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We analyze the linear stability of monoclinal traveling waves on a constant incline, which connect uniform
flowing regions of differing depths. The classical shallow-water equations are employed, subject to a general
resistive drag term. This approach incorporates many flow rheologies into a single setting and enables us to
investigate the features that set different systems apart. We derive simple formulae for the onset of linear
instability, the corresponding linear growth rates and related properties including the existence of monoclinal
waves, development of shocks and whether instability is initially triggered up- or downstream of the wave
front. Also included within our framework is the presence of shear in the flow velocity profile, which is often
neglected in depth-averaged studies. We find that it can significantly modify the threshold for instability. Constant
corrections to the governing equations to account for sheared profiles via a ‘momentum shape factor’ act to
stabilize traveling waves. More general correction terms are found to have a nontrivial and potentially important
quantitative effect on the properties explored. Finally, we have investigated the spatial properties of the dominant
(fastest growing) linear modes. We derive equations for their amplitude and frequency and find that both features
can become severely amplified near the front of the traveling wave. For flood waves that propagate into a dry
downstream region, this amplification is unbounded in the limit of high disturbance frequency. We show that the
rate of divergence is a function of the spatial dependence of the wave depth profile at the front, which may be
determined straightforwardly from the drag law.

I. INTRODUCTION

Shallow flows of fluid, or other continuous media, are often modeled using a pair of hydrostatic
depth-averaged equations describing the conservation of volume and the balance of streamwise
momentum. Such models have been employed in many different settings, including classical
studies of turbulent open channels [1–4], granular flows [5–9], mudflows [10, 11] and gravity
currents [12, 13]. Specializing a shallow-layer model for each particular case often involves only the
selection of a constitutive law for material stresses, which does not affect the mathematical structure
of the governing equations. In one spatial dimension, these systems may be written generally in
terms of the flow depth ℎ(𝑥, 𝑡) and depth-averaged velocity 𝑢(𝑥, 𝑡), as

𝜕ℎ

𝜕𝑡
+ 𝜕

𝜕𝑥
(ℎ𝑢) = 0, (1a)

𝜕

𝜕𝑡
(ℎ𝑢) + 𝜕

𝜕𝑥

[
𝛽(ℎ,𝑢)ℎ𝑢2] +𝑔⊥ℎ 𝜕ℎ

𝜕𝑥
= 𝑔 ‖ℎ−

𝜏(ℎ,𝑢)
𝜌

, (1b)

where 𝑔 ‖ ≡ 𝑔 sin𝜙, 𝑔⊥ ≡ 𝑔 cos𝜙, i.e. gravitational acceleration resolved parallel and perpendicular
to the local slope at angle 𝜙 to the horizontal (hereafter assumed constant), 𝛽 is a corrective shape
factor that arises during depth-averaging (discussed below), 𝜏 models the basal drag on the flowing
medium and 𝜌 is the flow density, hereafter assumed constant. By leaving 𝜏 as an arbitrary function
of the flow variables, many different shallow-layer formulations may be analyzed collectively. This
approach was employed previously by Trowbridge [14], who showed in the case of 𝛽(ℎ,𝑢) = 1
that any spatially uniform shallow flow of depth ℎ0 and velocity 𝑢0 on a constant grade is linearly
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FIG. 1. Diagram of the system under consideration, showing a flow of depth ℎ(𝑥, 𝑡) and velocity 𝑢(𝑥, 𝑡),
propagating down a fixed incline at angle 𝜙 to the horizontal. The profile depicts a typical monoclinal traveling
wave solution connecting two uniform flowing layers.

unstable if √︁
𝑔⊥ℎ0 <

�����𝜏(ℎ0, 𝑢0) − ℎ0
𝜕𝜏
𝜕ℎ0

𝜕𝜏
𝜕𝑢0

����� = ℎ0

����d𝑢0
dℎ0

���� . (2)

By using this inequality, stability criteria for particular systems may be deduced with ease. The right-
most expression, which is particularly simple to evaluate, is absent from the original analysis [14]
and generalizes a stability criterion derived by Craya for turbulent water flows in arbitrary open
channels [3]. We include its derivation as a special case of our analysis in Sec. III and note
additionally that the inclusion of modulus signs in the inequality permit the assumption of the
positivity of its right-hand side to be relaxed [15].

The proliferation of shallow layer models in diverse settings makes the case for conducting general
analyses of this kind. Despite this, relatively few studies have adopted a similar viewpoint, see for
example Refs. [14–17]. The aim of this paper is to extend this program by considering the linear
stability properties of steady traveling wave solutions to Eqs. (1a) and (1b), with ‘monoclinal’ depth
profiles, which monotonically connect regions with uniform flow depths far up- and downstream.
This class of solutions includes uniform layers as a trivial case and more broadly encompasses
both continuous and discontinuous fronts propagating between layers. A sketch of the system,
indicating a typical monoclinal wave is given in Fig. 1. Such states are experienced in nature as a
surge between two shallow flowing regions of different height. They have been studied widely in the
context of turbulent open water [4, 18–21] and more recently, in granular flows [22–26]. The most
mathematically extensive results on their stability are available in the former case, where nonlinear
stability theorems for monoclinal profiles have been achieved [27, 28]. In the granular setting, the
existence and stability of monoclinal traveling were explored for a popular model that includes a
small diffusive regularization [24–26]. In addition to these cases, as shall be demonstrated below,
monoclinal waves are available as solutions to Eqs. (1a) and (1b) for general drag formulations,
provided that the closure permits the existence of steady uniform layers. This includes established
models where these states have not been studied in detail.

Our study investigates the existence of traveling waves, their linear stability and the spatial
structure of the corresponding linear modes, within the general setting of Eqs. (1a) and (1b). This
consolidates many existing results within a broader framework and provides a perspective through
which various properties of different systems may be understood. Moreover, our conclusions may
be simply applied in situations where individual analyses have not been conducted. In particular,
for general drag laws we show how to determine whether the monoclinal solution is continuous,
discontinuous or even admissible, as a function of downstream flow thickness relative to its upstream
thickness, the Froude number of upstream flow (defined shortly in Sec. II) and potentially other
parameters that determine the resistance (Sec. II). We compute the linear stability of both continuous
and discontinuous waves, determining properties of their associated spectra and deducing a general
criterion for instability (Sec. III). The fastest growing linear modes are shown to occur in the
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asymptotic limit of high wavenumber (as in the case of uniform layers [14]) and general formulae
for their growth rates are given. In certain cases, the frequency and amplitude of these modes are
found to be strongly amplified across the wave front. Therefore, we investigate the spatial structure
of high-wavenumber modes and determine when, and why amplification occurs using a WKB
analysis (Sec. IV). It will be shown that this amplification is particularly extreme for wave fronts that
propagate into a region where there is no flowing material. The resulting analysis requires that the
WKB approximation is asymptotically matched with separate expansions for the behavior of modes
near the wave front and ultimately shows how the drag formulation dictates the rate of amplification
with respect to the wavenumber (Sec. IV B).

Before proceeding, we note that the inclusion of the momentum shape factor 𝛽 in Eq. (1b) also
generalizes our analysis with respect to many prior studies (including Trowbridge’s analysis [14]) of
shallow flow linear stability. It is defined as

𝛽(ℎ,𝑢) = 1
ℎ𝑢2

∫ ℎ

0
�̃�2 d𝑧 = 1+ 1

ℎ

∫ ℎ

0

(
�̃�

𝑢
−1

)2
d𝑧, (3)

where �̃� ≡ �̃�(𝑥, 𝑧, 𝑡) denotes the velocity field prior to averaging over the vertical coordinate 𝑧, i.e
ℎ𝑢 =

∫ ℎ

0 �̃�d𝑧. This parameter represents a correction to the depth-averaging procedure used in
deriving shallow-layer formulations. It is evident from Eq. (3) that 𝛽(ℎ,𝑢) ≥ 1. Most studies impose
𝛽(ℎ,𝑢) = 1, which formally corresponds to an inviscid model of the flow with no shear in the velocity
profile. However, even small discrepancies from unity have been shown to have a marked effect on
solutions [29]. We shall demonstrate that it also affects their stability properties. Since 𝛽 ultimately
depends on the particular flow rheology, as well as other observables such as the Reynolds number,
we leave it as a general function of ℎ and 𝑢 in our analysis. While unknown a priori, we note
that 𝛽 can be approximated for a given system via Eq. (3), by employing an empirical steady-state
representation of �̃�, such as the theory of Ref. [30].

II. EXISTENCE

We begin by postulating the existence of a traveling wave solution to Eqs. (1a) and (1b), propa-
gating at wave speed 𝑐0 and with constant depth 𝐻 and velocity 𝑈 in the far-field limit 𝑥→−∞.
Hereafter, we refer to the limits 𝑥→−∞ and 𝑥→∞ as the ‘upstream’ and ‘downstream’ directions
respectively. The various quantities in the problem may be non-dimensionalised with respect to 𝐻,
𝑈, 𝑔 ‖ and 𝜌 using the transformations

𝑥 ↦→ 𝑥𝑔 ‖/𝑈2, 𝑡 ↦→ 𝑡𝑔 ‖/𝑈, ℎ ↦→ ℎ/𝐻, 𝑢 ↦→ 𝑢/𝑈, (4a–d)
𝑐0 ↦→ 𝑐0/𝑈, and 𝜏 ↦→ 𝜏/(𝜌𝑔 ‖𝐻). (4e,f)

A key control parameter in the forthcoming analysis will be F =𝑈/(𝑔⊥𝐻)1/2. This dimensionless
combination gives the Froude number of the flow far upstream.

After non-dimensionalising, the governing equations (1a) and (1b) may be rewritten in a more
convenient frame by defining the coordinate b = 𝑥 − 𝑐0𝑡, which follows the traveling wave. On
making this substitution and simplifying, a compact semilinear matrix equation may be obtained.
We firstly give the resulting system for a general unsteady flow 𝒒(b, 𝑡) ≡ [ℎ(b, 𝑡), 𝑢(b, 𝑡)]𝑇 in this
frame. This is

𝜕𝒒

𝜕𝑡
+ 𝐽 (𝒒) 𝜕𝒒

𝜕b
= 𝑮 (𝒒), (5)

where 𝑮 (𝒒) = (0,1− 𝜏/ℎ)𝑇 and 𝐽 (𝒒) is the Jacobian matrix, given by

𝐽 (𝒒) =
(
𝑢− 𝑐0 ℎ

F−2 +𝐵2 𝑢− 𝑐0 +𝐵1

)
. (6)
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The terms 𝐵1 and 𝐵2 are placeholders for expressions which vanish when 𝛽(ℎ,𝑢) = 1. They are

𝐵1 = 2𝑢(𝛽−1) +𝑢2 𝜕𝛽

𝜕𝑢
, and 𝐵2 = 𝑢

2ℎ−1 (𝛽−1) +𝑢2 𝜕𝛽

𝜕ℎ
. (7)

The putative traveling wave is a time-independent solution of Eq. (5). Substituting 𝒒 ≡ 𝒒0 (b) =
[ℎ0 (b), 𝑢0 (b)]𝑇 and integrating the first row of the resulting system gives

𝑢0 = 𝑐0 + (1− 𝑐0)/ℎ0. (8)

Therefore, the steady velocity is a dependent variable, which may in turn be substituted into the
second row of Eq. (5), via Eqs. (6) and (7), to obtain:

dℎ0
db

=
ℎ0 − 𝜏(ℎ0)

ℎ0/F2 − (𝑐0 −1)2/ℎ2
0 + (𝑐0 −1)𝐵1/ℎ0 + ℎ0𝐵2

. (9)

Since this is an ordinary differential equation in ℎ0 alone, the only bounded traveling waves that
may exist as solutions to Eq. (5) are either everywhere monoclinal, or piecewise monotonic waves
separated by discontinuities (as in the case of a roll wave train, see e.g. Ref. [2]). For continuous
non-monotonic shallow waves to exist, tighter coupling between ℎ0 and 𝑢0 is needed. This is
afforded by the presence of higher-order derivatives (dispersion, diffusion) in some shallow layer
formulations, see e.g. Refs. [4, 25, 31].

