
                          Bramley, P., López-López, J. A., & Higgins, J. P. T. (2021). Examining
how meta-analytic methods perform in the presence of bias: A
simulation study. Research Synthesis Methods, 12(6), 816-830.
https://doi.org/10.1002/jrsm.1516

Peer reviewed version

Link to published version (if available):
10.1002/jrsm.1516

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online
via Wiley at https://doi.org/10.1002/jrsm.1516. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1002/jrsm.1516
https://doi.org/10.1002/jrsm.1516
https://research-information.bris.ac.uk/en/publications/03090d1b-d7ba-4225-b2a7-7252cea928cf
https://research-information.bris.ac.uk/en/publications/03090d1b-d7ba-4225-b2a7-7252cea928cf


Examining how meta-analytic methods perform in the presence of 

bias: A simulation study 
 

Background 

 
Meta-analysis is a widely used technique for quantitatively integrating the results from 
multiple studies. Conclusions drawn from meta-analysis results are increasingly considered 
by healthcare practitioners and policy makers. However meta-analysis techniques are 
vulnerable to several forms of bias. In this paper we address three distinct types of bias for 
which there are well documented problems in meta-analyses of randomised trials 1–6: 
within-study biases arising from limitations in design and conduct, publication bias and 
selective outcome reporting bias. 
 
Limitations in the design and conduct of trials can introduce within-study bias1. Limitations 
include poor randomisation methods and lack of blinding, with the latter being a problem 
particularly for studies using subjective outcomes. Publication bias occurs when the 
availability of information about studies relevant to a systematic review is correlated with 
the results obtained by those studies. This is typically conceptualised as being driven by the 
statistical significance of results, with publication being either suppressed or delayed when 
results are non-significant. The problem particularly affects small studies, as these are less 
likely to reach statistical significance unless the effect observed is of large magnitude. 
Outcome reporting bias can occur when multiple outcome measures are used in a study, but 
only a subset of these is reported. Bias arises if the decision of which outcome measures are 
reported is related to the magnitude (and often the statistical significance) of their results. 
Both publication and outcome reporting biases are forms of reporting bias and ignoring 
them in a meta-analysis may lead to an overestimation (or underestimation) of the true 
effect magnitude in the field of study. 
 
Each of these three problems might cause the estimates from a meta-analysis to be biased, 
or the coverage from confidence intervals to be altered from the nominal level. Several 
methods for meta-analysis have been proposed as being less vulnerable to these biases. 
These include (i) methods that assume multiplicative rather than additive heterogeneity, 
leading to results that may be more robust to correlations between effect sizes and study 
sizes; (ii) methods that adjust confidence intervals around summary effects and (iii) methods 
that specifically model dependencies between effect sizes and study sizes. To our 
knowledge, these different approaches have not been compared with standard methods in 
an independent simulation study, or their performance determined in the presence of 
biases other than publication bias. We aimed to examine the statistical properties of the 
overall effect estimate and confidence interval for a selection of novel and existing meta-
analysis methods across a wide range of conditions in the presence of several types of bias. 
To do this, we first outline the meta-analysis methods we examine. Then we describe the 
methods and parameters for a simulation study. We introduce models for introducing each 
type of bias, and how they were implemented in the simulations. Finally we present and 
explore the results and discuss their implications.  



 
 

Methods 

Models for meta-analysis 

A popular model for meta-analysis is a fixed-effect (FE) model, sometimes referred to as a 

common-effect model, where study results (�̂�𝑖 for study i) are assumed to be estimating a 

common underlying effect parameter (𝜃). The differences between results are due only to 

within-study variability with variance �̂�𝑖
2, which is conventionally assumed known: 

�̂�𝑖 ∼ N(𝜃, �̂�𝑖
2). 

The inverse variance method (IV) estimates this common effect by constructing a weighted 

mean where study weights (𝑤𝑖 for study i) are equal to the inverse of the study variances. 

The variance of this estimate is a combination of the individual study variances. We provide 

statistical formulae used for estimates of effect and its variance, study weights, and critical 

values for confidence intervals for the FE method, along with all the other methods we 

address, in Table 1. 

Random-effects models assume there is a distribution of true effect parameters rather than 

a single common effect. This means that rather than estimating a common effect, they 

estimate the mean of a distribution of true effects, the variance of which is the between-

studies heterogeneity (𝜏2): 

�̂�𝑖 ∼ N(𝜃, �̂�𝑖
2 + 𝜏2). 

