted to hospital, middle column is the 24 h follow-up 
scan and last column is the 1-week follow-up scan. Affected regions are highlighted. Unaffected slices for Subject 1 are shown for comparative purposes. 
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occlusion of a large intracranial artery and no intra-cerebral haemor
rhage on NCCT imaging of the brain. Potentially eligible patients 
therefore currently undergo NCCT or magnetic resonance imaging (MRI) 
to exclude intra-cerebral haemorrhage, followed by angiographic im
aging, usually CT or MR angiography, to identify occlusion of a large 
intracranial artery (large vessel occlusion, LVO) to be targeted by 
thrombectomy treatment. Most patients who are eligible for thrombec
tomy are also eligible for intravenous thrombolysis. Both are time- 
critical treatments, therefore it is important that methods of assessing 
eligibility for thrombectomy do not unnecessarily delay intravenous 
thrombolysis. Furthermore, it has been estimated that a typical patient 
loses close to 2 million neurons for every minute that a stroke remains 
untreated (Saver, 2006). A large registry-based study found that every 
minute of delay to intravenous thrombolysis was associated with a 
measurable effect on risk of early post-treatment intra-cerebral hae
morrhage, disability and death (Darehed et al., 2020). 

NCCT brain imaging is extremely rapid, taking as little as 1–2 min for 
images to be acquired. CT angiography, CT perfusion and MRI take 
longer to perform; while scan time is only a matter of minutes, this 
imaging is not always readily available, leading to further delays. An 
imaging-based method of patient selection for thrombectomy that re
quires only NCCT scans therefore has the potential for significant patient 
benefit. Other benefits include: uncommon but occasionally severe re
actions to intravenous contrast media used for CT and MR angiography; 
cost of intravenous contrast, scanner operator time and image reporting; 
and the fact that NCCT is the only brain imaging modality that is almost 
universally available in hospitals treating stroke across the world. 
Moreover, Weyland et al. (2022) recently showed that using only 
non-contrast CT are improving and may give useful information about 
clot constituents not provided by angiographic imaging, supporting the 
potential feasibility of identifying LVO using such an approach. Our 
contributions in this work are as follow: (i) we propose a self-supervised, 
annotation-free, voxel-wise approach to predict the follow-up scans in 
stroke patients from their baseline scan, (ii) our proposed network learns 
to predict mRS scores from embedded features that are a combined 
representation of the baseline scan and our predicted follow-up scans, 
and finally (iii) we present extensive comparative experiments to eval
uate and validate the proposed model for relevant architectures, i.e. the 
auto-encoder (AE), perceptual AE (AEPL) (Johnson et al., 2016), 3D 
U-Net (Çiçek et al., 2016) and Wasserstein generative adversarial 
network (WGAN) (Bowles et al., 2018; Kwon et al., 2019). Compre
hensive empirical tests show that our proposed method, FeMA achieves 
competitive results compared to U-Net based methods and superior re
sults compared to state-of-the-art non-U-Net based methods in follow-up 
scan prediction. Also, FeMA obtains state-of-the-art results compared to 
both U-Net and non-U-Net based methods in mRS score prediction, at 
0.79 AUC. 

The remainder of the paper is structured as follows. We address 
related works in Section 2 and review the MR CLEAN dataset and our 
preprocessing methods in Section 3. In Section 4, we develop the 
fundamental components of our proposed method. Our experimental 
set-up and comparative results are presented in Section 6. Finally, we 
provide conclusions and future work in Section 7. 

2. Related works 

Over the past decades, a variety of methods have been proposed for 
stroke lesion detection and segmentation, ranging from image thresh
olding (Chawla et al., 2009) to machine learning (Mckinley et al., 2017; 
Maier et al., 2014) and more recently, deep learning, such as (Clèrigues 
et al., 2020; Wang et al., 2020; Pinto et al., 2021). Most of the works that 
have attempted to estimate treatment success, given the patient’s im
aging and/or clinical information, have investigated either the evolution 
of the appearance of the final stroke lesion or the process to arrive at an 
mRS score. Only relatively few studies have attempted to investigate 
these together. In this section, we review previous works based on their 

approach to the estimation of stroke treatment outcome. In the main, 
these can be categorised as methods that predicts by: (i) final stroke 
lesion segmentation, (ii) mRS scores and (iii) combining or integrating 
the categories in (i) and (ii). 

Final Stroke Lesion Segmentation – In this approach, stroke 
treatment outcome is determined by predicting what the final stroke 
lesion appearance would be (within a range of 5–90 days), given the 
baseline scan of a patient at the time of admission. In such models, an 
annotated dataset is required for training, where for each baseline scan, 
stroke lesions are manually segmented on the corresponding follow-up 
scan by expert neuroradiologists. The model is then trained on the 
baseline scan with a target of the final stroke lesion segmentation map. 
At inference for a new patient, the model visualises the ‘final’ stroke 
lesion map based on their admission baseline scan and this allows cli
nicians to select treatment. 

There have been several methods that follow this strategy using 
linear regression models (Kemmling et al., 2015), decision trees (Boers 
et al., 2013; Mckinley et al., 2017), and CNNs-based deep learning 
(Scalzo et al., 2012; Pinto et al., 2018, 2021). Many of these works have 
participated in the ISLES4 Challenge (Clèrigues, 2018; Winzeck et al., 
2018; Pinto et al., 2018, 2021) which functions as a benchmark for the 
state-of-the-art in stroke segmentation. For example, Pinto et al. (2021) 
obtained the best result on the ISLES 2017 dataset benchmark via a 
two-stage method: in an unsupervised stage, two Restricted Boltzmann 
Machines (RBMs), each used a different subset of parametric MRI maps 
to establish lesion location and blood flow circulation features. Then, in 
a supervised stage, these were fed through CNN and Recurrent Neural 
Networks (RNNs), along with parametric MRI maps, to extract short and 
long distance spatial relationships to predict the stroke lesions. Robben 
et al. (2020) used spatio-temporal CT perfusion data and clinical infor
mation (e.g.time to recanalization, completeness of recanalization) as 
input to a CNN model based on DeepMedic (Kamnitsas et al., 2017) to 
predict 24-hour or 5-day follow-up NCCT scans. 

