

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Cilostazol and isosorbide mononitrate for the prevention of progression of : baseline data and statistical analysis plan for the Lacunar Intervention Trial-2 (LACI-2) (ISRCTN14911850)

Citation for published version:

Bath, PM, Mhlanga, I, Woodhouse, LJ, Doubal, F, Oatey, K, Montgomery, AA & Wardlaw, JM 2022, 'Cilostazol and isosorbide mononitrate for the prevention of progression of : baseline data and statistical analysis plan for the Lacunar Intervention Trial-2 (LACI-2) (ISRCTN14911850)', *Stroke and Vascular Neurology*, pp. svn-2022-001816. https://doi.org/10.1136/svn-2022-001816

Digital Object Identifier (DOI):

10.1136/svn-2022-001816

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Publisher's PDF, also known as Version of record

Published In: Stroke and Vascular Neurology

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Cilostazol and isosorbide mononitrate for the prevention of progression of : baseline data and statistical analysis plan for the Lacunar Intervention Trial-2 (LACI-2) (ISRCTN14911850)

Philip M Bath ,¹ Iris Mhlanga,¹ Lisa J Woodhouse ,¹ Fergus Doubal ,² Katherine Oatey,³ Alan A Montgomery,⁴ Joanna M Wardlaw ²

To cite: Bath PM, Mhlanga I, Woodhouse LJ, *et al.* Cilostazol and isosorbide mononitrate for the prevention of progression of : baseline data and statistical analysis plan for the Lacunar Intervention Trial-2 (LACI-2) (ISRCTN14911850). *Stroke & Vascular Neurology* 2022;**0**. doi:10.1136/svn-2022-001816

Additional supplemental material is published online only. To view, please visit the journal online (http://dx.doi.org/10. 1136/svn-2022-001816).

Received 29 June 2022 Accepted 16 August 2022

(Check for updates

© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

 ¹Stroke Trials Unit, University of Nottingham, Nottingham, UK
 ²Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
 ³Edinburgh Clinical Trials Unit, University of Edinburgh, Edinburgh, UK
 ⁴Nottingham Clinical Trials Unit, University of Nottingham, Nottingham, UK

Correspondence to

Professor Philip M Bath; philip.bath@nottingham.ac.uk

ABSTRACT

Background Cerebral small vessel disease (SVD) causes lacunar strokes (25% of all ischaemic strokes), physical frailty and cognitive impairment and vascular and mixed dementia. There is no specific treatment to prevent progression of SVD.

Methods The LACunar Intervention Trial-2 is an investigator-initiated prospective randomised open-label blinded-endpoint phase II feasibility study assessing cilostazol and isosorbide mononitrate for preventing SVD progression. We aimed to recruit 400 patients with clinically evident lacunar ischaemic stroke and randomised to cilostazol, isosorbide mononitrate, both or neither, in addition to guideline secondary ischaemic stroke prevention, in a partial factorial design. The primary outcome is feasibility of recruitment and adherence to medication; key secondary outcomes include: drug tolerability; recurrent vascular events, cognition and function at 1 year after randomisation; and safety (bleeding, falls, death). Data are number (%) and median (IQR). Results The trial commenced on 5 February 2018 and ceased recruitment on 31 May 2021 with 363 patients randomised, with the following baseline characteristics: average age 64 (56.0, 72.0) years, female 112 (30.9%), stroke onset to randomisation 79.0 (27.0, 244.0) days, hypertension 267 (73.6%), median blood pressures 143.0 (130.0, 157.0)/83.0 (75.0, 90.0) mm Hg, current smokers 67 (18.5%), educationally achieved end of school examinations (A-level) or higher 118 (32.5%), modified Rankin scale 1.0 (0.0, 1.0), National Institutes Health stroke scale 1.0 (1.4), Montreal Cognitive Assessment 26.0 (23.0, 28.0) and total SVD score on brain imaging 1.0 (0.0, 2.0). This publication summarises the baseline data and presents the statistical analysis plan.

Summary The trial is currently in follow-up which will complete on 31 May 2022 with results expected in October 2022.

Trial registration number ISRCTN14911850.

INTRODUCTION

lCerebral small vessel disease (SVD) is a major cause of stroke (lacunar ischaemic stroke), intracerebral haemorrhage and vascular and mixed dementias.¹ It is most commonly due to an intrinsic disorder of the brain's small perforating arterioles with endothelial dysfunction manifesting as impaired vasoreactivity, vascular stiffness, blood–brain barrier leakage and perivascular inflammation.¹ Currently, there is no specific secondary prevention for lacunar ischaemic stroke or SVD-associated cognitive decline.² Combined aspirin and clopidogrel increased bleeding³ and intensive antihypertensive therapy did not reduce recurrence or prevent cognitive decline⁴ in lacunar ischaemic stroke.

However, there are other potential interventions that might prevent SVD or reduce its development and progression, including: drugs that modulate the blood-brain barrier or lower blood lipids, immunosuppressive agents, neurotrophins, peroxisome proliferator-activated receptor-gamma agonists, rho-kinase antagonists, vitamins, antiinflammatory agents and xanthine oxidase inhibitors.²⁵Additionally, drugs that modulate the nitric oxide (NO)-cyclic guanylate cylasephosphodiesterase-5 and prostacyclin (PGI_o)cyclic adenylate cylase-phosphodiesterase-3 systems are attractive since they mimic key endogenous vaso-regulators.² Both NO and PGI, have vasodilator, antiplatelet, antileucocyte,⁶ antismooth muscle and proendothelial effects. NO may be administered orally as substrate (L-arginine or inorganic nitrate), organic nitrates (such as isosorbide mononitrate, ISMN) or drugs that inhibit PDE5 (such a dipyridamole⁷ or sildenafil) to increase and preserve levels of the NO second messenger, cyclic guanylate monophosphate. Although PGI_a has to be administered intravenously, PDE3 may be inhibited with cilostazol,⁸ which preserves levels of the PGI_o second messenger, cyclic adenylate monophosphate; cilostazol has showed promise in secondary prevention

1

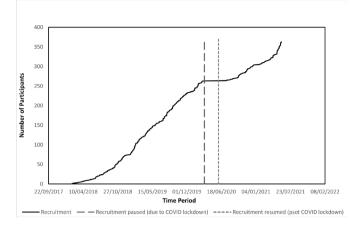


Figure 1 Recruitment by time.

trials in ischaemic stroke, which included large proportions of patients with lacunar stroke subtype⁸; and is widely used in East Asia. In addition, in experimental models, cilostazol reversed impaired oligodendrocyte precursor cell maturation which occurs when endothelial cells are dysfunctional thus potentially reducing myelin damage and facilitating its repair,⁹ and increased the astrocyte-toneuron lactate shuttle thus increasing energy supply and prolonging neuronal survival.¹⁰ Both actions are potentially relevant to reducing brain damage in SVD.

SVD can present clinically as lacunar ischaemic stroke, cognitive impairment, mobility and/or mood disorders, or be covert and detected on incidentally on brain imaging.¹

Table 1 Continued							
		Participants	cSVD	Score*			
Variable	N	All	None/mild	Moderate to severe			
ACE-inhibitors		132 (36.4)	32 (32.3)	100 (37.9)			
Angiotensin-II RA		54 (14.9)	14 (14.1)	40 (15.2)			
Renin inhibitor		0 (0.0)	0 (0.0)	0 (0.0)			
Beta-RA		41 (11.3)	10 (10.1)	31 (11.7)			
CCB		164 (45.2)	33 (33.3)	131 (49.6)			
Diuretic		51 (14.0)	13 (13.1)	38 (14.4)			
Alpha-RA		17 (4.7)	3 (3.0)	14 (5.3)			
Centrally active		2 (0.6)	1 (1.0)	1 (0.4)			
Antiplatelet	363	352 (97.0)	97 (98.0)	255 (96.6)			
Lipid lowering	363	341 (93.9)	91 (91.9)	250 (94.7)			
Proton pump inhibitor	363	128 (35.3)	30 (30.3)	98 (37.1)			
PDE5 inhibitor	363	7 (1.9)	3 (3.0)	4 (1.5)			
Grapefruit juice more than once a week	363	15 (0.04)	3 (0.03)	12 (0.04)			
Other drugs	363	236 (65.0)	67 (67.7)	169 (64.0)			
Nor of drugs taken/ day	363	4.0 (3.0, 4.0)	3.0 (3.0, 4.0)	4.0 (3.0, 5.0)			

Data are number (%), median (IQR).

*According to scan read at site.

†Minimisation variable.

\$\$Chool exams at age 16 (O-level/GCSE or equivalent) and 18 (A-level or equivalent). CCB, calcium channel blocker; F/T, full time; P/T, part time; RA, receptor antagonist; SVD, small vessel disease; TIA, transient ischaemic attack.
 Table 1
 Baseline characteristics by small vessel disease

 score as determined by recruiting site

score as determined by recruiting site							
		Participants	cSVD	Score*			
Variable	N	All	None/mild	Moderate to severe			
No of patients, N		363	99	264			
Demographics							
Age, years†	363	64.0(56.0, 72.0)	62.0(54.0, 69.0)	65.0(57.5, 73.0)			
≤70 years (%)	363	251 (69.1)	78 (78.8)	173 (65.5)			
Sex, female (%)	363	112 (30.9)	28 (28.3)	84 (31.8)			
modified Rankin Scale (/6)	363	1.0(0.0, 1.0)	1.0(0.0, 1.0)	1.0(0.0, 1.0)			
>1 (%)†	363	85 (23.4)	23 (23.2)	62 (23.5)			
Onset to randomisation (days)†	363	79.0(27.0, 244.0)	73.0(27.0, 244.0)	84.5(28.5, 246.5)			
≤100 (%)	363	206 (56.7)	64 (64.6)	142 (53.8)			
Age completing education (years)	363	16.0(15.0, 18.0)	16.0(15.0, 17.0)	16.0(15.0, 18.0)			
Highest education level (%)† test							
Primary school	363	2 (0.6)	0 (0.0)	2 (0.8)			
Secondary school	363	129 (35.5)	36 (36.4)	93 (35.2)			
O-level/GCSE or equivalent‡	363	114 (31.4)	34 (34.3)	80 (30.3)			
A-level or equivalent‡	363	54 (14.9)	17 (17.2)	37 (14.0)			
College or university undergraduate	363	37 (10.2)	7 (7.1)	30 (11.4)			
College or university postgraduate	363	27 (7.4)	5 (5.1)	22 (8.3)			
Lifestyle							
Smoking (%)†							
Current	363	67 (18.5)	17 (17.2)	50 (18.9)			
Past	363	154 (42.4)	36 (36.4)	118 (44.7)			
Never	363	142 (39.1)	46 (46.5)	96 (36.4)			
Medical history (%)							
Hypertension	363	267 (73.6)	58 (58.6)	209 (79.2)			
Hypertension, drug treated	363	258 (71.1)	55 (55.6)	203 (76.9)			
Hyperlipidaemia	363	281 (77.4)	75 (75.8)	206 (78.0)			
Hyperlipidaemia, drug treated	363	278 (76.6)	75 (75.8)	203 (76.9)			
Diabetes mellitus	363	80 (22.0)	20 (20.2)	60 (22.7)			
Insulin	363	18 (5.0)	5 (5.1)	13 (4.9)			
Oral agents	363	58 (16.0)	18 (18.2)	40 (15.2)			
Lifestyle	363	24 (6.6)	3 (3.0)	21 (8.0)			
Atrial fibrillation	363	5 (1.4)	1 (1.0)	4 (1.5)			
Heart failure	363	4 (1.1)	0 (0.0)	4 (1.5)			
Previous stroke	363	25 (6.9)	2 (2.0)	23 (8.7)			
Prior TIA	363	29 (8.0)	5 (5.1)	24 (9.1)			
Family history, young stroke	363	55 (15.2)	16 (16.2)	39 (14.8)			
Current medications (%)							
Anticoagulants	363	5 (1.4)	1 (1.0)	4 (1.5)			
Antibiotics	363	2 (0.6)	0 (0.0)	2 (0.8)			
Antihypertensive	363	277 (76.3)	67 (67.7)	210 (79.5)			
				Continued			

		Participants	cSVD	Score*	P value
Variable	Ν	All	None/mild	Moderate to evere	
No of patients, N		363	99	264	
Clinical data (%)					
SBP mm Hg†	363	143.0 (130.0, 157.0)	143.0 (128.0, 160.0)	143.0 (131.0, 155.5)	0.94
DBP mm Hg	363	83.0 (75.0, 90.0)	82.0 (75.0, 90.0)	83.0 (75.5, 90.0)	0.89
NIHSS (/42)†	363	0.0 (0.0, 2.0)	0.0 (0.0, 1.0)	0.0 (0.0, 2.0)	0.34
Duration of symptoms (days)	145	2.0 (1.0, 5.0)	2.0 (1.0, 7.0)	2.0 (1.0, 5.0)	0.30
Ongoing symptoms	363	218 (60.1)	58 (58.6)	160 (60.6)	0.73
Weakness, side of weakness	363	288 (79.3)	80 (80.8)	208 (78.8)	0.67
Left (%)	363	148 (40.8)	37 (37.4)	111 (42.0)	0.07
Right (%)	363	138 (38.0)	43 (43.4)	95 (36.0)	
Both (%)	363	2 (0.6)	0 (0.0)	2 (1.0)	
	363		. ,		0.53
Sensory loss, side of loss		148 (40.8)	43 (43.4)	105 (39.8)	0.53
Left (%)	363	74 (20.4)	19 (19.2)	55 (20.8)	
Right (%)	363	71 (19.6)	24 (24.2)	47 (17.8)	
Both (%)	363	3 (0.8)	0 (0.0)	3 (1.1)	
Ataxia	363	84 (23.1)	17 (17.2)	67 (25.4)	0.010
Left (%)	363	41 (11.3)	5 (5.1)	36 (13.6)	
Right (%)	363	39 (10.7)	12 (12.1)	27 (10.2)	
Neglect/inattention	363	6 (1.7)	1 (1.0)	5 (1.9)	0.56
Dysphasia	363	19 (5.2)	6 (6.1)	13 (4.9)	0.67
Dysarthria	363	111 (30.6)	28 (28.3)	83 (31.4)	0.56
Visual loss	363	11 (3.0)	6 (6.1)	5 (1.9)	0.039
Cognition					
MOCA total (/30)	363	26.0 (23.0, 28.0)	26.0 (23.0, 28.0)	26.0 (24.0, 28.0)	0.098
≤24 (%)	363	119 (32.8)	39 (39.4)	80 (30.3)	0.10
Trail making test part B					
Time (seconds)	359	110.0 (75.0, 170.0)	112.0 (74.0, 168.0)	108.0 (76.0, 171.0)	0.73
Points	359	25.0 (23.0, 25.0)	25.0 (23.0, 25.0)	25.0 (23.0, 25.0)	0.39
Investigations (%)					
Type of scan after index stroke (%)					
CT only	363	101 (27.8)	40 (40.4)	61 (23.1)	0.001
MRI only	363	43 (11.8)	9 (9.1)	34 (12.9)	0.32
Both	363	219 (60.3)	50 (50.5)	169 (64.0)	0.019
Stroke-CT scan (days)	320	1.0 (0.0, 1.0)	0.0 (0.0, 1.0)	1.0 (0.0, 1.0)	0.26
Stroke-MRI scan (days)	262	3.0 (1.0, 9.0)	2.0 (1.0, 5.0)	3.0 (1.0, 11.0)	0.13
Acute stroke lesion present*	363	296 (81.5)	68 (68.7)	228 (86.4)	<0.001
Lesion side of brain, left (%)*	363	164 (45.2)	45 (45.5)	119 (45.1)	0.95
	363	. ,		. ,	0.95
SVD score 1 (%)*		206 (56.7)	0 (0.0)	206 (78.0)	-
WMH/hypoattenuations, yes (%)*	363	179 (49.3)	0 (0.0)	179 (67.8)	-
Total SVD score*†	363	1.0 (0.0, 2.0)	0.0 (0.0, 0.0)	1.0 (1.0, 2.0)	-
SVD moderate/severe (%)*	363	264 (72.7)	0 (0.0)	264 (100.0)	-
Carotid stenosis (%)	363	315 (86.8)	90 (90.9)	225 (85.2)	0.16
Degree of stenosis left <50%	363	312 (86.0)	90 (90.9)	222 (84.1)	
Degree of stenosis right <50%	363	309 (85.1)	90 (90.9)	219 (83.0)	
ECG (%)					0.93

Continued

3

Con Table 2

		Participants	cSVD	Score*	P value
Variable	N	All	None/mild	Moderate to evere	
AF	360	0 (0.0)	0 (0.0)	0 (0.0)	
Other	360	13 (3.6)	4 (4.1)	9 (3.4)	
Haemoglobin, g/L	361	14.2 (13.3, 15.2)	14.3 (13.2, 15.3)	14.2 (13.3, 15.2)	0.55
Creatinine (µmol/l)	363	77.0 (66.0, 90.0)	82.0 (69.0, 91.0)	76.0 (66.0, 90.0)	0.21
eGFR (mL/min)	362	75.0 (75.0, 78.0)	75.0 (75.0, 81.0)	75.0 (75.0, 75.0)	0.10
Data are number (%), median (IQR). *According to scan read at site. †Minimisation variable. F/T, full time; NIHSS, National Institutes H	lealth stroke scal	e; P/T, part time; SVD, sn	nall vessel disease; WMH	, white matter hyperintensity	<i>′</i> .

