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A B S T R A C T

Purpose: Polygenic risk influences susceptibility to cancer. We assessed whether polygenic risk
scores could be used in conjunction with other predictors of future disease status in cost-
effective risk-stratified screening for cancer.
Methods: We undertook a systematic review of papers that evaluated the cost-effectiveness of
screening interventions informed by polygenic risk scores compared with more conventional
screening modalities. We included papers reporting cost-effectiveness outcomes with no
restriction on type of cancer or form of polygenic risk modeled. We evaluated studies using
the Quality of Health Economic Studies checklist.
Results: A total of 10 studies were included in the review, which investigated 3 cancers: prostate
(n = 5), colorectal (n = 3), and breast (n = 2). Of the 10 papers, 9 scored highly (score >75 on a
0-100 scale) when assessed using the quality checklist. Of the 10 studies, 8 concluded that
polygenic risk-informed cancer screening was likely to be more cost-effective than alternatives.
Conclusion: Despite the positive conclusions of the included studies, it is unclear if polygenic
risk stratification will contribute to cost-effective cancer screening given the absence of robust
evidence on the costs of polygenic risk stratification, the effects of differential ancestry,
potential downstream economic sequalae, and how large volumes of polygenic risk data
would be collected and used.
© 2022 The Authors. Published by Elsevier Inc. on behalf of American College of Medical
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Introduction

Rationale

This paper systematically reviews the literature that assessed
the use of polygenic risk data to influence the cost-
effectiveness of cancer screening. Genetic testing for
inherited cancer susceptibility is an established part of care
for individuals in whom family histories or ancestry indicate
significant liability to cancer in many health care systems.1

For example, genetic data can be used to inform the future
risk of disease as part of cancer screening programs in
populations that are influenced by particular founder effects,
such as screening interventions directed at identifying
BRCA1/BRCA2 breast and ovarian cancer susceptibility
variants among Ashkenazi Jews.2

However, it is increasingly appreciated that polygenic as
well as monogenic risk may affect cancer incidence and its
progression.3 Polygenic risk reflets the cumulative influence
of many different sources of genetic variation on disease
risk, rather than the influence only of rare pathogenic vari-
ants in single genes, eg, the BRCA1/BRCA2 genes for breast
and ovarian cancer.4

Polygenic risk scores (PRSs) reflect the aggregated effect
of many genetic variants (typically single-nucleotide varia-
tions [SNVs], or single-nucleotide polymorphisms [SNPs])
that are known to influence the incidence of cancer or some
other cognate outcome.5 PRSs may be predictive of disease
risk, even if the individual variants of which it is comprised
themselves have only modest effects on risk when consid-
ered alone.6-8

Callender et al9 reported that individuals in the first and
99th percentiles for PRS of incident prostate cancer have
relative risks of 0.09 and 5.52 respectively, compared with
population means. In some cases, differences in relative risk
are associated with potentially significant differences in
absolute risk. For example, Mavaddat et al10 found that the
estimated lifetime absolute risk of ER-positive breast cancer
by age 80 years ranged between 2% for women in the lowest
centile of polygenic risk and 31% for those in the highest
centile.

Polygenic risk appears, in some cases, to influence risks
associated with monogenic risk variants.11,12 Kapoor
et al13 found that preventive strategies intended to modify
individual risk factor for breast cancer could have a greater
influence on absolute risk of breast cancer for women at
higher polygenic risk. Among other uses of these data, they
may have utility in screening programs to identify
asymptomatic individuals at increased risk of disease
incidence.14-17

Conversely, there are several reasons why polygenic risk
data might not necessarily improve the effectiveness and
cost-effectiveness of screening programs. Most individuals
will not be in the tails of a single disease-specific polygenic
risk distribution. Large interpercentile relative risks may be
associated with only modest differences in absolute risk.17,18
These issues are compounded by the modest heritability of
many cancers, and circumstances in which polygenic risk
offers little incremental enhancement to risk prediction
among the individuals with penetrant monogenic variants, a
positive family history, or other risk factors.19

Screening requires clear evidence of a net benefit to the
wider community to justify invasive and potentially harmful
investigations, such as biopsy and the possibility of over-
treatment of indolent cancers.20 These and other consider-
ations reflect the Wilson–Jungner criteria21 for screening,
which recommend that screening programs be cost-effective
and are therefore efficient uses of scarce health care re-
sources that may have more valuable alternative uses.22

Similarly, the European Guide on Quality Improvement in
Comprehensive Cancer Control23 recommends that the cost-
effectiveness of screening interventions be evaluated before
intervention implementation.