This kind of approaches requires voxel-wise annotation of the 3D 
volumes for training, but our proposed method is annotation free and 
predicts whole follow-up scans instead of the final lesion segmentation 
map in order to model the tissue evolution. 

Prediction of mRS Scores – In this category, the models predict 
mRS scores at 90 days by leveraging imaging and/or clinical information 
at the point of hospital admission. The dataset for such models typically 
consists of imaging and/or clinical information with the mRS scores 
acquired by interviewing patients or their carer with a structured 
questionnaire 90 days post-stroke treatment. The models are trained 
with the objective of predicting outcome as dichotomised (mRS scores 
0–2 as favourable and mRS scores 3 − 6 as unfavourable) or individual 
mRS score class (0− 6). 

The majority of such studies have applied machine learning to clin
ical information, such as logistic regression (Venema et al., 2017; Heo 
et al., 2018), SVMs (Asadi et al., 2014; Bentley et al., 2014), RFs (van Os 
et al., 2018; Heo et al., 2018) and artificial neural networks (ANNs) 
(Asadi et al., 2014; van Os et al., 2018). A few works have used imaging 
with or without clinical records to predict mRS scores (Bacchi et al., 
2019; Hilbert et al., 2019; Samak et al., 2020; Osama et al., 2020). For 
example, Osama et al. (2020) utilised a Siamese architecture to predict 
mRS scores from the three middle slices of their multi-parametric MRI 
scans. To overcome data scarcity and class imbalance, they employed 
the same number of samples for each class and set the number of similar 
and dissimilar pairs to be equal during training. The mRS score of a test 
sample was then the class of the training data point it was closest to via 
feature similarity. Recently, Samak et al. (2020) combined 3D NCCT and 
clinical information to predict the dichotomised and individual scores of 
functional outcome of thrombectomy treatment. They proposed a 
multimodal CNN network with an attention module that captures global 

4 Ischaemic Stroke Lesion Segmentation, http://www.isles-challenge.org 
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feature inter-dependencies both spatially and channel-wise. They pro
vided the prediction of treatment outcome at patient level, whereas our 
proposed method predicts at both patient level and tissue level by vis
ualising the evolution of the brain regions in the follow-up scan, 
including the stroke-affected regions. 

Final Stroke Lesion Segmentation and Prediction of mRS Scores 
– Studies applying this approach are examples of the sequential com
bination or integration of the two previous categories. Choi et al. (2016), 
the winner of ISLES 2016 Challenge, proposed an ensemble of CNN 
models whose weighted average was used for the segmentation of final 
stroke lesion. They applied four 3D U-Nets to perform voxel-wise final 
lesion segmentation and two sets of Fully Connected Networks (FCNs) to 
perform patch-wise classification. The first FCN determined whether a 
patch includes any lesion voxels and the second FCN classified a patch if 
the centre voxel was a lesion. Then, for mRS score prediction, again the 
average weighted outcome of a linear regressor trained on clinical in
formation and a CNN classifier trained to segment stroke lesions at patch 
level was used. 

Nishi et al. (2020) integrated the final stroke lesion and mRS score 
prediction tasks into a U-Net model that trained on diffusion-weighted 
images of a dataset of 250 patients and validated on an external data
set of 74 patients who underwent mechanical thrombectomy. They used 
their encoder feature maps for mRS score prediction and the final output 
of their model for final stroke lesion segmentation, and compared their 
approach with a logistic regression model that trained on manually ac
quired neuroimaging biomarkers. For functional outcome, they used 
dichotomised mRS scores. This is the closest study to our work in terms 
of predicting mRS scores and lesion evolution on follow-up scans. 
However, using the final feature maps of their U-Net encoder for mRS 
score prediction could negatively impact their prediction performance 
as some information may be omitted due to the skip connections. For 
this reason, we use an auto-encoder based approach to encode NCCT 

volume information in latent code and perform each task separately for 
better focus on each specific task. As before, the methods in this category 
rely on annotated training maps for their segmentation. 

Other Relevant Approaches – A few studies in various medical 
domains, such as Alzheimer’s disease (AD) (Bowles et al., 2018; Weg
mayr et al., 2019) and lung nodule growth detection (Rafael-Palou et al., 
2021), have investigated modelling disease evolution by predicting 
follow-up scans directly from baseline scans. For example, Wegmayr 
et al. (2019) employed a generative adversarial network (GAN) to model 
disease progression to predict whether a person diagnosed with mild 
cognitive impairment (MCI) will convert to AD within five years, and 
similarly, Bowles et al. (2018) used a Wasserstein GAN (WGAN) on 3D 
MRI patches to model the progression of AD. To the best of our 
knowledge, there is no such disease evolution modelling study in the 
Stroke domain that has attempted to predict final stroke lesion without 
using segmentation maps. We believe the success and effectiveness of 
the GANs in medical imaging Yi et al. (2019), and particularly in 
modelling disease evolution (Bowles et al., 2018; Wegmayr et al., 2019) 
and image generation Kwon et al. (2019), can positively impact the 
Stroke domain. We present pioneering results in this area and compare 
against our implementation of other works (Bowles et al., 2018; Kwon 
et al., 2019) that were applied to other areas and data modalities. 

Another approach of interest applied with significant success in other 
domains, such as image embedding (Pihlgren et al., 2020), CT denoising 
(Gholizadeh-Ansari et al., 2020) and medical image translation (Arma
nious et al., 2020), involves the application of a perceptual loss (PL) to 
encourage a network to capture high-level structure (perceptual quality) 
in the image by comparing the feature maps of a predicted image and a 
target image obtained from a pre-trained network. This allows a network 
to generate visually plausible images and representative image feature 
embeddings. We demonstrate the impact of PL on our mRS score 
prediction. 