Our focus in this paper is purely monoclinal traveling waves. Moreover, we have assumed finite
nonzero depth upstream, with ℎ0 (b), 𝑢0 (b) → 1 as b→−∞, by our choice of non-dimensionalisation.
The downstream flow variables necessarily converge to constant values. Therefore, we adopt the
notation ℎ0 (b) → ℎ∞ and 𝑢0 (b) → 𝑢∞ as b →∞ and note that the Froude number in this region
is given by an appropriate rescaling of the upstream value, F𝑢∞ℎ

−1/2
∞ . The far-downstream flow

determines the speed of the traveling wave, which we deduce from Eq. (8) to be

𝑐0 =
1− ℎ∞𝑢∞

1− ℎ∞ . (10)

Since 𝑢0 depends on ℎ0 and 𝑐0 only, we note that 𝑐0 ≡ 𝑐0 (ℎ∞), with 𝑐0 (0) = 1 in the special case
ℎ∞ = 0, where a wave front connects to a dry downstream region, referred to hereafter as a ‘flood
wave’. We shall focus our analysis primarily on waves with ℎ∞ ≤ 1, since this is the most typically
observed and studied case.

To illustrate our results and investigate the effect of drag, we shall refer to various closures for the
function 𝜏 throughout the text. By considering Eq. (9) in the uniform flow regime far upstream, we
see that 𝜏(1,1) = 1. This often allows at least one empirical parameter to be scaled out from a given
closure formula, leading to simple functional forms for 𝜏. For example, turbulent fluid (Chézy) drag
is given by 𝜏(ℎ,𝑢) = 𝑢2, while the drag on a viscously dominated fluid is 𝜏(ℎ,𝑢) = 𝑢/ℎ. A number
of results will be explored using the following rheology employed in the modeling of granular
media [32–34],

𝜏(ℎ,𝑢) = `(ℎ,𝑢)ℎ
`(1,1) , where `(ℎ,𝑢) = `1 + `2 − `1

1+ Zℎ3/2/(F𝑢) , (11)

with `1, `2 and Z empirically determined constants. Although other possible parametrisations exist
to describe granular flows via specification of ` (examples include Refs. [5, 35, 36]), our aim herein
is not to analyze the selection of individual closures. Therefore, we simply fix the illustrative values
`1 = 0.1, `2 = 0.4, Z = 10 and refer to Eq. (11) as ‘granular drag’ throughout the paper.

On specifying F, ℎ∞ and 𝜏, Eq. (9) may be integrated to obtain a monoclinal wave solution.
In some cases, dℎ0/𝑑b is singular, in which case a shock with velocity 𝑐0 must be fitted at the
singular point to complete the wave profile. Translational invariance permits us to locate this at
b = 0. Discontinuous solutions to Eq. (5), must satisfy the appropriate Rankine-Hugoniot conditions
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FIG. 2. Example traveling wave solutions satisfying Eq. (9) with 𝛽 = 1 and F = 0.5, for Chézy drag (solid blue)
and granular drag (dashed brown). The separate panels show connections from ℎ0 = 1 upstream, to different
downstream depths: (a) continuous monoclinal waves with ℎ∞ = 0.5; (b) shock profiles with ℎ∞ = 0.1; and
(c) flood wave solutions with ℎ∞ = 0.

across a shock. These ensure conservation of mass and momentum fluxes across b = 0 and are
straightforwardly obtained to be

[ℎ(𝑢− 𝑐0)]+− = 0 and
[
ℎ𝑢(𝛽𝑢− 𝑐0) + ℎ2

2F2

]+
−
= 0, (12)

where [ 𝑓 (b)]+− ≡ 𝑓 (0+) − 𝑓 (0−). The downstream traveling wave is then given by ℎ0 (b) = ℎ∞,
𝑢0 (b) = 𝑢∞ for b > 0, and at b = 0− we apply Eq. (12) to deduce that the height of the shock is

ℎ0 (0−) = ℎ∞
2



8𝛽F2 (𝑐0 −1)2

ℎ3∞
+

(
1+ 2F2𝑐2

0 (𝛽−1)
ℎ∞

)2
1
2

−1

− (𝛽−1)F2𝑐2
0. (13)

Note that, since this equation does not bound the magnitude of ℎ0 (0−), it is possible for ‘monoclinal’
shock solutions to be strictly increasing for b < 0, before abruptly dropping to some ℎ∞ < 1 across
the shock. However, upturned shock waves of this sort are not necessarily stable. We discuss the
stability of such solutions in general later, in Sec. III B.

Some example traveling waves are demonstrated in Fig. 2. Across panels (a)–(c), the solutions
plotted connect to progressively lower downstream levels. As ℎ∞ decreases from unity, continuous
monoclinal waves develop a shock before ultimately becoming flood waves when ℎ∞ = 0. To
understand the regimes of Fig. 2 in generality, it is informative to consider the two characteristic
curves _1 (ℎ,𝑢), _2 (ℎ,𝑢) of the underlying system Eq. (5), given by the eigenvalues of the Jacobian
defined in Eq. (6). We compute them to be

_1 (ℎ,𝑢) = 𝑢−𝑐0+ 𝐵1
2

−
√︄
ℎ

F2 + ℎ𝐵2 +
(
𝐵1
2

)2
, _2 (ℎ,𝑢) = 𝑢−𝑐0+ 𝐵1

2
+
√︄
ℎ

F2 + ℎ𝐵2 +
(
𝐵1
2

)2
. (14)

Note that if 𝐵2 < 0, it is possible for the characteristics to be complex-valued, leading to elliptic
equations that cannot be well posed as initial value problems. Therefore, we assume that _1 and _2
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FIG. 3. Dependence of far-field characteristics _1 (solid) and _2 (dash-dot) on F, for Chézy drag monoclinal
waves with ℎ∞ = 0.5 and 𝛽 = 1. Upstream values are plotted with orange curves, downstream with purple
curves. The inlaid diagrams show the directions of propagation of the characteristics in the three distinct
solution regimes given by inequalities (16) to (18) (continuous waves, shock waves, no solution). These
regimes are separated by vertical dotted lines. The wave profiles plotted in the leftmost and middle diagrams
are ℎ0 (b) at F = 0.6 and 1.8 respectively, within the interval b ∈ [−50,50].

are distinct and real-valued, so that Eq. (5) is strictly hyperbolic, as in the often used case with 𝛽 = 1
(i.e. 𝐵1 = 𝐵2 = 0). The consequences of loss of strict hyperbolicity are addressed further in Sec. III.

The signs of _1 (ℎ,𝑢) and _2 (ℎ,𝑢) in the up- and downstream limits b → ±∞ dictate suitable
boundary conditions for the problem and ultimately, whether the two far-field regions must be
connected via a shock. We illustrate this with Fig. 3, in which the values of the upstream and
downstream characteristics are plotted (in orange and purple respectively) for Chézy drag and waves
with ℎ∞ = 0.5 and 𝛽 = 1. In the leftmost regime (F . 1.2), the characteristics possess opposite signs
both up- and downstream and continuous monoclinal solutions exist that connect the far-field regions.
For greater values of F, _1 changes sign in the far downstream. Consequently, both characteristics
propagate into the domain from the boundary at b = +∞ and solutions contain a shock (across which
_1 changes sign) connecting the supercritical downstream flow to the incoming wave. When F & 3.4,
_1 becomes negative in the b→−∞ limit also. The governing system can no longer be posed with
upstream boundary conditions in this regime, so monoclinal solutions cease to exist.

We shall demonstrate that this picture does not qualitatively depend on the drag law, or on the
shape factor. To determine the nature of the far-field characteristics in general, we split our analysis
into multiple cases, since 𝛽 is an unknown parameter, meaning that we cannot be sure of the
sign of 𝑢0 − 𝑐0 + 𝐵1/2 in either region. Furthermore, for the remainder of this section only, we
make two simplifying assumptions. First, we assume that 𝑢∞ (ℎ∞) is a monotonically increasing
function. This is true for most physical drag formulations, including all examples given in this paper.
Therefore, 0 ≤ 𝑢∞ ≤ 1 when 0 ≤ ℎ∞ ≤ 1 and using Eq. (10), we conclude that 𝑐0 ≥ 1. Second, we
assume that the derivatives 𝜕𝛽/𝜕ℎ and 𝜕𝛽/𝜕𝑢 vanish, or are negligible, so that 𝐵1 = 2𝑢(𝛽−1) and
𝐵2 = (𝛽− 1)𝑢2/ℎ. Restricting these degrees of freedom in this way permits us to find relatively
succinct conditions for the different solution regimes of the problem.

Firstly, we turn our attention to the upstream boundary, b→−∞, where 𝑢0 − 𝑐0 +𝐵1/2 = 𝛽− 𝑐0.
Suppose that 𝛽− 𝑐0 < 0. Then _1 (1,1) < 0. Moreover, _2 (1,1) < 0, when F2 > [(𝑐0 − 𝛽)2 − 𝛽(𝛽−
1)]−1 is satisfied. In this case, both characteristics propagate out of the domain and there are no
admissible boundary conditions. For smaller values of F, _2 becomes positive, so ℎ0 → 1 may be
imposed at the upstream boundary. Suppose instead that 𝛽− 𝑐0 > 0. This is the case for waves
approaching the flood wave limit, ℎ∞ → 0 (where 𝑐0 → 1). Then _2 (1,1) > 0. Furthermore, we can
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deduce that _1 (1,1) < 0. To see this, suppose otherwise. Then, (recalling that 𝑐0 > 1) the following
chain of inequalities would hold:

(𝛽−1)2 > (𝛽− 𝑐0)2 > F−2 + 𝛽(𝛽−1) > 𝛽(𝛽−1), (15)

which contradicts 𝛽 > 1.
Similar arguments apply in the case of the downstream region b →∞, where we deduce that

_1 (ℎ∞, 𝑢∞) and _2 (ℎ∞, 𝑢∞) possess opposite sign if and only if F2 > ℎ∞ [(𝑐0 − 𝛽𝑢∞)2 − 𝛽(𝛽 −
1)𝑢2∞]−1 (otherwise both are negative). Therefore, in summary, at both ends of the domain, the
characteristics have opposite signs if and only if

0 < F <
(

ℎ∞
(𝑐0 − 𝛽𝑢∞)2 − 𝛽(𝛽−1)𝑢2∞

)1/2
. (16)

(Depending on the sign of 𝛽− 𝑐0, this inequality is satisfied automatically in some situations.) In
this case, we anticipate a continuous monoclinal wave connecting from the boundary condition ℎ = 1
at b = −∞, through to ℎ = ℎ∞ < 1 at b = +∞.

If instead, we have(
ℎ∞

(𝑐0 − 𝛽𝑢∞)2 − 𝛽(𝛽−1)𝑢2∞

)1/2
< F <

(
1

(𝑐0 − 𝛽)2 − 𝛽(𝛽−1)

)1/2
, (17)

then both characteristics at b→+∞ propagate into the domain. The uniform layer in this region is
therefore supercritical and connects to the upstream flow via a discontinuity.