Obtaining and using polygenic risk data (especially on a
large scale)may be expensive,may lead to higher rates of false
positives, overtreatment, increased patient anxiety, and higher
caseloads for medical professionals without clinical benefit.
Moreover, population-level screening using PRSs is likely to
bemore complex in admixed societies because themajority of
existing PRSs are more predictive of disease in individuals of
European ancestry (Vassy J, Hao L, Kraft P, et al. Clinical
validation, implementation, and reporting of polygenic risk
scores for common diseases. unpublished preprint).

A recent review24 of the use of PRSs in screening found
only very limited investigation of the cost-effectiveness of
using PRSs in screening, and no systematic reviews of the
use of PRSs in cancer screening have been undertaken. The
2021 Polygenic Risk Score Task Force of the International
Common Disease Alliance5 noted the very limited economic
evidence concerning uses of PRSs in general and recom-
mended that research should address this as a priority.

This paper reports our systematic literature review, which
assessed whether using polygenic risk data is likely to in-
fluence the cost-effectiveness of cancer screening.

Objectives

Our objectives were to assess the extent of the literature that
evaluated the use of PRSs in cost-effectiveness analyses of
cancer screening, to examine how PRSs were used in cost-
effectiveness cancer screening models, and to evaluate how
PRS data influence the cost-effectiveness of cancer
screening interventions compared with non–cancer
screening modalities. Screening is a process to identify in-
dividuals, who may be asymptomatic, at increased risk of
disease.

We examined studies with participants undergoing
population-scale screening for any form of cancer. In-
terventions in the scope of our review were cancer screening
using PRSs compared with cancer screening without PRSs.
We examined outcomes relating to cost-effectiveness, with
no restrictions placed on whether cost-effectiveness analyses
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were informed by or conducted alongside any particular
study design.
Materials and Methods

We used the Preferred Reporting Items for Systematic Re-
views and Meta-Analyses (PRISMA) 2020 systematic re-
view guidelines25 to inform the development, conduct, and
reporting of this study. Appendix 1 contains a completed
PRISMA checklist.

Protocol and registration

The study protocol is available on the International Prospective
Register of Systematic Reviews database (https://www.crd.
york.ac.uk/prospero/display_record.php?RecordID=243659)
towhich itwas prospectively uploadedonApril 1, 2021, before
the first searches commenced on April 16, 2021.

Eligibility criteria

We included studies that used PRS data in cost-effectiveness
analyses of cancer screening. We considered English-
language journal articles or preprints published in any
country or time period. We included studies modeling any
form of cancer, using PRSs in screening, and reporting cost-
effectiveness outcomes such as net monetary benefit or in-
cremental cost-effectiveness ratios. Appendix 2 summarizes
inclusion and exclusion criteria in more detail.

Information sources

A systematic review of the literature using the NHS Eco-
nomic Evaluation Database, Medline, Embase, Health
Technology Assessment databases, National Institute for
Health and Care Excellence guidelines, UK National
Screening Committee guidance, preprint servers bioR and
medRxiv, and hand searches were carried out, with no re-
striction on date. Relevant data were extracted and the re-
sults were narratively synthesized.

Search strategies

The full search strategies for all databases are presented in
Appendix 3.

Study selection

One author (P.D.) independently selected reports that
appeared to fulfill inclusion criteria on the basis of review of
abstracts and titles. Papers were retained for full-text review
when they appeared to meet inclusion criteria or in which
there was insufficient evidence to exclude them. Two re-
viewers (P.D. and E.K.) then reviewed the full text of
articles. After discussion and reconciliation of any discrep-
ancies in judgments reached by the 2 reviewers, the full text
of articles meeting these criteria was then subject to further
review by both reviewers against all inclusion criteria.

Data collection process

Data extraction was informed by the recommendations and
example data extraction form proposed by the Centre for
Reviews and Dissemination at the University of York.26 We
piloted a spreadsheet data extraction form on a specimen
cost-effectiveness analysis. We then refined this on the basis
of discussions between 2 authors (P.D. and E.K.). Data were
independently extracted to populate this form by P.D. and
E.K.

Data items

We obtained the following information from papers meeting
all inclusion criteria.