Fig. 3. FeMA for extracting the feature and predicting the volume of follow-up scans. Xbl: baseline scan, X1w
T : target 1-week follow-up scan, X̃

1w
pred: predicted 1-week 

follow-up scan from Xbl, X̃
fu
gt : reconstructed target 1-week follow-up scan from X1w

gt , ‘z’s are the features of the related encoder input. The dotted black lines show the 
optional information utilised in Stage-2 (see analysis in Section 6.2). 
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3. Data and preprocessing 

In this work, we use one of the most comprehensive NCCT datasets of 
patients who underwent ischaemic stroke treatment from a multi-centre 
study involving several stroke clinics, i.e. the MR CLEAN Trial dataset.5 

This was a randomised, clinical trial of intra-arterial treatment versus 
usual care in patients with a proximal arterial occlusion in the anterior 
circulation treated within 6 h of symptom onset. Five hundred patients 
(233 assigned to EVT and 267 to usual care) were treated in 16 medical 
centres in the Netherlands. The dataset includes a baseline or onset (i.e., 
the first scan when the patient was admitted to hospital) NCCT (for all 
500 patients), 24-hour follow-up NCCT (for 394 patients), and a 1-week 
follow-up NCCT scan (for 358 patients). An example of ischaemic 
changes following a stroke for this timeline (onset, 24-hours, 1 week) 
can be seen in Fig. 2. For more detailed information about the dataset, 
see the MR CLEAN study protocol (Berkhemer et al., 2015; Fransen 
et al., 2014). 

As multiple clinics were involved, there are various acquisition 
protocols of the NCCT scans in the MR CLEAN dataset. Through pre
processing, we reduced some of this variation to allow our learning 
network to deal with the same standard input and a smaller image size. 
First, all the scans were re-sampled to the same voxel size of 
3 × 1 × 1 mm3 (zyx orientation) followed by clipping the intensity 
range with window level 40HU and width 80HU which is standard for 
brain tissue. Then, as skull-stripping generates more non-brain regions, 
we removed the unnecessary non-brain regions from the volume (i.e., 
the black regions in Fig. 2). Next, the volumes were centre cropped with 
size 32 × 192 × 128 (zyx orientation) – selected by visually inspecting 
the outputs – to standardize inputs for the models. Also, due to the 
relatively small size of the dataset, augmentations, such as horizontal/ 
vertical flips, rotations, elastic deformations and Gaussian noise, were 
applied to help the network train more effectively. The image voxels 
were finally normalised to zero mean and one standard deviation. We 
also scaled all data into the ± 1 range. It should be noted that as the 
dataset contains only stroke cases, we assume that the NCCT scans fed 
into our model is a stroke case whether it has been determined by a 
physician or another automatic stroke detection model. 

4. Proposed approach 

An overview of our proposed method FeMA is presented in Fig. 3, 
which illustrates our process for predicting ischaemic stroke evolution, 
as well as mRS scores, given a baseline scan on hospital admission. In 
this section, we explain the components of our network architecture and 
loss functions in detail. 

Ideally, if a follow-up scan can be predicted from a baseline scan one 
week after stroke treatment, it will provide significant information 
about the condition of patients in the future – and so would allow 
making a more robust prediction of a mRS score at 90 days. In the 
proposed method, there are two main stages. The first step extracts the 
1-week follow-up scan features and volume from the baseline scan, as 
seen in Fig. 3 (Stage-1). The second combines the predicted follow-up 
scan information with the baseline scan to deduce the dichotomised 
mRS score at 90 days, Fig. 3 (Stage-2). 

Let Q = {Xbl
i ,X

1w
T,i , yi}

N
i=1 be the training set of N patients, where Xbl

i 

and X1w
T,i ∈ R1xDxWxH denote a 3D baseline and 1-week follow-up NCCT 

scan target respectively, with D slices of height H and width W, and yi ∈

[0,1] is the dichotomised mRS score of the ith patient. 

4.1. Predicting 1-week follow-up scans 

In Stage-1 of FeMA, the goal is to predict 1-week follow-up scan 

features and volume given an admission time baseline scan Xbl. This is 
performed in two steps: the first encodes and reconstructs a 1-week 
follow-up scan and the second predicts 1-week follow-up scan features 
and volume from a baseline scan. Note that these two steps are per
formed consecutively in each training update. 

This stage consists of two identical encoders E1 and E2, and a decoder 
D that operate as follows (see top of Fig. 3). During training, in the first 
step, encoder E1 extracts features z1w

T of the actual target follow-up scan 
X1w

T , and the decoder D processes these features to reconstruct a follow- 

up scan X̃
1w
T . E1 and D are trained to minimise the follow-up scan 

reconstruction loss, l1,rec, 

L E1 ,D = l1,rec,

L E1 ,D =
⃦
⃦X̃

1w
T − X1w

T

⃦
⃦

2

(1) 

In the second step of Stage-1, still during training, the weights of E1 
and D are frozen and the focus is on E2. Encoder E2 predicts the 1-week 
follow-up scan features z1w

pred from the baseline scan X bl, and decoder D 

processes these features to predict a follow-up scan X̃
1w
pred. To further 

improve a follow-up prediction from a baseline scan, X̃
1w
pred is re-routed 

back through E1 to impose cyclic consistency of target follow-up fea

tures z1w
T and extracted features ̃z1w

pred of predicted follow-up volume X̃
1w
pred. 

E2 is regulated by L E2 , comprising the reconstruction loss l2,rec of 

X̃
1w
pred, the feature similarity loss l3,sim of z1w

pred and the consistency loss l4,con 

of ̃z1w
pred with z1w

T : 

L E2 = λ1⋅l2,rec + λ2⋅l3,sim + λ3⋅l4,con,

L E2 = λ1⋅
⃦
⃦
⃦X̃

1w
pred − X1w

T

⃦
⃦
⃦

2
+ λ2⋅

⃦
⃦
⃦z1w

pred − z1w
T

⃦
⃦
⃦

2

+λ3⋅
⃦
⃦
⃦z̃1w

pred − z1w
T

⃦
⃦
⃦

2

(2)  

where λ1 = 0.1, λ2 = 1 and λ3 = 10 modulate the contribution of each 
loss. 