This is often conceptualised as representing differences in study design or population which 

might affect the size of effect being measured. The variance of study results is therefore a 

combination of between and within-study variability. There are several methods of 

generating an estimate of the heterogeneity variance (�̂�2), the most widely used of which is 

the DerSimonian and Laird (DL) estimate as it is computationally straightforward. A 

restricted maximum likelihood (REML) method is also generally recommended12. Critical 

values for confidence intervals for traditional fixed and random-effects models are 

conventionally taken from the standard normal distribution. 

Many have highlighted a limitation of the standard random-effects method because a point 

estimate of 𝜏2 (for example using the DerSimonian and Laird or REML method) is assumed 

known so that uncertainty in the estimate is ignored. Knapp and Hartung (KH)13 aim to 

account for this uncertainty. They adopt the random-effects model, keeping the same 

estimate of overall effect but proposing an alternative estimate for the variance of this 

overall effect estimate, and using a t-distribution for significance testing and calculating 

confidence intervals.  

A well-known problem with a random-effects approach is that, since the weights are 

calculated based on the sum �̂�𝑖
2 + �̂�2, the weights given to each study will become relatively 



more similar as the amount of between-studies variability increases7,8. This decreases the 

relative weight of studies with small variance (typically large studies) compared with those 

with large variance, increasing any risk of bias driven by small studies (e.g. publication bias). 

A multiplicative model (which we refer to as Mult) for heterogeneity has been suggested to 

avoid this, as an alternative to the standard additive model, such that 

�̂�𝑖~𝑁(𝜃, �̂�𝑖
2𝜙). 

This gives the same overall effect estimate as the fixed-effect model, but with the standard 

errors from each study inflated by √ϕ. The parameter ϕ can be estimated by running a 

weighted linear regression of the observed effect sizes against a constant and calculating 

the mean square error, fixed to be ≥1 8 (the estimated value of ϕ is also equal to the H2 

statistic 14).  

Henmi and Copas (HC)9 propose using a fixed-effect model (with the IV method specifically) 

to estimate the overall effect, noting that such a weighted average will be less influenced by 

small studies, therefore reducing the impact of publication bias. However, they then 

advocate using a random-effects model to construct a confidence interval around the fixed-

effect estimate, using the DL estimator for 𝜏2. Rather than using the usual normal 

distribution, they derive alternative values (described in detail in the original paper). A 

similar method is the IVHet15 model, which yields the same overall effect estimate and 

variance as HC but does not use the alternative values for the confidence interval. For this 

paper we examine both the HC and IVHet models, assuming a standard normal distribution 

to compute confidence intervals for the latter. 

Finally, noting that studies with lower variance are likely to be less biased in the presence of 

publication bias, Moreno et al. 10 propose an extension to Egger’s test, which they refer to 

as Egger-Var (abbreviated EV in this paper). The observed effect sizes are regressed against 

study variances, weighting by the reciprocal of the study variance (with a multiplicative 

dispersion parameter as in the traditional Egger test). The intercept in this model is then 

interpreted as the effect size in an infinitely large study. 

In summary, the methods we compare in this paper are the standard fixed-effect and 

random-effects methods, the multiplicative model (Mult), the HC and IVHet approaches to 

applying a random-effects based confidence interval around a fixed-effect estimate and the 

EV regression-based method. Although there are many more methods we could have 

compared, we chose this selection to provide a range of different approaches that have 

been proposed in the medical meta-analysis literature, are reasonably well known and/or 

are frequently used. 

Simulation 

 



Our process of simulation for each condition was as follows: (a) set parameters, including 

effect measure and type of bias (if any); (b) draw a study level effect parameter and sample 

size; (c) simulate individual participant-level data within the study; (d) compute study level 

effect estimates and standard errors; (e) repeat (b) to (d) until the specified number of 

studies is obtained; (f) perform meta-analysis; and (g) collect data about meta-analysis 

results. 

Mean difference simulation: base case 

We simulated unstandardised mean differences (MDs) as a base case because these should 

perfectly follow a normal distribution with variances that are independent of sample size. 

This allows us to study the effect of each method under optimal conditions. The study-level 

true MD for study i (𝜇𝑖) was drawn from 𝜇𝑖 ∼ N(𝜃, 𝜏2).  

Four scenarios were specified for within-study sample sizes (𝑛𝑖), setting them (i) all to be 

equal for every study; (ii) variable across studies to reflect typical meta-analyses in practice; 

(iii) variable across studies but all small; and (iv) variable across studies but all large. Details 

are provided below under ‘Choice of simulation parameters’. Next, values for each 

individual j were sampled for the treatment arm 𝑥𝑖𝑗𝑇 and control arm 𝑥𝑖𝑗𝐶  with equal 

numbers in each group: 

𝑥𝑖𝑗𝑇 ∼ N (
𝜇𝑖

2
, 𝜎2) 

𝑥𝑖𝑗𝐶 ∼ N (−
𝜇𝑖

2
, 𝜎2). 