• Study objective
• Cancer(s) studied
• Context (eg, country studied)
• Type of economic evaluation used
• Proposed design for a screening program
• Risk thresholds (if used)
• Adherence to screening
• Screening interval
• Economic model structure
• Age range of cohort
• Size of cohort modeled
• Perspective of the analysis
• Cancer treatments
• Modeling of cancer progression
• Mortality measures
• Health state utility values
• Duration of follow up
• Outcome measure
• How genetic data (assumed to be) were obtained and

analyzed
• Assumptions made in creating the polygenic risk score
• PRS and related costs
• How PRS data were included and modeled
• Treatment of ancestral background, ethnicity, and race
• Cost-effectiveness threshold
• Cost-effectiveness results of PRS-informed screening

compared with non-PRS screening modalities
• Sensitivity of cost-effectiveness results

Risk of bias and quality assessment in individual
studies

We appraised the quality of included studies using the
Quality of Health Economics Studies (QHES) checklist.27

This is not a tool for assessing risk of bias per se, but was

https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=243659
https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=243659
https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=243659
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found to have the highest construct validity among 79 tools
for assessing the quality of cost-effectiveness studies in a
recent systematic review.28

The QHES uses a weighted grading system to measure
the quality of studies against 16 criteria, each of which is
weighted by importance. The full list of criteria and their
weights is presented in Appendix 4. The range of the QHES
score is from 0 to 100; values >75 indicate a study of high
quality. Each study was assessed using the QHES checklist
by 1 author (P.D.).

Summary measures

We extracted data on the cost-effectiveness of cancer
screening interventions using PRSs in comparison to in-
terventions without PRSs. This included data on incremental
cost-effectiveness ratios, net benefit, and related summary
measures of intervention cost-effectiveness. We also extrac-
ted and summarized information on the methods through
which PRS data were used in each cost-effectiveness model
implementation as detailed earlier in data items section.

Synthesis of results and additional analyses

A narrative synthesis of results was undertaken. No addi-
tional analysis such as subgroup analysis or meta-regression
was planned or undertaken. Where necessary, we referred to
literature cited in included studies to clarify any missing or
unclear data issues. Certainty assessment involved consid-
eration of the limitations of the included literature.
Results

Study selection

Searches concluded in June 2021 and reflect literature that
met the inclusion criteria up to that point. The systematic
search identified 660 articles (Figure 1, based on the
PRISMA 2020 statement25).

Excluding duplicates, the titles and abstracts of 655 articles
were screened, fromwhich 68 records were excluded because
they were denoted as review articles (n = 63), or comprised
only an abstract (n = 5). After this step, 587 records were
successfully sought for retrieval and assessed for eligibility. A
total of 577 records were then excluded, the most frequent
reasons for which were an absence of polygenic focus or the
absence of an economic evaluation. In total, 10 studies that
met inclusion criteria were included in the review.

Study characteristics

Table 1 summarizes some of the key characteristics of each of
the 10 included papers. A full table detailing these and many
further study characteristics is presented in Appendix 5.
Included papers were recently published, with the oldest
paper published in 2018. Three cancers were studied in
these 10 papers: prostate cancer (n = 5), colorectal cancer
(n = 3), and breast cancer (n = 2). All studies used a cost-
utility design, in which costs were related to quality-adjusted
life years (QALYs). This permitted the comparison of the
cost-effectiveness of these cancer screening programs with
other types of intervention in different clinical areas. A total
of 7 studies used a health system perspective to define the
scope of costs to be included in these analyses. The ex-
ceptions were Naber et al36 and Hao et al29 (both health
system and societal perspectives) and Karlsson et al30 (so-
cietal perspective).

These cost-utility models were implemented using cohort
models (n = 6) or microsimulation models (n = 4). Both
cohort models and microsimulation models involve a dy-
namic simulation of health and disease processes over time.
Microsimulation models generally permit greater flexibility
in the modeling of event timing and with respect to the
interdependency of events.38 In both types of models, each
simulated individual sojourns for a period of time in
different states of health, to which are attached state-specific
costs and quality of life values. These state-specific values
are combined with the amount of person-time spent in each
state to produce cohort-level cost-effectiveness parameters,
which enabled comparisons of different screening strategies.

Conventional cost-effectiveness thresholds (which are
used to inform funding decisions in health technology as-
sessments) were applied in the 7 papers that used these
thresholds in ex-ante analysis. Wong et al33 and Naber
et al36 calculated cost-effectiveness thresholds in relation to
other model parameters. Hendrix et al31 compared strategies
on the basis of incremental cost-effectiveness ratios and the
associated concept of dominance.