At the inference stage of follow-up volume prediction, encoder E2 
processes a baseline scan Xbl to estimate follow-up features z1w

pred and 

these features pass into decoder D to predict follow-up volume X̃
1w
pred. 

4.2. Predicting mRS scores 

In Stage-2 of FeMA (see lower part of Fig. 3), the aim is to make a 
robust prediction of mRS scores by utilising the baseline scan Xbl and the 
predicted follow-up features z1w

pred acquired from Xbl in Stage-1. Hence, 
armed with (Xbl, z1w

pred), encoder E3 - which is identical to E1 and E2, but 
does not share weights - operates during training as follows. It processes 
Xbl to extract features zbl which are then concatenated with z1w

pred and 
treatment information are processed by a fully connected (FC) layer and 
a Softmax layer to generate a probability vector, pmRS. 

E3 and the fully connected layers are updated with the objective of 
minimising loss L FL. As the class distribution in the dataset is imbal
anced, we apply focal loss (Lin et al., 2017; Abraham and Khan, 2019) to 
generate an adaptive weighting loss function, such that 

L FL = −
∑M

i=1
αiyi(1 − pi)

γlog(pi) , (3)  

where M is number of training samples, αi is a weighting factor of each 
class, where in the case of binary classification, αi is set to a value be
tween 0 and 1 to balance the positive and negative labelled samples. γ is 
the focal intensity factor, where the higher the value of γ, the lesser the 
cost contribution by well-classified samples. 

At inference time, E2 and E3 are frozen and FeMA takes only a 
baseline scan Xbl to predict mRS scores. 5 https://www.mrclean-trial.org/home.html 
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4.3. GAN extension of FeMA (FeMAWGAN) 

To model disease evolution, we extend our method by adding a 
discriminator module to our Stage-1 architecture (see Fig. 4) to benefit 
from adversarial training and enable our model to generate visually 
plausible disease evolution volumes. As the vanilla GAN loss suffers from 
training instability and convergence issues (Kwon et al., 2019), we use 
the loss from WGAN (Arjovsky et al., 2017), which measures the dis
tance between two probability distributions (training samples and 
generated examples), with a gradient penalty (gp) (Gulrajani et al., 
2017). 

The architecture of our discriminator Disc is identical to that of our 

encoders. During training, we consider both X̃
1w
T and X̃

1w
pred as fake, and 

X1w
T as the real sample. Therefore, the adversarial loss contributes to the 

training of D when reconstructing the target follow-up scan, and E2 
when predicting the follow-up scan. Thus, this loss encourages D to 
generate visually better reconstruction and prediction of the follow-up 
scan, and also encourages E2 to predict representative follow-up fea
tures. Disc is trained with loss L Disc with gradient penalty lgp− Disc where 
α = 10 is an empirically determined penalty coefficient, 

L Disc = Epredicted

[
Disc

(
X̃

1w
pred

) ]
+ Ereconstructed

[
Disc

(
X̃

1w
T

) ]

− 2Ereal
[
Disc

(
X1w

T

) ]
+ α⋅lgp− Disc.

(4)  

4.4. Perceptual loss 

We also examine the potential of PL, described earlier in Section 2, as 
a potential means of improving results. A pretrained network is required 
to extract mid-layer feature maps of a predicted follow-up volume and 1- 
week follow-up target. We train an auto-encoder with the reconstruction 
objective of an input NCCT volume. Then, we use the encoder part of the 
model as a perceptual network P, with the loss L PL computed as the 
squared and normalised Euclidean distance between the feature repre

sentation of the target volume X1w
T and predicted volume X̃

1w
pred, 

L PL =
∑L

i=1

⃦
⃦
⃦Pi

(
X1w

T

)
− Pi

(
X̃

1w
pred

)⃦
⃦
⃦

2
, (5)  

where L is the number of hidden layers of P network. 

5. Experimental setup 

The architecture of the proposed method includes three encoders 
(E1, E2, E3) which are identical, and each of them consists of four 3D 
convolutional layers, followed by batch normalisation (except the first 
layer) and a LeakyReLU activation to extract features. Then, channel- 
wise (cSE) and spatial (sSE) Squeeze and Excitation attentional blocks 
(Hu et al., 2018; Roy et al., 2018) are applied to recalibrate the 
high-level features. Finally, a FC layer in the encoder maps these reca
librated features to the latent space which becomes the output of the 
encoder. 

Decoder D consists of a FC layer which projects latent code to the 
spatial space and four 3D convolutional blocks. The first block contains a 
transpose convolution layer followed by batch normalisation and a 
ReLU activation. Each of the following two blocks contains an upsample 

layer followed by a 3D convolution, batch normalisation and ReLU 
activation. The final block contains an upsample layer, two 3D convo
lution layers and tanh activation. 

Data Registration – We registered our MRCLEAN data to a CT 
template (Rorden et al., 2012) in order to facilitate pixel-wise predic
tion. Following Muschelli (2019) and Rorden et al. (2012), we applied 
symmetric normalisation to perform affine and deformable trans
formations, with mutual information as the optimisation metric. 

Implementation Details – We divided the data set into three sub
sets, training (70 %, 350 patients – 155 with EVT and 195 w/o EVT), 
validation (15 %, 75 patients – 40 with EVT and 35 w/o EVT) and testing 
(15 %, 75 patients – 38 with EVT and 37 w/o EVT). However, during the 
1-week follow-up scan prediction stage, only the patients who have 1- 
week follow-up NCCT scans were used. During training, the Adam 
optimizer was used with a learning rate of 0.0001 and cosine annealing 
scheduler, and batch size was set to 24 to train over 200 epochs (in the 
GAN methods it was set to 500). In the second stage, the SGD optimizer 
applied a learning rate of 0.0003 and cosine annealing scheduler, and 
batch size was set to 16 to train over 100 epochs. The experiments were 
implemented in PyTorch on a single NVIDIA P100 GPU 16 GB. 

