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Abstract—Wireless sensor networks are often distributed,
diverse, and large making their monitoring hard. One way
to tackle it is to focus on part of the system by creating
logical sub-views which can be seen as proxies of the overall
system operations. In this manuscript, logical sub-views consist
of traffic aggregators and their topology which are monitored
for anomaly. The aggregators are selected based on diversity
and importance in the system and they are modelled as graphs
to capture aggregation topology and data distributions. The
aggregators’ selection criteria, the method for comparison of
partially overlapping sub-views, normal aggregation profiles
acquisition, and measures of anomaly are proposed. A simulated
wireless sensor network is used to acquire data at the edge and
apply the method to demonstrate that focusing on system sub-
views and comparing aggregation profiles facilitates anomaly
detection also caused elsewhere in the system and the impact
the anomaly has on aggregators.

Index Terms—Traffic aggregation, Anomaly detection, Ma-
chine learning, Sensor networks, Graph, Cyber-security.

I. INTRODUCTION

Wireless sensor networks (WSN) are vulnerable to attacks
due to limited resources available for protection and deploy-
ment which by nature is ubiquitous and diverse. Ubiquity
makes monitoring difficult. A “black box” approach can
be used to analyze what is observable externally (e.g. at
the cloud edge) to infer about something unusual occurring
in the system. Data (also encrypted) and network topology
are observable and they may indicate attacks, operational
problems or misconfiguration. From an operational point of
view, monitoring sub-views containing critical infrastructure
such as data aggregators helps in deciding on upgrades,
redesign or detect system misconfiguration and malicious
activity. By capturing, and measuring normal aggregation
topology and data profiles, it enables the system to guard
the normal state and flag up any deviations. Aggregation
topology and data profiles are modelled as graphs (sub-views)
which are subject to change causing some graphs to have non
overlapping sets of vertices making comparison difficult.

In our previous work [1], anomaly detection and change
measurement method was introduced for the entire system
modelled as graphs with the the same set of vertices repre-
senting sensors, and scalar similarity measures were defined.
In this paper the method was extended to monitor a fraction
of the system (sub-views), and perform anomaly detection
in the sub-views which partly overlap (graphs with partly
overlapping sets of vertices). A similarity vector as opposed
to a scalar similarity value in [1] is proposed, and a hybrid
classifier based on decision trees for topology matching and
clustering algorithm based on local density estimation for
anomaly measurement are introduced. A method allowing
acquiring normal aggregation data and topology profiles

(ground truth) with the metrics measuring deviation from
normal is presented. The method allows scaling the sub-views
to reflect computational resources available, and measures
aggregation traffic which address scalability of the method
in [1]. It was showed that sub-views monitoring can be used
to detect system change triggered elsewhere in the system
and the impact the anomaly has on aggregators.

II. RELATED WORK

Anomaly detection in wireless sensor networks may use
supervised or unsupervised machine learning algorithms. The
supervised machine learning methods are based on variants of
support vector machine, tree based classifiers, or clustering
algorithms [2], [3]. They require labelled training and test
data for normal and abnormal scenarios, the latter always
difficult to acquire to be robust for future threats. This is
partly addressed in unsupervised methods by making implicit
assumption about when data is normal e.g. based on density,
distance, variance [4], [5] which still might be inadequate
for the threats which fit into the assumed normal condi-
tion. Neural networks and deep learning were also used for
anomaly detection [6], however their computational resource
requirements and lack of generality (e.g. feature selections to
address particular anomaly or attacks) makes them difficult
to apply in the constrained networks with unknown threat
models. Fault detection methods in [7] have many specialised
techniques but they lack generality.

In this contribution a technique for traffic aggregation pro-
files comparison is proposed to facilitate passive and generic
anomaly detection with change measurement. Aggregation
topology pattern is reflected by a graph structure, whereas
aggregation data pattern is expressed by graph structure
and weights assigned to edges. The comparison metrics
are calculated and used as the inputs for machine learning
algorithms which by design require only normal profiles
for training. This feature in particular enables detection of
unknown threats, misconfiguration and operational problems
as long as they have impact on the normal aggregation
profiles. The method can be deployed at cloud edge to tackle
the challenge of geographical distribution of devices.