Baseline health state utility values were drawn in 6 pa-
pers from population values. The exceptions were Wong
et al,33 Hendrix et al,31 Naber et al,36 and Cenin et al.35

Adjustments were made in all papers for utility in
different health states, and for disease progression, in-
terventions, and treatments. No adjustments, whether posi-
tive or negative, were made to utility as a result of an
individual’s knowledge of their own polygenic risk in any of
the papers.

In each type of model, cancer treatments were typically
defined by the stage of cancer and by applicable local or
national guidelines on cancer care. The microsimulation
models generally offered more detailed modeling of the
natural history of cancer progression. The populations that
were modeled reflected profiles of those typically eligible
for inclusion in cancer screening in the specific jurisdiction
studied, and followed up simulated individuals for an
appropriate amount of time, including lifetime follow ups.
The screening intervals that were modeled broadly reflected
actual or plausible “real world” screening implementations.

None of the papers described in any detail how genetic
data for the entire modeled cohort would be acquired. There
may be significant effects on cost-effectiveness depending



Figure 1 Identification of studies. EED, Economic Evaluation Database; HTA, Health Technology Assessment; NICE, National Institute
for Health and Care Excellence.
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on when and where in the clinical pathway the sample to
create the PRS would be obtained, which genotypes would
be assessed, how the results would be interpreted, and how
findings would be communicated. Some papers (eg, Hao
et al29 Karlsson et al30) noted a primary care consultation as
a first step in the process.

There was no modeling of the effect of differential
polygenic risk by ancestry. In total, 6 papers modeled the
effect of lower take-up or imperfect adherence to screening;
the exceptions were Wong et al,33 Hao et al,29 Karlsson
et al,30 and Hendrix et al.31
Various means of including polygenic risk and assessing
their influence in relation to risk thresholds or other in-
dicators for intervention were implemented. Wong et al33

created tertiles of a hypothetical polygenic risk distribution
to identify low, medium, and high polygenic risk groups.
Hendrix et al31 evaluated the effect of the proprietary
Prompt Prostate Genetic Score. The number of alleles was
not described, but references in that paper suggest that it was
based on 29 prostate cancer SNVs in 4528 men of European
ancestry in the placebo arm of the Prostate Cancer Preven-
tion Trial.39



Table 1 Selected characteristics and outcomes of included studies

Study
Year

Published Cancer Country Type of Model
N of Cohort
Modeled Age Profiles Modeled Cost of PRS Cost-Effectiveness Results

Hao et al29 2022 Prostate Sweden Microsimulation
model (Prostata
model)

10 million From age 55 and
followed up through
remainder of
lifetime

€251 including prostate-
specific antigen (PSA)
test analysis, GP visit,
and test analysis

Stockholm3 test with a reflex
threshold of PSA value ≥2 ng/
mL had the lowest ICER,
€38,894 per QALY gained, in
the base case analysis. Note:
reflex testing refers to further
diagnostic testing that may be
prompted by an elevated PSA
level.

Karlsson et al30 2021 Prostate Sweden Microsimulation
model (Prostata
model)

Not directly stated
but references
related work that
refers to cohorts
of 100 million
men

From birth and
followed up over
lifetime

€255 (including GP visit) Prostate cancer screening using
the polygenic risk-informed
Stockholm3 test for men with
an initial PSA value of ≥2.0
ng/mL was cost-effective
compared with screening using
only PSA.

Hendrix et al31 2021 Prostate United
States

Microsimulation
model (Fred
Hutchinson
Cancer Research
Centre model)

100 million Age 40 years (with
different screening
start ages of >40
years) and followed
up till age 100 years.
Screening assumed
to stop at age 69
years

$250 based on commercial
costs of the Prompt-PGS
software

Cost-effectiveness of PRS-
informed risk screening
compared with universal
screening depended on
universal screening policy
modeled. PRS-informed risk-
stratified screening most likely
to be cost-effective when
universal screening is
performed on an annual basis
starting at age 55 years.

Thomas et al32 2021 Colorectal England Microsimulation
model (MiMiC-
Bowel).

6,787,000 Age ≥30 years,
screening taking
place at various ages
depending on the
strategy, risk-
assessment assumed
to be carried out at
age 40 years.

No costs assigned to risk
scoring, instead, cost
analysis was carried out
to determine maximum
justifiable cost of
implementing risk
scoring in population at
age 40 years.

PRS-informed screening was very
likely to be cost-effective
when used in conjunction with
phenotypic information
compared with screening
strategies relying on
phenotypic data alone.