Here 𝜎2 is the within-study, between-individual variance which was held to be equal in the 

two arms. Without loss of generality, we fixed these at 1, which allows interpretation of the 

MDs as standardized mean differences (SMDs) to allow comparison with log odds ratio 

values. From these individual values, study estimates of effect and variance were calculated 

using standard methods for mean differences (see supporting information 1F). This process 

was repeated for each of the k studies in each meta-analysis and the whole process is 

represented as a diagram in supporting information 1I. 

Log odds ratios simulation: base case 

We also examined properties of the meta-analysis methods when applied to odds ratios, 

which are a common way of presenting the results of medical studies. Estimates of log odds 

ratios (LORs) are correlated with their estimated variances, which can make it difficult to 

interpret the results of meta-analyses on this scale. Since our simulated biases would 

themselves introduce correlations between LORs and variances, we wanted to explore the 

properties of the meta-analysis methods in this situation. 

To simulate results on the LOR scale, true study level LORs (𝜇𝑖) were simulated in the same 

way as MD values. Event probabilities for treatment (π𝑖𝑇) and control (π𝑖𝐶) groups were 

then calculated using 



logit(π𝑖𝑇) = 𝛾 + 𝜇𝑖/2 

logit(π𝑖𝐶) = 𝛾 − 𝜇𝑖/2 

where 𝛾 is the logit of the (prespecified) average event frequency across the two groups, 

assumed for the sake of simplicity to be identical in every study. In practice the event 

frequency could vary between studies. Cell counts for the treatment and control arm were 

then obtained using a binomial draw using the number in the arm and probability π𝑖. 

Any studies that had zero event counts in both arms (or event counts equal to the sample 

sizes in both arms) were excluded from the analysis and were not re-sampled (to 

approximate a realistic scenario and prevent skewing of study sample sizes). In studies with 

a zero event count in one arm (or an event count equal to the sample size in one arm), we 

added 0.5 to all four cell counts. Finally log odds ratios and variances were computed from 

the cell count data using standard methods (see supporting information 1F). 

Simulation of publication bias 

To simulate publication bias, we implemented a selection rule after each study result was 

generated. If it ‘passed’ then the simulation would continue, if it did not pass then another 

study result was drawn using the same sample size, a process that repeated until a study 

result was selected. This method was chosen to maintain the distribution of study sizes. A 

one-tailed significance test was chosen to model the situation where one direction of effect 

is preferred (in this case negative values). We used Hedges and Vevea’s model for ‘light’ 

publication bias which is a step function based on the study’s p-value16:  

probability of publication =  {

1, 𝑝 <  0.05
0.75, 0.05 <  𝑝 <  0.2 
0.25, 0.2 <  𝑝 ≤  1

. 

This model for publication bias generates a familiar pattern in the funnel plot, with absent 

studies in one corner of the plot, but with most large studies retained and remaining 

unbiased. The model was chosen because it is conceptually simple, widely used, 

mechanistically clear, involves both effect size and study size (through their combined 

influence on the p-value), and there is good evidence for publication bias being dependent 

on p-value. However, the impact of this selection mechanism will depend on the value of 

the effect parameter, θ. When θ is large and in the preferred direction, almost all studies 

will be selected, whereas when θ is large and in the opposite direction, a small proportion of 

studies will be selected and the plot will largely be populated by unlikely results. We 

illustrate the impact of the bias for θ = 0 using a contoured funnel plot in the supporting 

information 1E.  

Simulation of methodological limitations 

Bias could be introduced by many methodological limitations in trials such as inadequate 

randomisation, lack of allocation concealment, or lack of blinding in clinical trials. We sought 

to mimic the effect of such limitations based on real-life data. We re-analysed the BRANDO 



meta-epidemiological study1 and observed an association between study sample size and 

adequate randomisation and allocation concealment, although not with blinding (based on 

logistic regression of sample size on risk of each methodological flaw). Approximately 20% 

of studies with a sample size of less than 500 had evidence of adequate allocation 

concealment, as opposed to 36% with a sample size above 500. For randomisation, 24% of 

studies below 500 participants were adequate, compared with 33% above that threshold. 

Such an association would lead to an asymmetrical funnel plot if the flaws are also 

associated with differences in effect sizes, as was observed to be the case in the BRANDO 

study1. 