These presentations are associated with increased short and long-term risk of recurrent stroke, cognitive decline, dementia and functional impairments.¹¹⁻¹⁵ However, although these clinical outcomes are highly relevant to patients and clinical services,^{15 16} the data on their rates long term, individually or in combination, are sparse, precluding reliable sample size estimations for clinical trials in SVD.¹⁷ Furthermore, it was unclear if patients with clinically evident lacunar ischaemic stroke could be identified with key prognostic variables determined accurately in routine clinical practice, or recruited in sufficient numbers rapidly enough, to make a clinical trial in stroke presentations of SVD feasible in a practical time period. This is because lacunar ischaemic stroke may be confused clinically with mild cortical ischaemic stroke,¹⁸ MRI is not always available acutely nor positive for small subcortical stroke,¹⁹ and long-term outcomes vary with severity of SVD lesions on brain imaging,¹³⁻¹⁵ making it necessary to minimise the randomisation on SVD severity.²⁰ Since lacunar ischaemic stroke is currently managed according to guidelines covering the whole of secondary prevention of ischaemic stroke (representing best medical care) and there is no justification currently for withholding secondary prevention, any novel drugs should be tested against a background of guideline secondary ischaemic stroke prevention.

The LACunar Intervention Trial-2 (LACI-1/2) series of trials are assessing the feasibility of recruiting patients with clinically evident lacunar ischaemic stroke and tolerability of treatment with ISMN and cilostazol,^{17 21-24} while also gathering data on outcome event rates, with the aim of testing these agents in a large phase III efficacy trial. In LACI-1, short-term administration of cilostazol and ISMN in addition to best medical care were well tolerated when the dose was escalated, without safety concerns, in patients with clinically evident lacunar ischaemic stroke 23 ; additionally, these drugs appeared to reduce arterial stiffness without effects on platelet function²² and appeared to improve cerebrovascular function.²⁴

The present trial, LACI-2, is testing the long-term feasibility and tolerability of administering cilostazol and ISMN to patients with clinically evident lacunar ischaemic stroke given on top of guideline secondary ischaemic

stroke prevention while assessing safety and gathering data on clinically relevant outcome event rates.¹⁷ Here, we present the statistical analysis plan (SAP) and baseline data of LACI-2.

METHODS

The LACunar Intervention Trial-2 (LACI-2) is a UK-based investigator-initiated, prospective, randomised, partial factorial, open-label, blinded-endpoint phase II feasibility trial of cilostazol and/or ISMN. Patients with clinically evident lacunar ischaemic stroke, with no limit on the time interval since the stroke, with capacity to consent and who were independent in activities of daily living, were randomised to cilostazol, ISMN, both or neither in a partial factorial design. Patients with contraindications to one of the trial drugs could be randomised to the other drug alone. Randomised treatment was given in all patients in addition to guideline stroke prevention therapies, typically clopidogrel or aspirin, antihypertensive drugs and statins. Patients requiring oral anticoagulation were excluded.

Full details of regulatory approvals, patient assessment, inclusion and exclusion criteria, randomisation, minimisation criteria (age, baseline modified Rankin scale (mRS), National Institutes Health stroke scale (NIHSS), time from stroke to randomisation, highest educational attainment, smoking, systolic BP), dose-escalation scheme, short-term and long-term assessments are given in the protocol paper.¹⁷

The presence of an infarct relevant to the clinical presentation and a simplified estimate of total SVD lesion severity score, adapted for use on CT or MRI and by people not expert in brain imaging of SVD,^{17 21} were determined at the recruiting site. All diagnostic CT or MRI, scans obtained at any stroke recurrence and 1-year follow-up MRI, were collected by the trial office for central adjudication.

The primary outcome is feasibility of recruitment and adherence to medication. Key secondary outcomes include recruitment of hospital sites and participants, drug tolerability, symptoms (such as headache, nausea, palpitations) which might deter drug adherence, safety

(bleeding, falls, death), recurrent vascular events (including stroke and myocardial infarction), cognition and function over 1 year of follow-up. Imaging outcomes (white matter hyperintensity (WMH) severity, new cortical or subcortical infarcts, lacunes, haemorrhage, microbleeds) are assessed with MRI at 1 year. Details of central CT and MRI adjudication are given in the LACI-2 protocol paper.¹⁷

LACI-2 will provide outcome event rates and hence information to estimate sample size, recruitment and trial procedures for a phase III trial based in clinical outcomes. Further information is given in online supplemental file and published protocol.¹⁷

We present here a complete listing of baseline data; data are number (%) and median (IQR), unless otherwise stated.

The full details of the SAP^{25 26} are given in the accompanying online supplemental file, Appendix S1 and is presented prior to locking of the study database so that analyses are not data driven or reported selectively.²⁷ The SAP also lists planned secondary analyses and substudies, and follows the layout suggested in guidelines.^{25 26}

RESULTS

The trial commenced in February 2018; recruitment was suspended due to COVID-19 restrictions on 17 March 2020 by the Sponsor and reopened on 10 June 2020; however, the additional delays in reinstating site approvals meant that there was a total of 4 months without recruitment. Following a 6-month extension, recruitment stopped on 31 May 2021 to allow a year of follow-up prior to close, a total of 40 months (36 months excluding COVID-19 suspension, figure 1).

Of a planned 400 participants, 363 (91%) were recruited from 26 UK hospitals. At baseline, the average age was 64 (range 31–87) years (table 1). There were 112 (31%) female patients, the median NIHSS was 0 (0, 0), the mRS was 2 in 85 (23%) patients, and the time from stroke onset to randomisation was 79.0 (27.0, 244.0) days (table 1). The median age for completing education was 16 years, with 118 (33%) participants having one or more A-level equivalent or above qualifications. Vascular risk factor rates included median blood pressure of 143.0 (130.0, 157.0)/83.0 (75.0, 90.0) mm Hg, current smoking in 67 (19%), drug-treated hypertension in 258 (71%), drug-treated hyperlipidaemia in 278 (77%), diabetes mellitus in 80 (22%), atrial fibrillation in 5 (1%), carotid stenosis of >50% left 3 (0.8%), right 6 (1.7%) and history of previous stroke in 25 (7%) (table 2).

Baseline clinical findings included persistent unilateral weakness in 288 (79%), sensory change in 148 (41%), neglect/inattention in 6 (2%), dysphasia in 19 (5%) and visual disturbance in 11 (3%) (table 2). On cognitive testing, the median Montreal Cognitive Assessment score was 26.0 (23.0, 28.0) with 119 (33%) having a score below 25 signifying cognitive impairment. The median score on

the trail making test, part B, a test of executive function, was 25.0 (23.0, 25.0) points.

A majority of participants, 219 (60%), had both an admission CT scan and MRI brain imaging (320, 88%, had CT and 229, 65%, had MRI) (table 2). Imaging findings as reported by the recruiting site included an acute ischaemic stroke lesion thought to be consistent with the lacunar stroke symptoms in 296 (82%), WMHs present in 179 (49%) and median modified total SVD score of 1.0 (0.0, 2.0).

On central adjudication, a visible index infarct was present in 319 (88%) and averaged 10×8×10 mm in size (table 3). Only one scan was considered to be normal, that is, to have neither an acute infarct responsible for the recent stroke symptoms or any background changes of SVD or atrophy. Microbleeds were present in 20% of patients in mainly lobar (28%), deep (41%) or mixed lobar/deep (31%) locations (table 4). Atrophy was present in 75% of participants. WMHs were present in 95% of participants: 76% had up to Fazekas 2 periventricular and 82% had up to Fazekas 2 deep WMH scores. Sixty-two per cent of participants had one or more old vascular lesions including lacunes present in 96% (table 5).

In univariate analyses and in comparison with participants with lower SVD scores (table 1), those with moderate or severe SVD scores were older and more likely to have had a previous stroke, be taking antihypertensive drugs and have ataxia, and less likely to have visual loss. Additionally, participants with more severe SVD scores were more likely to have had MRI at diagnosis and to have a relevant acute ischaemic stroke lesion present on imaging (table 3). Similarly, in comparison with participants with a low SVD score, those with a moderate/high score had more atrophy, WMHs and their severity (table 4), and the presence of old vascular lesions (table 5).

DISCUSSION

SVD is common worldwide and, so far, whether presenting covertly or with stroke, cognitive or physical impairment, or neuropsychiatric symptoms,²⁸ has no demonstrated interventions that prevent or limit its development and progression.^{2–4 16} The LACI trials are assessing the tolerability and feasibility of recruiting patients, the outcome event rates, and tolerability and safety of treatment with ISMN and cilostazol^{17 21–24} in addition to guideline secondary stroke prevention, with the aim of testing these agents in a large phase III efficacy trial.

The baseline characteristics presented here show that LACI-2 is representative of patients with clinically evident lacunar ischaemic stroke, a marker of SVD. In particular, the average age was younger than for other types of ischaemic stroke at 64 years,²⁹ there was a preponderance of males (69%)³⁰ and most participants had relatively few physical signs or impairments resulting from their stroke.¹⁵ A majority of participants were diagnosed with hypertension and taking antihypertensive medication, and most were taking antiplatelet or lipid lowering drugs

Open access

			SVD	Score	
Variable	N	All	Low	Moderate-severe	P value
Patients randomised		363	99	264	
Scan					
Scan type (%)					
СТ	363	320 (88.2)	90 (90.9)	230 (87.1)	0.32
Time to CT (days)	320	1.0 (0.0, 1.0)	0.0 (0.0, 1.0)	1.0 (0.0, 1.0)	0.19
MRI	362	263 (72.5)	60 (60.6)	203 (76.9)	0.0020
Time to MRI (days)	263	3.0 (1.0, 9.0)	2.0 (1.0, 5.0)	3.0 (1.0, 11.0)	0.097
Scan quality (%)					0.28
Good		237 (65.3)	66 (66.7)	171 (64.8)	
Moderate		118 (32.5)	29 (29.3)	89 (33.7)	
Poor		8 (2.2)	4 (4.0)	4 (1.5)	
Index lesion (%)					
Normal scan		1 (0.3)	1 (1.0)	0 (0.0)	1.00
Lesion present (type)					0.0006
Primary infarct		319 (87.9)	77 (77.8)	242 (91.7)	
Primary haemorrhage		0 (0.0)	0 (0.0)	0 (0.0)	
Mimic		0 (0.0)	0 (0.0)	0 (0.0)	
No acute lesion visible		43 (11.8)	21 (21.2)	22 (8.3)	
Infarct side of brain	320				0.22
Right		142 (44.4)	29 (37.7)	113 (46.5)	
Left		175 (54.7)	48 (62.3)	127 (52.3)	
Both		3 (0.9)	0 (0.0)	3 (1.2)	
Location (%)	320				
Small subcortical infarct		311 (97.2)	72 (93.5)	239 (98.4)	0.33
Internal capsule		110 (34.4)	21 (27.3)	89 (36.6)	
External capsule		4 (1.3)	1 (1.3)	3 (1.2)	
Lentiform nucleus		31 (9.7)	7 (9.1)	24 (9.9)	
Internal border zone		0 (0.0)	0 (0.0)	0 (0.0)	
Centrum semiovale		83 (25.9)	23 (29.9)	60 (24.7)	
Thalamus		64 (20.0)	17 (22.1)	47 (19.3)	
Cerebellum		0 (0.0)	0 (0.0)	0 (0.0)	
Brainstem lesion (pons)		18 (5.6)	3 (3.9)	15 (6.2)	
Medulla		1 (0.3)	0 (0.0)	1 (0.4)	
Non-small subcortical infarct					
MCA territory	320	9 (2.8)	4 (5.2)	5 (2.1)	0.23
PCA territory	320	2 (0.6)	1 (1.3)	1 (0.4)	0.42
Infarct size (mm)	320				
A/P		10.0 (8.0, 12.0)	10.0 (8.0, 12.0)	10.0 (8.0, 12.0)	0.97
R/L		9.0 (6.0, 11.0)	9.0 (6.0, 10.0)	9.0 (6.0, 11.0)	0.91
Cranio-caudal		10.0 (8.0, 15.0)	10.0 (8.0, 12.0)	10.0 (8.0, 15.0)	0.15

Data are number (%), median (IQR) or mean (SD). The number of participants with data is 363 unless stated.

Index lesion=main cause of stroke symptoms.

Index small subcortical infarct=acute lacunar.

Non-small subcortical infarct=large artery cortical or large subcortical or posterior circulation.

SVD, small vessel disease.

 Table 4
 Adjudicated baseline imaging characteristics
 (microhaemorrhages, atrophy, white matter hyperintensities and perivascular spaces) by small vessel disease score as determined by recruiting site

			SVD	Score	
Variable	N	All	Low	Moderate- severe	P value
Patients randomised		363	99	264	
Microhaemorrhages	196	39 (19.9)	9 (20.9)	30 (19.6)	0.85
No microhaemorrhages (%)	39				0.18
1		9 (23.1)	5 (55.6)	4 (13.3)	
2		7 (17.9)	3 (33.3)	4 (13.3)	
3		5 (12.8)	0 (0.0)	5 (16.7)	
4		2 (5.1)	0 (0.0)	2 (6.7)	
≥5		15 (38.5)	1 (11.1)	14 (46.7)	
Type of microhaemorrhages (%)	39				0.61
Lobar		11 (28.2)	2 (22.2)	9 (30.0)	
Deep		16 (41.0)	5 (55.6)	11 (36.7)	
Both		12 (30.8)	2 (22.2)	10 (33.3)	
Superficial siderosis present	41	2 (4.9)	0 (0.0)	2 (6.3)	1.00
Siderosis focal		2 (100.0)	0 (0.0)	2 (100.0)	1.00
Siderosis disseminated		0 (0.0)	0 (0.0)	0 (0.0)	-
Siderosis location					1.00
Left		1 (50.0)	0 (0.0)	1 (50.0)	
Right		0 (0.0)	0 (0.0)	0 (0.0)	
Both		1 (50.0)	0 (0.0)	1 (50.0)	
Atrophy (%)					
Brain volume reduction	362	272 (75.1)	63 (64.3)	209 (79.2)	0.0036
Central brain tissue volume	272				0.42
Moderate		199 (73.2)	50 (79.4)	149 (71.3)	
Severe		64 (23.5)	11 (17.5)	53 (25.4)	
Cortical brain tissue volume	272				0.12
Moderate		203 (74.6)	43 (68.3)	160 (76.6)	
Severe		5 (1.8)	0 (0.0)	5 (2.4)	
WMH (%)					
WMH present	362	342 (94.5)	87 (88.8)	255 (96.6)	0.0038
Anterior white matter lucency	342				
Adjoining ventricles		116 (33.9)	32 (36.8)	84 (32.9)	0.51
Covering ventricle to cortex		56 (16.4)	6 (6.9)	50 (19.6)	0.0057
Posterior white matter lucency	342				
Adjoining ventricles		114 (33.3)	27 (31.0)	87 (34.1)	0.60
Covering ventricle to cortex		55 (16.1)	10 (11.5)	45 (17.6)	0.18
Anterior and/or Posterior white matter lucency	342				
Adjoining ventricles		136 (39.8)	36 (41.4)	100 (39.2)	0.72

7

Table 4 Continue	d						
			SVD	Score			
Variable	N	All	Low	Moderate- severe	P value		
Covering ventricle to cortex		68 (19.9)	11 (12.6)	57 (22.4)	0.050		
Periventricular WMH Fazekas score	342				<0.0001		
1		131 (38.3)	48 (55.2)	83 (32.5)			
2		129 (37.7)	32 (36.8)	97 (38.0)			
3		80 (23.4)	7 (8.0)	73 (28.6)			
Deep WMH Fazekas score	342				0.0002		
1		178 (52.0)	59 (67.8)	119 (46.7)			
2		102 (29.8)	14 (16.1)	88 (34.5)			
3		42 (12.3)	5 (5.7)	37 (14.5)			
Periventricular and/or Deep WMH Fazekas score	342				<0.0001		
1		123 (36.0)	46 (52.9)	77 (30.2)			
2		137 (40.1)	34 (39.1)	103 (40.4)			
3		82 (24.0)	7 (8.0)	75 (29.4)			
Enlarged PVS (%), MRI only	194						
Enlarged PVS		194 (100.0)	43 (100.0)	151 (100.0)	1.00		
Basal ganglia score							
≤10		62 (32.0)	23 (53.5)	39 (25.8)	0.0008		
11–20		74 (38.1)	16 (37.2)	58 (38.4)			
20–40		36 (18.6)	4 (9.3)	32 (21.2)			
>40		22 (11.3)	0 (0.0)	22 (14.6)			
Centrum semiovale score							
≤10		30 (15.5)	10 (23.3)	20 (13.2)	0.30		
11–20		52 (26.8)	13 (30.2)	39 (25.8)			
20–40		82 (42.3)	15 (34.9)	67 (44.4)			
>40		30 (15.5)	5 (11.6)	25 (16.6)			
Data are number (%), median (IQR) or mean (SD). The number of participants with data is 363 unless stated.							