III. SYSTEM VIEW (WSN)

Topologies representing data path connectivity are formed
in WSNs based on 6LoWPAN/IPv6 which are deployed in a
multi-hop mesh scenario. In this setup some routing protocol
needs to be used to form paths for data collection from
sensors to the edge, as well as for traffic in the reverse
direction. The routing protocol used in this work is RPL
(Routing Protocol for Low-Power and Lossy Networks). RPL



perceives the network as a Destination Oriented Directed
Acyclic Graph (DODAG). DODAG is not always a tree, but
in practice the existing RPL implementations often result in
the routing topology being a tree. This therefore means that
traffic flowing up the tree towards the root causes a funneling
effect. The method presented in this paper can be applied
to any protocol layer (e.g. a bespoke network stack), and
to measure traffic volumes at a different layer in the stack.
However, in this paper it is assumed that sensor data traffic is
MQTT over TCP and MQTT/TCP protocols are used to push
data to the cloud. In this context, MQTT traffic volumes are
measured between sensors in the traffic aggregation sample.

Sensors also relay data to/from other sensors to facilitate
the distribution of WSNs. This makes the system vulnerable
to attacks and misconfiguration with the impact exacerbated
as the impaired devices get closer to the edge router due to
the funneling effect. System sub-views are built by invoking
the aggregators selection process on traffic flows aggregate
graphs described in section III-A. Edges represent data flows;
vertices represent aggregators. Vertices are annotated with
labels reflecting unique IPv6 addresses allocated to sensors.
Edge weights contain normalized data volumes traversing
between nodes, self-looped at vertex with no traffic. Data
volumes are measured as the uplink TCP payload sizes used
to carry MQTT traffic. Since the method detects deviation
at egress flows from vertices and the topology is a tree, the
direction of flows is reversed. Other schemes for sub-views
creation are also possible, e.g. to include bidirectional flows,
or other protocol data.

To build a traffic flows aggregate graph, the current
topology for data transfer is acquired at a border router.
The border router keeps track of disseminated and received
routing control information by constructing a system-wide
routing table. To trace the paths taken by data, the acquired
current topology and the data captured at the border router
are matched. For the matching process, packet source and
destination IP addresses are looked up in the routing table.
Then data paths (flows) are aggregated over time in the traffic
aggregation graph.

The method has O(n2) space and time complexity. How-
ever, a sub-view graph with k-vertices, is a subset of the WSN
modelled as an l-vertex graph. As a result, in comparison
with [1], space and time complexity is reduced by the factor
(k/l)2 with the size of a sub-view graph adjustable by the
graph pruning parameters in Alg. 1.

A. Aggregators definition and selection process

Aggregators are defined as nodes important for data trans-
fer. The importance of nodes is measured by diversity of
traffic they carry and how much they contribute to the overall
system. The right selection of aggregators forming sub-views
is key in order to make them good proxies of the system.

The selection process (Alg. 1) performs graph pruning. The
algorithm has the following parameters:

• min flow count for an edge to survive (PAR1)
• min count of surviving edges for a vertex survival

(PAR2)
• max number of surviving vertices selected (PAR3)
• data/traffic of interest (PAR4)

In this contribution, PAR4 is configured to be MQTT traffic,
and flows are unique MQTT traffic endpoints.

Algorithm 1: Aggregators’ selection
Inputs: Routing topologies, Traffic, PAR[1-4]
Outputs: Sub-view (graph)
SET traffic of interest (PAR4);
Build graph containing aggregated traffic flows;
Label edges with number of different flow count;
Label vertices with traffic volumes;
Rank vertices with highest traffic volume;
Rank edges with highest flow count;
Prune edges with no min flow count (PAR1);
Prune vertices with no min surviving edges (PAR2);
Select top surviving vertices up to PAR3;
Build a graph which contains surviving vertices,
edges;

B. Aggregators pattern change

Aggregation profile change is measured by similarity vec-
tor composed from metrics acquired from the graphs. As
sub-views are pruned graphs, they naturally focus on part
of the system. The pruning helps scalability as the pruning
parameters impact graph size. As sub-views contain traffic
aggregates, they are impacted to a lesser extent by individual
sensors’ behaviour. The pruning algorithm allows customi-
sation e.g. to take geographical location into account, or
distance from the cloud edge (not done in this contribution).