To simulate bias due to methodological limitations, we introduced an impact of two possible 

methodological flaws (representing randomisation and allocation concealment) each with a 

fixed magnitude of bias. Based on our findings from the BRANDO data, we assumed that 

both flaws had a decreasing likelihood with increasing sample size. We assumed that the 

flaws were otherwise independent, which is a substantial simplifying assumption since 

evidence from BRANDO suggests that biases do not operate independently1. The size of the 

bias in studies possessing the flaws was modelled as an additive bias of −0.090 per bias on 

the MD scale or as a multiplicative bias of 0.85 per bias on the odds ratio scale 

(corresponding to −0.16 on the LOR scale). This bias was applied to the underlying study-

level effect parameter (𝜇𝑖) as it was drawn. 

Assuming that both flaws introduce the same bias, and that they are equally common with a 

given sample size, we approximated the relationships observed in BRANDO by drawing the 

number of flaws (𝑐𝑖) in the ith study from  

𝑐𝑖 ∼ Binom (2,
1

𝑛𝑖
0.06). 

The effect of this bias on the funnel plot of results should differ from publication bias in 

several ways. First, the bias is unaffected by the value of θ, unlike in publication bias. 

Second, the extent of bias is limited and will not be as extreme, particularly with low sample 

sizes (see supporting information 1E).  

Simulation of outcome reporting bias 

To model outcome reporting bias we focussed on bias in selection of the reported result 

from among multiple outcome measures. Selective non-reporting of results is akin to 

publication bias so would lead to patterns similar to those addressed earlier. We imagined a 

situation where two correlated outcome measures were collected in every trial, but only the 

outcome measure with the lower p-value was reported. For MD simulations, we created 

two correlated variables at the level of individuals in each trial (separately for intervention 

and control arms) by creating correlated uniform distributions using Gaussian copulas then 

converting to a normal distribution. Both variables were analysed and the outcome with the 

lower p-value was used in the meta-analysis. Correlation introduced into individual values 



was found to propagate through to correlation in MD with minimal attenuation, so a 

correlation of 0.6 was used at the individual level, giving an approximate correlation of 0.6 

between MD values in the same study. For LOR simulations, correlated binomial outcomes 

were created. However individual level correlation attenuated more for LOR (this may have 

been partly due to the granularity of correlated binomial variables) so an individual level 

correlation of 0.8 was used to give a correlation in LOR of approximately 0.58. 

Given that outcome reporting bias was present in every trial, this is likely to generate funnel 

plots where the entire plot was translated away from the true effect size, but the effect is 

more pronounced in smaller studies (see supporting information 1E). It would also be 

present across all values of 𝜃. 

Choice of simulation parameters 

Study size 

We simulated four different study sample size (𝑛𝑖) conditions – fixed sample size, 

empirically-based sample sizes, small studies, and large studies. For the fixed condition, a 

single sample size was used for every study (60 for MD, 100 for LOR) approximating the 

empirical median value in a large sample of Cochrane Reviews17. In the condition with 

empirically-based sample sizes, the empirical distribution was approximated by drawing 

from a log normal distribution, 𝑛𝑖 ∼ 𝑙𝑜𝑔𝒩(𝑎, 𝑏). For MD we set a = 4.2, b = 1.1; and for LOR 

we set a = 4.7, b = 1.2, all chosen to approximate the empirical distribution. To ensure that 

standard deviations were calculable, we added 4 to simulated sample sizes for MDs or 2 for 

LORs. For the small and large studies conditions, we assumed a uniform distribution  for 

square rooted samples sizes: 𝑛_𝑖 ∼ Unif(√𝑎, √𝑏)
2
 .We set a = 20, b = 100 for small studies 

and a = 250, b = 1000 for large studies. All simulated sample sizes were rounded up to the 

next even integer to ensure integer values in each treatment group.  

Number of studies 

The number of studies per meta-analysis (k) varied across conditions with values of 3, 5, 10 

and 30 selected to approximate 50th, 75th, 90th and 99th centiles of the empirical 

distribution found in Cochrane Reviews17. We added two larger numbers of studies, 50 and 

100, to represent closer-to-ideal conditions. 

Effect size 

The values of 𝜃 for MD were -0.76, -0.12, 0, 0.12, 0.76. These were chosen to correspond to 

values of 0.25, 0.8, 1, 1.25 and 4 on the odds ratio scale, representing small and large effects 

symmetrically distributed around no effect (the logarithms of these values were used for the 

LOR simulation). The equivalence between MD and LOR scales arises from the conversion 

between odds ratios and standardised mean differences (SMD) described by Hasselblad and 

Hedges18, coupled with our specification that all between-individual variances are equal to 1 

(so that our MDs are interpretable as SMDs). This approximation is suitable when variances 

are equal in both arms and the data are not skewed19, as is the case in our simulations.  