Da data is 363 unless stated. PVS, perivascular spaces; WMH, white matter hyperintensities.

as guideline secondary prevention of ischaemic stroke. Many were ex- smokers or current smokers. Very few had atrial fibrillation or carotid stenosis (about 1%) reflecting that, while emboli can enter and intracranial large artery atheroma may obstruct perforating cerebral arterioles, these are rare in, and uncommon causes of, lacunar ischaemic stroke.^{29 31}

A minority of participants had clinical cortical features such as dysphasia (19, 5.2%), neglect (6, 2%) or hemianopia (11, 3%), reflecting the overlap in symptoms between cortical and lacunar ischaemic stroke,¹⁸ and potential difficulty of recruiting pure lacunar syndrome populations on the basis of clinical syndrome and CT scanning in busy regional hospital stroke services. Nonetheless, it is reassuring that very few patients were found to have a primary cortical infarct on central expert scan

Table 5Adjudicated baseline imaging characteristics (oldvascular and non-stroke lesions) by small vessel diseasescore as determined by recruiting site

Score as determined by reorating site							
			SVD	Score			
Variable	N	All	Low	Moderate- severe	P value		
Patients randomised		363	99	264			
Old vascular lesions (%)	362	224 (61.9)	38 (38.8)	186 (70.5)	<0.0001		
Old cortical infarct	224	11 (4.9)	1 (2.6)	10 (5.4)	0.70		
Old striatocapsular infarct	224	2 (0.9)	1 (2.6)	1 (0.5)	0.31		
Old borderzone infarct	224	2 (0.9)	1 (2.6)	1 (0.5)	0.31		
Old lacunar infarct	224	216 (96.4)	36 (94.7)	180 (96.8)	0.54		
No of lacunes (%)	224				0.11		
1		40 (17.9)	10 (26.3)	30 (16.1)			
2		46 (20.5)	8 (21.1)	38 (20.4)			
3		42 (18.8)	8 (21.1)	34 (18.3)			
4		26 (11.6)	6 (15.8)	20 (10.8)			
≥5		62 (27.7)	4 (10.5)	58 (31.2)			
Old brainstem/ cerebellar non- lacunar infarcts	224	35 (15.6)	2 (5.3)	33 (17.7)	0.083		
Probable old haemorrhage	224	4 (1.8)	0 (0.0)	4 (2.2)	1.00		
Non-stroke lesions (%)							
Non-stroke lesion present	362	13 (3.6)	3 (3.1)	10 (3.8)	1.00		
Classification of non-stroke (%)	13						
Cerebral tumour		2 (15.4)	0 (0.0)	2 (20.0)	1.00		
Aneurysm		1 (7.7)	0 (0.0)	1 (10.0)	1.00		
Vascular malformation		1 (7.7)	1 (33.3)	0 (0.0)	1.00		
Other non-stroke classification		8 (61.5)	2 (66.7)	6 (60.0)	1.00		

Data are number (%), median (IQR), or mean (SD). The number of participants with data is 363 unless stated.

read (3%), the remaining 97% having either a recent small subcortical (ie, acute lacunar) infarct as the primary cause of symptoms, or no definite visible relevant lacunar infarct but no alternative cause for their symptoms.

On adjudicated brain imaging, most participants (264, 73%) were judged to have a moderate to severe SVD score by the recruiting hospital, consistent with patients with lacunar ischaemic stroke, and demonstrating that a simplified version of the SVD score, suitable for use on CT or MRI, can be applied in busy stroke services.³²

The trial is in follow-up and once this is completed, the database will be cleaned and locked. Therefore there may be minor changes in the baseline data between that provided here and in subsequent publications. Analysis will follow the SAP given here as a online supplemental file. If reasonable drug adherence and safety are confirmed, then a phase III trial will be designed and submitted for funding using the vascular and cognitive outcome event rates to power the next phase of the trial.

Acknowledgements We thank the patients and their relatives for their time and effort to participate in LACI-2; and the Trial Steering Committee, Sponsor, Data Monitoring Committee, Edinburgh Clinical Trials Unit staff, UK Clinical Research Network, Scottish Stroke Research Network, International Advisory Panel, and all staff at participating sites (listed in the protocol paper (Ref 17)), for their support.

Contributors JMW is the chief investigator, obtained ethics and regulatory approvals; PMB is Director of the Nottingham Stroke Trials Unit. KO is the current trial manager, responsible for daily running of the trial including regulatory compliance; FD is a Principle Investigator; AAM provides statistical expertise; IM and LJW are the trial statisticians; PMB drafted the manuscript; all other authors commented and edited it; all authors approved the final version for submission. JMW is the guarantor for the trial.

Funding The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work is supported by British Heart Foundation (CS/15/5/31475), the Alzheimer's Society (AS-PG-14–033), EU Horizon 2020 SVDs@Target (666881), MRC UK DRI, Fondation Leducq (16/05 CVD), NHS Research Scotland, The Stroke Association and Garfield-Weston Foundation, Chief Scientist Office (UC), and National Institute of Health Research. PMB is Stroke Association Professor of Stroke Medicine and an Emeritus NIHR Senior Investigator.

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval This study involves human participants and was approved by East Midlands Nottingham 2 Research Ethics Committee of the Health Research Authority number 17/EM/0077 on 10/05/2017. Participants gave informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed. Data availability statement No data are available. Not applicable since main paper/results yet to be analysed and published.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Philip M Bath http://orcid.org/0000-0003-2734-5132 Lisa J Woodhouse http://orcid.org/0000-0002-4472-1999 Fergus Doubal http://orcid.org/0000-0002-2769-3148 Joanna M Wardlaw http://orcid.org/0000-0002-9812-6642

REFERENCES

- 1 Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. *Lancet Neurol* 2019.
- 2 Bath PM, Wardlaw JM. Pharmacological treatment and prevention of cerebral small vessel disease: a review of potential interventions. *Int J Stroke* 2015;10:469–78.
- Benavente OR, Hart RG, *et al*, SPS3 Investigators. Effects of clopidogrel added to aspirin in patients with recent lacunar stroke. *N Engl J Med* 2012;367:817–25.
- 4 , Benavente OR, Coffey CS, *et al*, SPS3 Study Group. Blood-Pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. *Lancet* 2013;382:507–15.
- 5 Appleton JP, Scutt P, Sprigg N, *et al.* Hypercholesterolaemia and vascular dementia. *Clin Sci* 2017;131:1561–78.

Open access

- 6 Bath PM, Hassall DG, Gladwin AM, et al. Nitric oxide and prostacyclin. divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arterioscler Thromb 1991;11:254–60.
- 7 Leonardi-Bee J, Bath PMW, Bousser M-G, et al. Dipyridamole for preventing recurrent ischemic stroke and other vascular events: a meta-analysis of individual patient data from randomized controlled trials. Stroke 2005;36:162–8.
- 8 McHutchison C, Blair GW, Appleton JP, *et al.* Cilostazol for secondary prevention of stroke and cognitive decline: systematic review and meta-analysis. *Stroke* 2020;51:2374–85.
- 9 Rajani RM, Quick S, Ruigrok SR, et al. Reversal of endothelial dysfunction reduces white matter vulnerability in cerebral small vessel disease in rats. Sci Transl Med 2018;10. doi:10.1126/ scitranslmed.aam9507. [Epub ahead of print: 04 07 2018].
- 10 Hasel P, Dando O, Jiwaji Z, et al. Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat Commun 2017;8:15132.
- 11 Sprigg N, Gray LJ, Bath PMW, et al. Stroke severity, early recovery and outcome are each related with clinical classification of stroke: data from the 'Tinzaparin in Acute Ischaemic Stroke Trial' (TAIST). J Neurol Sci 2007;254:54–9.
- 12 Sprigg N, Gray LJ, Bath PMW, *et al.* Early recovery and functional outcome are related with causal stroke subtype: data from the tinzaparin in acute ischemic stroke trial. *J Stroke Cerebrovasc Dis* 2007;16:180–4.
- 13 Georgakis MK, Duering M, Wardlaw JM, et al. WMH and long-term outcomes in ischemic stroke: a systematic review and meta-analysis. *Neurology* 2019;92:e1298-e308.
- 14 Debette S, Schilling S, Duperron M-G, et al. Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis. JAMA Neurol 2019;76:81–94.
- 15 McHutchison CA, Cvoro V, Makin S, et al. Functional, cognitive and physical outcomes 3 years after minor lacunar or cortical ischaemic stroke. J Neurol Neurosurg Psychiatry 2019;90:436–43.
- 16 Wardlaw JM, Debette S, Jokinen H, et al. ESO guideline on covert cerebral small vessel disease. Eur Stroke J 2021;6:CXI–CLXII.
- 17 Wardlaw J, Bath PMW, Doubal F, et al. Protocol: the lacunar intervention trial 2 (LACI-2). A trial of two repurposed licenced drugs to prevent progression of cerebral small vessel disease. *Eur Stroke J* 2020;5:297–308.
- 18 Potter G, Doubal F, Jackson C, et al. Associations of clinical stroke misclassification ('clinical-imaging dissociation') in acute ischemic stroke. Cerebrovasc Dis 2010;29:395–402.
- 19 Makin SDJ, Doubal FN, Dennis MS, et al. Clinically confirmed stroke with negative diffusion-weighted imaging magnetic resonance imaging: longitudinal study of clinical outcomes, stroke recurrence, and systematic review. Stroke 2015;46:3142–8.

- 20 Appleton JP, Woodhouse LJ, Adami A, *et al.* Imaging markers of small vessel disease and brain frailty, and outcomes in acute stroke. *Neurology* 2020;94:e439–52.
- 21 Blair GW, Appleton JP, Law ZK, et al. Preventing cognitive decline and dementia from cerebral small vessel disease: the LACI-1 trial. protocol and statistical analysis plan of a phase IIa dose escalation trial testing tolerability, safety and effect on intermediary endpoints of isosorbide mononitrate and cilostazol, separately and in combination. Int J Stroke 2018;13:530–8.
- 22 Appleton JP, Blair GW, Flaherty K, et al. Effects of isosorbide mononitrate and/or cilostazol on hematological markers, platelet function, and hemodynamics in patients with lacunar ischaemic stroke: safety data from the lacunar Intervention-1 (LACI-1) trial. *Front Neurol* 2019;10:723.
- 23 Blair GW, Appleton JP, Flaherty K, et al. Tolerability, safety and intermediary pharmacological effects of cilostazol and isosorbide mononitrate, alone and combined, in patients with lacunar ischaemic stroke: the lacunar Intervention-1 (LACI-1) trial, a randomised clinical trial. *EClinicalMedicine* 2019;11:34–43.
- 24 Blair GW, Janssen E, Stringer MS, et al. Effects of cilostazol and isosorbide mononitrate on cerebral hemodynamics in the LACI-1 randomized controlled trial. *Stroke*2022;53:29–33.
- 25 Gamble C, Krishan A, Stocken D, et al. Guidelines for the content of statistical analysis plans in clinical trials. JAMA 2017;318:2337–43.
- 26 Hemming K, Kearney A, Gamble C, et al. Prospective reporting of statistical analysis plans for randomised controlled trials. *Trials*2020;21:898.
- 27 MacMahon S, Collins R. Reliable assessment of the effects of treatment on mortality and major morbidity, II: observational studies. *The Lancet* 2001;357:455–62.
- 28 Clancy U, Gilmartin D, Jochems ACC, et al. Neuropsychiatric symptoms associated with cerebral small vessel disease: a systematic review and meta-analysis. *Lancet Psychiatry* 2021;8:225–36.
- 29 Jackson CA, Hutchison A, Dennis MS, et al. Differing risk factor profiles of ischemic stroke subtypes: evidence for a distinct lacunar arteriopathy? Stroke 2010;41:624–9.
- 30 Jiménez-Sánchez L, Hamilton OKL, Clancy U, et al. Sex differences in cerebral small vessel disease: a systematic review and metaanalysis. *Front Neurol* 2021;12:756887.
- 31 Del Bene A, Makin SDJ, Doubal FN, et al. Variation in risk factors for recent small subcortical infarcts with infarct size, shape, and location. Stroke 2013;44:3000–6.
- 32 Staals J, Makin SDJ, Doubal FN, *et al.* Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. *Neurology* 2014;83:1228–34.

06/06/2022

<u>SUPPLEMENT – LACunar Intervention Trial 2 (LACI-2) Statistical Analysis</u> <u>Plan</u>

SECTION 1. ADMINISTRATIVE INFORMATION

1 Title and trial registration

1a Title: Lacunar Intervention Trial 2
 Acronym: LACI-2
 1b Registration: ISRCTN14911850; IRAS project number: 206480

2 SAP version: 1.5 (06 June 2022)

3 Protocol version: 7.0 (14 October 2020)

4 SAP revisions

4a Revision history:

Version 1.4 to 1.5

- Text added about the planned soft database lock and analysis (section 13a).
- Text added explaining comparison of dual versus no treatment (section 27a).
- Differences and p values removed (Tables 1, 5).
- Analyses comparing dual versus no treatment do not include all four groups so cilostazol only and ISMN groups removed (Table 9).

4b Justification for each revision: N/A

4c Timing of SAP revisions: These antedate data lock and analysis. Where there is a difference between the protocol (on website), published protocol ¹ and SAP, the SAP will take precedence.

5 Roles and responsibilities

Author: Philip M Bath

Responsible statisticians: Iris Mhlanga (blinded statistician), Lisa J Woodhouse (blinded statistician), Alan A Montgomery

Chief Investigator: Joanna M Wardlaw

Contributors and roles:

Philip M Bath, Iris Mhlanga, Lisa J Woodhouse, Fergus Doubal, Katherine Oatey, Alan A Montgomery, Joanna M Wardlaw, for the LACI-2 Investigators*

6 Signatures

Role	Name	Signature	Date
6a Author:	Philip Bath	Philip Bath Philip Bath (Jun 9, 2022 10:02 GMT+1)	Jun 9, 2022
6b Senior statistician	Alan Montgomery	A. Mordgonger	Jun 15, 2022
6c Chief Investigator:	Joanna Wardlaw	Joanna Wardlaw	Jun 9, 2022

SECTION 2. INTRODUCTION

7 Background and rationale

06/06/2022

Prior to analysis and presentation of the primary results, this publication presents the statistical analysis plan (SAP) ^{2 3} alongside the detailed listing of baseline characteristics presented in the accompanying baseline paper. This Supporting Information Appendix S1 details the full SAP and is presented prior to locking of the study database so that analyses are not data driven or reported selectively.⁴ In addition to the SAP, we also list planned secondary analyses and substudies. The SAP follows the recommended layout.^{2 3}

8 Objectives

8a Primary Objective: To determine whether a prospective, randomised trial of cilostazol and ISMN, individually or in combination, on a background of guideline stroke prevention therapy, in lacunar ischaemic stroke is feasible in the UK, thence proceeding as seamlessly as possible to a large phase III trial.

8b Secondary Objectives: To assess drug tolerability, safety, recruitment rates and accuracy, outcome event rates and retention in preparation to a large phase III randomised controlled trial to prevent recurrent lacunar stroke and physical and cognitive impairment.

This SAP focuses on these primary and secondary objectives. Planned follow-on publications will address tertiary questions.

SECTION 3. STUDY METHODS

9 Trial design

Prospective randomised open-label blinded end-point (PROBE) partial-factorial phase IIb/c trial aiming to recruit 400 patients recruited in UK Stroke Network Centres, with follow-up to one year.

10 Randomisation: By central computer-generated allocation at the University of Nottingham with minimisation on key prognostic factors: age, sex, stroke severity (NIHSS), dependency resulting from the stroke, systolic blood pressure \leq />140 mmHg, smoking status, time after stroke, and years of education.

11 Sample size/power considerations

Conservatively, we have used sample size calculations based on binary measures. Use of ordinal measures at the time of analysis will increase statistical power. **11a Event rates**: Annual event rates (Table A) were assessed from trials (SPS3,⁵ lacunar patients in ENOS,^{6 7} IST-3 ^{8 9}) and observational data (LADIS;¹⁰ our ¹¹⁻¹³ and other ¹⁴ studies). All-cause death rates were assumed to be 2.0% with upper 95% CI of 4% in 400 patients.⁵ Hence, the sample size was set at 400 participants.

Table A Annual absolute risks				(%) of oi	utcom	e even	ts after lacu	nar stroke	
	Vascular	Non-	Non-fatal	Non-	MI	MACE	Dependent	Cognitive	Dementia
	death	vascular	IS or TIA	fatal			(mRS 3-5)	impairment	
		death		ICH					
	1.8	0.5	2.5	0.5	0.6	3	15	30	15

 Table A Annual absolute risks (%) of outcome events after lacunar stroke

ICH: intracerebral haemorrhage; IS: ischaemic stroke; MACE: major adverse cardiac events; MI: myocardial infarction; mRS: modified Rankin scale; TIA: transient ischaemic stroke

11b Comparison of two groups in a future phase III trial: Assuming power 0.80, alpha=0.05, 1:1 randomisation, composite event rate (MACE, dementia, non-vascular death, new MRI signs) 45% and absolute reduction 9% (relative risk reduction 20%), and loss to follow-up 10%, a sample size of 1100 will be needed. A

Page 2 of 58

Supplemental material

06/06/2022

number of outcomes are relevant to patients with SVD and using these has implications for the sample size (Table B).

