THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

A Tighter Analysis of Spectral Clustering, and Beyond

Citation for published version:

Macgregor, P & Sun, H 2022, A Tighter Analysis of Spectral Clustering, and Beyond. in K Chaudhuri, S
Jegelka, L Song, C Szepesvari, G Niu & S Sabato (eds), Proceedings of the 39th International Conference
on Machine Learning. vol. 162, Proceedings of Machine Learning Research, vol. 162, PMLR, pp. 14717-
14742, The 39th International Conference on Machine Learning, 2022, Baltimore, Maryland, United States,
17/07/22. <https://proceedings.mlr.press/vi62/macgregor22a.html>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of the 39th International Conference on Machine Learning

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN () ACCESS

Download date: 20. Nov. 2022


https://proceedings.mlr.press/v162/macgregor22a.html
https://www.research.ed.ac.uk/en/publications/bc7eb6a9-69b1-4b62-aeb3-fd1f41b5c224

A Tighter Analysis of Spectral Clustering, and Beyond

Peter Macgregor | He Sun'

Abstract

This work studies the classical spectral cluster-
ing algorithm which embeds the vertices of some
graph G = (Viz, Eg) into R¥ using k eigenvec-
tors of some matrix of GG, and applies k-means
to partition Vg into k clusters. Our first result
is a tighter analysis on the performance of spec-
tral clustering, and explains why it works under
some much weaker condition than the ones stud-
ied in the literature. For the second result, we
show that, by applying fewer than k eigenvectors
to construct the embedding, spectral clustering
is able to produce better output for many prac-
tical instances; this result is the first of its kind
in spectral clustering. Besides its conceptual and
theoretical significance, the practical impact of
our work is demonstrated by the empirical analy-
sis on both synthetic and real-world datasets, in
which spectral clustering produces comparable or
better results with fewer than £ eigenvectors.

1. Introduction

Graph clustering is a fundamental problem in unsupervised
learning, and has comprehensive applications in computer
science and related scientific fields. Among various tech-
niques to solve graph clustering problems, spectral clus-
tering is probably the easiest one to implement, and has
been widely applied in practice. Spectral clustering can be
easily described as follows: for any graph G = (Vg, E¢)
and some k € Z* as input, spectral clustering embeds the
vertices of Vg into R* based on the bottom k eigenvectors
of the Laplacian matrix of GG, and employs k-means on the
embedded points to partition Vi into k clusters. Thanks to
its simplicity and excellent performance in practice, spec-
tral clustering has been widely applied over the past three
decades (Spielman & Teng, 1996).

'School of Informatics, University of Edinburgh, Edinburgh,
United Kingdom. Correspondence to: Peter Macgregor <pe-
ter.macgregor @ed.ac.uk>, He Sun <h.sun@ed.ac.uk>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

In this work we study spectral clustering, and present two
results. Our first result is a tighter analysis of spectral clus-
tering for well-clustered graphs. Informally, we analyse
the performance guarantee of spectral clustering under a
simple assumption' on the input graph. While all the previ-
ous work (e.g., (Lee et al., 2014; Kolev & Mehlhorn, 2016;
Mizutani, 2021; Peng et al., 2017)) on the same problem
suggests that the assumption on the input graph must depend
on k, our result demonstrates that the performance of spec-
tral clustering can be rigorously analysed under a general
condition independent of k. To the best of our knowledge,
our work presents the first result of its kind, and hence we
believe that this result and the novel analysis used in its
proof are important, and might have further applications in
graph clustering.

Secondly, we study the clustering problem in which the
crossing edges between the optimal clusters {.5; }le present
some noticeable pattern, which we call the meta-graph in
this work. Notice that, when viewing every cluster S; as a
“giant vertex”’, our meta-graph captures the intrinsic connec-
tion between the optimal clusters, and could be significantly
different from a clique graph. We prove that, when this
is the case, one can simply apply classical spectral cluster-
ing while employing fewer than k eigenvectors to construct
the embedding and, surprisingly, this will produce a better
clustering result. The significance of this result is further
demonstrated by our extensive experimental analysis on the
well-known BSDS, MNIST, and USPS datasets (Arbelaez
et al., 2011; Hull, 1994; LeCun et al., 1998). While we
discuss the experimental details in Section 6, the perfor-
mance of our algorithm is showcased in Figure 1: in order
to find 6 and 45 clusters, spectral clustering with 3 and 7
eigenvectors produce better results than the ones with 6 and
45 eigenvectors according to the default metric of the BSDS
dataset.

1.1. Related work

Our first result on the analysis of spectral clustering is tightly
related to a number of research that analyses spectral clus-
tering algorithms under various conditions (e.g., (Gharan &
Trevisan, 2014; Lee et al., 2014; Kolev & Mehlhorn, 2016;
Mizutani, 2021; Ng et al., 2001; Peng et al., 2017)). While

!This assumption will be formally defined in Section 3.