C. Partly overlapping sub-views

Sub-views may partly overlap, which is modelled by
graphs with partly overlapping vertices. For comparison, the
graphs are matched for missing vertices. A missing vertex
is modelled as a detached node with a self looped edge
discussed in section IV-A.

IV. MATHEMATICAL SUMMARY

The weighted, annotated (labelled), directed graphs can be
described by a weighted adjacency matrix. The weights as
distribution of data volumes represent conditional probability
of transition to vertex n, given vertex k and traffic type t.

wkn = P (vn|vk,t), for all k
∑
n

wkn = 1 (1)

The systems represented by graphs A (baseline) and B
(assessed) each described by the corresponding adjacency
matrix A and B are compared. The adjacency matrices
are constructed by applying the same ordering of labelled
vertices. As matrix multiplication can be seen as rotations
and re-scaling of each input vector, graphs change can be
reflected in matrix VB by applying transformation matrix T
to matrix (A-B). The transformation matrix T is found by
calculating the Moore-Penrose pseudo inverse of A, A+. T
modifies matrices A and B to make VA orthonormal with
1s on the diagonal so that matrix VB reflects the graph B
(assessed) in relation to graph A (baseline). The matrices VA

and VB are approximated in the least square sense by using
Moore-Penrose pseudo inverse. ∥·∥ denotes Frobenius norm.
Then the measures (metrics) d1, d2, d3 are calculated.

d1n = ∥aTn − bTn∥
aTn, bTn − nth row vector of AT, and BT

(2)



Measure d1n produces values bounded by the interval [0..u1n]
with 0 indicating perfect alignment (similarity). u1n is the
upper bound in (3) and its value depends on graph A.

u1n = max({elem|elem = ∥−−→aTn −−→vkT∥, for all k})
−→vk − zero vector with 1 at component k
−−→aTn − nth row vector of AT

(3)

d2n is defined in (4) as cosine similarity measure, where aTn,
bTn are nth row vectors of matrices AT, BT respectively.

d2n(
−−→aTn,

−→
bTn) =

−−→aTn ·
−→
bTn

∥−−→aTn∥ · ∥
−→
bTn∥

(4)

d2n is bounded by the interval [u2n..1] with 1 indicating
perfect alignment (similarity). u2n is the lower bound defined
in (5) and its value depends on graph A.

u2n = min({elem|elem =
−−→aTn · −→vkT

∥−−→aTn∥ · ∥−→vkT∥
, for all k})

−→vk − zero vector with 1 at component k
(5)

For data pattern also metric d3n is defined in (6) bounded by
the interval [0..u3n]

d3n = arccos (d2n), u3n = arccos (u2n) (6)

Given the base graph, metrics d1n, and d3n have the lower
bound equal to zero if the base and assessed vertices are the
same and change reflecting anomaly increase.

Graph scope similarity information is obtained by aggre-
gating vertex level information in the graph similarity vector
−→s defined in (7) which is in contract to [1] which uses a
scalar aggregated similarity measure.

−→s = [d11, d31, ..., d1n, d3n] (7)

Given the base graph, a L2 norm of −→s have the lower bound
equal to zero if the base and assessed graphs are the same
and increase with the anomaly increase with the upper bound
Us defined in (8).

−→us = [u11, u31, ..., u1n, u3n], Us = ∥−→us∥ (8)

The dimension and sparsity of the vector −→s is controlled
by the graph pruning parameters and in particular PAR3 and
PAR1 defined in Alg. 1 to avoid the phenomenon called the
curse of dimensionality.

A. Partly overlapping sub-views

Applying transformation T can be seen as moving input
data to the latent space, where the normal graph A is
transformed to be represented by the orthonormal vectors (or
to the least square approximation). In [1] , and in section IV
it is assumed that graphs have the same labelled vertices.
Graphs partially overlapping include scenarios when a set of
vertices appear (case C1) or/and disappear (case C2) in the
assessed and ground truth graphs as compared with the base
graph (graph A).