Composite model	А	В	Ci	Cil	D
Composite	MACE,	MACE,	MACE,		MACE,
outcome for	dementia,	dementia,	cognitive		cognitive
phase III	non-vascular	death	decline,		impairment,
	death, new		dependency		dependency,
	MR signs		decline, all-		all-cause
			cause death		death
1-beta (power)	80%	80%	80%	80%	80%
Event rate,	50%	10%	30%	30%	45%
control, pa					
Relative risk	20%	20%	20%	30%	20%
reduction					
Event rate,	40%	8%	24%	21%	36%
active, pa					
Total sample size	950	6626	1784	778	976
Total trial size,	1250	7400	2000	900	1100
including losses					

Table B. Sample size for composite outcome in main trial using estimated event rates.¹

MACE: major adverse cardiac events; MRI: magnetic resonance imaging

12 Framework

The primary objectives are to assess the feasibility of recruitment and adherence to medication.

13 Statistical interim analyses and stopping guidance

13a Interim analyses: Data are tabulated twice annually prior to Trial Steering Committee (TSC) and Data Monitoring Committee (DMC) meetings. No unblinded comparative analyses will be performed until data collection has been completed and the database locked.

Prior to the final database lock, the database will be subject to a soft lock and the provisional data tabulated and analysed for review by the TSC and DMC. Any final queries will be raised and resolved prior to final database lock. Members of staff still involved in the collation of data and resolution of data queries will not attend the meeting and the data reviewed at the meeting will remain strictly confidential until the point of final database lock to avoid any bias.

13b Adjustments of significance level: There is no planned adjustment.

13c Stopping rules: There are no formal stopping rules, but the DMC have responsibility to make recommendations to pause or modify the study, should there be any safety or efficacy considerations.

14 Timing of final analyses

These will be performed once data collection has been completed and the database has been locked.

15 Timing of outcome assessments

Assessments will be performed at baseline, 1-2 weeks, 3-4 weeks, 6 and 12 months (*Table C*).

Table C. Assessments at baseline and follow-up by time point (adapted from protocol and 1).

Page 3 of 58

LACI-2	CVD	1/1	5
LACIZ	JAF	V T 1	

06/06/2022

Assessment	Prior to Baseline	Visit 1 Baseline	Week 1-2	Week 3-4	Month 6	Month 12
Screening for eligibility and consent [†]	Xs					
Confirm and document ongoing consent		Xs				
Medical including drug history		Xs				
Assess MR or CT diagnostic scan; send copy to Edinburgh		Xs				
Randomisation		Xs				
Haematology (full blood count) and Biochemistry (urea, electrolytes, creatinine) – most recent value obtained since time of index stroke is acceptable unless clinical reason to expect change		Xs				
Blood pressure		Xs				X ^{S ‡}
Cognitive test: document years of education; Montreal Cognitive Assessment (MOCA)		Xs				
Timed Trail Making Test B		Xs				X ^{S ‡}
Dispense trial medication ²		Xs			Xs	
Structured questionnaire: symptoms; medication history and IMP tablet adherence			Xs	Xs	Xc	Xc
Structured questionnaire: recurrent vascular events, mRS, TICS, t-MOCA, SIS, ZUNG					Xc	Xc
Obtain IQCODE (post/phone) from relative						Xc
Follow-up brain MRI						Xs
Health Economics data: EQ-5D- 5L, EQ-VAS						Xc
Adverse event / con meds reporting as necessary			Xs	Xs	X ^{s,c}	X ^{s,c}

[†] Consent will be obtained before the data collection procedures commence or randomisation is performed. Randomisation occurs at the end of the baseline visit.

⁺ at 12 months in some centres only.

² Dispensing in 3-monthly intervals is allowed.

^s Assessment performed by local site team.

^c Assessment performed by blinded assessor who is part of the central trial team.

SIS: Stroke Impact Scale; TICS: telephone interview for cognitive status; t-MOCA: telephone MOCA.

SECTION 4. STATISTICAL PRINCIPLES

Page 4 of 58

06/06/2022

Confidence and p values 16 Level of statistical significance

The results of analyses and comparisons will be shown with p < 0.05.

17 Multiplicity

No adjustment will be made for multiplicity.

18 Levels of confidence intervals

The results of analyses and comparisons will be shown with 95% confidence intervals.

19 Adherence

19a Definition: 75% of patients will be able to tolerate trial medication, in at least half dose, up to one year after randomisation (i.e. less than 25% will stop trial medication completely through inability to tolerate the drugs).

19b Adherence presentation: See Table 4.

19c Protocol deviations: Protocol violations will be reported to the sponsor within 24 hours of becoming aware of the violation. Protocol deviations will be recorded in a protocol deviation log with these submitted to the sponsors every 3 months.

19d Protocol deviation presentation: Listing of violations and deviations and their frequency.

20 Analysis populations

Three populations are defined:

- 1. Intention-to-treat: All consented participants with a primary outcome measure.
- 2. Per protocol: All consented participants with a primary outcome measure who received at least one dose of randomised medication and who had no protocol violation, e.g. they fulfilled all eligibility criteria.
- 3. Safety: All consented participants who received at least one dose of randomised medication.

Multiple variable analyses will include all patients with complete data for the dependent and each independent variable. All available data will be used, and missing data will not be imputed.

SECTION 5. TRIAL POPULATION

21 Screening data

No screening logs will be kept so that data collection can be prioritised.

22 Eligibility

- 1. Clinical lacunar stroke syndrome.
- 2. Brain scanning with MR including diffusion imaging wherever possible, and obtained soon after the presentation with stroke, which showed either:
 - a. A recent, relevant (in time and location) acute small subcortical (i.e. lacunar) infarct on diffusion MR imaging.
 - b. If no visible acute small subcortical infarct on diffusion MR imaging then there is no competing pathology as a cause for stroke (e.g. no acute cortical infarct, no acute intra-cerebral haemorrhage, no stroke mimic such as tumour, subdural haematoma);
 - c. If only a CT brain scan is available, then there is a small relevant (in time and location) subcortical (i.e. acute lacunar) infarct, or if no infarct then there is no competing pathology as a cause for stroke (e.g. no acute cortical infarct, no acute intra-cerebral haemorrhage, no stroke mimic such as tumour, subdural haematoma).

Page 5 of 58

06/06/2022

- 3. Age > 30 years.
- 4. Independent in activities of daily living (modified Rankin Scale <=2).
- 5. Capacity to give consent themselves.

23 Recruitment

Recruitment will be summarised in a CONSORT flow diagram.

24 Withdrawal/follow-up

Withdrawals, and missed follow-ups and their timing will be summarised in the CONSORT flow diagram.

25 Baseline patient characteristics

25a Baseline characteristics: These will comprise demographic, education, premorbid function, cognitive ability, medical history, blood pressure, stroke investigations, clinical and brain imaging parameters (Table 1).

25b Summarisation: Data will be shown as number (%), median [interquartile range] or mean (standard deviation) as appropriate.

SECTION 6. ANALYSIS

26 Outcome definitions 26a Specifications:

Primary endpoint

Feasibility of a Phase III efficacy trial assessed as:

- Recruitment of sufficient patients, i.e. 400 patients in 24 months in the UK (and taking account of interruption due to COVID-19).
- >95% of randomised patients are retained for follow-up at one year.

Secondary outcomes - participant

Tolerability: 75% of patients will be able to tolerate trial medication, in at least half dose, up to one year after randomisation (i.e. less than 25% will stop trial medication completely through inability to tolerate the drugs). *Safety*

Sarety

- Symptoms of systemic or intracranial bleeding.
- The absolute risk of death, including fatal haemorrhage, does not differ significantly, i.e. fall outside the upper 95% CI of 2% per year on trial drugs versus no trial drugs, when given in addition to guideline stroke prevention drugs.
- There are no new ischaemic or haemorrhagic brain lesions or increase in SVD lesions on one year MRI significantly (at the p<0.01 level).

Efficacy

- Individual event-rates for stroke, TIA, myocardial ischaemia, cognitive impairment and dementia.
- The *combined rate* of recurrent stroke, MI, death, mild cognitive impairment (including dementia), dependency and new stroke lesions on scanning at 1 year will be 40-50% at one year after enrolment in order to allow detection of a modest but clinically-important reduction in poor outcomes in a phase III trial.
- Health economic measures include the health utility score (EQ-5D-5L) and the visual analogue score (EQVAS) at 12 months.

26b Units: Units will be shown in tables.

26c Calculations/transformations: Quality of life using UK weightings. **Brain frailty**

Based on neuroimaging:

Brain frailty = Atrophy + WML + Previous stroke lesion ⁷

Page 6 of 58

06/06/2022

 SVD score for CT = WML, lacunes; for MRI includes WMH, lacunes, PVS and microbleeds ¹⁵

Montreal cognitive assessment-modified (MoCA-m) trails

Since Trails A and B are performed, the MoCA trail is not collected but rather estimated from the Trails B score:

- If Trails B score <12 then MoCA trail = 0
- If Trails B score >=12 then MoCA trail = 1

27 Analysis methods

27a Methods

Primary endpoint

- Tabulation and graphical presentation of participant recruitment aiming for 400 participants in 24 months.
- Tabulation of retention of participants at one year aiming for >95%.
- Analyses of secondary outcomes

Tabulations of:

- Tolerability to trial medications aiming for 75% of patients taking at least half dose for up to one year after randomisation.
- Death, including fatal haemorrhage, aiming for less than outside the upper 95% CI of 2% per year.
- The *combined rate* of recurrent stroke, MI, death, cognitive impairment and dependency, aiming for 40-50% at one year after enrolment.

Comparison of rates of events between the treatment groups: cilostazol vs no cilostazol, ISMN vs no ISMN, and cilostazol and ISMN vs neither, for:

- Systemic or intracranial bleeding, recurrent cerebral and systemic vascular events, and vascular and non-vascular causes of death.
- Death, all cause.
- New ischaemic or haemorrhagic stroke lesion or increase in SVD lesions on MRI.
- Composite of: recurrent clinically-evident stroke, MI, death, cognitive impairment (including dementia) and dependency.
- Individual event: stroke (clinically-evident or imaging-detected ischaemic or haemorrhagic stroke to be reported separately), TIA, myocardial ischaemia, cognitive impairment and dementia.
- New infarcts and haemorrhages, absolute and change in WMH, microhaemorrhages, lacunes, atrophy imaging variables from central read of baseline imaging and one year MRI
- The comparisons of combined cilostazol and ISMN versus neither, whilst being very underpowered statistically, are presented since these may be the two groups studied in the planned follow-on trial.

Central tendency, comparisons and regressions will be analysed as follows (*Table D*).

Table D. Descript	ive and analytic	cal statistics		
	Binary	Nominal	Ordinal	Continuous
Central tendency	N (%)	N (%)	Median	Mean
and distribution			[interquartile	(standard
			range]	deviation)
Comparisons	Chi-square	Chi-square	Mann-Whitney U	t-test (pooled)
	(2x2)	(2x2, or	or Kruskal-Wallis	or 1-way
		rxc)		ANOVA
Regression	Binary logistic	-	Ordinal logistic	Multiple linear
	regression		regression (OLR)	regression
	(BLR)			(MLR)

Table D. Descriptive and analytical statistics

27b Covariate adjustment: Analyses will be adjusted for minimisation covariates:

Page 7 of 58

06/06/2022

• Age, sex, stroke severity (NIHSS), dependency resulting from the stroke, systolic blood pressure, smoking status, time after stroke, years of education.

Covariate adjustment with continuous variables (age, NIHSS, SBP, time after stroke, years of education) will use original, not dichotomised, data.

27c Assumption checking: The assumption of proportionality will be tested using the likelihood test.

27d Alternative methods: If the data fail the assumption of proportionality (tested using the likelihood test), we will use alternative methods such as multiple logistic regression.

27e Sensitivity analyses: In addition to assessment of raw data, the primary outcome will be analysed using additional statistical approaches in sensitivity analyses:

• Unadjusted analysis

• Imputation (multiple regression imputation) of missing data (adjusted) ¹⁶

27f Subgroup analyses: The secondary endpoint of the composite of: recurrent stroke, MI, death, cognitive impairment and dependency, will be studied in:

• Pre-specified subgroups comprising the minimisation variables.

• Any other variables demonstrating imbalance at baseline.

The results of these subgroup analyses will not be adjusted for multiple testing. These analyses are planned for the phase III efficacy trial and so will be tested in the present study.

28 Missing data

Missing data may occur at outcome level or at test level or within a test at component item level. Notably, some tests have to exclude components if performed by telephone and/or postal questionnaire or require a one year MRI. There is often a relationship between inability to complete outcome assessment and cognitive function or neurological deficit after stroke (e.g. inability to hold a pen) and so assumptions around random missingness may not be valid, even if the patterns of missing data initially suggest 'missing completely at random' status. Indeed, failure to complete a test may be an indicator of cognitive impairment rather than real missingness.

The approaches taken to missing cognitive and other data can have a substantial effect on epidemiological estimates.¹⁶ We will use the approach that makes greatest use of available data.

Where in study data are not available, or participants are lost to follow-up, we have permissions to allow for linkage of the study dataset to primary and secondary care electronic health records. This will allow for an assessment of clinical outcomes across all the participants.

29 Additional analyses

Global outcomes

We will assess global outcomes integrating multiple scores into one analysis and so provide a more holistic measure and improve statistical power. We will assess global outcomes comprising:

Recurrent ordinal stroke (clinically-evident and/or imaging-detected),¹⁷ ordinal MI, cognition (MoCA), dependency (mRS), quality of life (EQ-5D).

Analyses will use the Wei-Lachin test ¹⁸⁻²¹ with comparison of data at 1 year.

Cognitive domains, based on DSM-V

We will categorise cognition into 7- and 4-level ordinal scales based on DSM-V²² categorisation (Table E).²³ We will calculate scores for cognitive domains using subscores of MoCA (or TICS if missing) although we recognise that these global cognitive assessments have some test items that map to a more than one domain, e.g. the

Page 8 of 58

06/06/2022

clock drawing test in the MoCA includes aspects of attention, executive function and visual-perceptual function.

- Learning and memory: orientation in place (from MoCA), delayed recall of five word (MoCA), and recall and delayed recall of ten words (TICS)
- Language: using comprehension, semantic and recent memory (from MoCA; similar elements in TICS-M)
- Perceptual-motor function: Cube copy and clock drawing from MoCA
- Executive function: Trail making tests A & B, verbal fluency test (VFT-phonemic)-F (from MoCA); verbal fluency test (VFT-semantic)-animals; clock drawing test (from MoCA); digits forward (from MoCA); digits backward (from MoCA)
- Complex attention: using serial sevens subtraction (MoCA), letter tapping (MoCA)
- Social cognition is not classically assessed in cognitive screening tools and there are no agreed generic short form assessments for social cognition. Aspects of social cognition will be assessed through informant data and NPI-Q although these are not part of the core outcome set.

	Seven-level	Four-level categorisation
	categorisation	and operationalisation
	and operationalisation	
Normal cognition	No evidence of cognitive	No evidence of cognitive
Normal cognition	impairment	impairment
	(T-MoCA:20-22 AND TICS-	(T-MoCA:20-22 AND TICS-m:
	m: 25-39)	(1-MOCA.20-22 AND TICS-III. 25-39)
Minor	Single domain	
		Evidence of cognitive
Neurocognitive	Scores are reduced by > 1	impairment
disorder	point in only one cognitive	(T-MoCA: 15-19 OR TICS-m:
(mild cognitive	domain of T-MoCA	17-24)
impairment)		AND
	Multi-domain	No evidence of functional
	Scores are reduced by > 1	impairment
	point in more than one	(mRS <2 OR no change in mRS
	cognitive domain of T-MoCA	if pre-stroke mRS >1)
Major	Mild cognitive	Persisting cognitive impairment
neurocognitive	impairments	(T-MoCA score <19 OR TICS-
disorder	(T-MoCA 15-19 OR TICS-m	m<24 on more than one follow
	17-23)	up)
		AND
	Mild dysfunction	Functional impairment
	(mRS <3)	(mRS ≥2 or IQCODE >3.6 at
	Moderate cognitive	final follow-up)
	impairments	
	(T-MoCA 10-14 OR TICS-m	OR
	12-16)	OR
	AND	Any clinical diagnosis of
		dementia made independent of
	Moderate dysfunction	
	(mRS 3 or 4)	study, e.g. by memory clinic, in
	Severe cognitive	primary care,
	impairments	recording of dementia on death
	(T-MoCA <10 OR TICS-m	certification, prescription of
	<12)	cholinesterase inhibitor or
	AND	memantine
	Severe dysfunction	

Table E. Categorisation of cognition based on DSM V with operationalisation (adapted summary from ²³).