Finally, if

F >
(

1
(𝑐0 − 𝛽)2 − 𝛽(𝛽−1)

)1/2
, (18)

then the characteristics propagate out of the domain at the upstream boundary and there are no
admissible boundary conditions there. Note that, when 𝛽 = 1, this inequality cannot be satisfied
in the flood wave case, because 𝑐0 = 1. More generally, we can deduce from inequality (18) that
monoclinal traveling wave solutions exist for arbitrary F, when the wave speed 𝑐0 satisfies

1 ≤ 𝑐0 ≤ 𝛽+
√︁
𝛽(𝛽−1). (19)

Since 𝑐0 ≡ 𝑐0 (ℎ∞), this should be interpreted as an interval of shallow downstream flow depths for
which solutions always exist.

In Fig. 4, we indicate the solution regimes for both (a) Chézy drag and (b) granular drag. The
standard case 𝛽 = 1 is marked with solid curves, delineating the boundaries of the inequalities (16)
and (18). Increasing the vertical shear (𝛽 > 1) broadens the regions of existence for both continuous
and discontinuous solutions with ℎ∞ < 1. For completeness, we continue the curves into the ℎ∞ > 1
parameter region. In this case, the requirements for the downstream layer to connect to the upstream
are reversed, meaning that continuous monoclinal waves exist at higher F than shock solutions.
For uniform layers ℎ∞ = 1, there is no distinction between shocks and continuous solutions, which
exist for all F. Consequently, the regime boundaries merge. Note that the crossing point occurs
at exactly the critical F marking the onset of instability in a uniform layer (for example, F = 2 for
Chézy drag [1] and F = 2/3 for granular drag [6], when 𝛽 = 1). In Sec. III we will show why this
must be true in general.

III. LINEAR STABILITY

To analyze the response of the traveling wave to perturbations, we introduce a small amplitude
disturbance that develops linearly with arbitrary complex growth rate 𝜎. If the wave features
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FIG. 4. Existence of monoclinal traveling waves (MTWs) in the (ℎ∞,F)-plane for (a) Chézy drag and
(b) granular drag. The blue and orange lines denote the boundaries of the labeled regimes, given by the
inequalities (16) and (18) respectively. Solid lines show the 𝛽 = 1 case and dashed lines show the 𝛽 = 1.05 case
in panel (a) and 𝛽 = 1.2 in panel (b).

a discontinuity, then we must allow for the corresponding shock location to be perturbed also.
Equivalently, we choose to keep it pinned to b = 0 and perturb the underlying coordinate frame.
Therefore, we write

𝒒(b, 𝑡) = 𝒒0 (b) + 𝜖𝒒1 (b)e𝜎𝑡 + . . . , (20a)

b = b0 + 𝜖b1e𝜎𝑡 + . . . , (20b)

where b0 = 𝑥− 𝑐0𝑡 and the unknowns 𝒒1, b1 are 𝑂 (1) with respect to the small nonzero parameter
𝜖 . The corresponding perturbed shock velocity is 𝑐0 + 𝜖𝑐1e𝜎𝑡 , with 𝑐1 = −𝜎b1. Linearising Eq. (5)
with respect to this expansion and simplifying using the 𝑂 (1) expression, we obtain the following
compact equation governing the perturbation

𝜎�̂�1 + 𝐽 (𝒒0) �̂�′1 +𝑁 (𝒒0) �̂�1 = 0, (21)

where, using primes to denote total derivatives with respect to b, we have defined a transformed
perturbation vector

�̂�1 = ( ℎ̂1, �̂�1)𝑇 ≡ 𝒒1 + b1𝒒
′
0 (22)

and a matrix 𝑁 (𝒒0) whose entries 𝑁𝑖 𝑗 are given by

𝑁𝑖 𝑗 =
𝜕𝐽 (𝒒0)𝑖𝑘
𝜕𝑞 𝑗

(𝒒′0)𝑘 −
𝜕𝑮 (𝒒0)𝑖
𝜕𝑞 𝑗

. (23)

The variable transformation in Eq. (22) is typical of studies in similar settings (e.g. Ref. [27]) and
allows the linear equations to be written in a form that is independent of whether shocks are present
(b1 ≠ 0). The only material difference between these two cases, is that the evolution of any shock
must also obey the jump conditions of Eq. (12) at b = 0, which after perturbing, become

[ℎ1 (𝑢0 − 𝑐0) + ℎ0 (𝑢1 − 𝑐1)]+− = 0, (24a)[
ℎ0𝑢0 (𝛽𝑢1 − 𝑐1) + (ℎ1𝑢0 + ℎ0𝑢1) (𝛽𝑢0 − 𝑐0) + ℎ0ℎ1

F2

]+
−
= 0, (24b)
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to linear order.
In both far-field limits b → ±∞, the base solution 𝒒0 (b) is spatially constant. Consequently,

Eq. (21) may be solved directly in these regimes in terms of normal modes of complex wavenumber
𝑘− upstream and 𝑘+ downstream. Therefore, we seek eigenmodes of Eq. (21) subject to the boundary
conditions

�̂�1 (b) → exp(i𝑘±b) �̂�± as b→±∞, (25)

where �̂�− and �̂�+ are a priori unknown constant vectors. Then we may eliminate �̂�1 from Eq. (21)
in either of the far-field limits, to obtain the dispersion relations

[± (𝜎 + i_1±𝑘±) (𝜎 + i_2±𝑘±) +𝜎 + i𝑎±𝑘± = 0, (26)

where (using a colon to denote the Frobenius inner product of matrices)

[± = tr(𝑁±)−1 and 𝑎± = [± det(𝐽±) (𝐽−1
± )𝑇 : 𝑁±, (27a,b)

with _1± ≡ limb→±∞_1, _2± ≡ limb→±∞_2, 𝐽± ≡ limb→±∞ 𝐽 (𝒒0) and 𝑁± ≡ limb→±∞𝑁 (𝒒0). In
deriving Eq. (26), we made use of the fact that det(𝑁±) = 0, which follows from the definition of 𝑮
and the fact that the first term on the right-hand side of Eq. (23) vanishes as |b | → ∞. The relation
holds for arbitrary 𝐽 in Eq. (5). It will be useful for later discussion to appreciate that terms of
the form 𝜎 + i𝑐𝑘 are the algebraic equivalent of the operator 𝜕/𝜕𝑡 + 𝑐𝜕/𝜕b under the Laplace and
Fourier transforms implicitly employed in Eqs. (20a) and (25). Hence, Eq. (26) factorizes the linear
dynamics of disturbances in terms of wave transport operators with velocities _1±, _2± and 𝑎±.

For any 𝜎, there are two solutions of Eq. (26) for both 𝑘− and 𝑘+. The signs of Im(𝑘−) and
Im(𝑘+) dictate whether the corresponding eigenmode �̂�1 grows or decays in each far-field limit.
Equivalently, they determine the stability (with respect to spatial integration) of the fixed point
�̂�1 (b) = (0,0)𝑇 of Eq. (21) far up- and downstream. Any linear mode must be bounded in order to
be counted as a small perturbation. For such a mode to exist with a given 𝜎, at least one solution of
Eq. (26) for 𝑘− must have Im(𝑘−) ≤ 0 and likewise, at least one 𝑘+ must satisfy Im(𝑘+) ≥ 0. Note
also that Re(𝑘−) and Re(𝑘+) differ in general, indicating that the spatial modulation of �̂�1 varies
across the traveling wave front. Examples of modes with this interesting property are given below,
in Fig. 5.

The constraints that Eq. (26) places on the linear problem are illustrated in Fig. 5(a), which
depicts the spectrum for a monoclinal wave subject to granular drag, with F = 0.5 and ℎ∞ = 0.5. We
find that the essential features of this figure are typical of other drag rules (e.g. Chézy and viscous
drag). Regions of the plot are labeled according to the signs of Im(𝑘−) and Im(𝑘+). In region I, both
𝑘− solutions of Eq. (26) have Im(𝑘−) < 0 and both 𝑘+ solutions have Im(𝑘+) > 0. That is, (0,0)𝑇
is a repellor of Eq. (21) at b = −∞ and an attractor at b =∞. Crossing from region I to region II,
there is a sign change in one of the branches of Im(𝑘+), indicated by the bounding Im(𝑘+) = 0 curve
(dashed blue). This leaves a saddle point at b =∞. For any 𝜎 in either I and II, eigenmodes may
be obtained by integrating Eq. (21) backwards in space from b =∞ to b = −∞. Within region II,
bounded solutions to Eq. (21) must leave b = ∞ along the stable manifold of the far-field fixed
point, so the eigenspace is unidimensional in this case. The union of regions I and II forms the
essential spectrum, whose modes are continuously parametrised by 𝜎. Region III designates the
case where both up- and downstream limits are saddle points. In order for modes to exist in this
region, the unstable manifold of Eq. (21) at b→−∞ must form a heteroclinic connection with the
stable manifold at b→∞. Such connections are not robust to perturbations of 𝜎 and any modes in
region II are thus isolated, forming the point spectrum of the linear operator. Sophisticated numerical
methods exist for assessing the existence of these discrete modes [37]. However, they necessitate the
specification of a particular 𝛽 and 𝜏. Therefore, we must regrettably limit our scope to considering
the essential spectrum only. (See Sec. V for further discussion.) In the current example of granular
waves, we briefly searched for modes in the unstable part of region II various F and ℎ∞ and found
none. Completing the qualitative description of Fig. 5(a), region IV indicates the regime where
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FIG. 5. Spectrum diagram for the continuous monoclinal wave with F = 0.5, ℎ∞ = 0.5 and the granular drag law
given in Eq. (11). Different regions of the spectrum are indicated in (a), labeled I–IV according to the signs of the
far-field spatial decay rates Im(𝑘−) and Im(𝑘+). Details of this labeling are given in the main text. The critical
lines Im(𝑘−) = 0 and Im(𝑘+) = 0 are plotted with yellow and blue dashes respectively. Since the spectrum
is symmetric about Im(𝜎) = 0, since exp(i𝑘b +𝜎𝑡) is invariant with respect to the transformation 𝜎 ↦→ �̄�,
𝑘 ↦→ −�̄� (where the overbar denotes complex conjugation), we have omitted the upper half-plane. Regions I
& II comprise the essential spectrum, from which we show a selection of example modes, plotting 𝑢1 (b) with
solid curves in panels (b)–(f). Arrows indicate the direction of the perturbation velocities in the far field. In (b),
we also plot the base solution 𝑢0 (b) (dotted). The exact growth rates of the computed modes, as indicated
by crosses in panel (a), are 𝜎 = (b) 0, (c) −0.002−0.01495i, (d) −0.0135−0.1i, (e) −0.00667881−0.0267i
and (f) −0.018−0.034i. Where two modes exist (b,e,f), the plotted curves are first orthogonalised with respect
to the inner product 𝑓 · 𝑔 =

∫ ∞
−∞ 𝑓 (b)𝑔(b)e−( b/100)2db.

there can be no admissible eigenmodes, since either b = −∞ is an attractor, or b =∞ is a repellor (or
both).