We compare the performance of our proposed method against the 
following methods (often with some variances to allow for as close a 
direct comparison as possible): . 

• Samak et al. (2020) – we retrain their 3D CNN model on our regis
tered MR CLEAN dataset from scratch. This is the only existing study 
that performs mRS score prediction by using 3D NCCT data from MR 
CLEAN. This presents an apple-to-apple comparison to FeMA for the 
mRS score prediction task.  

• Bacchi et al. (2019) – we implement our version of their 3D CNN 
model and train it on our MR CLEAN dataset from scratch. This is one 
of the closest works to ours that predicts dichotomised mRS scores 
from 3D NCCT volumes for patients who underwent thrombolysis 
treatment (rather than thrombectomy).  

• BE – a basic encoder model used only for mRS score prediction as a 
baseline method.  

• AE – a classic auto-encoder with a dense bottleneck, trained with the 
objective of follow-up volume prediction from a baseline scan. This 
allows us to show the impact of our feature similarity losses and two- 
step training of 1-week follow-up scan prediction.  

• AE WGAN – a WGAN extension of the classic auto-encoder, such as in 
Bowles et al. (2018); Kwon et al. (2019). This becomes our baseline 
WGAN-based approach that enables us to observe the impact of using 
WGAN in U-NetWGAN and FeMAWGAN.  

• AEPL – an extension of the classic auto-encoder where a perceptual 
loss is added, similar to Johnson et al. (2016); Armanious et al. 
(2020).  

• U-Net and U-Net WGAN – these are the original U-Net (Çiçek et al., 
2016) and its extension with WGAN (Wegmayr et al., 2019) to pre
dict a follow-up scan from a baseline. To enable these methods to 
predict the mRS score, Stage-2 of FeMA is added to them. The 
rationale behind comparing to U-Net models is their broad success in 
medical image analysis, such as in disease progression (Wegmayr 
et al., 2019).  

• Nishi et al. (2020) – a 3D residual U-Net model that performs 
dichotomised mRS score classification and final lesion segmentation 
tasks. We implemented their model as close to what is described in 
their paper.  

• FeMA, FeMA PL and FeMA WGAN – our proposed method and its 
extension to perceptual loss and WGAN respectively. 

6. Results 

6.1. Predicting 1-week follow-up scans 

We first report in Table 1 the results for Stage-1 of our proposed 

Fig. 4. FeMAWGAN: the GAN extension for Stage-1 of FeMA.  
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approach to measure the quality of the follow-up scan prediction from a 
baseline scan. Four metrics were applied for this assessment: the mean 
absolute error (MAE) and mean squared error (MSE) metrics quantify 
the error voxel-wise between the predicted and actual follow-up scans, 
and the structural similarity index (SSIM) and multi-scale structural 
similarity (MS-SSIM) metrics perceptually calculate the quality of the 
predicted follow-up volume compared to the 1-week follow-up scan 
target. Note, the differences between the error or similarity values may 
appear insignificant due to the limited ± 1 range of voxel values, how
ever even such small differences represent large differences, which are 
manifested when observing the qualitative results (as in Fig. 5. 

Table 1 shows U-Net based methods outperform other methods 
across the four metrics, for example at 0.1187 MAE and 0.8582 MS-SSIM 
for U-NetWGAN. This can be attributed to the skip connections in U-Net 
architecture, which pass high-level information from encoder to 
decoder. This enables the U-Net to reconstruct better follow-up volumes, 
but it does not allow it to predict the informative follow-up features 
needed for mRS score prediction as demonstrated later in Section 6.2. 
Our proposed FeMA obtains competitive results compared to U-Net, and 
the best results compared to methods that do not have skip connections, 
at 0.1226 MAE, 0.0492 MSE, 0.5229 SSIM and 0.8441 MS-SSIM. 

Interestingly, the WGAN option improves the performance of AE in 
all metrics and U-Net very marginally in MAE and SSIM metrics, how
ever, it narrowly fails to have such an effect on FeMA. The reason is that 
the contribution of WGAN losses and FeMA losses to the model training 
need to be regulated for better performance. Similarly, FeMAPL is 
marginally below FeMA in all metrics, whereas it improves on AEPL. 
Fig. 5 shows qualitative results for predictions of the 1-week scan for two 
example cases, one along each row. For each example, 5(a) is the 
baseline hospital admission scan, 5(b) is the actual 1-week scan and the 
remaining are the predicted 1-week follow-up volumes of the methods 
we compare against and our variations of the proposed method. 
Although the predicted follow-up volume of FeMA (Fig. 5(k)) 

successfully shows the stroke evolution, the U-Net models (Fig. 5(f) and 
5(g)) appear to highlight the stroke lesion better. WGAN and PL improve 
the visual quality of the follow-up volume prediction, especially when 
we apply them as an extension of AE (Figs. 5(d) and 5(e)). Again note, 
even though there is a large difference between the predicted follow-up 
volume of AE and AEPL compared to the actual 1-week follow-up volume 
Fig. 5(b) as seen in Fig. 5(c) and 5(e) respectively, the difference in MSE 
metric is only 0.0009. The result of Nishi et al. (2020) seems to indicate 
that the baseline scan is reproduced as the predicted 1-week follow-up 
scan Fig. 6. 

6.2. Predicting mRS scores 

For the prediction of mRS scores in Stage-2, three metrics were used 
as evaluation measures, Accuracy, F1-score and Area Under ROC Curve 
(AUC), to quantify different aspects of classification performance. 