Page 9 of 58

06/06/2022

	In a care-home OR mRS 4,5	
Death	Death (mRS 6)	Death (mRS 6)

30 Harms

These are presented as serious adverse events in Tables 6a-c and 7a-c.

31 Statistical software

Statistical Analysis System (SAS) version 9.4, SAS Institute Incorporation, Cary, North Carolina.

SECTION 7. ADDITIONAL INFORMATION

Confounding covariates

The primary outcome is recruitment, and this will be tabulated; as such, there are no confounding covariates.

The possible primary outcome in any following trial will likely be a composite comprising MACE, dementia or mild cognitive impairment, non-vascular death and new MRI signs and these event rates will be assessed in the current trial. The components are likely to be correlated. Example confounding variables are given and these are categorised by whether these were 'measured', as per routine practice, or 'unmeasured'; the latter will lead to residual confounding.

Composite outcome

Measured variables: Age, highest educational attainment, main occupation, socioeconomic status, stroke severity, function at randomisation, cognitive ability at randomisation, diabetes mellitus, hypertension, smoking, carotid disease, blood pressure, prescribed medications, time from stroke to randomisation, presence of a relevant infarct and SVD lesion severity on brain imaging.

Unmeasured: Examples are social isolation, vision, hearing, cardiac function (atrial fibrillation and heart failure are documented) and post-stroke complications.

Governance

LACI-2 is funded by the British Heart Foundation (CS/15/5/31475) and approved by the East Midlands – Nottingham 2 Research Ethics Committee (Ref: 17/EM/0077). The Sponsor is the ACCORD office, University of Edinburgh and NHS Lothian. NHS Research and Development/ Innovation approval is given at each participating site. The study is adopted by the National Institute for Health Research (NIHR) Clinical Research Network in England and the Stroke Research Network in Scotland.

Minimising bias

Multiple approaches are taken to minimise bias: central data registration with realtime on-line validation; minimisation at randomisation; blinded central postal and/or telephone assessment of outcomes; blinded adjudication of neuroimaging; inclusion of patients enrolled in other studies (co-enrolment) where feasible; analysis by intention-to-enrol (i.e. all participants) and in pre-specified subgroups.

Publications, published and planned

- 1. Protocol published
- 2. SAP and baseline data this publication
- 3. Primary results paper
- 4. Other secondary publications as determined by the Trial Steering Committee

Page 10 of 58

06/06/2022

Data sharing

In the future, the anonymised study data will be made available for use by external investigators in appropriate analyses upon request via a publicly accessible portal (e.g. University of Edinburgh data share). Data from LACI-2 will also be shared as appropriate with individual patient data pooling projects involving stroke and dementia; a non-inclusive list includes:

- The Cerebrovascular diseases database, Edinburgh (https://www.ed.ac.uk/clinical-sciences/edinburgh-imaging/research/themesand-topics/analysis-and-processing/image-databanks/cerebrovasculardiseases-image-databank)
- Dementia Platform UK data portal (https://www.dementiasplatform.uk/)
- Virtual International Stroke Trials Archive-Cognition (VISTA-COG)
- Virtual International Cardiovascular and Cognitive Trials Archive (VICCTA, <u>http://www.virtualtrialsarchives.org</u>)
- META-VCI Map (https://metavcimap.org/)
- STROKOG (<u>https://cheba.unsw.edu.au/consortia/strokog</u>)

Similarly, anonymised neuroimaging data will be published.²⁴ The mechanisms and processes for managing external access will be determined during the course of the study. Proposals will be considered by the LACI-2 Trial Steering Committee.

06/06/2022

ABREVIATIONS

Abbreviation	Full Text
CI	Confidence Interval
cSVD	Cerebral small vessel disease
CT	Computed Tomography
DMC	Data Monitoring Committee
ECG	Electrocardiogram
EQVAS	EuroQol-Visual Analogue Scale
EQ-5D-5L	EuroQoL- 5 Dimension- 5 Level quality
	of life questionnaire
F/T	Full Time
ICH	Intracerebral Haemorrhage
IMP	Investigational Medicinal Product
IS	Ischaemic Stroke
ISMN	Isosorbide Mononitrate
LACI-2	Lacunar Intervention Trial-2
LACS	lacunar syndrome
LVH	left ventricular hypertrophy
MACE	Major Adverse Cardiac Events
MI	Myocardial Infarction
MOCA	Montreal Cognitive Assessment
MRI	Magnetic Resonance Imaging
mRS	Modified Rankin scale
NIHSS	National Institutes Health Stroke Scale
NO	Nitric oxide
PACS	Partial Anterior Circulation Syndrome;
PROBE	Prospective Randomised Open-label
	Blinded-Endpoint
PGI2	Prostacyclin
POCS	Posterior Circulation Syndrome
P/T	Part Time
SAP	Statistical Analysis Plan
SAS	Statistical Analysis System
SBP	Systolic Blood Pressure
SIS	Stroke Impact Scale
SVD	Small vessel disease
TACS	Total Anterior Circulation Syndrome
TIA	Transient Ischaemic Attack
TICS	Telephone Interview for Cognitive Status
t-MOCA	Telephone MOCA
TSC	Trial Steering Committee
WMH	White Matter Hyperintensity
	while matter ryperintensity

Supplemental material

LACI-2 SAP V1.5

06/06/2022

REFERENCES

- Wardlaw J, Bath PMW, Doubal F, et al. Protocol: The Lacunar Intervention Trial 2 (LACI-2). A trial of two repurposed licenced drugs to prevent progression of cerebral small vessel disease. *Eur Stroke J* 2020;5(3):297-308. doi: 10.1177/2396987320920110 [published Online First: 20200420]
- 2. Gamble C, Krishan A, Stocken D, et al. Guidelines for the Content of Statistical Analysis Plans in Clinical Trials. JAMA 2017;318(23):2337-43. doi: 10.1001/jama.2017.18556
- 3. Hemming K, Kearney A, Gamble C, et al. Prospective reporting of statistical analysis plans for randomised controlled trials. *Trials* 2020;21(1):898. doi: 10.1186/s13063-020-04828-8 [published Online First: 20201028]
- MacMahon S, Collins R. Reliable assessment of the effects of treatment on mortality and major morbidity, II: observational studies. *Lancet* 2001;357(9254):455-62. doi: 10.1016/s0140-6736(00)04017-4 [published Online First: 2001/03/29]
- SPS3 Investigators BO, Hart RG, McClure LA, Szychowski JM, Coffey CS, Pearce LA. Effects of clopidogrel added to asprin in patients with recent lacunar stroke. *New England Journal of Medicine* 2012;376(9):817-25. doi: 10.1056/NEJMoa1204133
- 6. Bath PM, Woodhouse L, Scutt P, et al. Efficacy of nitric oxide, with or without continuing antihypertensive treatment, for management of high blood pressure in acute stroke (ENOS): a partial-factorial randomised controlled trial. *Lancet* 2015;385(9968):617-28. doi: 10.1016/s0140-6736(14)61121-1 [published Online First: 2014/12/04]
- Appleton JP, Woodhouse LJ, Adami A, et al. Imaging markers of small vessel disease and brain frailty, and outcomes in acute stroke. *Neurology* 2020;94(5):e439-e52. doi: 10.1212/WNL.000000000008881 [published Online First: 2019/12/27]
- Sandercock P, Wardlaw JM, Lindley RI, et al. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial. *Lancet* 2012;379(9834):2352-63. doi: 10.1016/S0140-6736(12)60768-5 [published Online First: 20120523]
- 9. Sandercock P, Wardlaw JM, Dennis M, et al. Effect of thrombolysis with alteplase within 6 h of acute ischaemic stroke on long-term outcomes (the third International Stroke Trial IST-3):
 18-month follow-up of a randomised controlled trial. *Lancet Neurology* 2013;12(8):768-76. doi: 10.1016/s1474-4422(13)70130-3
- Schmidt R, Berghold A, Jokinen H, et al. White matter lesion progression in LADIS: frequency, clinical effects, and sample size calculations. *Stroke* 2012;43(10):2643-7. doi: 10.1161/strokeaha.112.662593 [published Online First: 2012/08/11]
- McHutchison CA, Cvoro V, Makin S, et al. Functional, cognitive and physical outcomes 3 years after minor lacunar or cortical ischaemic stroke. *J Neurol Neurosurg Psychiatry* 2019;90(4):436-43. doi: 10.1136/jnnp-2018-319134 [published Online First: 20181215]
- Wardlaw JM, Doubal FN, Valdes-Hernandez M, et al. Blood-brain barrier permeability and long-term clinical and imaging outcomes in cerebral small vessel disease. *Stroke* 2013;44(2):525-7. doi: 10.1161/strokeaha.112.669994 [published Online First: 2012/12/13]
- Chappell FM, Del Carmen Valdés Hernández M, Makin SD, et al. Sample size considerations for trials using cerebral white matter hyperintensity progression as an intermediate outcome at 1 year after mild stroke: results of a prospective cohort study. *Trials* 2017;18(1):78. doi: 10.1186/s13063-017-1825-7 [published Online First: 20170221]
- Pavlovic AM, Pekmezovic T, Tomic G, et al. Baseline predictors of cognitive decline in patients with cerebral small vessel disease. *Journal of Alzheimer's disease : JAD* 2014;42 Suppl 3:S37-43. doi: 10.3233/JAD-132606

Page 13 of 58

06/06/2022

15. Staals J, Makin SD, Doubal FN, et al. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. *Neurology* 2014;83(14):1228-34. doi:

10.1212/WNL.0000000000000837 [published Online First: 20140827]

- 16. Lees RA, Hendry Ba K, Broomfield N, et al. Cognitive assessment in stroke: feasibility and test properties using differing approaches to scoring of incomplete items. *Int J Geriatr Psychiatry* 2017;32(10):1072-78. doi: 10.1002/gps.4568 [published Online First: 2016/08/16]
- Bath PM, Woodhouse LJ, Appleton JP, et al. Antiplatelet therapy with aspirin, clopidogrel, and dipyridamole versus clopidogrel alone or aspirin and dipyridamole in patients with acute cerebral ischaemia (TARDIS): a randomised, open-label, phase 3 superiority trial. *Lancet* 2018;391(10123):850-59. doi: 10.1016/s0140-6736(17)32849-0 [published Online First: 2017/12/25]
- 18. Lachin J. Applications of the Wei-Lachin multivariate one-sided test for multiple outcomes on possibly different scales. *PLoS One* 2014;9(10) doi: 10.1371/journal.pone.0108784
- Muresanu D, Heiss W, Hoemberg V, et al. Cerebrolysin and Recovery After Stroke (CARS): A Randomized, Placebo-Controlled, Double-Blind, Multicenter Trial. *Stroke* 2016;47(1):151-9. doi: 10.1161/STROKEAHA.115.009416 [published Online First: 12 Nov 2015]
- 20. Appleton J, Scutt P, Sprigg N, et al. Hypercholesterolaemia and vascular dementia. *Clinical Sciences* 2017;131(14):1561-78. doi: 10.1042/CS20160382 [published Online First: 21 March 2017]
- Bath PM, Woodhouse LJ, Krishnan K, et al. Prehospital Transdermal Glyceryl Trinitrate for Ultra-Acute Intracerebral Hemorrhage: Data From the RIGHT-2 Trial. *Stroke* 2019;50(11):3064-71. doi: 10.1161/STROKEAHA.119.026389 [published Online First: 2019/10/07]
- 22. Sachdev PS, Blacker D, Blazer DG, et al. Classifying neurocognitive disorders: the DSM-5 approach. *Nature reviews Neurology* 2014;10(11):634-42. doi: 10.1038/nrneurol.2014.181 [published Online First: 2014/09/30]
- Wardlaw JM, Doubal F, Brown R, et al. Rates, risks and routes to reduce vascular dementia (R4vad), a UK-wide multicentre prospective observational cohort study of cognition after stroke: Protocol. *European Stroke Journal* 2021;6(1):89-101. doi: 10.1177/2396987320953312
- 24. Wardlaw J, Bath P, Sandercock P, et al. The NeuroGrid stroke examplar clinical trial protocol. International Journal of Stroke 2007;2:63-9.

Page 14 of 58

06/06/2022

Main paper tables

Table 1. Baseline characteristics by treatment group isosorbide mononitrate (ISMN), cilostazol (Cil) or both (ISMN+Cil).

Data are number (%), median [interquartile range] or mean (standard deviation).

	N	All	ISMN	No ISMN	Cil	No Cil	ISMN + Cil	ISMN only	Cil only	Neither
N	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX
Demographics										
Age (yr) †	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
<=70 years	XX	XX (X)	XX (X)	XX (X)	XX	XX (X)	XX	XX (X)	XX (X)	XX (X)
Sex, female (%)	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
modified Rankin Scale >1 (%) ⁺	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Onset to randomisation (days) [†]	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
<= 100 days	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Age completing education (yr)	XX	xx (x)	xx (x)	xx (x)	xx (x)	xx (x)	xx (x)	xx (x)	xx (x)	xx (x)
Highest education (%) †										
Primary	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Secondary	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
O' level/GCSE	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
A' level	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Undergraduate degree	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Postgraduate degree	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Lifestyle										
Smoking †										
Current	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Past	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Never	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
History (%)										
Hypertension, drug	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
treated										
Hyperlipidaemia, drug	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
treated										
Diabetes mellitus										
Oral agents	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Insulin	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Atrial fibrillation	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Heart failure	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Previous stroke	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Previous TIA	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)

Page 15 of 58

LACI-2 SAP V1.5		
Family history, young stroke	XX	XX (X
Medications Anticoagulants	xx	xx (x

06/06/2022

Family history, young stroke	ХХ	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
Medications										
Anticoagulants	хх	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
Antibiotics	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
Antihypertensives	XX	XX (X)	XX (X)	XX (X)	XX(X)	XX(X)	XX(X)	XX(X)	XX(X)	XX(X)
Antiplatelets	XX	XX (X)	XX (X)	XX (X)	XX(X)	XX(X)	XX(X)	XX (X)	XX (X)	XX (X)
Lipid-lowering	XX	XX (X)	XX (X)	XX (X)	XX(X)	XX(X)	XX(X)	XX (X)	XX (X)	XX (X)
Proton pump inhibitor	XX	XX (X)	XX (X)	XX (X)	XX(X)	XX(X)	XX (X)	XX (X)	XX (X)	XX (X)
			• • •	. ,	. ,	. ,	. ,	. ,		. ,
PDE5 inhibitor	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
Other drugs	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
No. medications /day	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
Grapefruit juice (%)	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
Clinical (%)	VV									
Systolic BP (mmHg) ⁺ Diastolic BP mmHg)	XX XX	XX (X) XX (X)	XX (X) XX (X)	XX (X) XX (X)	XX (X) XX (X)	XX (X) XX (X)				
Atrial fibrillation	XX XX	XX (X) XX (X)	XX (X) XX (X)		XX(X) XX(X)				XX (X) XX (X)	
NIHSS (/42) †	XX		XX (X)	XX (X)		<i>XX (X)</i> XX (X)	XX (X)	XX (X)		XX (X)
Weakness, Side (%)	~~	XX (X)	^^ (^)	XX (X)	XX (X)	^^ (^)	XX (X)	XX (X)	XX (X)	XX (X)
right	xx	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
left	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
both	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
Sensory loss (%)	~~~	XX (X)	XX (X)	XX (X)	XX (X)		, , , , , , , , , , , , , , , , , , ,		XX (X)	
Right	ХХ	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
Left	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
both	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
Ataxia (%)										
left	XX	XX (X)	XX (X)	XX (X)	XX	XX (X)	XX (X)	XX (X)	XX	XX (X)
right	XX	xx (x)	xx (x)	XX (X)	XX	XX (X)	XX (X)	XX (X)	XX	XX (X)
Neglect/inattention (%)	XX	XX (X)	XX (X)	XX (X)	XX (X)	xx (x)				
Dysphasia (%)	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
Dysarthria (%)	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
Visual loss (%)	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
Cognition		. ,	. ,	. ,		. ,	. ,	. ,		
MoĈA	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
MoCA <=24	XX	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)	XX (X)	
Verbal fluency F, <11	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
words			. ,							
Trails B, time	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
Trails B, points	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
Investigations	1									
CT scan	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
MRI Scan	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
Both scans	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
Stroke-CT scan (days)	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				
Stroke-MRI scan (days)	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)				

Page 16 of 58

LACI-2 SAP V1.5			06/06	5/2022						
Index infarct present (%)	XX	XX (X)								
Index infarct side, left (%)	хх	XX (X)								
cSVD moderate/severe (%)	хх	XX (X)								
WMH/ hypoattenuations	XX	XX (X)								
Carotid stenosis	XX	XX (X)	XX (X)	XX (X)	()		XX (X)	XX (X)		
Left >=50%	XX	XX (X)								
Right >=50%	XX	XX (X)								
ECG, (%)					. ,		. ,		. ,	
Sinus	XX	XX (X)								
AF	XX	XX (X)								
Haemoglobin (g/l)	XX	XX (X)								
Creatinine (µmol/l)	XX	XX (X)								
eGFR (ml/min)	XX	XX (X)								
Contraindications to treatment										
ISMN	XX	XX (X)								
Cilostazol	хх	XX (X)								

+ Minimisation variable

ECG: electrocardiogram; F/T: full time; ICH: intracerebral haemorrhage; IS: ischaemic stroke; LACS: lacunar syndrome; LVH: left ventricular hypertrophy; PACS; partial anterior circulation syndrome; POCS: posterior circulation syndrome; P/T: part time; TACS: total anterior circulation syndrome; TIA: transient ischaemic attack

Page 17 of 58

06/06/2022

Table 2. Feasibility measures.