We note that the essential spectrum of our example wave does not cross Re(𝜎) = 0 and is therefore
linearly stable. In Figs. 5(b)–(f) we plot a selection of modes from this region; their locations in the
spectrum are as indicated in Fig. 5(a). (The velocity perturbation 𝑢1 is plotted, but ℎ1 is similar in
each case.) Firstly, in panel (b), which also includes the base solution 𝑢0 (b) for reference (dotted),
we plot the two neutral stability modes with 𝜎 = 0. The darker curve is (the velocity field of) the
mode (ℎ1, 𝑢1) = (−ℎ′0,−𝑢′0), which arises due to invariance of the traveling wave to shifts along
b. Its lighter counterpart corresponds to neutral perturbations along the family of steady wave
solutions that are parametrised by the downstream depth ℎ∞. Both curves feature a sharp peak in
the neighborhood of b = 0 where the wave profile is steepest. The mode in panel (c) lies close to
the origin on the curve Im(𝑘+) = 0 and is consequently undamped in the downstream regime. In
the upslope direction, it decays rapidly towards a saddle point at b = −∞. At the wave front, the
mode features dramatic amplification, likely inherited from the nearby neutral modes. In panel (d),
we plot a mode on the curve Im(𝑘−) = 0, which is conversely undamped in the upstream far field
and decays rapidly as b→∞. For a mode to be undamped in both directions it must lie on one of
the discrete set of intersection points of the critical curves. We isolate such a point in panel (e) and
note that the corresponding modes are formed from the convergence of two distinct wavenumbers.
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FIG. 6. Spectra for discontinuous traveling waves with granular drag and ℎ∞ = 0.5. Panel (a) shows the case
F = 0.55, close to the boundary of, and within the regime of discontinuous states. The labeling and color
scheme matches the conventions of Fig. 5. An example mode is plotted in (b), which shows the 𝑢1 (b) field
of the mode at the location labeled with a cross in (a), 𝜎 = −0.0109−0.2i (solid). The velocity of the base
traveling solution, 𝑢0 (b), is also shown (dotted). Panel (c) plots the spectrum of an unstable case with F = 0.8.
In (d), we plot the 𝑢1 (b) field of the undamped unstable mode whose imaginary growth rate matches the
example in (b), in this case located at the cross in (c), 𝜎 = 0.0159− 0.2i (solid). The velocity of the base
solution is also given (dotted). In both panels (b) and (d), arrows indicate the direction of the perturbation
velocity far upstream.

Lastly, in panel (f) we include a pair of modes in the interior of the essential spectrum, which decay
in both up- and downstream directions. For each mode plot, we have included arrows showing
the propagation directions associated with the dominant perturbation velocities −Im(𝜎)/Re(𝑘±) in
the far field regimes. (From the two linear independent components of each mode, we use either
the least spatially damped wavenumber or, in the case of saddle points, we take the component
that remains bounded in the relevant far-field limit.) We observe that the purely harmonic parts
of modes (c)–(e) are directed towards the wave front in each case, regardless of whether these
undamped regions lie up- or downstream.

In Fig. 6, we demonstrate the changes to the spectrum of the traveling wave as F is increased
from its value of 0.5 in Fig. 5, with ℎ∞ = 0.5 remaining fixed. Increasing F to 0.55 [panel (a)]
leaves the wave slightly above the threshold for shock formation [see Fig. 4(b)]. The resulting
spectrum is qualitatively very different to the case of a continuous monoclinal wave. This is because
crossing the threshold between continuous and discontinuous solutions induces a sign change in one
of the branches of Im(𝑘+), thereby altering the stability of the fixed point at b =∞. For example,
region I in Fig. 5 is labeled II in Fig. 6(a), since the attractor at b = ∞ becomes a saddle point
when solutions possess a shock. The sign change in Im(𝑘+) occurs precisely because of the sign
change in _2+ that we argued in Sec. II necessitates shock development. When _2+ passes through
zero, the leading term in Eq. (26) vanishes and one branch of Im(𝑘+) passes through a singularity
associated with this degeneracy. We note that this also causes a topological change in the Im(𝑘+) = 0
curve, whose branch near the origin no longer forms a complete loop. Within the region enclosed
between the two branches of this curve (dashed blue), the b→∞ point is a saddle, while to the left
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and right it is respectively an attractor and a repellor. The stability of the b →−∞ point remains
qualitatively equivalent to the Fig. 5 case. Continuously parametrised modes exist in region II
which is disconnected and stable. Furthermore, in this case we may also consider modes which are
identically zero in either the upstream (b < 0) or downstream (b > 0) direction. In particular, we find
that upstream disturbances connecting to an unperturbed downstream exist as bounded solutions to
Eq. (21) everywhere enclosed within the two branches of Im(𝑘−) = 0 (dashed yellow). The light
blue hatched region denotes a region of the spectrum where only these ‘upstream’ modes exist. We
include a plot of one of these modes in Fig. 6(b) alongside the underlying traveling shock profile
and note that the mode amplitude is significantly amplified at the discontinuous wave front.

Figure 6(c) shows the spectrum for an unstable traveling wave, with F = 0.8 and ℎ∞ = 0.5. In this
case, we see that the regions remain qualitatively similar to those in panel (a). It is the upstream
modes only that cross Re(𝜎) = 0, becoming unstable, with the maximum growth rate attained for
large values of |Im(𝜎) |, i.e. the most rapidly propagating disturbances. An example of such a
mode is plotted in Fig. 6(d), at Im(𝜎) = −0.2, matching the mode plotted in panel (b). Modes with
nonzero downstream perturbations are all stable at this value of F. Following the continuation of
our stability analysis below, we shall show that this observation is not a generic property of these
systems. Whether the upstream regime is more vulnerable to instability than the downstream or vice
versa, depends on the particular drag closure.

A. Deriving a general stability criterion

The curves Im(𝑘−) = 0 and Im(𝑘+) = 0 where modes are undamped in the far field necessarily
dictate the boundary of the essential spectrum. Therefore, to assess the stability of traveling waves
(with respect to continuously parametrised modes) in generality, we must determine when these
curves cross Re(𝜎) = 0. Therefore, we suppose that 𝑘± ∈ R for the remainder of this section and
write 𝜎 = 𝜎𝑟 + i𝜎𝑖 , with 𝜎𝑟 ,𝜎𝑖 ∈ R. On separating out the real and imaginary parts of Eq. (26), we
obtain

𝜎2
𝑟 −𝜎2

𝑖 −𝜎𝑖 (_1± +_2±) − 𝑘2
±_1±_2± +𝜎𝑟[−1

± = 0, (28a)
[±𝜎𝑟 [2𝜎𝑖 + (_1± +_2±)𝑘±] + 𝑎±𝑘± +𝜎𝑖 = 0. (28b)

When 𝑘± = 0, the solutions of these equations are 𝜎 = 0,−1/[±. The first of these corresponds to the
aforementioned pair of neutral stability modes, while the second corresponds to global perturbations
whose stability depends on sign([±). We shall suppose that [± > 0, which is the practical case of
interest in applications, where solutions are stable to spatially uniform modes.

Eliminating 𝜎𝑖 and simplifying leads to the following expression

𝑘2
± =

𝜎𝑟 ([±𝜎𝑟 +1) (2[±𝜎𝑟 +1)2

[3± (𝑠1 −𝜎𝑟 ) (𝜎𝑟 − 𝑠2) (_2±−_1±)2
, where 𝑠1 ≡ 𝑎±−_2±

[± (_2±−_1±) , 𝑠2 ≡
_1±− 𝑎±

[± (_2±−_1±) .
(29a–c)

Therefore, when |𝑘± | � 1, we find that the two branches of 𝜎𝑟 asymptotically approach the limiting
values 𝑠1 and 𝑠2. [For example, in Fig. 5(a), these asymptotes are at 𝜎𝑟 ≈ −0.104,−0.0149 for
b →−∞ and 𝜎𝑟 ≈ −0.231,−0.105 for b →∞, which match values computed for 𝑠1 and 𝑠2 in the
respective far-field regions.] Moreover, for general 𝑘±, Eq. (29) may be differentiated to obtain a
formula for 𝜕𝜎𝑟/𝜕𝑘±, which is zero if and only if 𝑘± = 0 or 𝜎𝑟 = 𝑠1, 𝑠2. Hence, both branches of
𝜎𝑟 (𝑘±) are even functions which are monotonic with respect to |𝑘± | and must be bounded by their
values in the zero (𝜎𝑟 = −[−1± ,0) and high wavenumber (𝜎𝑟 = 𝑠1, 𝑠2) regimes.

Since the growth rate is always stable for 𝑘± = 0, we conclude that 𝑠1 ≤ 0 and 𝑠2 ≤ 0 for a linearly
stable traveling wave, i.e.

_1± ≤ 𝑎± ≤ _2±, (30)
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in both far-field limits, with the onset of instability occurring at potentially either of the critical
cases 𝑎± = _1± or 𝑎± = _2±. This recovers the results of Whitham [4, 38], who noted that linear
instabilities occur in systems of conservation laws when the propagation velocity of the bulk
disturbance intersects with the characteristics. As noted earlier, the quantities 𝑎− and 𝑎+ may
be identified as far-field wave velocities. They correspond to a reduced description of the linear
dynamics that omits the propagation of high frequencies, which are carried by the leftmost term of
Eq. (26) at the characteristic velocities. Instabilities first arise when the wave speeds of these low-
(𝑎±) and high-frequency (_1± and _2±) descriptions intersect (in either far field).

Turning attention toward our particular application, we may consult Eqs. (6), (23) and (27a,b)
and compute

[± = lim
b→±∞

𝑓 −1
𝑢 , 𝑎± = lim

b→±∞
(𝑢0 − 𝑐0 − ℎ0 𝑓ℎ/ 𝑓𝑢) , (31a,b)

where we define the following terms, which arise from linearisation of the drag function:

𝑓ℎ ≡ 1
ℎ0

(
𝜕𝜏

𝜕ℎ

����
𝒒=𝒒0

− 𝜏(𝒒0)
ℎ0

)
, 𝑓𝑢 ≡ 1

ℎ0

𝜕𝜏

𝜕𝑢

����
𝒒=𝒒0

. (32)

By substituting Eqs. (31a,b) into Eqs. (29b,c) and making use of Eq. (14), we find formulae for the
asymptotic (high wavenumber) growth rates

𝑠1 = lim
b→±∞

[
− 𝑓𝑢

2
− 1
_2±−_1±

(
ℎ0 𝑓ℎ + 𝐵1 𝑓𝑢

2

)]
, 𝑠2 = lim

b→±∞

[
− 𝑓𝑢

2
+ 1
_2±−_1±

(
ℎ0 𝑓ℎ + 𝐵1 𝑓𝑢

2

)]
.

(33a,b)
These expressions can become unbounded if _2± −_1± → 0. This is a signature of ill posedness
within the initial value problem constructed in the linear stability analysis, which ultimately stems
from loss of hyperbolicity when the characteristics of the governing equations coalesce [39]. While
this is not possible within the classical shallow-water framework where 𝛽(ℎ,𝑢) = 1, it could occur
for other choices of 𝛽. Specifically, from Eqs. (7) and (14), we see that _1 (ℎ,𝑢) = _2 (ℎ,𝑢) if

ℎ𝑢2 𝜕𝛽

𝜕ℎ
= − 1

F2 −𝑢
2 (𝛽−1) −

[
𝑢(𝛽−1) +2𝑢2 𝜕𝛽

𝜕𝑢

]2
. (34)

Increasing flow depth independently of other variables implies an increase in flow Reynolds number,
leading (in general) to blunter vertical flow profiles, i.e. decreasing 𝛽(ℎ,𝑢). Therefore, 𝜕𝛽/𝜕ℎ < 0
is not unexpected and particular care should be taken to avoid choices of 𝛽 that lead to an ill-posed
model.