Between study variance 

To give 𝜏2 values for the simulation, we chose I2 values of 0%, 5%, 20%, and 95%, which 

roughly approximate the 15th, 50th and >97.5th centile of the empirical distribution of I2 for 

published surveys of meta-analyses of odds ratios20. We refer to these as no, low, moderate, 

and high heterogeneity. Average 𝜏2 values to give these I2 values were calculated using the 

median study size which gave 𝜏2 = 0, 0.008, 0.04, 3.04 for LOR. The same Hasselblad and 

Hedges method was used to convert these to  𝜏2 = 0, 0.005, 0.022, 1.676 for the MD 

simulation (this gave simulations where the median I2 values approximated 25th, 50th, and 

95th centile of the empirical distribution for MD). 

Event frequency 

For LOR simulations, we varied the event probability (𝑙𝑜𝑔𝑖𝑡−1(𝛾)) between 0.1, 0.3 and 0.5 

to approximate typical frequencies of events in clinical trials whilst keeping failed results 

due to very rare events to a minimum. 

Repetitions 

Combinations of 𝜃 (5 conditions: no effect, small and large effect sizes in both direction), 𝜏2 

(4 conditions: none, low, moderate, high), sample size (4 conditions: empirical distribution, 

small studies, study size fixed at median, large studies) and number of studies (6 conditions) 

resulted in 480 unique conditions to simulate for MD simulations. The extra three event 

frequencies resulted in 1,440 conditions for LOR. Each condition was repeated 10,000 times, 

a number chosen to produce on an estimated Monte Carlo Error of between 0.01 and 0.001 

(based on a small pilot study with a fixed-effect estimate of effect for MD, three studies, 𝜃 = 

0, 𝜏2 = 0, empirical distribution of study size, using the bootstrap grouping prediction 

method21). 

Implementation of meta-analysis methods 

Once simulation of study results was complete, meta-analysis was performed using all the 

methods we have described in every repetition for each condition. This gave 4 estimates of 

effect (FE using IV, RE using DL, RE using REML, and EV) and 7 confidence intervals (FE, RE 

using DL, RE using REML, KH, HC, IVHet, and Mult). The results of these were aggregated 

across the repetitions in a condition to give the mean bias and averaged mean squared error 

(MSE) for each estimate of effect, and the proportion of confidence intervals for which 

included the true value (coverage probability) for each method of calculating a confidence 

interval. Equations for these calculations can be found in supporting information 1F. 

Software 

All simulation and analysis was performed in R version 3.0.2 22 using the packages 

data.table23, metafor24, doParallel25, foreach26, and copula27. Both simulation of data and 

meta-analysis were parallelised and performed using facilities at the Advanced Computing 

Research Centre at the University of Bristol. The package doRNG28 was used to ensure 

independence and reproducibility of parallel loops. This uses the L'Ecuyer-CMRG random 

number generator. Seeds were set for each simulation so the R code required to generate 



the full data as well as summary data for each condition are available online via supporting 

information 1G. 

Results 

The simulations generated a large volume of results. Full results can be found between the 

paper and the supporting information. In the body of the paper we present results from the 

MD simulation, and in the supporting information 1D we present corresponding results for 

the LOR simulation. The MD results are easier to interpret due to the lack of correlation 

between effect size and variance. However, the LOR simulation trends were broadly very 

similar. We present results for simulated outcome reporting bias also only in supporting 

information 1B. These are very similar in pattern to publication bias, though less extreme 

and with almost no variation with 𝜃. We found no substantial difference with regard to bias, 

coverage, or MSE when comparing DL and REML heterogeneity estimators (see supporting 

information 1A). In all figures we display the effect of changing one variable with the others 

held in the reference condition of: five empirically sized studies; with no effect (𝜃 = 0); and 

moderate magnitude of heterogeneity, 𝜏2. Heterogeneity and size of study are not 

connected as they are not displayed to scale. 

No bias 

Figure 1 shows results for all estimators in the base case in which none of the three types of 

bias were simulated. As might be expected, all estimators performed well when there is no 

underlying bias. They all quickly converged with increasing numbers of studies, were not 

affected by the value of θ, and improved marginally with increasing study size. The 

exception to this is the EV estimator, which appeared to improve in conditions in which 

studies had a greater range of sample sizes (i.e. it was substantially worse in the fixed 

sample size condition). This is expected since, as a regression-based method, it benefits 

from values over a greater range and closer points to the origin. This pattern for the EV 

estimator continues throughout all simulations. The IV method had the smallest bias, 

though the DL method was equivalent by either 10 studies or in moderate/high 

heterogeneity. The EV method achieved this low magnitude of bias by 30 studies, or 50 in 

high heterogeneity conditions. 