Data are number (%).

Measure	Metric	Achieved
Primary		
Recruitment	400 patients	363/400
		(90.8%)
Retention of enrolees at 1 year	>95%	XX (X)
Secondary		
Tolerability	>=75% on at least half dose	XX (X)
ISMN alone		XX (X)
Cilostazol alone		XX (X)
Both ISMN and cilostazol		XX (X)
Safety		
Symptomatic extracranial		XX (X)
bleeding		
Symptomatic intracranial bleeding		XX (X)
Death	<2%	XX (X)
Stroke		XX (X)
Haemorrhage		XX (X)
Extracranial		XX (X)
Intracranial		XX (X)
Efficacy		XX (X)
Stroke		XX (X)
TIA		XX (X)
Myocardial infarction		XX (X)
Cognitive impairment		XX (X)
Dependency, mRS>2		XX (X)
Any of these	40-50%	XX (X)

Page 18 of 58

Table 3. Clinical Outcomes at 12 months.

Data are number (%), median [interquartile range] or mean (standard deviation). Analyses performed using binary logistic regression (BLR), ordinal logistic regression (OLR) or multiple linear regression (MLR) with adjustment for age, sex, time from stroke onset to randomisation, years of education, smoking status, and baseline mRS (dependency), stroke severity (NIHSS) and systolic blood pressure. Mean (SD) and MLR will be used instead of median [IQR] and OLR for ordinal scales with more than 7 levels (central limit theorem/large sample). The Wei-Lachin test is used to analyse multiple outcomes in parallel.

	ISMN	No ISMN	Difference	Cilostazol	No cilostazol	Difference	ISMN + Cil	Neither	Difference
Number		1300	(p)		CIIOStazoi	(p)	T CII		(p)
Composite			CPHR			CPHR			CPHR
Stroke	XX (X)	XX (X)	BLR	XX (X)	XX (X)	BLR	XX (X)	XX (X)	BLR
TIA	XX (X)	XX (X)	BLR	XX (X)	XX (X)	BLR	XX (X)	XX (X)	BLR
MI	XX (X)	XX (X)	BLR	XX (X)	XX (X)	BLR	XX (X)	XX (X)	BLR
Cognitive impairment	XX (X)	XX (X)	BLR	XX (X)	XX (X)	BLR	XX (X)	XX (X)	BLR
Dependency, mRS>2	XX (X)	XX (X)	BLR	XX (X)	XX (X)	BLR	XX (X)	XX (X)	BLR
Death	XX (X)	XX (X)	BLR	XX (X)	XX (X)	BLR	XX (X)	XX (X)	BLR
Cognition									
Cognition, 7 level			OLR			OLR			OLR
Normal	XX (X)	XX (X)		XX (X)	XX (X)		XX (X)	XX (X)	
Minor, single domain	XX	XX (X)		XX (X)	XX (X)		XX (X)	XX (X)	
Minor, multi-domain	(X) XX (X)	XX (X)		XX (X)	XX (X)		XX (X)	XX (X)	
Major, mild	XX (X)	XX (X)		XX (X)	XX (X)		XX (X)	XX (X)	

Page 19 of 58

06/06/2022

LACI-2 SAP V1.5		06/06/2	022						
Major, moderate	XX (X)	XX (X)		XX (X)	XX (X)		XX (X)	XX (X)	
Major, severe	(X) (X)	XX (X)		XX (X)	XX (X)		XX (X)	XX (X)	
Death	(X) XX (X)	XX (X)		XX (X)	XX (X)		XX (X)	XX (X)	
Cognition, 4 level	(^)		OLR			OLR			OLR
Normal	XX (X)	XX (X)		XX (X)	XX (X)		XX (X)	XX (X)	
Minor	(X) (X)	XX (X)		XX (X)	XX (X)		XX (X)	XX (X)	
Dementia	XX	XX (X)		XX (X)	XX (X)		XX (X)	XX (X)	
Death	(X) XX	XX (X)		XX (X)	XX (X)		XX (X)	XX (X)	
Memory/thinking	(X) XX	XX (X)	BLR	XX (X)	XX (X)	BLR	XX (X)	XX (X)	BLR
problem MoCA	(X) XX	XX (X)	MLR	XX (X)	XX (X)	MLR	XX (X)	XX (X)	MLR
TICS-m	(X) XX	XX (X)	MLR	XX (X)	XX (X)	MLR	XX (X)	XX (X)	MLR
Verbal fluency,	(X) XX	XX (X)	MLR	XX (X)	XX (X)	MLR	XX (X)	XX (X)	MLR
animal naming Trails B, time	(X) XX	XX (X)	MLR	XX (X)	XX (X)	MLR	XX (X)	XX (X)	MLR
Trails B, points	(X) XX	XX (X)	MLR	XX (X)	XX (X)	MLR	XX (X)	XX (X)	MLR
Dementia, clinical	(X) XX	XX (X)	BLR	XX (X)	XX (X)	BLR	XX (X)	XX (X)	BLR
diagnosis Clinical	(X)								
Systolic BP (mmHg)	XX	XX (X)	MLR	XX (X)	XX (X)	MLR	XX (X)	XX (X)	MLR
Diastolic BP (mmHg)	(X) XX (X)	XX (X)	MLR	XX (X)	XX (X)	MLR	XX (X)	XX (X)	MLR

Page 20 of 58

Stroke	Vasc	Neurol

LACI-2 SAP V1.5		06/06/2	022						
Heart rate (bpm)	XX (X)	XX (X)	MLR	XX (X)	XX (X)	MLR	XX (X)	XX (X)	MLR
mRS	XX	XX (X)	OLR	XX (X)	XX (X)	OLR	XX (X)	XX (X)	OLR
Disposition	(X) XX	XX (X)	OLR	XX (X)	XX (X)	OLR	XX (X)	XX (X)	OLR
ZDS	(X) XX	XX (X)	MLR	XX (X)	XX (X)	MLR	XX (X)	XX (X)	MLR
Clinical depression	(X) XX	XX (X)	BLR	XX (X)	XX (X)	BLR	XX (X)	XX (X)	BLR
EQ-5D-5L, as HU	(X) XX	XX (X)	MLR	XX (X)	XX (X)	MLR	XX (X)	XX (X)	MLR
EQ-VAS	(X) XX	XX (X)	MLR	XX (X)	XX (X)	MLR	XX (X)	XX (X)	MLR
SIS	(X) XX	XX (X)	MLR	XX (X)	XX (X)	MLR	XX (X)	XX (X)	MLR
Global	(X) XX	XX (X)	WLT	XX (X)	XX (X)	WLT	XX (X)	XX (X)	WLT
	(X)								

BP: blood pressure; MoCA: Montreal cognitive assessment-modified; mRS: modified Rankin Scale; SIS: stroke impact scale; TICSm: Telephone interview cognitive status- modified; ZDS: Zung depression scale Global: Recurrent ordinal stroke,¹⁷ ordinal MI, cognition (MoCA), dependency (mRS), stroke impact scale, quality of life (EQ-5D).

Table 4. Adherence to medication with at least half dose or more by randomised group: isosorbide mononitrate (ISMN), cilostazol (Cil) and both together.

Week	ISMN	No ISMN	р	Cilostazol	No cilostazol	р	ISMN	ISMN alone	Cil only	Neither	р
							+Cil				
1-2	XX (X)	XX (X)	Chi-sq	XX (X)	XX (X)	Chi-sq	XX (X)	XX (X)	XX (X)	XX (X)	Chi-sq
3-4	XX (X)	XX (X)	Chi-sq	XX (X)	XX (X)	Chi-sq	XX (X)	XX (X)	XX (X)	XX (X)	Chi-sq
26	XX (X)	XX (X)	Chi-sq	XX (X)	XX (X)	Chi-sq	XX (X)	XX (X)	XX (X)	XX (X)	Chi-sq
52	XX (X)	XX (X)	Chi-sq	XX (X)	XX (X)	Chi-sq	XX (X)	XX (X)	XX (X)	XX (X)	Chi-sq

A more detailed table by strata of drug adherence (i.e. 25%, 50%, 75% and 100% adherence) will also be prepared.

Page 22 of 58

06/06/2022

Table 5. Adjudicated baseline imaging characteristics by randomised group: isosorbide mononitrate (ISMN),cilostazol (Cil) and both together.

Data are number (%), median [IQR], or mean (standard deviation).

				No			ISMN			
						No	+	ISMN	Cil only	None
	N	All	ISMN	ISMN	Cil	Cil	Cil	only		
Patients randomised	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX
Scan										
Scan type(%)										
СТ	XX	XX (X)	XX (X)							
Time to scan (days)	XX	XX (X)	XX (X)							
MR	XX	XX (X)	XX (X)							
Time to scan (days)	XX	XX (X)	XX (X)							
Scan quality (%)										
Good	XX	XX (X)	XX (X)							
Moderate	XX	XX (X)	XX (X)							
Poor	XX	XX (X)	XX (X)							
Index Lesion (i.e. main cause of										
stroke symptoms) (%)										
Normal Scan	XX	XX (X)	XX (X)							
Lesion present (type)										
Primary Acute ischaemia	XX	XX (X)	XX (X)							
Primary haemorrhage	XX	XX (X)	XX (X)							
Mimic	XX	XX (X)	XX (X)							
No visible	XX	XX (X)	XX (X)							
Infarct side of brain										
Right	XX	XX (X)	XX (X)							
Left	xx	XX (X)	XX (X)							
Both	xx	XX (X)	XX (X)							
Location (%)										

Page 23 of 58

06/06/2022

	N		ISMN No No + All ISMN ISMN Cil Cil Cil							
		All		ISMN only	Cil only	None				
Index small subcortical (i.e. acute lacunar) infarct	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Internal capsule	xx	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
External capsule	xx	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Lentiform nucleus	xx	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Internal border zone	xx	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Centrum semiovale	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Thalamus	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Lacunar- small deep cerebellar lesion	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Lacunar- small deep brainstem lesion (Pons)	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Lacunar - Medulla	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Non-small subcortical (i.e. large artery cortical or large subcortical or posterior circulation) infarct										
MCA territory	xx	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
PCA territory	xx	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Infarct size (mm)										
A/P	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
R/L	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Cranio-caudal	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Microhaemorrhage (%)										
Microhaemorrhages	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
No. microhaemorrhages (%)										
1	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
2	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
3	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
4	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
>= 5	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)

Page 24 of 58

06/06/2022

	N			No ISMN	Cil	No Cil	ISMN	ISMN only	Cil only	None
		All	ISMN				+ Cil			
Lobar	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Deep	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Both	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Superficial siderosis present	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Siderosis focal	xx	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Siderosis disseminated	xx	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Siderosis location										()
Left	xx	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Right	xx	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Both	xx	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Atrophy										
Brain tissue volume reduction	xx	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Central brain tissue volume										
Modest	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Severe	xx	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Cortical brain tissue volume										
Modest	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Severe	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
White Matter hyperintensities (%)										
White matter hyperintensities	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Anterior white matter lucency										
Restricted region adjoining ventricles	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Covering ventricle to cortex	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Posterior white matter lucency										
Restricted region adjoining ventricles	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Covering ventricle to cortex	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)
Anterior and/or Posterior white matter lucency										

Page 25 of 58

06/06/2022

		ISMN									
	N	All	ISMN	No ISMN	Cil	No Cil	+ Cil	ISMN only	Cil only	None	
Restricted region adjoining ventricles	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
Covering ventricle to cortex	xx	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
Periventricular WMH Fazekas score											
1	xx	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
2	xx	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
3	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
Deep WMH Fazekas score											
1	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
2	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
3	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
Periventricular and/or Deep WMH Fazekas score											
1	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
2	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
3	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
Enlarged perivascular spaces (%)											
Enlarged perivascular spaces	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
Basal ganglia rating, worse side											
<=10	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
11-20	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
20-40	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
>40	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
Centrum semiovale rating, worse side											
<=10	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
11-20	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
20-40	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
>40	XX	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	XX (X)	
Old vascular lesions (%)											

Page 26 of 58

06/06/2022

							ISMN			
				No		No	+	ISMN	Cil	
	N	All	ISMN	ISMN	Cil	Cil	Cil	only	only	None
Old vascular lesions	XX	XX (X)								
Old cortical infarct	XX	XX (X)								
Old striatocapsular infarct	XX	XX (X)								
Old borderzone infarct	XX	XX (X)								
Old lacunar infarct	XX	XX (X)								
Number of lacunes (%)										
1	XX	XX (X)								
2	XX	XX (X)								
3	XX	XX (X)								
4	XX	XX (X)								
>=5	XX	XX (X)								
Old brainstem/cerebellar infarcts	XX	XX (X)								
Probable old haemorrhage	XX	XX (X)								
Non-stroke lesions (%)										
Non-stroke lesion	XX	XX (X)								
Classification of non-stroke (%)										
Cerebral tumour	XX	XX (X)								
Aneurysm	XX	XX (X)								
Vascular malformation	XX	XX (X)								
Other non-stroke classification	xx	XX (X)								

Page 27 of 58

06/06/2022

Table 6a. Serious adverse events for ISMN.

Data are number (%).

		All			Fatal	
	ISMN	No ISMN	Difference (p)	ISMN	No ISMN	Difference (p)
Number						
Treatment						
During	xx (xx.x)	xx (xx.x)	BLR	xx (xx.x)	xx (xx.x)	BLR
After	xx (xx.x)	xx (xx.x)	BLR			BLR
Relationship						
Possibly	xx (xx.x)	xx (xx.x)	Ch sq	xx (xx.x)	xx (xx.x)	Ch sq
Probably	xx (xx.x)	xx (xx.x)	-	xx (xx.x)	xx (xx.x)	-
Definitely	xx (xx.x)	xx (xx.x)	-	xx (xx.x)	xx (xx.x)	-

Table 6b. Serious adverse events for cilostazol.

Data are number (%).

		All			Fatal	
	Cilostazol	No Cilostazol	Difference (p)	Cilostazol	No Cilostazol	Difference (p)
Number						
Treatment						
During	xx (xx.x)	xx (xx.x)	BLR	xx (xx.x)	xx (xx.x)	BLR
After	xx (xx.x)	xx (xx.x)	BLR	xx (xx.x)	xx (xx.x)	BLR
Relationship						
Possibly	xx (xx.x)	xx (xx.x)	Ch sq	xx (xx.x)	xx (xx.x)	Ch sq
Probably	xx (xx.x)	xx (xx.x)	-	xx (xx.x)	xx (xx.x)	-
Definitely	xx (xx.x)	xx (xx.x)	-	xx (xx.x)	xx (xx.x)	-

Table 6c. Serious adverse events for combined ISMN and cilostazol. Data are number (%).

		All			Fatal	
	ISMN	No ISMN/cil	Difference	ISMN	No ISMN/cil	Difference
	/cil		(p)	/cil		(p)
Number						
Treatment						
During	xx (xx.x)	xx (xx.x)	BLR	xx (xx.x)	xx (xx.x)	BLR
After	xx (xx.x)	xx (xx.x)	BLR	xx (xx.x)	xx (xx.x)	BLR
Relationship						
Possibly	xx (xx.x)	xx (xx.x)	Ch sq	xx (xx.x)	xx (xx.x)	Ch sq
Probably	xx (xx.x)	xx (xx.x)	-	xx (xx.x)	xx (xx.x)	-
Definitely	xx (xx.x)	xx (xx.x)	-	xx (xx.x)	xx (xx.x)	-

06/06/2022

Table 7a. Participants with at least one serious adverse events by organrandomised to isosorbide mononitrate (ISMN) versus none.

Data are number (%); comparison by binary logistic regression.