Our comparative results for different methods, including cases where 
different combinations of the information available were used (i.e. 
combinations of baseline scan Xbl, predicted follow-up features z1w

pred, and 

volume X̃
1w
pred) are listed in Tables 2 and 3. 

Our proposed method achieves the best results and significantly 
improves the performance over non-GAN and GAN based methods, with 
0.60 F1-score and 0.79 AUC for FeMA (row 17, Table 2), and 0.58 F1- 
score and 0.76 AUC for FeMAWGAN (row 7, Table 3). Although U-Net was 
the overall best in follow-up volume prediction, it does not reach the 
same accolade in this task due to the following reasons. Since the U-Net 
model utilises skip connections, it does not allow to compute feature 
similarity on embedded features and so it cannot make use of z1w

pred, while 
FeMA benefits from using z1w

pred and achieves a significantly better result 
at 0.79 AUC. Additionally, U-Net is only supervised by voxel-wise pre
diction loss which is not sufficient to learn the fine-grained details of the 

Table 1 
The test set results of the models that can predict the 1-week follow-up scan. MAE: Mean Absolute Error, MSE: Mean Squared Error, SSIM: Structural Similarity, MS- 
SSIM: Multi-Scale Structural Similarity. Shaded background section indicates models that are based on U-Net. CI is confidence interval.  

Methods MAE↓ (95 % CI) MSE↓ (95 % CI) SSIM↑ (95 % CI) MS-SSIM↑ (95 % CI) 

AE 0.1453 (0.1392–0.1521) 0.0514 (0.0470–0.0565) 0.4852 (0.4691–0.5007) 0.8243 (0.8120–0.8361) 
AEWGAN (Kwon et al., 2019) 0.1269 (0.1187–0.1350) 0.0584 (0.0518–0.0648) 0.5078 (0.4889–0.5250) 0.8357 (0.8204–0.8490) 
AEPL(Johnson et al., 2016),(Armanious et al., 2020) 0.1259 (0.1185–0.1343) 0.0505 (0.0445–0.0573) 0.5185 (0.4990–0.5368) 0.8412 (0.8258–0.8555) 
FeMAWGAN 0.1240 (0.1163–0.1326) 0.0544 (0.0484–0.0611) 0.5148 (0.4958–0.5329) 0.8398 (0.8250–0.8535) 
FeMAPL 0.1274 (0.1198–0.1354) 0.0514 (0.0456–0.0579) 0.5182 (0.4993–0.5361) 0.8415 (0.8268–0.8549) 
FeMA 0.1226 (0.1153–0.1306) 0.0492 (0.0433–0.0558) 0.5229 (0.5039–0.5412) 0.8441 (0.8293–0.8577) 
(Nishi et al., 2020) 0.1234 (0.1157–0.1321) 0.0487 (0.0429–0.0552) 0.5482 (0.5248–0.5691) 0.8574 (0.8409–0.8723) 
U-Net (Çiçek et al., 2016) 0.1240 (0.1168–0.1319) 0.0477 (0.0422–0.0540) 0.5447 (0.5227–0.5647) 0.8564 (0.8403–0.8707) 
U-NetWGAN (Wegmayr et al., 2019) 0.1187 (0.1111–0.1274) 0.0530 (0.0467–0.0601) 0.5478 (0.5256–0.5681) 0.8582 (0.8409–0.8732)  

Fig. 5. Qualitative results of different models on predicting ischaemic stroke evolution from baseline to follow-up scan.  
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1-week follow-up scan i.e.FeMA (row 16, Table 2) and FeMAWGAN (row 
6, Table 3) exceed the results of U-Net even when using the same 

configuration, only combining X̃
1w
pred with Xbl, like U-Net. This demon

strates the effectiveness of our follow-up feature prediction which con
tains valuable information about the follow-up scan even though it is not 
visually obvious in the predicted follow-up volume. 

Although AEPL and AEWGAN improve on AE’s results quite markedly, 

corresponding increases are not always observed for FeMA. This occurs 
because the AE model only utilises MSE loss on the follow-up scan 
volume during training, so the additional supervision offered by the PL 
and WGAN processes positively affect the follow-up volume prediction 
and so the mRS score prediction. However, FeMA is supervised by a 
feature consistency loss which performs better than the PL or WGAN 
losses. FeMA models are more effective when using z1w

pred with Xbl (row 

Fig. 6. Qualitative results of FeMA model on predicting ischaemic stroke evolution from baseline to follow-up scan. The first row is an example of a patient did not 
underwent EVT and the second row is a patient had EVT. 

Table 2 

Results for dichotomised mRS score classification for different combinations of information from Xbl, z1w
pred and X̃

1w
pred, where applicable. CI is confidence interval. The 

best and the second best results are shown in bold and underlined respectively.  

Method Row Xbl z1w
pred X̃

1w
pred 

Accuracy (95 % CI) F1-score (95 % CI) AUC (95 % CI) 

(Samak et al., 2020)  1 ✓ 0.72 (0.62–0.82) 0.33 (0.09–0.53) 0.63 (0.44–0.81) 
(Bacchi et al., 2019)  2 ✓ 0.75 (0.65–0.85) 0.40 (0.16–0.60) 0.66 (0.48–0.80) 
BE  3 ✓ 0.66 (0.55–0.77) 0.37 (0.16–0.56) 0.68 (0.54–0.82) 
AE  4 ✓ ✓ ✓ 0.56 (0.44–0.67) 0.36 (0.18–0.52) 0.63 (0.47–0.79)   

5 ✓ ✓ 0.71 (0.60–0.82) 0.49 (0.29–0.67) 0.65 (0.48–0.81)   
6 ✓ ✓ 0.65 (0.54–0.76) 0.44 (0.25–0.62) 0.67 (0.50–0.83) 