Results for MSE can be found in the supporting information 1B. They mirror the trends 

found for bias. However they demonstrate that the EV is strictly inferior to other methods, 

and that the DL outperformed FE in high heterogeneity conditions, but also in low and 

moderate heterogeneity conditions with empirical sample sizes and 10 or more studies. 

Coverage probability was also unaffected by the value of θ, and typically improved with 

increasing number of studies (though not for FE and multiplicative methods – except in no 

heterogeneity conditions). Larger sample size typically improved coverage, but figure 2 

demonstrates an interaction where with fewer than 10 studies and low/moderate 

heterogeneity small and fixed sample sizes had better coverage than large and empirical 

sample sizes. However, the multiplicative method performed better with fixed sample sizes 



than other conditions throughout. Increasing heterogeneity reduced coverage for all 

intervals with low numbers of studies except the KH interval, which performed near nominal 

level across almost all simulations. The KH interval coverage fell in conditions with the 

combination of moderate heterogeneity, small numbers of studies, and empirical 

distribution of sample sizes but in these scenarios it still outperformed the other intervals. 

The HC interval performed second best and approached the KH interval after 30 or more 

studies (and less with high heterogeneity). 

Publication bias 

Introducing publication bias makes the mean bias dependent on θ, where small absolute 

values were the most susceptible shown by figure 3. Increasing heterogeneity also worsens 

bias, and this effect is larger with small absolute θ values (which can be seen in the loop 

plots in supporting information 2). Increasing number of studies shows a small improvement 

in bias which is greatest with an empirical distribution of sample sizes. Large sample sizes 

give the lowest bias, followed by empirical sample sizes, whilst small and fixed sample sizes 

are broadly similar for IV and DL estimators. The EV method gives lower bias than both IV 

and DL except in fixed sample sizes. The IV estimator outperforms DL in most conditions, 

but by the largest margin in empirical study size and high heterogeneity conditions. 

However despite improvement in bias the EV estimator only started to outperform IV and 

DL in MSE with a combination of 10 or more studies, low heterogeneity, and θ values close 

to zero. 

Coverage of each of the intervals was largely determined by the value of θ, with low 

absolute values giving poor coverage, but increasing numbers of studies exaggerated this 

effect (see figure 4). For example, using our reference condition the coverage of the HC 

interval (which performed best after 10 studies) was 82.8% with 3 studies, falling to 77.3% 

by 10, 60.3% by 30, 41.4% by 50 and only 12.3% by 100 studies. The IVHet method 

performed similarly at 50 studies with 37.3% but the FE was 13.1%, DL was 17.4%, KH was 

20.9%, and Mult was 21.7%. When θ was 0 or −0.12, intervals had coverage less than 90% in 

almost all cases, falling to 60% or lower with 30 studies or more. Larger absolute values of θ 

were closer to nominal coverage, except with high heterogeneity. A θ of 0.12 fell 

somewhere between these, where there was reasonable coverage with small numbers of 

studies and low heterogeneity but it fell precipitously with higher numbers of studies 

(especially with small or fixed sample sizes) or rising heterogeneity. Large sample size 

improved coverage except where θ was zero but increasing heterogeneity typically 

worsened coverage. From these results there is minimal evidence to suggest IVHet or Mult 

outperform other methods in the presence of publication bias. As when there is no bias the 

KH interval performs the best with small numbers of studies, and the HC with larger 

numbers or high heterogeneity though coverage was globally poor in many conditions. 



Methodological limitations 

In the presence of methodological bias, the value of θ had little effect as shown in figure 5. 

Larger sample sizes improved performance, as did increasing numbers of studies. Bias was 

similar with all heterogeneity values except high. The EV estimate outperformed IV and DL 

in bias values, but also displayed its previously noted instability with low numbers of studies 

(especially in combination with high heterogeneity). Again the MSE showed that the EV did 

not outperform standard methods, except for conditions with a combination of more than 

50 studies, empirical study sizes and less than maximal heterogeneity. 