	ISMN	All No ISMN	Difference (p)	ISMN	Fatal No ISMN	Difference (p)
Number						
Cardiovascular	XX	XX	(xx.x, xx.x),	XX	XX	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Myocardial infarction	XX 、	XX 、	(xx.x, xx.x),	XX	XX	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Nervous system	, XX	XX 、	(xx.x, xx.x),	XX 、	XX	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Ischaemic stroke	XX 、	XX 、	(xx.x, xx.x),	XX	XX	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Transient ischaemic	XX	XX	(xx.x, xx.x),	XX	XX	(xx.x, xx.x),
attack	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Intracerebral	XX	XX	(xx.x, xx.x),	XX	XX	(xx.x, xx.x),
haemorrhage	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Respiratory	XX	XX	(xx.x, xx.x),	XX	XX	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Gastrointestinal	XX	XX	(xx.x, xx.x),	xx	XX	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Genitourinary	XX	XX	(xx.x, xx.x),	XX	XX	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Secondary	XX	XX	(xx.x, xx.x),	XX	xx	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Haematological	XX	XX	(xx.x, xx.x),	xx	XX	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Metabolic/endocrine	XX	XX	(xx.x, xx.x),	xx	XX	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Musculoskeletal	XX	XX	(xx.x, xx.x),	XX	xx	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Infection/sepsis	XX	XX	(xx.x, xx.x),	xx	XX	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Tumour/malignancy	xx	xx	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),
,	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Other	`xx´	`xx´	(xx.x, xx.x),	`xx´	` xx ´	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Total	`xx´	`xx ´	(xx.x, xx.x),	`xx´	` xx ´	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx

Page 29 of 58

06/06/2022

Table 7b. Participants with at least one serious adverse events by organrandomised to cilostazol (Cil) versus none.

Data are number (%); comparison by binary logistic regression.

	Cil	All No Cil	Difference (p)	Cil	Fatal No Cil	Difference (p)
Number						
Cardiovascular	XX	XX	(xx.x, xx.x),	XX	XX	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Myocardial infarction	XX	XX	(xx.x, xx.x),	XX	XX	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Nervous system	XX	XX	(xx.x, xx.x),	XX	XX	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Ischaemic stroke	XX	xx	(xx.x, xx.x),	XX	xx	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Transient ischaemic	XX	xx	(xx.x, xx.x),	XX	xx	(xx.x, xx.x),
attack	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Intracerebral	XX	xx	(xx.x, xx.x),	XX	xx	(xx.x, xx.x),
haemorrhage	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Respiratory	xx	xx	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Gastrointestinal	xx	xx	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Genitourinary	xx	xx	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Secondary	XX	xx	(xx.x, xx.x),	XX	xx	(xx.x, xx.x),
-	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Haematological	xx	xx	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),
_	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Metabolic/endocrine	xx	xx	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Musculoskeletal	XX	xx	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Infection/sepsis	`xx´	xx	(xx.x, xx.x),	` xx ´	xx	(xx.x, xx.x),
· ·	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Tumour/malignancy	`xx´	xx	(xx.x, xx.x),	` xx ´	`xx´	(xx.x, xx.x),
,	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Other	`xx´	`xx´	(xx.x, xx.x),	` xx ´	`xx´	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Total	`xx´	`xx´	(xx.x, xx.x),	` xx ´	`xx´	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx

Page 30 of 58

06/06/2022

Table 7c. Participants with at least one serious adverse events by organ randomised to combined isosorbide mononitrate (ISMN) and cilostazol (Cil) versus neither.

Data are number (%); comparison by binary logistic regression.

	ISMN /Cil	All No ISNM /Cil	Difference (p)	ISMN /Cil	Fatal No ISNM /Cil	Difference (p)
Number						
Cardiovascular	XX	XX	(xx.x, xx.x),	xx	XX	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Myocardial infarction	xx	XX	(xx.x, xx.x),	XX	XX	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Nervous system	xx	xx	(xx.x, xx.x),	ХХ	XX	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Ischaemic stroke	xx	xx	(xx.x, xx.x),	XX	xx	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Transient ischaemic	xx	xx	(xx.x, xx.x),	XX	xx	(xx.x, xx.x),
attack	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Intracerebral	xx	XX	(xx.x, xx.x),	xx	XX	(xx.x, xx.x),
haemorrhage	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Respiratory	xx	xx	(xx.x, xx.x),	XX	xx	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Gastrointestinal	xx	XX	(xx.x, xx.x),	XX	XX	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Genitourinary	xx	XX	(xx.x, xx.x),	xx	XX	(xx.x, xx.x),
-	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Secondary	xx	xx	(xx.x, xx.x),	XX	xx	(xx.x, xx.x),
-	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Haematological	xx	xx	(xx.x, xx.x),	XX	xx	(xx.x, xx.x),
_	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Metabolic/endocrine	xx	xx	(xx.x, xx.x),	XX	xx	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Musculoskeletal	xx	xx	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Infection/sepsis	xx	xx	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Tumour/malignancy	` xx ´	`xx´	(xx.x, xx.x),	` xx ´	`xx´	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Other	` xx ´	`xx´	(xx.x, xx.x),	` xx ´	`xx´	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx
Total	` xx ´	xx	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),
	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx

Page 31 of 58

06/06/2022

Table 8. Targeted symptoms occurring at any time on treatment on isosorbide mononitrate (ISMN), cilostazol (cil) or both.

Data are number (%); comparison by binary logistic regression.

	ISMN	No ISMN	Difference (p)	Cil	No cil	Difference (p)	ISMN /Cil	No ISMN /Cil	Difference (p)
Headache	XX	xx (xx.x)	(xx.x, xx.x),	XX	XX	(xx.x, xx.x),	XX	xx (xx.x)	(xx.x, xx.x),
	(xx.x)		p=0.xxx	(xx.x)	(xx.x)	p=0.xxx	(xx.x)		p=0.xxx
Stopped normal	xx	xx (xx.x)	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),	xx	xx (xx.x)	(xx.x, xx.x),
activities	(xx.x)		p=0.xxx	(xx.x)	(xx.x)	p=0.xxx	(xx.x)		p=0.xxx
Palpitations	xx	xx (xx.x)	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),	xx	xx (xx.x)	(xx.x, xx.x),
	(xx.x)		p=0.xxx	(xx.x)	(xx.x)	p=0.xxx	(xx.x)		p=0.xxx
Stopped normal	xx	xx (xx.x)	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),	xx	xx (xx.x)	(xx.x, xx.x),
activities	(xx.x)		p=0.xxx	(xx.x)	(xx.x)	p=0.xxx	(xx.x)		p=0.xxx
Dizziness	XX	xx (xx.x)	(xx.x, xx.x),	XX	XX	(xx.x, xx.x),	XX	xx (xx.x)	(xx.x, xx.x),
	(xx.x)	. ,	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx	(xx.x)		p=0.xxx
Stopped normal	xx	xx (xx.x)	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),	xx	xx (xx.x)	(xx.x, xx.x),
activities	(xx.x)		p=0.xxx	(xx.x)	(xx.x)	p=0.xxx	(xx.x)		p=0.xxx
Loose stools	XX	xx (xx.x)	(xx.x, xx.x),	XX	XX	(xx.x, xx.x),	XX	xx (xx.x)	(xx.x, xx.x),
	(xx.x)	、	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	. ,	p=0.xxx
Stopped normal	xx	xx (xx.x)	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),	xx	xx (xx.x)	(xx.x, xx.x),
activities	(xx.x)	. ,	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx	(xx.x)		p=0.xxx
Nausea	XX	xx (xx.x)	(xx.x, xx.x),	XX	XX	(xx.x, xx.x),	XX	xx (xx.x)	(xx.x, xx.x),
	(xx.x)	. ,	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx	(xx.x)		p=0.xxx
Stopped normal	xx	xx (xx.x)	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),	xx	xx (xx.x)	(xx.x, xx.x),
activities	(xx.x)		p=0.xxx	(xx.x)	(xx.x)	p=0.xxx	(xx.x)		p=0.xxx
Bleeding	xx	xx (xx.x)	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),	xx	xx (xx.x)	(xx.x, xx.x),
-	(xx.x)	. ,	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx	(xx.x)		p=0.xxx
Stopped normal	xx	xx (xx.x)	(xx.x, xx.x),	xx	xx	(xx.x, xx.x),	xx	xx (xx.x)	(xx.x, xx.x),
activities	(xx.x)	. ,	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx	(xx.x)		p=0.xxx
Bruising	` xx ´	xx (xx.x)	(xx.x, xx.x),	` xx ´	` xx ´	(xx.x, xx.x),	` xx ´	xx (xx.x)	(xx.x, xx.x),
2	(xx.x)	、	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	. ,	p=0.xxx
Stopped normal	` xx ´	xx (xx.x)	(xx.x, xx.x),	` xx ´	` xx ´	(xx.x, xx.x),	` xx ´	xx (xx.x)	(xx.x, xx.x),
activities	(xx.x)	. ,	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	. ,	p=0.xxx
Falls	` xx ´	xx (xx.x)	(xx.x, xx.x),	` xx ´	`xx ´	(xx.x, xx.x),	` xx ´	xx (xx.x)	(xx.x, xx.x),
	(xx.x)	. ,	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	. ,	p=0.xxx
Stopped normal	` xx ´	xx (xx.x)	(xx.x, xx.x),	` xx ´	` xx ´	(xx.x, xx.x),	` xx ´	xx (xx.x)	(xx.x, xx.x),
activities	(xx.x)	. ,	p=0.xxx	(xx.x)	(xx.x)	p=0.xxx	(xx.x)	. ,	p=0.xxx

Page 32 of 58

Table 9. Adjudicated 1 year MRI imaging characteristics by randomised group: isosorbide mononitrate (ISMN), cilostazol (Cil) and both together.

Data are number (%), median [IQR], or mean (standard deviation).

	N	All	ISMN	No ISMN	OR/MD/ HR (95%CI)	p- value	Cil	No Cil	OR/MD/ HR (95%CI)	value	ISMN + Cil	None	OR/MD/ HR (95%CI)	value
Patients randomised	xx	XX	XX	ХХ			XX	XX			XX	XX		
Scan														
Time to scan (days)	xx	XX (X)	XX (X)	XX (X)	MLR	XX	XX (X)	XX (X)	MLR	XX	XX (X)	XX (X)	MLR	XX
Scan quality (%)					OLR	XX			OLR	XX			OLR	XX
Good	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Moderate	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Poor	хх	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Appearance of the index infarct now (%)														
Completely cavitated - visible on T2, FLAIR and T1"	xx	XX (X)	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	XX
Partially cavitated - lacy	xx	XX (X)	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Partially cavitated - hole + large WMH rim	xx	XX (X)	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	XX
Partially cavitated - FLAIR cavity but not=CSF	xx	XX (X)	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	XX
Partially cavitated - FLAIR=WMH T2=cavity	xx	XX (X)	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Partially cavitated - visible on T2 not FLAIR	xx	XX (X)	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	XX
Not cavitated (WML-like)	хх	XX (X)	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Disappeared	xx	XX (X)	XX (X)	XX (X)	BLR	хх	XX (X)	XX (X)	BLR	xx	XX (X)	XX (X)	BLR	XX
Become visible	xx	XX (X)	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	XX
Never visible	xx	XX (X)	XX (X)	XX (X)	BLR	хх	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	XX
Evidence of new stroke (%)														

Page 33 of 58

06/06/2022

	N	All	ISMN	No ISMN	OR/MD/ HR (95%CI)	p- value	Cil	No Cil	OR/MD/ HR (95%CI)	p- value	ISMN + Cil	None	OR/MD, HR (95%CI	value
Ischaemic	XX	XX (X)	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Haemorrhagic	xx	XX (X)	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Microhaemorrhages (%)	XX	XX (X)	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	XX
No. microhaemorrhages (%)					OLR	XX			OLR	XX			OLR	XX
1	XX	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
2	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
3	XX	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
4	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
>= 5	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Change from baseline	xx	XX [XX, XX]	XX [XX, XX]	XX [XX, XX]	OLR	хх	XX [XX, XX]	XX [XX, XX]	OLR	xx	XX [XX, XX]	XX [XX, XX]	OLR	XX
Small vessel disease score														
Total	xx	XX [XX, XX]	XX [XX, XX]	XX [XX, XX]	OLR	ХХ	XX [XX, XX]	XX [XX, XX]	OLR	ХХ	XX [XX, XX]	XX [XX, XX]	OLR	XX
Change from baseline	XX	XX [XX, XX]	XX [XX, XX]	XX [XX, XX]	OLR	XX	XX [XX, XX]	XX [XX, XX]	OLR	ХХ	XX [XX, XX]	XX [XX, XX]	OLR	XX
Atrophy														
Brain tissue volume reduction	XX	XX (X)	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	XX
Central brain tissue volume					OLR	XX			OLR	XX			OLR	XX
Modest	XX	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Severe	XX	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Cortical brain tissue volume					OLR	XX			OLR	XX			OLR	XX
Modest	XX	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Severe	XX	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Change from baseline					OLR	XX			OLR	XX			OLR	XX
More	XX	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Less	XX	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
None	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		

Page 34 of 58

06/06/2022

					OR/MD/ HR	p- value		No	OR/MD/ HR	p- value	ISMN +		OR/MD HR	/ p- value
	Ν	All	ISMN	No ISMN	(95%CI)		Cil	Cil	(95%CI)		Cil	None	(95%CI)
White Matter hyperintensities (%)														
White matter hyperintensities	xx	XX (X)	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Anterior white matter lucency														
Restricted region adjoining ventricles	xx	XX (X)	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Covering ventricle to cortex	xx	XX (X)	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Posterior white matter lucency														
Restricted region adjoining ventricles	xx	XX (X)	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Covering ventricle to cortex	xx	XX (X)	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Anterior and/or Posterior white matter lucency														
Restricted region adjoining ventricles	xx	XX (X)	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Covering ventricle to cortex	xx	XX (X)	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Periventricular WMH Fazekas score					OLR	XX			OLR	XX			OLR	XX
1	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
2	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
3	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Change from baseline	хх	XX [XX, XX]	XX [XX, XX]	XX [XX, XX]	OLR	ХХ	XX [XX, XX]	XX [XX, XX]	OLR	XX	XX [XX, XX]	XX [XX, XX]	OLR	XX
Deep WMH Fazekas score					OLR	ХХ			OLR	XX			OLR	XX
1	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
2	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
3	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Change from baseline	хх	XX [XX, XX]	XX [XX, XX]	XX [XX, XX]	OLR	ХХ	XX [XX, XX]	XX [XX, XX]	OLR	XX	XX [XX, XX]	XX [XX, XX]	OLR	XX
Periventricular and/or Deep WMH Fazekas score					OLR	хх			OLR	ХХ			OLR	ХХ
1	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
2	хх	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		

Page 35 of 58

06/06/2022

	N	All	ISMN	No ISMN	OR/MD/ HR (95%CI)	p- value	Cil	No Cil	OR/MD/ HR (95%CI)	p- value	ISMN + Cil	None	OR/MD/ HR (95%CI	value
3	XX	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Change from baseline	xx	XX [XX, XX]	XX [XX, XX]	XX [XX, XX]	OLR	XX	XX [XX, XX]	XX [XX, XX]	OLR	ХХ	XX [XX, XX]	XX [XX, XX]	OLR	XX
WMH change from randomisation	xx	XX (X)	XX (X)	XX (X)	BLR	хх	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Frontal (%)					OLR	XX			OLR	XX			OLR	XX
More	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Less	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
No Change	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Parietal (%)					OLR	XX			OLR	XX			OLR	XX
More	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Less	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
No Change	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Occipital (%)					OLR	XX			OLR	XX			OLR	XX
More	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Less	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
No Change	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Basal ganglia (%)					OLR	XX			OLR	XX			OLR	XX
More	XX	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Less	XX	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
No Change	XX	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Posterior fossa (%)					OLR	XX			OLR	XX			OLR	XX
More	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Less	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
No Change	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Old vascular lesions (%)														
Old vascular lesions	xx	XX (X)	XX (X)	XX (X)	BLR	хх	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Old cortical infarct	xx	XX (X)	XX (X)	XX (X)	BLR	хх	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Old striatocapsular infarct	хх	XX (X)	XX (X)	XX (X)	BLR	хх	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX

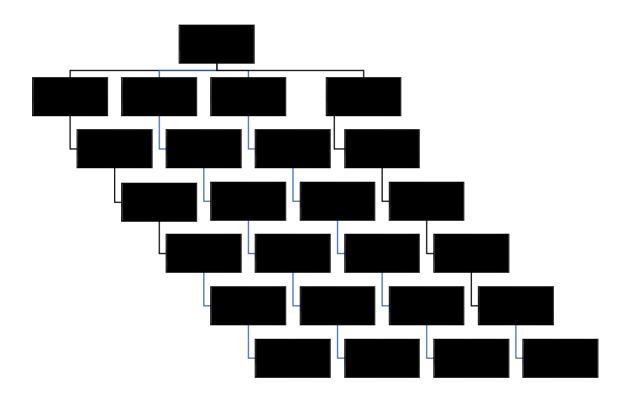
Page 36 of 58

06/06/2022

					OR/MD/	p- value			OR/MD/	p- value	ISMN		OR/MD	/ p- value
	N	All	ISMN	No ISMN	HR (95%CI)	value	Cil	No Cil	HR (95%CI)		+ Cil	None	HR (95%C)	
Old borderzone infarct	XX	XX (X)	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	XX
Old lacunar infarct	xx	XX (X)	XX (X)	XX (X)	BLR	xx	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	xx
Number of lacunes (%)					OLR	xx			OLR	ХХ			OLR	xx
1	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
2	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
3	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
4	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
>=5	xx	XX (X)	XX (X)	XX (X)			XX (X)	XX (X)			XX (X)	XX (X)		
Change in number of lacunes from baseline	xx	XX [XX, XX]	XX [XX, XX]	XX [XX, XX]	OLR	хх	XX [XX, XX]	XX [XX, XX]	OLR	хх	XX [XX, XX]	XX [XX, XX]	OLR	XX
Old brainstem/cerebellar infarcts	xx	XX (X)	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	xx
Probable old haemorrhage	xx	XX (X)	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Non-stroke lesions (%)														
Non-stroke lesion	xx	XX (X)	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	xx
Classification of non-stroke (%)														
Cerebral tumour	xx	XX (X)	XX (X)	XX (X)	BLR	хх	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Aneurysm	xx	XX (X)	XX (X)	XX (X)	BLR	xx	XX (X)	XX (X)	BLR	ХХ	XX (X)	XX (X)	BLR	xx
Vascular malformation	xx	XX (X)	XX (X)	XX (X)	BLR	xx	XX (X)	XX (X)	BLR	XX	XX (X)	XX (X)	BLR	XX
Other non-stroke classification	xx	XX (X)	XX (X)	XX (X)	BLR	хх	XX (X)	XX (X)	BLR	xx	XX (X)	XX (X)	BLR	XX

Page 37 of 58

06/06/2022


Figures

- 1. CONSORT flowchart diagram
- 2. Forest plot of composite outcome (stroke, TIA, MI, cognitive impairment, dependency or death) by clinical and adjudicated imaging subgroups
- 3. Forest plot of 7-level ordinal cognition/dementia scale by clinical and adjudicated imaging subgroups
- 4. Forest plot of Wei-Lachin global outcome by clinical and adjudicated imaging subgroups
- 5. Forest plot of central imaging reads as per list for table 9 of absolute and change in imaging findings
- 6. Stacked distributions of 7-level ordinal cognition at 12 months
- 7. Stacked distributions of 4-level ordinal cognition at 12 months
- 8. Stacked distributions of mRS at 12 months
- 9. Graph of imaging outcomes at 12 months (based on Table 9) displaying new incident infarct or haemorrhage, change in WMH, microbleeds, atrophy by allocated group.