Traveling waves can become unstable if 𝑠1 or 𝑠2 crosses zero in either far-field limit. By
rearranging either 𝑠1 = 0 or 𝑠2 = 0 we obtain the same expression for the value of F at which flow
becomes unstable in these regions. The lesser of these two values is the ‘critical’ F above which,
linear instability of the traveling wave is guaranteed. In the special case 𝛽(ℎ,𝑢) = 1, we label this
FTr and find that

F2
Tr = min

ℓ=±∞
lim
b→ℓ

𝑓 2
𝑢

ℎ0 𝑓
2
ℎ

. (35)

The square of the corresponding local Froude number is F2
Tr𝑢

2
0/ℎ0, where 𝑢0 and ℎ0 in this instance

are assumed to be evaluated in the relevant far-field limit. Regardless of which limit applies, this
agrees (as it must) with the Froude number from Trowbridge’s stability criterion (2) for the linear
stability threshold of a uniform shallow layer. In fact, since 𝑢0 ≡ 𝑢0 (ℎ0) and 𝜏(𝒒0) → ℎ0 as |b | →∞,
we may differentiate with respect to ℎ0 to deduce that

𝑓ℎ
𝑓𝑢

→−d𝑢0
dℎ0

as |b | → ∞. (36)
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Therefore, we obtain the slightly simpler and more intuitive formula

FTr = min
ℓ=±∞

lim
b→ℓ

1
√
ℎ0

��� d𝑢0
dℎ0

��� , (37)

which implies that the flow in the far fields is more unstable if the steady velocity is more sensitive
to changes in the flow depth. As mentioned in the introduction, this extends a much older result
of Craya [3], to the case of arbitrary drag (and monoclinal waves). While d𝑢0/dℎ0 is everywhere
positive for most drag laws, the modulus signs in Eq. (37) are required in general. For example,
confined channel geometries that narrow towards the top (such as partially wetted pipes) can lead
to a turning point in 𝑢0 (ℎ0) [40, 41]. Some additional implications of Eq. (37) are given later in
Sec. III B.

For general 𝛽, we shall write F = F𝑐 to denote the threshold of instability. As before, we rearrange
either 𝑠1 = 0 or 𝑠2 = 0 to obtain an expression for F𝑐 , which may be written in terms of FTr, as so

F2
𝑐

F2
Tr

= min
ℓ=±∞

lim
b→ℓ

1
1+𝜔𝐵1ℎ

1/2
0 FTr −𝐵2F2

Tr

, where 𝜔 = sign( 𝑓𝑢/ 𝑓ℎ). (38)

Most typically, 𝜕𝜏(𝒒0)/𝜕ℎ < 1 and 𝜕𝜏(𝒒0)/𝜕𝑢 > 0, implying that 𝑓𝑢/ 𝑓ℎ < 0 (as originally assumed
in Ref. [14]). Nevertheless, Eq. (38) accounts for choices of 𝜏 where these inequalities do not
necessarily hold.

To illustrate the effect that the momentum shape factor can have on the critical F, we consider the
case where 𝛽 is approximated by a constant value. Moreover, we suppose that the value of F𝑐 is
dictated by the upstream regime and 𝜔 = −1. (Both of these conditions are met in the cases of Chézy,
granular and viscous drag closures.) Then, we Taylor expand Eq. (38) in powers of (𝛽−1) to obtain

F2
𝑐 = F2

Tr + (𝛽−1)F3
Tr (2+FTr) + . . . . (39)

Therefore, increasing 𝛽 raises the threshold for instability. Indeed, the denominator in Eq. (38)
vanishes in this case, if

𝛽 = 1+ 1
FTr (FTr +2) , (40)

with F𝑐 becoming unbounded as 𝛽 approaches this value. In Fig. 7, we plot F𝑐 (𝛽) for our example
drag closures. For Chézy drag [panel (a)], F𝑐 increases rapidly with 𝛽 and diverges at 𝛽 = 1.125.
The corresponding curves for granular and viscous drag [panel (b)] increase more steadily (though
nevertheless significantly). The qualitative difference between the effect of 𝛽 across the two panels
is encapsulated by Eq. (39).

The stabilizing influence of larger 𝛽 > 1 here may be explained within the inequality given in (30).
It may be deduced in this case that instability occurs when the bulk disturbance wave speed in the
upstream regime, 𝑎−, surpasses the characteristic velocity _2−. Referring to Eqs. (14) and (31b), we
note that increasing the vertical shear of the flow raises the speed of the characteristic while leaving
𝑎− unchanged. This allows waves to remain stable at higher F. More generally, the effect of 𝛽(ℎ,𝑢)
on the characteristics explains the modified stability threshold of Eq. (38).

B. Implications for different solution regimes

With the stability threshold determined, we may investigate which kinds of solution are stable or
unstable. Firstly, we examine the stability of continuous monoclinal waves versus shock solutions.

Inequality (30) allows us to prove an observation from Sec. II, that the regime boundaries
demarcating the onset of shock development and existence of traveling wave solutions (see Fig. 4)
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FIG. 7. Dependence of the critical F = F𝑐 for instability of traveling waves on a constant (ℎ- and 𝑢-independent)
momentum shape factor 𝛽 for (a) Chézy drag (b) granular (solid) and viscous (dashed) drag. In panel (a) the
asymptote at 𝛽 = 1.125 is also plotted (dotted).

must intersect at (ℎ∞,F) = (1,F𝑐). Recall that these boundaries are given by the lines _2+ = 0 and
_2− = 0 respectively. When ℎ∞ = 1, we compute 𝑎− = 𝑎+ = 1−𝑐0 (1) − lim |b |→∞ ( 𝑓ℎ/ 𝑓𝑢), where 𝑐0 is
written as a function of ℎ∞, as in Sec. II. We deduce via Eq. (10), that 𝑐0 (1) = 1+ (d𝑢∞/dℎ∞) |ℎ∞=1.
Therefore, by Eq. (36), we obtain 𝑎± = 0. This implies, by inequality (30), that instability of the
uniform layer occurs exactly when _2− = _2+ = 0, i.e. the intersection point of the two traveling
wave regime boundaries.

If the cases depicted in Fig. 4 (Chézy and granular drag) are no more unstable in the downstream
direction than upstream, it follows that continuous monoclinal waves are always stable, because the
curve bounding the onset of shock development (_2+ = 0) is monotonic and bounded above by the
stability threshold of upstream flow, F = F𝑐 (1). In the case of granular drag, we already observed
in Fig. 6, that modes which are undamped upstream turn unstable at lower F𝑐 than modes which
are undamped downstream. More generally, if 𝜏 does not depend on any physical scales other than
the flow height and velocity, the local Froude number at which the downstream regime becomes
unstable must equal the critical Froude number of the upstream flow, F𝑐 (1). Since the local Froude
number in the downstream region differs from that of the upstream region by a factor of 𝑢∞/

√
ℎ∞,

we may write

F𝑐 (ℎ∞) = min
{
F𝑐 (1),F𝑐 (1)

√︁
ℎ∞/𝑢∞

}
. (41)

In this case, instability first occurs in the upstream flow if and only if
√
ℎ∞/𝑢∞ > 1.

If additional physical scales are present in the drag formulation, then Eq. (41) cannot be used
and the argument of Eq. (37) must be evaluated in both far-field regimes to determine which
region is more vulnerable to instability. An example of a drag law that requires this treatment is
given by the resistance of a turbulent fluid in an open rectangular channel of width 𝑤, which we
non-dimensionalise with respect to 𝐻, as in Eq. (4c). Assuming the Chézy formula for turbulent
bottom drag, then 𝜏 = (𝑤 +2ℎ)𝑢2/(𝑤 +2) (see e.g. Refs. [41, 42] for details on how to calculate
such formulae). Then, in either far field, using 𝜏(𝒒0) = ℎ0, we compute (√ℎ0d𝑢0/dℎ0)−1 = 2(𝑤 +
2ℎ0)

√
ℎ0/(𝑢0𝑤). In the downstream direction, ℎ∞/𝑢2∞ = (𝑤 +2ℎ∞)/(𝑤 +2), which is strictly less

than one for ℎ∞ < 1. Therefore, the downstream limit dictates the evaluation of Eq. (37) and we
determine the stability threshold

FTr = 2
(
1+ 2ℎ∞

𝑤

) √︂
𝑤 +2ℎ∞
𝑤 +2

. (42)
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Note that the correction in Eq. (38) may be applied, if necessary, to obtain the critical F for a general
𝛽. It is straightforwardly verified that this stability threshold could not have been obtained from
Eq. (41). If ℎ∞ = 1, Eq. (42) agrees with the critical Froude number FTr = 2(1+2/𝑤) for uniform
layers in a rectangular channel [16]. When ℎ∞ < 1, the effective channel breadth, measured with
respect to the local flow height (i.e. 𝑤/ℎ0), is greater downstream than upstream. Therefore, since
uniform layers in narrower channels are more stable, the downstream flow turns unstable at lower F,
except in the limit 𝑤→∞, where FTr → 2 and both regions turn unstable at the same F.

In the various cases where the drag law permits us to find a power law for the velocity of a steady
layer, 𝑢0 = ℎ

𝑚
0 , Eq. (41) does apply and it is straightforward to see that the upstream flow becomes

unstable at lower 𝐹 than the downstream flow if and only if 𝑚 > 1/2. Here, Eq. (37) implies the
following strikingly simple formula for the linear stability threshold when 𝛽(ℎ,𝑢) = 1,

F𝑐 = FTr = min
ℎ0=1,ℎ∞

1
|𝑚 |ℎ𝑚−1/2

0

. (43)

This result may be used to derive various well-known stability results, by selecting different 𝑚,
e.g. for Chézy, granular and viscous uniform layers, 𝑢0 = ℎ

1/2
0 , ℎ3/2

0 , ℎ2
0 and FTr = 2, 2/3 and 1/2

respectively [1, 6, 14].
We can now address whether continuous monoclinal waves (with 𝛽 = 1) are always stable in

general for the class of drag laws with 𝑢0 = ℎ𝑚0 . The upper bound of the continuous solution
regime (_2+ = 0), may be rearranged to give the maximum F for continuous waves, F = Fcont (ℎ∞) =√
ℎ∞ (1− ℎ∞)/(1− ℎ𝑚∞). This curve is strictly increasing for 𝑚 ≤ 3/2. It is straightforward to show

in this case, using Eq. (43), that Fcont (ℎ∞) < F𝑐 (ℎ∞), regardless of whether 𝑚 < 1/2. If instead,
𝑚 > 3/2, then Fcont (ℎ∞) possesses a turning point, which lies within the interval 0 < ℎ∞ < 1, for all
𝑚 > 2. It is in this latter case only, that continuous monoclinal waves can suffer linear instability
without first developing a shock. An example of a system where continuous waves are not always
stable is provided by the family of ‘power law’ fluids with drag formula 𝜏(ℎ,𝑢) = (𝑢/ℎ)𝑛, where
𝑛 > 0 is a constant [10]. Then, 𝑢∞ (ℎ∞) = ℎ1+1/𝑛

∞ , implying that there exist continuous power-law
waves with 𝑛 < 1 (within a suitable range of ℎ∞) that become unstable prior to shock development.