AEPL such as (Johnson et al., 2016), (Armanious et al., 2020)  7 ✓ ✓ ✓ 0.74 (0.62–0.83) 0.49 (0.26–0.67) 0.77 (0.62–0.89)   
8 ✓ ✓ 0.72 (0.61–0.83) 0.50 (0.29–0.68) 0.66 (0.48–0.82)   
9 ✓ ✓ 0.67 (0.56–0.78) 0.37 (0.16–0.56) 0.68 (0.52–0.82) 

U-Net (Çiçek et al., 2016)  10 ✓ ✓ 0.69 (0.58–0.80) 0.35 (0.24–0.46) 0.65 (0.54–0.76) 
(Nishi et al., 2020)  11 ✓ 0.62 (0.51–0.73) 0.13 (0.00–0.29) 0.45 (0.31–0.64) 
FeMA PL  12 ✓ ✓ ✓ 0.68 (0.56–0.79) 0.47 (0.26–0.65) 0.75 (0.60–0.87)   

13 ✓ ✓ 0.68 (0.56–0.79) 0.44 (0.23–0.62) 0.67 (0.51–0.82)   
14 ✓ ✓ 0.77 (0.68–0.87) 0.33 (0.09–0.56) 0.68 (0.51–0.83) 

FeMA  15 ✓ ✓ ✓ 0.74 (0.62–0.83) 0.51 (0.29–0.69) 0.77 (0.62–0.90)   
16 ✓ ✓ 0.78 (0.68–0.88) 0.47 (0.22–0.69) 0.71 (0.54–0.86)   
17 ✓ ✓ 0.79 (0.69–0.88) 0.60 (0.37–0.76) 0.79 (0.63–0.92)  
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17, Table 2) than using X̃
1w
pred with Xbl (row 16, Table 2). These show that 

the prediction of follow-up features is more efficient than the prediction 
of follow-up volume because during the mapping process between the 
baseline scan and the follow-up feature prediction, the model focuses on 
predicting only informative features. On the other hand, the inclusion of 

X̃
1w
pred with z1w

pred and Xbl (row 15) reduces the performance of FeMA (row 
17) and AE (row 6) i.e.from 0.79 to 0.77 in AUC for FeMA (rows 17 and 
15 respectively) while increasing the mRS score prediction capabilities 
of AEPL, FeMAPL, AWGAN and FeMAWGAN (i.e., see rows 5 and 7 in 
Table 3). For example the performance of FeMAPL (row 14, Table 2) 
increases from 0.68 to 0.75 AUC in FeMAPL (row 12, Table 2). The 
reason is that fusing the volumes and features is not optimal, so a better 
volume and future fusion method needs to be proposed to enhance the 
predictive performance of the models for mRS scores. 

6.3. Ablation study 

We conducted several experiments to assess the effects of our loss 
functions in FeMA - based on the combinations of the reconstruction loss 
l2,rec, feature similarity loss l3,sim and feature consistency loss l4,con. 

The results are shown in Table 4 for follow-up volume prediction and 
in Table 5 for mRS score prediction. The importance of l3,sim and l4,con 
can be seen in both tables. For example, when l2,rec or l3,sim alone are 
applied, the model reaches 0.68 and 0.74 AUC respectively, but when 
we combine both l2,rec and l3,sim, the results are improved to 0.77 AUC. 
Further, adding feature consistency loss alongside the feature similarity 
and reconstruction loss increase the performance of FeMA to 0.79 AUC. 
Although the difference in follow-up prediction metrics is marginal 
between different loss combinations in Table 4, the impact on the mRS 

score prediction is significant as observed in Table 5. For example, when 
the difference in MSE is 0.0008 between FeMAl2,rec and 
FeMAl2,rec+l3,sim+l4,con , the resulting difference in corresponding AUC values 
is 0.11. 

Furthermore, we investigated the effect of clinical records on pre
diction performance. Alongside the treatment information, we added 
clinical information, such as patient demographics (e.g., age, gender), 
medical records (e.g., hypertension, glucose level), and stroke-related 
information (e.g., baseline NIHS, symptom side) into our FeMA model 
training. This improved FeMA’s performance from 0.79 to 0.82 
(0.74–0.90) in accuracy and 0.79–0.83 (0.70–0.93) in AUC score, 
however, there was a slight decrease in F1-score from 0.60 to 0.58 
(0.33–0.77). This result shows that clinical information can have a 
positive impact on the prediction of mRS scores. 

7. Conclusions 

In this paper, we presented a novel framework to estimate the 1- 
week follow-up scan and mRS score as ischaemic stroke treatment 
outcome. For the prediction of the follow-up scan, we trained our model 
to predict ischaemic stroke evolution without voxel-wise supervision for 
the 1-week follow-up. We added feature similarity and consistency su
pervision to obtain better follow-up scan representation from the base
line scan. For the estimation of the mRS score, we combined the 
predicted follow-up scan features and volume with the baseline scan to 
arrive at more accurate predictions. 

Our results demonstrate that the proposed model obtains competi
tive results compared to U-Net based methods and best results compared 
to a number of non-U-Net based methods in the prediction of the follow- 
up volume. Further, our method significantly outperforms U-Net and 
several non-U-Net based methods in mRS score prediction. 

For future work, we plan to extend the current study by developing 
an unsupervised approach, while additionally using both 24-hour 
follow-up scans and clinical information for improve mRS score 
prediction. 
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Table 3 

Results of WGAN based methods for dichotomised mRS score classification for different combinations of information from Xbl, z1w
pred and X̃

1w
pred, where applicable. CI is 

confidence interval. The best and the second best results are shown in bold and underlined respectively.  