Wong et al33 2021 Breast Singapore Markov model 3,014,388
individuals
included in the
model, Not
otherwise
reported

Women aged between
35 and 74 years

Genotyping of buccal swab
assumed to cost
SGD 210.

Compared with biennial
mammogram-only screening,
polygenic-risk informed
screening had lower costs and
higher QALYs and was very
likely to be cost-effective.

(continued)
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Table 1 Continued

Study
Year

Published Cancer Country Type of Model
N of Cohort
Modeled Age Profiles Modeled Cost of PRS Cost-Effectiveness Results

Callender et al34 2021 Prostate England Life table cohort
Markov model

4.48 million Screening took place at
age 55 to 69 years
with follow up till
age 90 years

£25 based on personal
communication of
tariffs used in the
English National Health
Service

Multiparametric MRI-first risk-
stratified screening scenarios
at risk thresholds of >3.5%
were more cost-effective than
no screening at a cost-
effectiveness threshold of
£20,000. Strategies with
highest net monetary benefit
at cost-effectiveness
thresholds of £20,000 and
£30,000 were MRI-first risk-
stratified screening at risk
thresholds of 8.5% and 7.5%,
respectively.

Cenin et al35 2020 Colorectal Australia Microsimulation
model (the
MISCAN-Colon
model)

100 million Age 40 years (and born
in 1980) and
followed up until
age 100 years, at
which point,
individuals in the
cohort were assumed
to be dead,
screening assumed
to stop at age 74
years

Assumed cost $200 based
on a commercially
available polygenic test
for breast cancer

Uniform screening was more
likely to be cost-effective than
PRS-informed risk-based
screening. Personalized and
uniform screening scenarios
yielded similar QALYs.
Personalized screening cost
more than uniform screening,
largely owing to the cost of
determining risk.

Naber et al36 2019 Colorectal United
States

Microsimulation
model (the
MISCAN-Colon
model)

Cohort described as
consisting of
>1 million
simulated
individuals, not
otherwise
reported

Age 40 years with US
life expectancy, and
followed up until
death, screening
modeled as ending
between age 70 and
85 years

Assumed cost $200 based
on currently available
commercial polygenic
tests

Polygenic risk-informed
screening was unlikely to be
cost-effective; this form of
screening yielded same
number of QALYs as uniform
screening at increased costs.

(continued)
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Table 1 Continued

Study
Year

Published Cancer Country Type of Model
N of Cohort
Modeled Age Profiles Modeled Cost of PRS Cost-Effectiveness Results

Callender et al9 2019 Prostate England Life table cohort
Markov model

4.48 million Screening took place at
age 55 to 69 years
with follow up till
age 90 years

£25, estimated from
personal discussion of
costs charged to NHS
hospitals for prostate
cancer genome wide
associations studies

Risk-based screening was cost-
effective at a cost-
effectiveness threshold of
£20,000 per QALY gained
compared with no screening at
all 10-year absolute risk
thresholds of >4.5%. At all
10-year absolute risk of
<10%, risk-based screening
led to a greater number of
incremental QALYs gained
than age-based screening
while incurring fewer
additional costs at all risk
thresholds >2%.

Pashayan
et al37

2018 Breast England Life table cohort
model

364,500 Age 50 years with
follow up till age
85 years

£50, based on per variant
research cost of
genotyping

PRS-informed risk stratification
at the 70th risk percentile had
the highest net monetary
benefit, with a 72%
probability of being cost-
effective at a cost-
effectiveness threshold of
£20,000.

ICER, incremental cost-effectiveness ratio; GP, general physician or general practitioner; MiMiC, microsimulation model in cancer; MISCAN, microsimulation screening analysis; MRI, magnetic resonance imaging;
PRS, polygenic risk scores; QALY, quality-adjusted life years; SGD, Singapore dollar.
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Hao et al29 and Karlsson et al30 evaluated the Stock-
holm3 package. This model combines measurement of
prostate-specific antigen (PSA), protein biomarkers, PRS
(based on 232 SNVs), and clinical information collected
using questionnaire, including age, family history, and
previous prostate biopsies.40 These variables have all been
reported to be associated with prostate cancers with a
Gleason score of >7.0, and the Stockholm3 model has been
shown to outperform PSA testing alone in predicting pros-
tate cancers with Gleason score of >7.0.40 Karlsson et al30

evaluated screening strategies that used Stockholm3 test as
a reflex test (ie, tests prompted after particular levels of
PSA) for PSA values ≥ 1, 1.5, and 2 ng/mL. Hao et al29

implemented a similar model with a screening strategy
that used Stockholm3 with reflex test thresholds of PSA
values ≥1.5 and 2 ng/mL.