Using the same assumptions as above, we investigate the stability of upturned shock solutions
(states with ℎ0 (0−) > 1). The critical case, where shocks are neither downturned, nor upturned, is
given by ℎ0 (0−) = 0. Consulting Eq. (13), we rearrange to obtain the curve

F = Fup (ℎ∞) = (1+ ℎ∞) 1
2 (1− ℎ∞)

(2ℎ∞) 1
2 (1− ℎ𝑚∞)

. (44)

Above this value of F, solutions are upturned. We note, by L’Hôptial’s rule, that Fup also passes
through F𝑐 (1) = 1/𝑚 at ℎ∞ = 1. Moreover, assuming 𝑚 > 0, we note that Fup (ℎ∞) →∞ as ℎ∞ → 0+.
The curve has a turning point within 0 < ℎ∞ < 1 only if 𝑚 < 1/2. Therefore, all upturned shocks
with 𝑚 ≥ 1/2 are unstable. For 𝑚 < 1/2, we must assess whether the existence of the turning point
allows Fup (ℎ∞) to drop below F𝑐 (ℎ∞) for any 0 < ℎ∞ < 1. In Appendix A, we show that it does
not and hence we conclude that upturned shock solutions are unstable for any 𝑚.

IV. EIGENMODE STRUCTURE

In addition to the linear growth rate, 𝜎, the spatial structure of the corresponding modes plays
a role in determining the evolution of disturbances. We saw in Figs. 5 and 6 that the modes for
granular traveling waves are essentially oscillatory and can become dramatically amplified at the
wave front in some cases. In this section, we demonstrate that this amplification occurs for generic
choices of 𝜏 and show how it may be computed asymptotically when the wavenumber is large.

Since the dominant disturbances are purely harmonic in at least one of the far-field regions, we
shall focus on modes which are undamped in the upstream direction, i.e. 𝑘− ∈ R. It is straightforward
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to adapt our analysis below to situations where the modes are undamped in the downstream. The
regimes of high and low wavenumber present tractable opportunities to understand the spatial
variation of modes. In the latter case, we note (as discussed in Sec. III) that the higher of the two
branches of 𝜎 passes through 𝜎 = 0 when 𝑘− = 0. By inspecting Eq. (21), it is immediately clear
that an 𝑂 (𝜖) perturbation to 𝜎 away from zero, does not alter �̂�1 to leading order. In other words,
at low 𝑘−, modes are asymptotically close to the neutral modes at 𝜎 = 0. This is evident, even
in modes that are some distance from the origin of the spectral plane. For example, the darker
curve in Fig. 5(e) clearly inherits its amplified peak at b = 0 from the corresponding neutral mode
�̂�1 = (−ℎ0,−𝑢0), plotted in Fig. 5(b).

Therefore, we proceed to the high-wavenumber limit, 𝑘− � 1, which we have shown above
determines the most rapidly growing perturbations when the traveling wave is unstable. This is a
richer problem, which we find necessary to divide into two cases, depending on the downstream
depth.

A. Finite downstream depth (0 < ℎ∞ < 1)

First, suppose that the downstream height ℎ∞ is finite and nonzero. We analyze the spatial
structure of �̂�1 by employing a WKB approximation for the solution to Eq. (21) (see e.g. Ref. [43]
for details on this method). Setting Y = 1/𝑘−, we pose the ansatz

�̂�1 (b) = ei𝜙 ( b )/Y [ �̂�0 (b) + Y �̂�1 (b) + . . .] , (45a)

𝜎 = Y−1𝜎0 +𝜎1 + . . . (45b)

in the regime Y� 1, where the unknown functions 𝜙, �̂�0, �̂�1 and the constants 𝜎0, 𝜎1 are understood
to be 𝑂 (1) with respect to Y.

The leading component of the growth rate in Eq. (45b) is purely imaginary and given by the system
characteristics [Eq. (14)]. This is a fact straightforwardly verified by substituting our expansions
into Eq. (21) and keeping only the leading 𝑂 (Y−1) terms, to obtain

(𝜙′𝐽 − i𝜎0𝐼) �̂�0 = 0. (46)

Therefore, i𝜎0/𝜙′ is an eigenvalue of the Jacobian, i.e. a characteristic. To match a purely harmonic
disturbance upstream, we must impose 𝜙→ b as b→−∞. Therefore, i𝜎0 = limb→−∞_ 𝑗 , for either
𝑗 = 1 or 2, and we deduce that

𝜙′(b) = _ 𝑗 (1,1)
_ 𝑗 (ℎ0 (b), 𝑢0 (b)) . (47)

This equation may be integrated (in principle) to obtain the frequency modulation of �̂�1, with respect
to b. The only restriction on this procedure comes if the denominator in Eq. (47) vanishes. This
occurs if one of the characteristics changes sign. As argued in Sec. II, only _2 can change sign along
the wave and if it does so, this happens across a shock at b = 0. Therefore, provided the hydraulic
jump has finite depth, _2 is nonzero either side of the shock.

The vector �̂�0 (b) is given by the eigenspace for the characteristic curves as 𝐽 varies along the
slope. It may be neatly expressed using the characteristics themselves, as

�̂�0 (b) = 𝑅(b)
(

2ℎ0
𝐵1 ± (_2 −_1)

)
, (48)

where 𝑅(b) is an unknown amplitude that we aim to determine.
At 𝑂 (1), we find

(i𝜙′𝐽 +𝜎0𝐼) �̂�1 = −𝐽 �̂� ′0 − (𝜎1𝐼 +𝑁) �̂�0. (49)
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FIG. 8. Spatial variation of the mode amplitude function 𝑅, determined numerically via Eq. (52), for granular
traveling waves with ℎ∞ = 0.5. (a) Amplitude 𝑅(b) at F = 0.5 (blue), plotted alongside 𝑢1 (b) (gray) for
a spatially undamped mode with 𝜎 = −0.014884− i. (This growth rate corresponds to 𝑘− ≈ 0.74. Higher
wavenumber modes also agree well with 𝑅.) (b) Mode amplitudes for waves in the discontinuous traveling
wave regime, for F = 0.85 (red), 0.7 (purple) and 0.55 (blue), approaching the critical F ≈ 0.547, that marks
the change between continuous and discontinuous states when ℎ∞ = 0.5 [see Fig. 4(b)]. The 𝑢1-field for a
corresponding mode in the F = 0.55 case, with 𝜎 = −0.0113− i (𝑘− ≈ 0.85) is also plotted (gray).

To eliminate the unknown vector �̂�1, we appeal to the eigenproblem adjoint to Eq. (46),

�̂�
𝑇

0 (𝑖𝜙′𝐽 +𝜎0𝐼)𝑇 = 0, (50)

and compute

�̂�0 (b) = 𝐿 (b)
(

2(F−2 +𝐵2)
𝐵1 ± (_2 −_1)

)
. (51)

We are free to choose the amplitude function 𝐿 (b) and do so according to the constraint �̂�0 · �̂�0 = 1.
Then we project Eq. (49) onto �̂�0. By rearranging and setting �̄�0 = 𝑅 �̂�0 and �̄�0 = 𝑅

−1 �̂�0, we determine

_ 𝑗

𝑅′

𝑅
= −𝜎1 − �̄�0 ·

(
𝐽 �̄� ′0 +𝑁 �̄�0

)
, for 𝑗 = 1,2, (52)

This is a first order differential equation for the mode amplitude function 𝑅. Note that, as b→−∞,
both 𝑅′ → 0 and �̄� ′0 → 0, so 𝜎1 = − limb→−∞ �̄�0 ·𝑁 �̄�0. Since this expression is purely real, 𝜎1 must
agree with the high wavenumber growth rate formulae already computed in Eqs. (33a,b). (Directly
computing the matrix products confirms this.) In Fig. 8(a) we plot a numerical solution to Eq. (52)
for granular drag with F = 0.5, ℎ∞ = 0.5. It accurately captures the amplitude envelope of undamped
eigenmodes, even those with modest far-field wavenumber (𝑘− ≈ 0.74 in the plot).

When written in full, the final two terms of Eq. (52) are complicated analytical expressions, which
depend on 𝒒0 (b). Nevertheless, we can gain insight into the spatial variation of 𝑅 by noting that
away from the upstream far-field, the right-hand side must deviate from zero as the wave depth
decreases (assuming ℎ∞ < 1). Therefore, if _ 𝑗 becomes small (compared with 𝜎1), we should expect
to see 𝑅(b) grow rapidly (and exponentially) from its far-field value in the region of the wave front.
Moreover, Eq. (47) implies a corresponding rapid frequency change. There are two situations in
which this can occur. Firstly, in the case of discontinuous waves, _2 changes sign at the shock.
Therefore, if the shock depth is shallow, _2 is necessarily small either side of b = 0 and becomes
zero in the limit ℎ0 (0−) → ℎ∞. We saw the effect of this in Fig. 6(b), which shows an eigenmode for
a wave that is very close to the regime boundary between continuous and discontinuous solutions.
In Fig. 8(b), plot 𝑅(b) for ℎ∞ = 0.5 and F = 0.85, 0.7, 0.55. As F approaches the regime boundary
at F ≈ 0.547, 𝑅(b) exhibits progressively greater amplification at the shock. The second situation
where _2 can become small, leading to similar amplification, is in the limit ℎ0, 𝐵1 → 0. That is, as
the traveling wave approaches a ‘flood wave’ with dry downstream region. We consider the limiting
case in the proceeding section.
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B. Flood waves (ℎ∞ = 0)

If 𝛽(ℎ,𝑢) = 1, flood waves suffer from a loss of strict hyperbolicity at the front, where (recalling
that 𝑢0 = 𝑐0 = 1 in this case) their characteristics are identically zero. As argued in the previous
subsection, this renders inappropriate the standard WKB ansatz in Eq. (45a). Here, we provide a
separate analysis for this typical special case, in which the underlying traveling wave equation (9)
simplifies considerably to

ℎ′0 = F2
[
1− 𝜏(ℎ0)

ℎ0

]
. (53)

In the case of Chézy drag, a conceptually similar (though inequivalent) equation was solved
analytically by Bresse, who sought stationary steady solutions to Eqs. (1a) and (1b) (i.e. 𝑐0 = 0
and 𝑢0 = 1/ℎ0) [44]. Bresse’s solution in terms of elementary functions is commonly available in
hydraulics textbooks (see e.g. Refs. [41, 42]). For traveling flood waves (𝑐0 = 1), the profile differs.
Specifically, we may integrate Eq. (53) with 𝜏(ℎ0) = 𝑢2

0 = 1, to obtain ℎ0 (b) =𝑊 [−exp(F2b−1)] +1,
where 𝑊 is Lambert’s function. Equation (53) has also been studied in the context of granular
avalanches [22, 23] and likewise admits an analytical solution [23].

A dry downstream region places some extra constraints on the linear stability formulation posed
in Sec. III. The traveling wave velocity must equal the flow velocity at the front, so 𝑐1 = 𝑢1 (0−).
Furthermore, there can be no disturbance for b > 0, so ℎ1 (0+) = 𝑢1 (0+) = 0. Finally, in order for the
perturbation to be considered small in the front region, ℎ1 (0−) = 0 and we must check that ℎ1 . ℎ0
as ℎ0 → 0.

Depending on the drag law, ℎ0 varies differently in the front region. We encompass these different
profiles by writing the general expansion

𝜏(ℎ0, 𝑢0) = Λ(ℎ0, 𝑢0)ℎ𝛿0 +𝑂 (ℎ𝛿+1
0 ), (54)

where Λ(ℎ0, 𝑢0) is finite and non-vanishing as ℎ0 → 0 and 𝛿 is an arbitrary exponent. For our three
main example closures, 𝛿 = −1 (viscous), 𝛿 = 0 (Chézy) and 𝛿 = 1 (granular). Substituting Eq. (54)
into Eq. (53) and simplifying yields

ℎ′0 = F2 (1−Λℎ𝛿−1
0 ) + . . . . (55)

For any 𝛿 > 1 the last term is subdominant at the front and the resulting equation leads to negative
flow depths. Therefore, we discount these cases. Otherwise, Eq. (55) may be integrated to give

ℎ0 = (−𝐴b)𝛾 + . . . when −1 � b < 0, (56)

where 𝛾 = 1/(2− 𝛿) and

𝐴 =

{
(2− 𝛿)F2 [Λ(0,1) −1] if 𝛿 = 1,
(2− 𝛿)F2Λ(0,1) if 𝛿 < 1.