Method Row Xbl z1w
pred X̃

1w
pred 

Accuracy (95 % CI) F1-score (95 % CI) AUC (95 % CI) 

U-NetWGAN (Wegmayr et al., 2019)  1 ✓ ✓ 0.72 (0.62–0.83) 0.33 (0.22–0.44) 0.63 (0.52–0.74) 
AEWGAN (Kwon et al., 2019)  2 ✓ ✓ ✓ 0.72 (0.61–0.82) 0.50 (0.29–0.68) 0.76 (0.60–0.89)   

3 ✓ ✓ 0.65 (0.54–0.76) 0.42 (0.22–0.59) 0.70 (0.55–0.84)   
4 ✓ ✓ 0.72 (0.62–0.82) 0.41 (0.18–0.61) 0.74 (0.60–0.87) 

FeMA WGAN  5 ✓ ✓ ✓ 0.71 (0.60–0.81) 0.55 (0.36–0.71) 0.76 (0.60–0.90)   
6 ✓ ✓ 0.70 (0.61–0.81) 0.32 (0.09–0.53) 0.73 (0.57–0.87)   
7 ✓ ✓ 0.82 (0.72–0.90) 0.58 (0.32–0.76) 0.75 (0.59–0.89)  

Table 4 
Examining the impact of different losses on 1-week follow-up scan prediction. l2,rec, l3,sim and l4,con are reconstruction loss, feature similarity loss and consistency loss 
respectively. CI is confidence interval.  

Methods MAE↓ (95 % CI) MSE↓ (95 % CI) SSIM↑ (95 % CI) MS-SSIM↑ (95 % CI) 

FeMAl2,rec 0.1251 (0.1177–0.1332) 0.0500 (0.0441–0.0565) 0.5205 (0.5011–0.5387) 0.8419 (0.8273–0.8556) 
FeMAl3,sim 0.1237 (0.1161–0.1319) 0.0494 (0.0436–0.0559) 0.5228 (0.5039–0.5409) 0.8431 (0.8292–0.8575) 
FeMAl2,rec+l3,sim 0.1237 (0.1163–0.1318) 0.0493 (0.0435–0.0558) 0.5225 (0.5036–0.5407) 0.8437 (0.8290–0.8572) 
FeMAl2,rec+l3,sim+l4,con 0.1226 (0.1153–0.1306) 0.0492 (0.0433–0.0558) 0.5229 (0.5039–0.5412) 0.8441 (0.8293–0.8577)  

Table 5 
Examining the impact of different losses on mRS score prediction. l2,rec, l3,sim and 
l4,con are reconstruction loss, feature similarity loss and consistency loss 
respectively. CI is confidence interval. The best and the second best results are 
shown in bold and underlined respectively.  

Methods Accuracy (95 % CI) F1-score (95 % CI) AUC (95 % CI) 

FeMAl2,rec 0.75 (0.65–0.85) 0.44 (0.21–0.65) 0.68 (0.52–0.82) 
FeMAl3,sim 0.79 (0.69–0.89) 0.44 (0.17–0.67) 0.74 (0.57–0.88) 
FeMAl2,rec+l3,sim 0.76 (0.67–0.85) 0.51 (0.29–0.70) 0.77 (0.59–0.90) 
FeMAl2,rec+l3,sim+l4,con 0.79 (0.69–0.88) 0.60 (0.37–0.76) 0.79 (0.63–0.92)  
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Maier, O., Wilms, M., vonderGablentz, J., Krämer, U., Handels, H., 2014. Ischemic stroke 
lesion segmentation in multi-spectral MR images with support vector machine 
classifiers. In: Proceedings of the Medical Imaging 2014: Computer-Aided Diagnosis, 
ISOP. p. 903504. 

Mckinley, R., Häni, L., Gralla, J., El-Koussy, M., Bauer, S., Arnold, M., Fischer, U., 
Jung, S., Mattmann, K., Reyes, M., Wiest, R., 2017. Fully automated stroke tissue 
estimation using random forest classifiers (FASTER). J. Cereb. Blood Flow. Metab. 
37, 2728–2741. 

Muschelli, J., 2019. Recommendations for processing head CT data. Front. 
Neuroinformatics 13, 61. 

Nishi, H., Oishi, N., Ishii, A., Ono, I., Ogura, T., Sunohara, T., Chihara, H., Fukumitsu, R., 
Okawa, M., Yamana, N., et al., 2020. Deep learning–derived high-level 
neuroimaging features predict clinical outcomes for large vessel occlusion. Stroke 
51, 1484–1492. 

van Os, H.J.A., Ramos, L.A., Hilbert, A., van Leeuwen, M., van Walderveen, M.A.A., 
Kruyt, N.D., Dippel, D.W.J., Steyerberg, E.W., van der Schaaf, I.C., Lingsma, H.F., 
Schonewille, W.J., Majoie, C.B.L.M., Olabarriaga, S.D., Zwinderman, K.H., 
Venema, E., Marquering, H.A., Wermer, M.J.H., the MR CLEAN Registry 
Investigators, 2018. Predicting outcome of endovascular treatment for acute 
ischemic stroke: potential value of machine learning algorithms. Front. Neurol. 9, 
784. 

Osama, S., Zafar, K., Sadiq, M.U., 2020. Predicting clinical outcome in acute ischemic 
stroke using parallel multi-parametric feature embedded siamese network. 
Diagnostics 10, 858. 

Pihlgren, G.G., Sandin, F., Liwicki, M., 2020. Improving image autoencoder embeddings 
with perceptual loss. In: Proceedings of the 2020 International Joint Conference on 
Neural Networks (IJCNN), IEEE. pp.1–7. 

Pinto, A., Pereira, S., Meier, R., Wiest, R., Alves, V., Reyes, M., Silva, C.A., 2021. 
Combining unsupervised and supervised learning for predicting the final stroke 
lesion. Med. Image Anal. 69, 101888. 

Pinto, A., Pereira, S., Meier, R., Alves, V., Wiest, R., Silva, C.A., Reyes, M., 2018. 
Enhancing clinical MRI perfusion maps with data-driven maps of complementary 
nature for lesion outcome prediction. In: Proceedings of the International Conference 
on Medical Image Computing and Computer-Assisted Intervention, Springer. 
pp.107–115. 

Rafael-Palou, X., Aubanell, A., Bonavita, I., Ceresa, M., Piella, G., Ribas, V., 
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