Naber et al36 generated a relative risk distribution with
different values of the area under the curve for a polygenic
test ranging from 0.60 to 0.80 in each simulated, hypo-
thetical cohort. These cohorts were split in 60 groups
defined by their relative risk of colorectal cancer.

Thomas et al32 modeled random assignment of risk al-
leles to individuals to reflect allele frequencies obtained
from UK Biobank data, as well as correlations between al-
leles on the same chromosome. Genetic41 and nongenetic
risk factors were combined to obtain individualized relative
risks for colorectal cancer, which were applied to transition
probabilities from normal epithelium to adenoma and to
colorectal cancer. Estimated relative risk was adjusted to
ensure that the simulated distribution of disease reflected
expected colorectal cancer incidence.

Cenin et al35 stratified their cohort population into 5 risk
groups on the basis of quintiles of polygenic risk and fist
degree family history of colorectal cancer. The prevalence
of the 5 categories was simulated given a probability of
being in any SNV quintile and of positive first-degree family
history. The relative risk of colorectal cancer, compared
with average population risk, was based on combined
relative risk of each polygenic risk quintile and family
history.

Pashayan et al,37 Callender et al,9 and Callender et al34

followed a similar approach. Given a log-additive model
of interaction between genetic and conventional nongenetic
risk factors, the distribution of risk for disease incidence was
log-normal on a relative risk scale. Callender et al9 used data
from Schumacher et al42 and Dadaev et al.43 Percentile
ranks associated with relative risk or absolute risk were
obtained given knowledge of the mean and variance of the
log-normal relative risk distribution.
Risk of bias/study quality within studies

We evaluated all studies using the QHES checklist.27

Appendix 6 details the score awarded to each study
against the 16 criteria of this checklist. The QHES checklist
does not identify the presence or scale of biases that may
affect the conclusions of the included studies. However, it
does permit a characterization of the quality of the economic
evaluation and the implications that this may have for the
robustness of the results.

All but one study (Wong et al33) received a score
indicating high study quality (>75 on a 0-100 scale). The
study by Wong et al33 did not reach the threshold for a
number of reasons, but included the absence of (1)
remission from cancer and (2) the possibility of between-
state transitions from their model. We concluded that even
the highest scoring studies did not account for all potential
downstream effects of PRS-related interventions. This is
an inherently difficult task but its identification does
indicate the qualifications that must be used in interpreting
each paper.

Results of individual studies and synthesis of
results

We extracted summary information on the cost-
effectiveness of polygenic risk-informed screening strate-
gies compared with strategies that did not use these data. It
was not feasible to explore heterogeneity in the cost-
effectiveness conclusions across studies given the rela-
tively small number of papers meeting inclusion criteria and
given the narrow range of cancers studied. Direct compar-
ison across studies was also complicated by the differences
in how cost-effectiveness results were reported, by the dif-
ferences in the ways in which polygenic risk was incorpo-
rated into wider risk models, and by the types of strategy
compared.

Of the 10 studies, 8 concluded that polygenic risk-
informed screening was likely to be cost-effective, or had
the lowest incremental cost-effectiveness ratio of strategies
evaluated. Naber et al36 and Cenin et al35 did not conclude
that polygenic risk-informed screening was likely to be cost-
effective.

Conclusions in all papers were conditional on important
model parameters including the cancer studied, comparator
interventions, age at which screening commences, and
screening intervals. Where assessed, sensitivity analyses of
specific model parameters were typically deterministic or
one-way. This approach can be misleading given correla-
tions between parameters and the nonlinear structure of the
various simulation models used.44
Discussion

Summary of evidence

We conducted and reported a systematic review of the
cost-effectiveness of using polygenic risk data in
population-scale cancer screening in comparison to more
conventional screening modalities. The evidence base in
this area is both recent and relatively small. We identified
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10 studies encompassing 3 different cancers that met our
inclusion criteria. Most studies concluded that the use of
polygenic risk to inform risk stratification for cancer
screening was likely to be cost-effective.