To facilitate graph comparison, the graphs are matched for
the missing vertices by the following operations:

• self-looped node is added to the base graph A (C1)
• node is inserted and detached (self-looped) in the as-

sessed graphs (C2)

In C1, a new orthonormal vector is added to the latent space,
whereas in C2 the vector is moved to the edge of the bounded
hyper-plane representing the latent space.

Adding new orthonormal vector(s) to the latent space does
not require recalculation of matrix T as an extension to matrix
T suffice. This is advantageous as T can be calculated offline
and Text requires simple matrix manipulation. The pseudo
inverse formula for the block 2x2 matrices is presented in
(9). T is already known, and D, D+ are identity matrices of
the size dependent on the number of new vectors added to
the latent space.

A+ = T

Text =

[
A 0
0 D

]+
=

[
T 0
0 D+

] (9)

This arrangement impacts metrics calculation. Despite order-
ing and enumeration of vertices, metrics d1n, d2n, d3n are
not impacted by order and enumeration of vector components
from the assessed adjacency matrix extending matrix T (as
matrix D+ is an identity matrix, the metrics are invariant to
permutations and different enumerations of the same vector
components). This is addressed by the use and construction of
a graph topology hash and similarity vector −→s in section V.

V. NORMAL AGGREGATION PROFILES ACQUISITION

The baseline aggregation graph is created by normal traffic
flows aggregation, and running the aggregators’ selection
process (Alg.1). Aggregation profile samples (graphs) are
acquired based on the criteria presented in section V-A,
and compared with the baseline graph to create normal
aggregation profiles. The set of graph pruning parameters for
Alg.1 can be less conservative for the baseline to maximize
the information contained i.e. retaining more aggregation
nodes (PAR3), and surviving edges (PAR2).

Aggregation topology samples are modelled as graphs
for which metrics (d1n, d2n) are calculated, and aggre-
gated to produce a graph level topology measure. Vertex
n hash value HV n is calculated using SHA256 algorithm,
HV n=SHA256(d1n, d2n), and aggregated at the graph level
in HG=SHA256(HV 1, ...,HV n). The ordering of vertices is
kept in HG also for vertices extending graph A inserting
HV k=SHA256(0, 1) for vertices absent in a graph sample
but enumerated lower than vertices extending graph A.

Aggregation data pattern samples are also modelled as
graphs with edge weights representing normalised traf-
fic volumes. Similarity vector −→s is created using metrics
(d1n, d3n). The vertex ordering is kept, inserting vector
components (0,0) for vertices absent in a graph sample but
enumerated lower than vertices extending graph A.

To calculate metrics and similarity vectors, weighted ad-
jacency matrices A1, A2 are built for the baseline graph
following the same vertex ordering:

• for topology change, pseudo random values are gener-
ated (re-initialised for each vertex with the same seed),
normalised to satisfy (1), and used as edge weights in
A1

• for aggregation data pattern change, the volumes of
egress data are normalized in edge weights in A2

Similarly for aggregation sample graphs, matrices B1, B2 are
built following the same vertex ordering for topology and data



profiles and compared in similarity vectors. The acquisition
of normal profiles is described in Alg. 2.

Algorithm 2: Normal aggregation profile acquisition
Inputs: PAR[1-7], data acquisition timeout
Outputs: Set of normal aggregation profiles
SET data acquisition timeout value;
SET aggregators selection (pruning) parameters;
SET sample acquisition parameters;
while Not Timeout(data acquisition) do

Record traffic/topology for the sampling interval;
Aggregate traffic flows Run aggregators selection

algorithm;
if aggregation profile sample criteria met then

Calculate,save matrices B1, B2;
Start new aggregation profile acquisition;

end
end
Aggregate recorded traffic flows (baseline);
Run aggregators selection algorithm for the baseline;
Calculate matrices A1, A2 and use them as baseline;
Calculate, save US(gtruth,baseline) as in (8);
Calculate, save HG,−→s , for aggregation profile
samples;