(57)

On substituting Eqs. (54) and (56) into the the linear stability problem, Eq. (21), it may be deduced
that ℎ1 is at most order (−b)𝛾 at the front. The details are given in Appendix B. Therefore,
Y |ℎ1 | � ℎ0, for sufficiently small Y > 0, implying that solutions to Eq. (21) are indeed linear
perturbations in the case of flood waves.

To capture the structure of these modes at high wavenumber, we employ a slightly modified
version of Eqs. (45a,b). Since only one far-field direction is relevant for the linear flood wave
problem, we shall write 𝑘 ≡ 𝑘−. At leading order in Y = 1/𝑘 � 1, we suppose

�̂�1 (b) = 𝑅(b)ei𝜙 ( b )/Y ( �̂�0 + Y �̂�1 + . . .) + 𝑆(b)e−i𝜙 ( b )/Y ( �̂�0 + Y �̂�1 + . . .), (58a)

𝜎 = Y−1𝜎0 +𝜎1 + . . . , (58b)
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where 𝑅(b) is finite and non-vanishing and 𝑆(b) vanishes as b → −∞. The conjugate term in
Eq. (58a) is necessary in this case to correctly represent the mode towards the front region – a
point which will be clarified later. Linear independence of these terms means that the analysis to
determine �̂�0, �̂�1, . . . is identical to the presentation in Sec. IV A. However, as anticipated, evaluating
Eq. (47) and integrating gives

𝜙(b) =
∫ b

0

1√︁
ℎ0 (𝑠)

d𝑠, (59)

meaning that 𝜙 can no longer be considered 𝑂 (1) with respect to Y. Nevertheless, this integral is
guaranteed to converge, since 𝛾 ≤ 1. Therefore, we are only required to modify our asymptotic
expansion for �̂�1 (b) close to the front. Proceeding with the WKB analysis, we determine via
Eq. (52), that

𝑅′

𝑅
= −2F2 𝑓ℎℎ0 +3ℎ′0 ±2F(2𝜎1 + 𝑓𝑢)

√
ℎ0

4ℎ0
. (60)

Since the mode amplitude is constant in the far field, we write 𝑅→ 𝑅− as b→−∞, where 𝑅− is to
be determined. On integrating Eq. (60), we find

𝑅(b)ℎ0 (b)3/4 = 𝑅− exp
(
−F2

2

∫ b

−∞
𝑓ℎ ± 2𝜎1 + 𝑓𝑢

F
√
ℎ0

db́
)
, (61)

where 𝜎1, 𝑓𝑢 , 𝑓ℎ and ℎ0 are understood to be integrated with respect to the dummy slope variable
b́. The integrand in Eq. (61) vanishes in the far field in order to satisfy the boundary condition
there. (This may be separately confirmed by computing 𝜎1.) Therefore, we appeal to the near-front
expansions in Eqs. (54) and (56) and deduce that the dominant part of the integral is

exp
(
−F2

2

∫ b

−∞
𝑓ℎdb́

)
= exp

[
1
2

∫ 1

ℎ0

ℎ𝛿−1
0

ℎ0 −Λ(ℎ0,1)ℎ𝛿0

(
𝜕Λ

𝜕ℎ0
ℎ0 + (𝛿−1)Λ(ℎ0,1)

)
dℎ0

]
∼ ℎ

𝛿
2 − 1

2
0 (62)

to leading order. If 𝛿 = 1, we must require that 𝜕Λ/𝜕ℎ0 is nonzero. However, we can see from
Eq. (55) that this is necessary for a front to form in the first place. Therefore, from Eq. (61), we
deduce that 𝑅(b) ∼ ℎ (2𝛿−5)/4

0 = ℎ
−(2+𝛾)/(4𝛾)
0 at the front. Since 0 < 𝛾 ≤ 1, it diverges at least as

rapidly as ℎ−3/4
0 there. Consequently, the WKB approximation cannot attain the boundary condition

(ℎ0, 𝑢0) = (0,1) at the front and as expected, we must consider this region separately.
To examine this inner region it is convenient to write the eigenmode equations (21) as a single

second order equation for 𝑢1. We obtain

ℎ0𝑢
′′
1 + (2ℎ′0 +F2 𝑓ℎℎ0)𝑢′1 −F2𝜎(𝜎 + 𝑓𝑢)𝑢1 = 0. (63)

By evaluating (59) near the front we note that 𝜙 ∼ Y when b ∼ Y2/(2−𝛾) . Consequently we set
[ = −b/Y2/(2−𝛾) in order to capture this inner scale. We may write the spatial derivatives, ℎ0, ℎ′0, 𝑓ℎ
and 𝑓𝑢 in terms of [, once again making use of our expansions in Eqs. (54) and (56). On substituting
these into Eq. (63) and making use of our expansion for 𝜎 in Eq. (58b) [note that 𝜎2

0 = −1/F2 may
be determined from Eqs. (46) and (47)], the leading part of the resulting equation is found to be
𝑂 (Y−2). It reads

d2𝑢1

d[2 + 1+𝛾
[

d𝑢1
d[

+ 1
(𝐴[)𝛾 𝑢1 = 0. (64)

The solution that passes through 𝑢1 (0) = 1 is given by

𝑢1 ([) = Γ

(
2

2−𝛾

)
𝑌 𝛾/(𝛾−2) 𝐽𝛾/(2−𝛾) (2𝑌 ) , (65)
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where 𝑌 = [(2−𝛾)−1 (𝐴[)−𝛾/2, Γ is the gamma function and 𝐽𝑛 denotes the Bessel function of the
first kind of order 𝑛. In the far field [� 1, we find

𝑢1 ([) ∼ 1
𝜋1/2Γ

(
2

2−𝛾

)
𝑌 (𝛾+2)/(2𝛾−4) cos

(
2𝑌 − (𝛾 +2)𝜋

4(2−𝛾)

)
. (66)

We note that 𝑌 (𝛾+2)/(2𝛾−4) ∼ (−b)−(2+𝛾)/4 ∼ ℎ−(2+𝛾)/(4𝛾)0 , in agreement with the near-front scaling
of the outer WKB approximation. Moreover, by substituting ℎ0 = (−𝐴b)𝛾 into Eq. (59) and
integrating, it is straightforward to show that 2𝑌 = 𝜙/Y. Therefore, as [ becomes large, the decaying
oscillations of Eq. (65), match the leading-order behavior of the outer solution constructed in
Eq. (58a), as b becomes small. It was for the purpose of matching the cosine function in Eq. (66)
that we included the conjugate term in the WKB ansatz. However, since 𝑆(b) → 0 as b →−∞,
we concentrate on determining 𝑅− = limb→−∞ 𝑅(b). By appealing to Eqs. (61), (62) and (66), we
establish that

|𝑅− | = [(2−𝛾)Y𝐴] (𝛾+2)/(4−2𝛾)

2𝜋1/2 Γ

(
2

2−𝛾

)
exp(I), (67)

where

I =

∫ 1

0

F 𝑓ℎℎ0 ± (2𝜎1 + 𝑓𝑢)ℎ1/2
0

2F(𝜏0 − ℎ0) + (1−𝛾)
2𝛾ℎ0

dℎ0. (68)

Equations (67) and (68) complete the matched expansion for marginal flood wave stability modes
at high wavenumber 𝑘 = 1/Y. Note that the two expressions for the integral in Eq. (68) correspond
to two independent branches of modes with asymptotic growth rate 𝜎1 = − limb→−∞ ( 𝑓𝑢 ±𝐹 𝑓ℎ)/2,
as determined by the formulae in Eqs. (33a,b) (or the analysis of Sec. IV A). The amplitude |𝑅− |
dictates the asymptotic decay of 𝑢1 (b) in the far field, or equivalently, the growth of the perturbation
at the front. Noting that 1/|𝑅− | ∼ 𝑘 (𝛾+2)/(4−2𝛾) for 𝑘 � 1, we see that disturbances ultimately
become severely amplified from tail to front as 𝑘 →∞, irregardless of the drag formulation, since

𝑘1/2 < 𝑘 (𝛾+2)/(4−2𝛾) ≤ 𝑘3/2. (69)

In nature, this amplification is not truly unbounded, since we expect it to be ultimately damped by
physical processes omitted from the governing equations that are only relevant at small length scales
(e.g. turbulent diffusion). Nevertheless, this divergent behavior dictates the spatial properties of
modes at finite, but large wavenumber. For our example drag formulations, 1/|𝑅− | ∼ 𝑘7/10 (viscous),
𝑘5/6 (Chézy) and 𝑘3/2 (granular). We verify the asymptotic formula of Eq. (67) numerically in
Fig. 9, by plotting the far-field amplitude of 𝑢1 (b) for the dominant (higher 𝜎1) branch of modes,
over a range of 𝑘 . This agrees well with |𝑅− | as 𝑘 → ∞. The predicted scaling emerges early
on, particularly in the granular case, where the modes have decayed to one tenth of their original
amplitude by 𝑘 ≈ 5.

V. DISCUSSION

We have presented detailed analysis of the linear stability properties of monoclinal traveling waves
in shallow flows of arbitrary rheology. By considering a setting that encompasses a broad family of
flow models, the essential differences separating the properties of various flows are elucidated. In
table I we summarize some of our conclusions for different drag parametrisations, in the case where
the momentum shape factor 𝛽(ℎ,𝑢) = 1. In addition to the example drag laws used throughout the
text, we include the properties of the general function 𝜏(ℎ,𝑢) = 𝑢𝑎ℎ𝑏, where 𝑎 and 𝑏 are arbitrary
constants. This parametrisation encompasses Chézy, viscous, power law drag and many other
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FIG. 9. Far-field amplitudes of (the dominant branch of) marginal eigenmodes, for F = 2.5 flood waves with
(a) Chézy (blue), (b) granular (orange) and (c) viscous (pink) drag. For each drag law, we compute 𝑢1 from
Eq. (21) and evaluate its amplitude at b = 𝑋 = −40, which (at the given F) is sufficiently far upslope that
the underlying traveling wave approximates a uniform layer. Also plotted in each case is a section of the
corresponding asymptotic amplitude |𝑅− | (dashed gray), given by Eq. (67), verifying convergence as 𝑘 →∞.

0 < ℎ∞ < 1 ℎ∞ = 0
Drag FTr 𝑢∞ (ℎ∞) Shock before instability? Upstream unstable first? Front scaling 1/|𝑅− |
𝑢2 2 ℎ

1/2
∞ Yes No (𝑢∞/√ℎ∞ = 1)† (−b)1/2 ∼ 𝑘5/6

`(ℎ3/2/𝑢)ℎ 2/3 ℎ
3/2
∞ Yes Yes (−b) ∼ 𝑘3/2

(𝑢/ℎ)𝑛 𝑛/(𝑛+1) ℎ
1+1/𝑛
∞ Iff 𝑛 > 1 Yes (𝑛 > 0) (−b)1/(2+𝑛) ∼ 𝑘 5+2𝑛

6+4𝑛

𝑢𝑎ℎ𝑏 |𝑎 |/|1− 𝑏 | ℎ (1−𝑏)/𝑎∞ Iff 2𝑎 + 𝑏 > 1 Iff 𝑎/2+ 𝑏 > 1 (−b)1/(2−𝑏) ∼ 𝑘 5−2𝑏
6−4𝑏

TABLE I. Summary of the stability properties for different drag laws, in the case 𝛽(ℎ,𝑢) = 1. (†As indicated,
in this case the upstream and downstream Froude numbers are identical. However, in Sec. III B, we showed
that the downstream turns unstable first if this drag formulation is generalized to include the effect confining
the flow within a finite rectangular channel.)

possible drag laws. Its listed properties may be readily determined using the results of Secs. III
and IV.