Each study used varieties of simulation models (either
cohort Markov models or microsimulation models) to
capture the dynamic process of disease over time in cost-
utility frameworks. Of the 10 studies, 9 were judged to be
of high quality when assessed against the QHES checklist,
although these and similar checklists do not capture all
considerations relevant to the implementation of PRSs in
cancer screening.
Limitations

Limitations of the evidence
The most robust source of evidence on the long-term effect
on cost-effectiveness of using polygenic risk data in cancer
screening would come from trials with very long follow up
of mortality and other outcomes. In the absence of data from
such trials, cost-utility simulation models of the type
meeting the inclusion criteria of this review are likely to
constitute the best available alternative means of evaluating
how PRSs might contribute to cost-effective cancer
screening.

Downstream consequences
There is a need for greater evidence on the economic con-
sequences of using PRS in screening, including their
acquisition costs, costs incurred alongside genetic data
collection and risk stratification, downstream economic
sequelae, and remuneration for their integration into routine
care. Included studies did not examine in depth any service
redesigns that may be necessary to implement this type of
screening. These could include changes in rates of consul-
tation under more widespread use of polygenic risk data and
changes in prescribing behavior influenced by pharmaco-
genetic considerations.

Costs of PRS
All studies lacked robust data on the per-individual costs of
polygenic risk stratification for use in large-scale screening
programs. Studies either assumed a cost for obtaining the
information necessary to undertake polygenic risk-informed
screening, or back calculated the costs at which such
screening might alter estimated cost-effectiveness. Most
papers (other than Hendrix et al31 and Naber et al36)
parameterized uncertainty around the mean costs of poly-
genic risk stratification or used a threshold analysis (as in
Thomas et al32 and Cenin et al35) to examine the sensitivity
of cost-effectiveness results to its cost.

Acquiring and using genetic data on a large scale
None of the papers described in any detail how genetic data
for the entire modeled cohort would be acquired. There was
some mention of samples being taken by buccal swab (eg,
Wong et al33) or that any test to collect these data would be
administered by a general practitioner (eg, Cenin et al35) but
there was little to no other consideration given to how these
data would be collected at scale, and the economic impli-
cations of so doing.

Ancestry
There was little to no attention given to the differential
availability and predictive capacity of PRSs by ancestry. For
example, Callender et al9 studied prostate cancer screening
for middle-aged men in England, and assumed all such men
have access to the same PRS. This implicitly assumes the
availability of a European-ancestry PRS, whereas approxi-
mately 7% to 8% of men in the target age groups studied in
that paper did not report this ancestry in the 2011 UK
census.45

Cancer incidence and cancer aggression
The principal focus of all included studies was on SNVs that
predict disease incidence. This is associated with 2 potential
limitations. The first is that such studies may exhibit a
survival bias by preferentially including in their analysis
individuals who avoided lethal disease. The extent of this
bias is unknown, and will depend to some degree on the
natural history of each cancer. The second potential limi-
tation relates to the value of identifying SNVs that predict
disease incidence as opposed to those that identify disease
progression or disease aggression. The extent of overlap and
positive correlation between germline liability to disease
incidence and these other phenotypes would mean that the
relative balance of lethal and indolent cancers that are
identified by a PRS-informed screening program could
potentially be altered. For some individuals with penetrant
monogenic variants, it appears that PRSs also further in-
fluence overall absolute disease risk.12 However, the extent
to which such a balance between over- and undertreatment
is achieved, and indeed whether the use of PRSs may ulti-
mately worsen overdiagnosis and overtreatment, will
depend on the specific ways in which a screening program is
designed and implemented.

Structural and parameter uncertainty
There was little to no assessment of the sensitivity of cost-
effectiveness for different ways of modeling PRSs. Param-
eter uncertainty was accounted to some degree by proba-
bilistic sensitivity analysis,22,46 but uncertainty about model
structure was (at best) approached by investigating results
under different assumptions and without necessarily char-
acterizing the plausibility of the scenarios modeled under
these assumptions.

Limitations of the systematic review
This review assessed literature published or uploaded to
preprint servers in English language by June 2021. The
quality assessment/risk of bias assessment was undertaken
only by a single author. Only 3 cancers were studied in
the 10 papers included in the review, and it was not
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possible to infer whether cancer type influenced the
probability of polygenic risk-informed screening being
cost-effective.

The identification of new variants influencing disease and
the development of new methods to estimate PRSs may also
alter the balance of evidence in this area, particularly if new
scores are more predictive. However, most variants with
large effect sizes on disease incidence have probably been
uncovered (at least in well-studied populations of European
ancestry) and further progress is likely to come from iden-
tification of germline variants associated with aggressive
cancers.