Calculate US(gtruth,top) for each new aggregation
topology as in section VI-A;

Calculate centroid locations for each topology
−−−−−−−−→sc(gtruth,top) as in section V-A;

Use HG, −−−−−−−−→sc(gtruth,top),
−→s , US(gtruth,top) as normal

profile;

A. Ground truth data acquisition

In order to capture a valid aggregation profile, an aggre-
gation profile sample (graph) is built based on traffic flows
with the requirements imposed on a profile sample. They are
defined by the parameters:

• min samples a topology remains unchanged (PAR5)
• relative adjacency matrix change threshold (PAR6)
• min samples the adjacency matrix change remains below

threshold (PAR7)
As part of the ground truth acquisition, centroid centers are
calculated for each aggregation topology, and used for the
measurements of data pattern change. For centroid centers
calculation, the mean shift clustering algorithm is used. There
could be more than one centroid per aggregators’ topology.
Ground truth acquisition requires:

• metrics (d1n, d2n) for hash HG

• metrics (d1n, d3n) for similarity vector −→s
• centroid locations −−−−−−−−→sc(gtruth,top)
• max bound US(gtruth,top) for each topology

The criteria to stop profiles acquisition is based on low new
topology discovery rate and low centroids change per batch.

VI. SYSTEM SUPERVISION AND ANOMALY DETECTION

System supervision is similar to normal aggregation pro-
files acquisition. Each assessed aggregation profile sample is
compared with the baseline aggregation sample as presented
in Alg. 3. The resulting topology hash and similarity vector
are compared with the ground truth for anomaly detection
and change measurement.

Algorithm 3: Assessed aggregation profile acquisition
Inputs: PAR[1-7], timeout
Outputs: topology hash HG, similarity vector −→s
SET timeout value;
SET aggregators selection (pruning) parameters;
SET sample acquisition parameters;
repeat

Record traffic/topology for the sampling interval;
Aggregate traffic flows;
Run aggregators selection algorithm;
if aggregation profile sample criteria met then

Calculate matrices B1, B2;
end

until Aggregation profile sample acquired or Timeout;
Calculate, HG,−→s , for an aggregation profile sample;

Fig. 1. Tree based classifier

For anomaly detection, two classifiers are used. The first
classifier based on decision tree was proposed in [1] but
in this paper metrics defined for the similarity vectors are
used as the classifier inputs. The second hybrid classifier
is an enhancement of the first classifier which is based on
decision tree and clustering algorithm using local density
estimation. The classifiers are trained with positive (normal)
samples for anomaly detection. Negative samples are implicit
as the complement of normal, allowing detection of unknown
threats. Both classifiers allow updating the ground truth
without the need for re-training.

A tree based classifier requires for training only topology
hash values HG) and aggregation data patterns ranges −→s +/-
smargin. The equal split strategy assumes comparable number
of topology hashes in each bag with the optimal number
of bags m = ⌈

√
2n⌉ where n is the number of normal

topologies. The classifier structure is presented in Fig. 1
with the truth table in Table I. The proposed tree based
classification is fast and efficient requiring the maximum
d*(m+n/m+2) comparisons per classification task where d
is the length of the similarity vector −→s . Each aggregation
data point with the margin must have sufficient coverage for
classification which is specified by the coverage ratio C. For
a given baseline topology, the margin is defined in (10) in
relation to the upper bounds Us in (8). The margin can be
adjusted to consider long term drift.

smargin = C ·Us (10)

An enhancement in the second classifier allowing quanti-
fying profile change, requires calculation of centroids, and
the function given in Table II. The tree classifier is used for



TABLE I
TREE BASED CLASSIFIER (TRUTH TABLE)

Topology Data Classifier outputs classes
matched within range T (topology) D (data)

False N/A Undefined (T U) Undefined (D U)
True False Normal (T N) Abnormal (D A)
True True Normal (T N) Normal (D N)

TABLE II
CLASSIFIER AND OUTPUT FUNCTION

Inputs Topology Classifier Function
matched topology data Output 1 Output 2

H,s False Abnormal Undefined -1 -1
True Normal Cluster label sdc dmax

matching topology as in Fig. 1 except the data check block
returns a cluster label, which is used to calculate a sample
distance sdc to the closest controid. The maximum change
dmax is retrieved from the ground truth using topology hash
HG. The mean shift clustering algorithm is used to calculate
centroids, and to obtain cluster label/location for the closest
controid for an assessed similarity vector. sdc and dmax are
used in (11) to calculate anomaly score.