As shown in Sec. III, the linear stability threshold for traveling waves is ultimately given by
Trowbridge’s criterion (2) applied to the upstream and downstream regions, plus a correction if
𝛽 deviates from unity, given by Eqs. (38) and (39). The corresponding critical F (labeled FTr) is
provided in the second column of table I. The third column gives the dependence of the downstream
velocity on the flow height. It highlights the simpler linear stability relationship, derived in Eq. (37),
where FTr is given by the inverse of the exponent in the formula 𝑢∞ (ℎ∞) = ℎ𝑚∞ and more generally,
by the derivative of the steady velocity of a uniform layer with respect to its depth, evaluated in
the appropriate far-field limit. For the general drag 𝜏(ℎ,𝑢) = 𝑢𝑎ℎ𝑏, the exponents 𝑎 ≠ 0, 𝑏 = 1
are interesting to consider, since FTr → ∞ as 𝑏 → 1. A physical interpretation of this situation
comes from the paper of Trowbridge, who showed how to reformulate inequality (2) as an energy
stability criterion [14]. When specialized to the present case, that analysis shows that the rate of
total energy input to an infinitesimal disturbance from gravitational forcing is always exceeded
by the corresponding rate of energy loss due to work done by bottom stresses and consequently,
linear perturbations can only decay (regardless of F). Such a 𝜏 arises in the limit of the drag from
a turbulent rectangular channel considered in Sec. III B, as the channel width tends to zero (𝑎 = 2,
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𝑏 = 1). This limit has a practical application in modeling the flow of turbulent gravity currents
through densely packed obstacles such as vegetated areas [12, 45], but the relevant shallow water
linear stability problem has not previously received attention.

Our analysis of linear stability thresholds may be adapted straightforwardly for the case of
purely downslope perturbations of two-dimensional traveling waves which are uniform along the
perpendicular cross-slope direction. However, recent work proves that Trowbridge’s criterion is
violated for some rheologies when non-slope-aligned disturbances are accounted for [17]. Therefore,
a fully two-dimensional extension of our results would require some care. Furthermore, as discussed
in Sec. III, our analysis only strictly covers the stability with respect to modes within the continuously
parametrised essential spectrum of the linear problem. Consequently, it may be the case for some
drag formulations, that unstable isolated modes exist at lower F than predicted here. This is
important to consider. For example, in thin-film flows over an inclined plane controlled by viscous
and capillary processes, discrete modes can drive instability of the contact line [46]. While numerical
techniques exist that could rule out this possibility for specific instances of our setting [37], obtaining
general analytical results presents a far greater challenge. Nevertheless, recent studies rule out
destabilization by discrete modes for Chézy solutions, ultimately leading to a proof that traveling
waves with F < 2 are nonlinearly stable [27, 28]. Therefore, there is reason to hope that these efforts
could be extended for other drag laws, or even a general drag term.

Also of interest are results concerning the properties of traveling wave solutions. In Sec. II, we
derived the regime of existence for continuous waves and their degeneration into discontinuous
states. In the cases of Chézy and granular drag, increasing F for continuous states always leads to
formation of a shock, prior to development of linear instability. Later, in Sec. III B, a condition for
the existence of unstable continuous solutions was obtained and is applied in table I (column four).

Traveling waves turn linearly unstable as their eigenmodes cross into the positive half-plane
(see Fig. 6). In Sec. III, various spectra for granular waves were computed numerically and it was
observed that the onset of instability was dictated by the destabilization of modes that are only
nonzero upstream (b < 0). The far-downstream region remains stable until F reaches a higher value.
The respective vulnerability of the far-field regimes depends on their local Froude numbers and is
thus easily determined (see also Sec. III B). Analogous criteria for other drag laws are summarized
in column five of table I.

We plotted many example eigenmodes throughout the paper. They typically possess the intriguing
property that their spatial frequency varies between limiting values up- and downstream. The
dominantly growing modes within unstable regimes are spatially undamped in at least one of the
far field directions and have asymptotically high wavenumber. Consequently, we have analyzed
in detail this special class of modes. In Sec. IV, we derived equations for the variation of their
amplitude and frequency in space. Both of these quantities are often strongly amplified near the
front of the wave. Most pressingly, the mode amplitude diverges for waves at the boundary between
continuous and discontinuous states, and for waves with zero depth downstream. The latter case
seems particularly important, due to the physical significance of flood wave states and the fact that
divergence occurs independently of F. In Sec. IV B, we showed that the rate of this divergence as
the wavenumber increases, depends on the spatial variation of the underlying traveling wave close to
the front. Granular waves, whose depth varies linearly with b at the front, diverge the most severely.
(Drag formulations that would lead to stronger divergence are unable to form steady flood wave
solutions.) Results for other example drag laws are summarized are the final two columns of table I,
and we note that the complete asymptotic dependence for an arbitrary drag law is developed in
Sec. IV B. An interesting open question is: to what extent does the extreme amplification of linear
modes affect the nonlinear development of instabilities? While it seems likely for any reasonable
drag formulation that roll waves emerge within uniform depth regions, there is also the potential
for the front to become disrupted and even for the wave to split in two. Our analysis suggests that
granular waves might be particularly vulnerable to disruption.

Though our findings have typically been illustrated using examples with 𝛽(ℎ,𝑢) = 1, we have
largely been able to present results for the case of a general momentum shape factor closure.
Increasing 𝛽 to a constant value above unity acts to stabilize traveling waves and can have a
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significant effect on the linear stability threshold. This has been noted before in the cases of
Chézy [16] and power law drag [10]. For example, raising 𝛽 to 1.05 in a turbulent (Chézy) fluid
increases F𝑐 from 2 to roughly 2.6. This suggests that when high fidelity calculations or simulations
are called for, a suitable model for 𝛽 should be employed. The effects that variation of 𝛽 with ℎ and
𝑢 have are nontrivial to tease apart with generality. Nevertheless, we included the derivatives 𝜕𝛽/𝜕ℎ
and 𝜕𝛽/𝜕𝑢 in our analysis, since even simple formulae for 𝛽 might introduce this dependency,
e.g. if shear is modeled as a function of flow Reynolds number. When including these terms, we
find that it is important to avoid situations where the system could lose hyperbolicity (leading to
an ill-posed initial value problem), which occurs if Eq. (34) is satisfied. Otherwise, we expect
the effects of 𝛽 to be essentially quantitative (though nevertheless important). Varying 𝛽 does not
appear to greatly affect the character of the wave profiles, except in cases wherein (fixing all other
parameters) it causes solutions to cross a regime boundary, e.g. by converting a continuous state into
a shock (see Fig. 4). Moreover, we note that shear in the flow profile does not affect the fact of mode
amplification near the front regions of certain waves, despite its necessary influence on the details of
the linear problem. The precise effects of momentum shape factor closures in individual models and
on the linear and nonlinear development of instabilities offer interesting avenues for future research.
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Appendix A: Upturned shocks are always unstable

In this Appendix, we show that Fup (ℎ∞) > F𝑐 (ℎ∞) = ℎ1/2−𝑚
∞ /𝑚 for all 0 < ℎ∞ < 1 and 𝑚 < 1/2,

given the assumptions 𝛽(ℎ,𝑢) = 1, 𝑢∞ = ℎ𝑚∞ and 𝑚 > 0. This completes the argument of Sec. III B
that upturned shock solutions are unstable in this case, irregardless of the drag law. By consulting
Eq. (44) and rearranging Fup (ℎ∞) > F𝑐 (ℎ∞), we note that it is equivalent to confirm that

𝐺 (ℎ∞;𝑚) = (1− ℎ∞) (1+ ℎ∞)1/2
√

2
− ℎ

1−𝑚∞ − ℎ∞
𝑚

> 0. (A1)

If 𝑚 = 1/2, then

𝐺 (ℎ∞;𝑚) = (1− ℎ1/2
∞ )

[
(1+ ℎ1/2

∞ ) (1+ ℎ∞)1/2 −2
√

2ℎ1/2
∞

]
(A2)

and it is straightforwardly shown, e.g. via analysis of the term within the square brackets, that this
function is strictly positive for 0 < ℎ∞ < 1. Furthermore, we compute the derivative

𝜕𝐺

𝜕𝑚
=
ℎ∞
𝑚2

[
1
ℎ𝑚∞

(1+𝑚 logℎ∞) −1
]
, (A3)

which has zeros only at ℎ∞ = 0,1 and is strictly negative for 0 < ℎ∞ < 1. Therefore, decreasing 𝑚
from 1/2, increases 𝐺 (ℎ∞;𝑚) for any such ℎ∞, implying that inequality (A1) holds for any 𝑚 < 1/2,
as required.

Appendix B: Flood wave near-front perturbations

In the special case of flood waves (ℎ∞ = 0) and 𝛽 = 1, studied in Sec. IV B, it is necessary to
check that �̂�1 can legitimately be considered as a linear perturbation at the front, where ℎ0 → 0.
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Since 𝑢0 = 𝑐0 = 1 for flood waves, the matrices 𝐽 and 𝑁 [defined in Eqs. (6) and (23)] are greatly
simplified. We compute

𝐽 =

(
0 ℎ0

F−2 0

)
, and 𝑁 =

(
0 ℎ′0
𝑓ℎ 𝑓𝑢

)
. (B1)

By making use of the near-front of expansions in Eqs. (54) and (56), we may then write down the
linear problem in the front region

−F−2ℎ′1 =

[
(𝛿−1)Λ(𝒒0) + (−𝐴b)𝛾 𝜕Λ

𝜕ℎ

����
𝒒=𝒒0

]
(−𝐴b)−1ℎ1 +

[
𝜎 + (−𝐴b)𝛾−1 𝜕Λ

𝜕𝑢

����
𝒒=𝒒0

]
𝑢1 + . . . ,

(B2a)

−𝑢′1 = 𝜎(−𝐴b)−𝛾ℎ1 +𝛾𝐴(−𝐴b)−1 (𝑐1 −𝑢1) + . . . . (B2b)

Then we use the fact that 0 < 𝛾 ≤ 1 (using 𝛿 ≤ 1 and the definition of 𝛾 from Sec. IV B) to deduce
that the 𝜕Λ/𝜕ℎ term of Eq. (B2a) is subdominant and may be neglected.

A suitable expansion for the perturbations that satisfies the front conditions ℎ1 (0−) = 0, 𝑢1 (0−) =
𝑐1, is

ℎ1 = 𝐾1 (−b)𝛼1 + . . . , 𝑢1 = 𝑐1 +𝐾2 (−b)𝛼2 + . . . , (B3)

where 𝛼1, 𝛼2, 𝐾1 and 𝐾2 are constants to be determined. On substituting these into Eqs. (B2a,b)
we immediately see that, for the remaining terms to balance at leading order, 𝛼1 = 𝛾 and 𝛼2 = 1.
Therefore, since ℎ0 = (−𝐴b)𝛾 + . . . at the front, this means that ℎ1 . ℎ0 in the front region, as
required.
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