Coverage was largely unaffected by θ, but typically fell with increasing number of studies as 

confidence intervals tightened around a biased estimate. Increasing heterogeneity improved 

coverage with 10 studies or more (see figure 6) but with fewer the effect varied by method, 

with KH and HC typically improving in more heterogeneous scenarios, but FE and Mult 

deteriorating. Larger sample sizes improved coverage with 10 studies or more, with the 

ongoing exception of multiplicative performing best under fixed sample sizes and FE 

performing worse with heterogeneity and increasing sample size. With less than 10 studies 

empirical and large sample sizes only led to better performance than small and fixed for KH 

and HC intervals. Again the KH performed best with 3 or 5 studies, often greater than 90% 

coverage. With more studies or high heterogeneity the HC tended to outperform KH, but all 

intervals showed poor coverage (though better than under publication bias). 

Discussion 

Our extensive Monte Carlo study examined the properties of seven meta-analysis methods 

in simulated meta-analyses into which we introduced various types of bias. In Error! 

Reference source not found. we summarize the apparent strengths and limitations of each 

method on the basis of our findings. Examining bias results it is clear that the regression-

based Egger-Var method confers an advantage over standard methods only in certain 

circumstances. Whilst it seems strictly inferior to standard methods in simulations with no 

bias, in simulations with publication bias or methodological limitations it has a lower bias 

than fixed or random-effects methods in most conditions. However this improved bias does 

not lead to an improved MSE except in optimal conditions for the method (large numbers of 

studies with a wide range of sample sizes and without heterogeneity). It is possible that the 

MSE for the Egger-Var with 3 studies (in particular) is being inflated by outlier values which 

might not be reported by a thoughtful meta-analyst. This limits its use as a primary estimate 

of effect but may marginally improve its value as part of a sensitivity analysis. Though this 

was not examined in the main paper, the Egger-Var method also appears to be more 

vulnerable to the correlation between effect size and variance than standard methods in log 

odds ratio simulations. In some situations this could be ameliorated by transforming the 

outcome variable (e.g. using an arcsine transformation). Additionally Egger-Var is very 

vulnerable to deteriorating when there are low event rates. 



Regarding confidence intervals, it is notable that coverage probability when any bias 

mechanism was simulated was broadly poor. Whilst some methods performed better than 

others, in any conditions that were vulnerable to bias, coverage routinely fell below 90% 

and in the most severely biased conditions coverage fell below 50%.  

The multiplicative method performed poorly relative to other proposed methods, and often 

became substantially worse when studies had empirically-based sample sizes and high 

heterogeneity. It only offered advantage over FE coverage in the presence of bias, and over 

DL coverage with the combination of low heterogeneity, 30 or more studies, and publication 

or outcome reporting bias. 

As might be expected by their equivalent variance construction, the HC and IVHet intervals 

followed similar trends. However the HC interval outperformed the IVHet where there was 

high heterogeneity. It also tended to outperform IVHet in conditions with 30 or more 

studies, where the HC often performed the best of any interval. With 10 studies or fewer, 

the interval with closest to nominal coverage was typically the KH interval, especially with 

high heterogeneity. This was true in MD and LOR simulations for both methodological and 

publication biases. 

There are several important limitations to our investigation. We examined only a small 

selection from a large array of potential methods for detecting or correcting for bias. We 

chose methods that covered a variety of different approaches and that we have observed 

informally to be considered attractive to medical meta-analysts. As a simulation study, the 

results may not be representative of `real world' data from any specific field, though we 

chose the conditions to match the known empirical distributions of biases in meta-analyses 

within the Cochrane Database of Systematic Reviews as closely as possible. In addition, the 

models we used to introduce biases are necessarily a simplistic representation of how these 

flaws work in reality and different models would likely affect the efficacy of each method. 

We also simulated only mean differences and log odds ratios, and patterns could be 

different for other types of data and other effect measures. Finally there are other potential 

causes of bias which, if they create different patterns of funnel plot asymmetry, could show 

different patterns of bias from these methods. 

However, despite these limitations, we believe our paper adds value by comparing a 

number of statistical methods in a very broad range of empirically derived scenarios to 

inform recommendations about future use. We have also described new methods for 

modelling the effect of outcome reporting bias and bias resulting from methodological 

limitations in trials which represent, as far as we are aware, the first attempts to model 

these important sources of bias in meta-analysis simulations. 

Conclusions 

Within the limitations of simulation studies, our results confirm that meta-analysis methods 

remain susceptible to multiple types of bias, with no method giving satisfactory results. They 



also highlight the risk that reporting biases and bias from methodological limitations in 

constituent studies pose to the results of meta-analysis and their use in decision making or 

forming guidance. 