Page 38 of 58

06/06/2022

Figure 1. CONSORT diagram

Page 39 of 58

06/06/2022

Figure 2a. Forest plot for isosorbide mononitrate versus none of composite outcome (stroke, TIA, MI, cognitive impairment, dependency or death) by clinical and adjudicated imaging subgroups. Adjusted

	Interaction p
Age †	interaction p
<60	-
60-69	-
>70	-
Sex †	
Female	-
Male	-
Highest education +	
A-level (equivalent) or higher	-
O-level/GCSE (equivalent)	-
Primary or secondary primary school	_
Pre-morbid mRS ⁺	
0	_
1	_
>1	-
Time stroke-baseline +	
<180 days	
180-364 days	
<u>≥</u> 365 days	
Smoking	
Never	
Past	
Present	
Hypertension	
No	_
Yes	_
Diabetes mellitus	
No	_
Yes	_
History of stroke or TIA	
No	_
Yes	
	-
Systolic BP † <130	
130-159	-
>160	-
<u>>100</u> NIHSS †	-
0/1	-
>1	-
Relevant acute infarct on imaging No	
	-
Yes	-
Lacune on imaging	
Not visible	-
Visible	-
WMH or hypoattenuation	
Not visible	-
Visible	-

Page 40 of 58

06/06/2022

SVD score	
0	-
1	-
>1	-
+ Minimisation variable	

Page 41 of 58

06/06/2022

Figure 2b. Forest plot for cilostazol versus none of composite outcome (stroke, TIA, MI, cognitive impairment, dependency or death) by clinical and adjudicated imaging subgroups. Adjusted

	Interaction p
Age †	
<60	-
60-69	-
<u>></u> 70	-
Sex †	
Female	-
Male	-
Highest education +	
A-level (equivalent) or higher	-
O-level/GCSE (equivalent)	-
Primary or secondary primary school	-
Pre-morbid mRS †	
0	-
1	-
>1	-
Time stroke-baseline +	
<180 days	
180-364 days	
<u>></u> 365 days	
Smoking	
Never	
Past	
Present	
Hypertension	
No	_
Yes	_
Diabetes mellitus	-
No	
	-
Yes History of stroke or TIA	-
History of stroke or TIA	
No	-
Yes	-
Systolic BP †	
<130	-
130-159	-
<u>≥</u> 160	-
NIHSS ⁺	
0/1	-
>1	-
Relevant acute infarct on imaging	
No	-
Yes	-
Lacune on imaging	
Not visible	-
Visible	-
WMH or hypoattenuation	
Not visible	-
Visible	-
SVD score	

06/06/2022

0	-
1	-
>1	-
+ Minimisation variable	

Page 43 of 58

06/06/2022

Figure 2c. Forest plot for combined isosorbide mononitrate and cilostazol versus neither of composite outcome (stroke, TIA, MI, cognitive impairment, dependency or death) by clinical and adjudicated imaging subgroups. Adjusted

	Interaction p
Age †	Interaction p
<60	_
60-69	_
<u>></u> 70	_
<u>270</u> Sex †	
Female	_
Male	_
Highest education †	
A-level (equivalent) or higher	-
O-level/GCSE (equivalent)	-
Primary or secondary primary school	-
Pre-morbid mRS ⁺	
0	-
1	-
>1	-
Time stroke-baseline †	
<180 days	
180-364 days	
<u>></u> 365 days	
Smoking	
Never	
Past	
Present	
Hypertension	
No	-
Yes	-
Diabetes mellitus	
No	-
Yes	-
History of stroke or TIA	
No	-
Yes	-
Systolic BP †	
<130	-
130-159	-
<u>></u> 160	-
NIHSS ⁺	
0/1	-
>1	-
Relevant acute infarct on imaging	
No	-
Yes	-
Lacune on imaging	
Not visible	-
Visible	-
WMH or hypoattenuation	
Not visible	-
Visible	-
SVD score	

Page 44 of 58

06/06/2022

0	-
1	-
>1	-
+ Minimisation variable	

Page 45 of 58

06/06/2022

	Interaction p
Age †	P
<60	-
60-69	-
<u>></u> 70	-
Sex †	
Female	-
Male	-
Highest education +	
A-level (equivalent) or higher	-
O-level/GCSE (equivalent)	-
Primary or secondary primary school	-
Pre-morbid mRS +	
0	-
1	-
>1	-
Time stroke-baseline +	
<180 days	
180-364 days	
<u>></u> 365 days	
Smoking	
Never	
Past	
Present	
Hypertension	
No	-
Yes	-
Diabetes mellitus	
No	-
Yes	-
History of stroke or TIA	
No	-
Yes	-
Systolic BP †	
<130	-
130-159	-
<u>></u> 160	-
NIHSS ⁺	
0/1	-
>1	-
Relevant acute infarct on imaging	
No	-
Yes	-
Lacune on imaging	
Not visible	-
Visible	-
WMH or hypoattenuation	
Not visible	-
Visible	-
SVD score	

Figure 3a. Forest plot of 7 level cognition scale for isosorbide mononitrate versus none at 12 months by clinical and adjudicated imaging subgroups. Adjusted

Page 46 of 58

06/06/2022

0	-
1	-
>1	-
+ Adjustment variable	

Page 47 of 58

06/06/2022

	Interaction p
Age †	Interaction p
<60	_
60-69	-
	-
<u>>70</u>	-
Sex †	
Female	-
Male	-
Highest education +	
A-level (equivalent) or higher	-
O-level/GCSE (equivalent)	-
Primary or secondary primary school	-
Pre-morbid mRS ⁺	
0	-
1	-
>1	-
Time stroke-baseline +	
<180 days	
180-364 days	
<u>></u> 365 days	
Smoking	
Never	
Past	
Present	
Hypertension	
No	-
Yes	-
Diabetes mellitus	
No	-
Yes	-
History of stroke or TIA	
No	-
Yes	-
Systolic BP +	
<130	-
130-159	-
<u>></u> 160	-
NIHSS †	
0/1	-
>1	-
Relevant acute infarct on imaging	
No	_
Yes	-
Lacune on imaging	
Not visible	-
Visible	-
WMH or hypoattenuation	
Not visible	-
Visible	-
SVD score	-

Figure 3b. Forest plot of 7 level cognition scale for cilostazol versus none at 12 months by clinical and adjudicated imaging subgroups. Adjusted

Page 48 of 58

06/06/2022

0	-
1	-
>1	-
+ Adjustment variable	

Page 49 of 58

06/06/2022

Figure 3c. Forest plot of 7 level cognition scale for combined isosorbide mononitrate
and cilostazol versus neither at 12 months by baseline subgroups. Adjusted

	Interaction p
Age †	
<60	-
60-69	-
<u>>70</u>	-
Sex †	
Female	-
Male	-
Highest education +	
A-level (equivalent) or higher	-
O-level/GCSE (equivalent)	-
Primary or secondary primary school	-
Pre-morbid mRS +	
0	-
1	-
>1	-
Time stroke-baseline +	
<180 days	
180-364 days	
<u>></u> 365 days	
Smoking	
Never	
Past	
Present	
Hypertension	
No	-
Yes	_
Diabetes mellitus	
No	_
Yes	_
History of stroke or TIA	
No	
Yes	-
	-
Systolic BP †	
<130	-
130-159	-
<u>≥160</u>	-
NIHSS †	
0/1	-
>1	-
Relevant acute infarct on imaging	
No	-
Yes	-
Lacune on imaging	
Not visible	-
Visible	-
WMH or hypoattenuation	
Not visible	-
Visible	-
SVD score	

Page 50 of 58

06/06/2022

0	-
1	-
>1	-
+ Adjustment variable	

Page 51 of 58

06/06/2022

	Interaction p
Age †	p
<60	-
60-69	-
<u>></u> 70	-
Sex †	
Female	-
Male	-
Highest education +	
A-level (equivalent) or higher	-
O-level/GCSE (equivalent)	-
Primary or secondary primary school	-
Pre-morbid mRS ⁺	
0	-
1	-
>1	-
Time stroke-baseline +	
<180 days	
180-364 days	
<u>></u> 365 days	
Smoking	
Never	
Past	
Present	
Hypertension	
No	-
Yes	-
Diabetes mellitus	
No	-
Yes	-
History of stroke or TIA	
No	-
Yes	-
Systolic BP ⁺	
<130	-
130-159	-
<u>></u> 160	-
NIHSS ⁺	
0/1	-
>1	-
Relevant acute infarct on imaging	
No	-
Yes	-
Lacune on imaging	
Not visible	-
Visible	-
WMH or hypoattenuation	
Not visible	-
Visible	-
SVD score	

Figure 4a. Forest plot of Wei-Lachin global outcome for isosorbide mononitrate versus none by subgroups. Adjusted

Page 52 of 58

06/06/2022

0	-
1	-
>1	-
+ Adjustment variable	

Page 53 of 58

06/06/2022

	Interaction p
Age †	
<60	-
60-69	-
<u>>70</u>	-
Sex †	
Female	-
Male	-
Highest education +	
A-level (equivalent) or higher	-
O-level/GCSE (equivalent)	-
Primary or secondary primary school	-
Pre-morbid mRS +	
0	-
1	-
>1	-
Time stroke-baseline +	
<180 days	
180-364 days	
<u>></u> 365 days	
Smoking	
Never	
Past	
Present	
Hypertension	
No	-
Yes	-
Diabetes mellitus	
Νο	-
Yes	-
History of stroke or TIA	
No	-
Yes	-
Systolic BP +	
<130	-
130-159	-
<u>>160</u>	_
NIHSS †	
0/1	_
>1	_
Relevant acute infarct on imaging	
No	-
Yes	-
Lacune on imaging	
Not visible	_
Visible	-
WMH or hypoattenuation	
Not visible	-
Visible	-
SVD score	-
310 50016	

Figure 4b. Forest plot of Wei-Lachin global outcome for cilostazol versus none by subgroups. Adjusted

Page 54 of 58

06/06/2022

0	-
1	-
>1	-
+ Adjustment variable	

Page 55 of 58

06/06/2022

Figure 4c. Forest plot of Wei-Lachin global outcome for combined isosorbide
mononitrate and cilostazol versus neither by subgroups. Adjusted

	Interaction p
Age †	interaction p
<60	-
60-69	-
<u>></u> 70	-
Sex †	
Female	-
Male	-
Highest education +	
A-level (equivalent) or higher	-
O-level/GCSE (equivalent)	-
Primary or secondary primary school	-
Pre-morbid mRS †	
0	-
1	-
>1	-
Time stroke-baseline +	
<180 days	
180-364 days	
<u>></u> 365 days	
Smoking	
Never	
Past	
Present	
Hypertension	
No	-
Yes	-
Diabetes mellitus	
No	-
Yes	-
History of stroke or TIA	
No	-
Yes	-
Systolic BP †	
<130	-
130-159	-
<u>≥</u> 160	-
NIHSS †	
0/1	-
>1	-
Relevant acute infarct on imaging	
No	-
Yes	-
Lacune on imaging	
Not visible	-
Visible	-
WMH or hypoattenuation Not visible	
Visible	-
SVD score	-
310 SCOLE	

Page 56 of 58

06/06/2022

0	-
1	-
>1	-
+ Adjustment variable	

Page 57 of 58

06/06/2022

Figure 5. Forest plot of central imaging reads as per list for table 9 of absolute and change in imaging findings

- a) Isosorbide mononitrate versus none
- b) Cilostazol versus none
- c) Combined isosorbide mononitrate and cilostazol versus neither

Figure 6. Stacked distributions of 7-level ordinal cognition at 12 months

- d) Isosorbide mononitrate versus none
- e) Cilostazol versus none
- f) Combined isosorbide mononitrate and cilostazol versus neither

Figure 7. Stacked distributions of 4-level ordinal cognition at 12 months

- a) Isosorbide mononitrate versus none
- b) Cilostazol versus none
- c) Combined isosorbide mononitrate and cilostazol versus neither

Figure 8. Stacked distributions of mRS at 12 months

- a) Isosorbide mononitrate versus none
- b) Cilostazol versus none
- c) Combined isosorbide mononitrate and cilostazol versus neither

Figure 9. Graph of imaging outcomes at 12 months (based on Table 9) displaying new incident infarct or haemorrhage, change in WMH, microbleeds, atrophy by allocated group.

- a) Isosorbide mononitrate versus none
- b) Cilostazol versus none
- c) Combined isosorbide mononitrate and cilostazol versus neither

Signature:

Email@ed.ac.uk

LACI-2 SAP v1.5 20220606

Final Audit Report

2022-06-15

Created:	2022-06-08
By:	Sian Irvine (sian.irvine@ed.ac.uk)
Бу.	Sian irvine (sian.irvine@eu.ac.uk)
Status:	Signed
Transaction ID:	CBJCHBCAABAAhjlv2n-mGfbkbnDio0Cvi-NrpFWzqFO9

"LACI-2 SAP v1.5 20220606" History

- Document created by Sian Irvine (sian.irvine@ed.ac.uk) 2022-06-08 - 12:51:32 PM GMT- IP address: 31.48.48.183
- Document emailed to Philip Bath (philip.bath@nottingham.ac.uk) for signature 2022-06-08 - 12:53:48 PM GMT
- Email viewed by Philip Bath (philip.bath@nottingham.ac.uk) 2022-06-09 - 9:01:11 AM GMT- IP address: 92.40.132.99
- Document e-signed by Philip Bath (philip.bath@nottingham.ac.uk) Signature Date: 2022-06-09 - 9:02:15 AM GMT - Time Source: server- IP address: 92.40.132.99
- Document emailed to Joanna Wardlaw (joanna.wardlaw@ed.ac.uk) for signature 2022-06-09 - 9:02:19 AM GMT
- Email viewed by Joanna Wardlaw (joanna.wardlaw@ed.ac.uk) 2022-06-09 - 11:04:31 AM GMT- IP address: 172.224.227.28
- Document e-signed by Joanna Wardlaw (joanna.wardlaw@ed.ac.uk)
 Signature Date: 2022-06-09 1:31:46 PM GMT Time Source: server- IP address: 212.187.183.33
- Document emailed to alan montgomery (alan.montgomery@nottingham.ac.uk) for signature 2022-06-09 - 1:31:49 PM GMT
- Email viewed by alan montgomery (alan.montgomery@nottingham.ac.uk) 2022-06-15 - 7:54:36 AM GMT- IP address: 167.98.250.154
- Document e-signed by alan montgomery (alan.montgomery@nottingham.ac.uk) Signature Date: 2022-06-15 - 7:55:08 AM GMT - Time Source: server- IP address: 167.98.250.154
- Document emailed to laci-2@ed.ac.uk for signature 2022-06-15 - 7:55:11 AM GMT

Adobe Acrobat Sign

Email viewed by laci-2@ed.ac.uk 2022-06-15 - 7:58:40 AM GMT- IP address: 129.215.89.68

- A signed copy was uploaded by Sian Irvine (sian.irvine@ed.ac.uk) 2022-06-15 - 9:26:35 AM GMT
- Agreement completed.
 2022-06-15 9:26:35 AM GMT

, Adobe Acrobat Sign