A. Relative data change estimate

For a given topology, the relative aggregation profile
change is calculated based on:

• assessed aggregation profile similarity vector −→s
• the centroid location ( −−−−−−−−→sc(gtruth,top))
• the upper bounds for a similarity vector change

(US(gtruth,topology))

US(gtruth,topology) is calculated in a similar way to (8)
except vector −→vk in (3),(5) is defined if edge k exists for vertex
n in the assessed aggregation topology. Given a topology, the
measure showing relative change is defined in (11).

srel =
∥(−→s −−−−−−−−−→sc(gtruth,top))∥

US(gtruth,top)
=

sdc
dmax

(11)

The relative data change is bounded by the interval [0..1]
increasing as divergence increase, which is useful for soft
decision boundary for classification and decision systems.

VII. SIMULATION

For demonstration, the method was applied to a wireless
sensor network simulated in Cooja [8], a simulator for IEEE
802.15.4 [9] networks distributed as part of Contiki-NG open
source operating system for constrained devices. The Routing
Protocol for Low-Power and Lossy Networks (RPL) was used
for routing in the non-storing mode, and symmetric routing
paths [10]. Aggregation topologies and data profiles were
acquired based on the data and routing tables at the edge
(border) router. Traffic volumes are measured between sen-
sors for each aggregation profile sample as TCP payload sizes
in bytes used to carry MQTT traffic, and then normalised to
satisfy (1). If aggregation topology cannot be constructed for
a number of assessed consecutive samples (set to 30), a null
aggregation profile is saved (detached and self looped nodes
in the graph). The simulation consists of 15 sensors as in [1].

Aggregation topology and data pattern were triggered to
change by sensors misconfiguration or topology attacks. The
default lifespan of routes were modified to 180 sec to allow
variability, and the simulation time was chosen to be 4

Fig. 2. Simulation

Fig. 3. Baseline aggregation graph

hours for each scenario. Parameters PAR[1-7] defined in
section VII-A are the same for all scenarios. Each simulation
is started with a different randomly generated seed. Sampling
time was chosen to be 100 sec which is adequate given
the configured routes lifespan. For visualisation of results in
section VIII, PCA dimensionality reduction was used which
captured 0.45, 0.26 variance in two components.

A. Normal operation

The simulated WSN for normal operation is presented in
Fig. 2. The nodes were labelled, and matrices A1/A2/B1/B2
were built as discussed in section V.

For normal profiles acquisition, two 4-hour long batches
were acquired to build the traffic flows aggregate graph.
Alg. 1 was run with the parameters (PAR1=2, PAR2=2,
PAR3=no limits, PAR4=MQTT) to extract the normal
baseline aggregation graph presented in Fig.3 with data
flows/volumes in edge labels and re-numbering nodes from
the simulator according to the map P:{1:0, 2:1, 14:2, 4:3, 8:4,
9:5, 5:6, 6:7} to facilitate matrix calculations. The aggregators
found are nodes 0(1), 2(14), 3(4). The baseline aggregation
graph is used to find the transformations T1, T2 for the
baseline topology and data patterns (section IV). As the
baseline aggregation graph serves as the comparison base
for normal and assessed aggregation profiles, the baseline
aggregation graph can also be pre-defined and not based
on the normal aggregated traffic flows. For the comparison
task to obtain meaningful results, consistent evaluation of
assessed samples and the ground truth acquisition is needed
by using the same comparison base. The pre-defined baseline
aggregation graph is not used in this contribution.