Acknowledging that no method corrects bias adequately, these results suggest that the use 

of the Knapp-Hartung adjustment for confidence intervals on estimate of effect give the 

closest to nominal coverage with approximately 10 studies or fewer, whilst with more than 

that the Henmi-Copas interval is preferable. With regards to point estimation of effect, the 

IV fixed-effect method appeared to outperform random-effects methods marginally in both 

bias and MSE, except when heterogeneity was high, though differences were often very 

small. The Egger-Var method did successfully correct for bias but performed poorly in 

conditions with a small range in sample sizes, small numbers of studies, high heterogeneity, 

or low event rates. Given this it seems to have a use in conditions that are optimal for the 

method, although the range of such conditions is limited. 

As new methods are proposed in an effort combat bias we would also suggest that authors 

consider how they would function in the presence of multiple types of bias, rather than just 

publication bias. 

 

Highlights 

 

It is well established that several forms of bias can affect meta-analysis results. The best known is 

publication bias, but selective reporting of outcomes (outcome reporting bias), and flaws in the 

conduct of constituent studies can also introduce bias. Several statistical methods have been 

proposed to reduce the effect of bias, publication bias in particular.  

Our results show that publication bias, outcome reporting bias, and flaws from studies can introduce 

slightly different patterns of bias and that no existing method is robust to all these problems, though 

some perform slightly better. Additionally we found that statistical performance under bias could 

conceivably be very poor.  

Though the simulation was based on characteristics of medical studies, the results should be at least 

partially transferrable to all fields where meta-analysis is performed. Particularly the knowledge 

both that bias has the potential to be very problematic and that existing methods cannot correct for 

this. 
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Table 1 Statistical methods for meta-analysis. WLS is weighted least squares regression, z refers to the normal distribution 
and t to the t distribution. Processes for estimating the HC confidence intervals, KH variance, and Egger-Var estimate of 
effect are summarised here, but presented in greater detail in the original papers. 

 

 

 

 

 

 

 

 

 



Method Strengths Limitations 

FE (IV) Computationally simple, widely implemented and 

used.  

The estimate of effect is less vulnerable to small-

study bias than DL. 

Poor estimate of effect under high heterogeneity 

or any bias.  

Inaccurate (and often too narrow) confidence 

interval with any heterogeneity or with any bias. 

DL Widely implemented and used.  

Confidence interval outperforms FE interval in the 

presence of any heterogeneity. 

Estimate of effect and confidence interval 

vulnerable to any bias. 

KH Best coverage probability of examined methods 

with small numbers of studies under most 

conditions with any bias. 

Coverage falls quickly in bias conditions with 

increasing numbers of studies. 

HC Best coverage probability with large numbers of 

studies (e.g. 25 or more) under most conditions with 

any bias, and some with moderate number of 

studies (e.g. 10).  

Good performance with high heterogeneity. 

Poor coverage with fewer than 10 studies. 

Coverage probability suffers under bias conditions 

(though outperforms other intervals). 

IVHet Better coverage than standard intervals in bias 

conditions with large number of studies (e.g. 25 or 

more), often outperforms HC with fewer than 10 

studies.  

Simpler to compute than HC. 

Never the best choice of interval– for small 

numbers of studies KH is better, for larger 

numbers HC is better. 

Deteriorates with increasing heterogeneity. 

Mult Outperforms FE coverage in presence of 

heterogeneity or bias, and DL coverage with 

publication or outcome reporting bias and 30 or 

more studies. 

Performs worse with increasing heterogeneity or 

an empirical sample size. 

Despite situational improvement over standard 

methods it performs poorly overall. 

Egger-

Var 

Lower mean bias than other estimates in almost all 

bias simulations for mean differences and most bias 

conditions for odds ratios with a small true effect 

size.  

Improved mean squared error when there is also 

the combination of no heterogeneity, large number 

of studies, and a wide range of study sizes. 

Worse than FE or DL with no bias. 

Worse mean squared error than FE or DL in most 

bias conditions despite improved mean bias.  

Unstable with few studies (e.g. 5 or fewer), 

particularly with a small range of sample sizes or 

high heterogeneity.  

For odds ratios, had a substantial bias towards 

zero at large effect sizes, exaggerated by low 

event rates and high heterogeneity. 

Table 2: Summary of the strengths and limitations of the seven compared methods (FE = fixed effect; IV = inverse variance; 
DL = DerSimonian-Laird; KH = Knapp-Hartung; HC = Henmi-Copas; IVHet = Doi et al’s inverse variance heterogeneity 
method; Mult = multiplicative heterogeneity model; Egger-Var = Moreno et al’s variant of the Egger regression approach) 