As the literature develops and the number of papers
meeting inclusion criteria grows, it may be feasible to
examine potential modifiers of screening cost-effectiveness.
These may include the type of cancer studied, the broad
structure of the screening interventions modeled, the health
system in which the screening is to be performed, and the
age structure of the population modeled.

We did not have information on the scale and scope of
any publication bias in this area. We did not plan to conduct
meta-analysis given anticipated heterogeneity in cancer
type, model structure, and the basis on which polygenic risk
was modeled. Instead, we have provided a high-level sum-
mary of the cost-effectiveness of polygenic risk-informed
modalities compared with more conventional screening
strategies, but it was not feasible to summarize all possible
combinations of screening strategies.

Finally, although we used the QHES checklist, which was
assessed as having the highest sensitivity of any such
checklist included in the systematic review and assessment of
Walker et al,28 it does not and cannot identify all issues that
may affect the quality and robustness of any particular study.

Implications for future research
There is scope to expand the number of cancers studied in
this literature, and to extend and improve the sources used to
populate the parameters of these models to address param-
eter uncertainty. Future models should also consider how
more detailed modeling of natural histories, new screening
modalities, and diagnostic pathways may influence struc-
tural uncertainty although this will likely require some
contextual nuance because increasing the complexity of a
model does not necessarily secure its robustness or
relevance.

Recent methodological developments (eg, McCabe
et al47) support the greater use of probabilistic sensitivity
analysis in cost-effectiveness analysis. There is also scope
for the development of standards that could guide the
reporting of economic evaluations of PRS-informed risk-
stratified screening.

Identification of SNVs that predict aggressive disease
could have a material effect on the cost-effectiveness of
large-scale screening programs, particularly if SNVs asso-
ciated with disease aggression are distributed across centiles
of a PRS that predicts incidence.48,49 The use of PRSs that
predict disease incidence, progression and aggression may
have multiple effects on the relative balance of over-
diagnosis and overtreatment but this will ultimately depend
on the specific ways in which a screening program is
designed and implemented.

It is also important to note that different methods for
calculating PRSs at the level of individual, which will be
necessary for risk stratification, may not be stable across
methods (in the sense that an individual’s percentile rank
may change according to the approach used) and will be
associated with uncertainty. Ding et al50 found large vari-
ance in individual PRS estimates, and recommended a
probabilistic approach to polygenic risk stratification that
estimates the probability that an individual’s PRS is more
than a prespecified risk threshold for screening.

There is a need to establish how the cost-effectiveness
of screening might vary by ancestral background given
that most available PRSs are most predictive for in-
dividuals of European ancestry (Vassy J, Hao L, Kraft P,
et al. Clinical validation, implementation, and reporting of
polygenic risk scores for common diseases. 2021). Future
research may also consider the equity effect of introducing
new tests that disproportionately benefits relatively more
privileged groups. This could be facilitated by the use of
comparative modeling as undertaken by, eg, the National
Institutes of Health Cancer Intervention and Surveillance
Network.51 Future modeling could also consider the effect
of possible intervention-generated inequalities,52 and the
effect of knowledge of one’s own PRS on anxiety,
participation in screening, and other outcomes.53,54

A further broad area for future research relates to the
costing and valuing of polygenic risk data. All studies
necessarily lacked robust external data on the per-individual
costs of population-level genotyping and on all downstream
economic impacts stemming from the use of these data.
Further research is therefore required on the cost of
obtaining comprehensive PRS for deployment at population
scale.

Conclusion

The use of polygenic risk data in population-level
screening for cancer is attracting increasing interest. A
major concern with using these data in population-level
screening will be their cost-effectiveness. The literature
on this topic is recent, relatively small, and examines only
3 cancers, albeit that these cancers are relatively prevalent
and have screening programs in some countries. Of the 10
included studies, 8 concluded that the use of polygenic risk
data would likely be cost-effective. However, these con-
clusions should be evaluated in research that addresses
specific limitations and expands the scope of this literature.
This is likely to require prospective evidence from ran-
domized controlled trials, as well as comprehensive



P. Dixon et al. 1615
economic decision analytic models where several data
sources, including randomized controlled trials, are syn-
thesized and modeled.
Data Availability

The search terms used to interrogate each database are
presented in Appendix 3. No other code was used in this
review. Template data collection forms are available from
the corresponding author on request. All data extracted from
each included study are available in the supplementary
material.
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