1) Normal aggregation profiles (ground truth): Normal ag-
gregation profiles were acquired (Alg.2) with profile sample
parameters (PAR5=10, PAR6=0.01, PAR7=14) and plotted in
Fig.5. The orange crosses represent centroid centers. Ground
truth is labelled with TxGy where x is aggregation topology
number (enumerated hash value), and y is the number of
profile samples for that topology. The second batch did not



TABLE III
AGGREGATION PROFILE CHANGE (DATA CHANGE)

Sub-scenario (label) Nodes changing reporting frequency
A (D) 12,13 in Fig. 2
B (D) 12,13 – repeated
C (DD) 8,9

TABLE IV
AGGREGATION PROFILE CHANGE(TOPOLOGY CHANGE)

Sub-scenario (label) Attack node
A (T) Node 6 in Fig. 2
B (T) Node 6 – repeated
C (TT) Node 9

introduce new topologies, which stopped the acquisition.
However, the richer the ground truth, the better estimation
of the normal aggregation profiles.

B. Assessed scenarios

1) Normal operation: A batch of data was acquired from
the WSN in Fig. 2 for normal operation (scenario label N).

2) Misconfiguration: Two MQTT sensors change their
reporting frequency from every 30 to 10 sec. Aggregation
profile samples (3 batches) were collected for the scenarios
in Table III.

3) Topology attack: RPL rank decrease attack is triggered
[11]–[14]. Aggregation profile samples (3 batches) were
collected for the scenarios in Table IV.

VIII. RESULTS

Aggregation profile data points in Fig.5 are labeled fol-
lowing the format Tx[Scenario label]y where x is a topology
number (enumerated hash value) and y available aggregation
samples.

1) Aggregation profile change: Similarity vectors −→s after
PCA dimensionality reduction are plotted in Fig.5. The clas-
sifier in Fig. 1 classified correctly the assessed profiles (for
C=0.025 in (10)). This can be seen as discriminating if the
metrics (a fingerprint) acquired from an aggregation profile
sample is known in the ground truth. As binary classification
result is given, no further information is available to indicate
to what extent the anomaly occurred in the system. This
is addressed in the relative change measure in (11) for
the matched in the ground truth topologies as presented
in Fig.6. The relative measure is defined on the interval
[0..1], with zero indicating no change and increasing with
the anomaly increase. The measure includes both aggregation
topology and distribution change, as relative change depends
on topology i.e. the number of egress edges in the aggregation
graphs (nodes’ degree). The higher node’s degree, the smaller
change incurred for a fix data volume change traversing an
edge due to weights normalisation in (1). For these reasons
to measure distribution change, the topology component is
discriminated by the topology hash values.

Normal aggregation topologies were acquired in the ground
truth, and enumerated as T[1-4]. The relative change of
normal aggregation profiles for normal topologies are plotted
as green dots in Fig.6. As relative measure uses centroid
locations (i.e. estimates of maximum local density of samples
depicted as orange crosses in Fig.5), and data volumes
acquisition in samples have variations caused by the sampling
process with parameters PAR[5-7], the relative change of the

aggregation profile of the ground truth is defined by ranges
e.g. for topologies T1/T3 the normal range is [0..0.02] and
[0..0.01] respectively. For topology T2/T4, the ground truth
has one aggregation profile sample for each topology. For
the batch of assessed normal data, the aggregation topology
T1 was found in the ground truth, with the relative change
depicted as orange stars in Fig.6 forming overlapping cluster
with the ground truth data. Although aggregation topology
T2 with the profile was acquired in the ground truth data, it
does not occur in the assessed scenarios.

Aggregation profiles relative change for sub-scenarios A,
and B in Table III, labeled as scenario D in Fig.5 represents
clusters of red triangles in Fig.6 for topologies T1/T3, and one
sample for T4. For sub-scenario C in Table III, a different set
of sensors located in different part of WSN network changes
reporting frequency causing traffic distribution change. This
impacts an aggregation profile sample. The sample has topol-
ogy T3 which is found in the ground truth allowing compar-
ison with with the normal aggregation profile. Comparing
sub-scenarios A/B and C, it reveals the latter causes larger
relative aggregation profile change of 0.21. The change is
not only caused by the change in the reporting frequency
but also by the traffic distribution change in WSN. They
both impact aggregators’ traffic and operations. By locating
aggregators impacted by the aggregation profile change, it
allows targeted analysis e.g. by querying identified sensors for
more information/statistics. The traffic analysis at the gateway
alone does not take aggregation topology into account in
data analytics, nor the impact of the WSN traffic distribution
change on aggregators’ nodes.

Locating aggregators impacted by the aggregation profile
change requires discriminating vector components change
(d1n, d3n) in the assessed similarity vectors as compared
with the matched ground truth profiles. For the matching, the
topology hash is used. To demonstrate, sub-scenarios A/B in
Table III for the aggregation topology T3 and T4 are used.
Aggregation graphs for topology T3 and T4 are presented
in Fig.4. For topology T3, the similarity vector −→s differs
from the ground truth only in (d10, d30) i.e. for node 0. This
indicates the aggregator node 0 and the leaf nodes 1 and 2
are impacted by the aggregation profile change. The change
is exacerbated for the same aggregation topology T3 in the
sub-scenario C indicated by higher relative change measure
(relative change of 0.21 in Fig.6 with assessed aggregation
graph traffic volumes in edges e(0,1) = 47373, e(0,2) =
36877). The same nodes are impacted. For topology T4, the
similarity vector −→s only differs in (d10, d30), making node 0
impacted by the aggregation profile change. However, due to
T4 topology structure, and the fact that the aggregator node
2 is not impacted by the change ((d12, d32) comparable with
the ground truth values), it is inferred that besides node 0 only
the leaf node 1 is impacted. Ranking nodes with the highest
vector component change in larger systems, allows grading
the impact the aggregation profile change has on aggregators
(not done in this contribution).

Aggregation profile topology samples unmatched in the
ground truth (i.e. topologies T[5-7]), may result from in-
sufficient data or aggregation profile change. The ground
truth should be representative by sufficient acquisition time
(data-set size), and low rate of new aggregation profiles
discovered, the variability of which is controlled by the



Fig. 4. Aggregation graphs change (scenario D) for topology T3/T4

Fig. 5. Aggregation profiles

parameters in Alg. 2. If conservative pruning parameters
are used, the profile is less susceptible to change caused
by edge devices, discriminating the aggregated traffic better,
whereas less conservative for the baseline acquisition, helps
to increase the information capture by similarity vectors, and
the coverage useful for the partly overlapping sub-views.

However, aggregation topologies are smaller subsets of
the topologies in the entire WSN, and due to the traffic
aggregation process, they have smaller variability making
acquisition of the ground truth easier.

2) Aggregation topology change: Malicious topology
change in Table IV caused aggregation profiles change re-
sulting in no edges and vertices meeting selection criteria
either because of insufficient number of edges with sufficient
flow diversity or no surviving nodes with minimum number of
surviving edges as discussed in section V (points T8T8, and
T8TT4 in Fig.5). The aggregation topology change shall also
be seen in relation to the quality of the ground truth discussed

Fig. 6. Aggregation profile change (relative)

in section VIII-1, as no matching aggregation topology may
result from insufficient data in the data-set and not necessarily
malicious aggregation topology change.

IX. CONCLUSIONS

A method was proposed to acquire aggregation profiles
with the metrics quantifying anomaly. System sub-views anal-
ysis also for partly overlapping sub-views facilitated detection
of changes occurring elsewhere in the system. The metrics
were used in the machine learning algorithms to assess the
system for anomaly and measure anomaly level for decision
systems. The method is suitable for detecting unknown at-
tacks. The trade-offs between the pruning parameters and
detection sensitivity is left for further study.
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[6] F. Y. Yavuz, D. Ünal, and E. Gül, “Deep learning for detection of
routing attacks in the internet of things,” International Journal of
Computational Intelligence Systems, vol. 12, no. 1, pp. 39–58, nov
2018.

[7] Z. Zhang, A. Mehmood, L. Shu et al., “A survey on fault diagnosis
in wireless sensor networks,” IEEE Access, vol. 6, pp. 11 349–11 364,
2018.
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