A Tighter Analysis of Spectral Clustering, and Beyond

(d) Original Image

(e) 45 clusters found with 7 vectors

5

(f) 45 clusters found with 45 vectors

Figure 1. Examples of image segmentation using spectral clustering; the original images are from the BSDS. The Rand Index of
segmentation (b) is 0.83, while (c) has Rand Index 0.78. Segmentation (e) has Rand Index 0.92, and (f) has Rand Index 0.80. Hence, it’s
clear that spectral clustering with fewer than k eigenvectors suffices to produce comparable or better output.

we compare in detail between these works and ours in later
sections, to the best of our knowledge, our work presents the
first result proving spectral clustering works under some gen-
eral condition independent of n and k. Our work is also re-
lated to studies on designing local, and distributed clustering
algorithms based on different assumptions (e.g., (Czumaj
et al., 2015; Orecchia & Zhu, 2014; Zhu et al., 2013)); due
to limited computational resources available, these works
require stronger assumptions on input graphs than ours.

Our second result on spectral clustering with fewer eigenval-
ues is linked to efficient spectral algorithms to find cluster-
structures. While it’s known that flow and path structures of
clusters in digraphs can be uncovered with complex-valued
Hermitian matrices (Cucuringu et al., 2020; Laenen & Sun,
2020), our work shows that one can apply real-valued Lapla-
cians of undirected graphs, and find more general patterns
of clusters characterised by our structure theorem. Finally,
we notice that spectral clustering with more than £ eigen-
vectors is studied in Rebagliati and Verri (2011), although
their assumptions on an input graph are different from ours
and their result is not directly comparable with ours.

2. Preliminaries

Let G = (Vg, Eg,w) be an undirected graph with n ver-
tices, m edges, and weight function w : Vg x Vg — R>q.
For any edge e = {u,v} € Eg, we write the weight of
{u, v} by wy, or w,. For a vertex u € Vi, we denote its de-
gree by dg(u) £ 3" 1 Wyy. For any two sets S, T C Vg,

we define the cut value w(S,T) £ 3 . (s We, Where
E¢(S,T) is the set of edges between S and T'. For any
set S C Vg, the volume of S is volg(S) £ 3 oo da(u),
and we write vol(G) when referring to vol(V). For any
nonempty subset S C Vi, we define the conductance of S
by

A w(S,V\S)

Pe(5) = volg(S)

Furthermore, we define the conductance of the graph G by

B 2 Bs(S).

min
Scv
vol(S)<vol(V)/2

We call subsets of vertices A1, ..., Ag a k-way partition of
G if A; N A; = 0 for different i and j, and (J}_, A; = V.
Generalising the definition of conductance, we define k-way
expansion constant by

>

= min max P (4;).
partitionAy,..., A 1<i<k

p(k)

Next we define the matrices of any G = (Vi5, Eg,w). Let
D¢ € R™™™ be the diagonal matrix defined by (D¢ )y, =
dg(u) for all u € Vi, and we denote by Ag € R™*" the
adjacency matrix of G, where (Aq)yy = Wy, forall u,v €
V. The normalised Laplacian matrix of G is defined by
Loa21— D51/2AgD51/2, where I is the n x n identity
matrix. Since L¢ is symmetric and real-valued, it has n real
eigenvalues denoted by A\ < ... < A\,; weuse f; € R”
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to denote the eigenvectors corresponding to A; for any 1 <
1 < n. Itis known that A\; = 0 and \,, < 2 (Chung, 1997).

For any sets S and 7', the symmetric difference between
S and T is defined by SAT = (S\T)U (T \ S). For
any k € Z*, we define [k] £ {1,...,k}. We sometimes
drop the subscript G when it is clear from the context. The
following higher-order Cheeger inequality will be used in
our analysis.

Lemma 2.1 ((Lee et al., 2014)). It holds for any k € [n]
that A\ /2 < p(k) < O (K3) /Ay

3. Encoding the Cluster-Structure into the
Eigenvectors of £

Let {S;}¥_, be any optimal k-way partition that achieves
p(k). We define the indicator vector of cluster S; by

{ 1 ifuels;,

. A
Xi(u) = 0 otherwise, M

and the corresponding normalised indicator vector by

B I)l/zxi

"D
One of the basic results in spectral graph theory states
that G consists of at least k£ connected components if and
only if \; = 0 for any ¢ € [k], and span ({f;}}_,) =
span ({gi}i?:l) (Chung, 1997). Hence, one would ex-
pect that, when G consists of k densely connected com-
ponents (clusters) connected by sparse cuts, the bottom
eigenvectors {f;}%_; of L are close to {g;}¥_,. This intu-
ition explains the practical success of spectral methods for
graph clustering, and forms the basis of many theoretical
studies on various spectral clustering algorithms (e.g. (Kwok
etal., 2013; Lee et al., 2014; Ng et al., 2001; von Luxburg,
2007)).

Turning this intuition into a mathematical statement, Peng
et al. (2017) studies the quantitative relationship between
{fi}k_, and {g;}%_, through the function Y (k) defined by

A )\k-i-l

T(k) £ . @
To explain the meaning of Y(k), we assume that G has
k well-defined clusters {S;}%_,. By definition, the values
of ®(S;) for every S;, as well as p(k), are low; on the
other hand, any (k + 1)-way partition of Vi; would separate
the vertices of some S;, and as such p(k + 1)’s value will
be high. Combining this with the higher-order Cheeger
inequality, some lower bound on T (k) would be sufficient
to ensure that GG has exactly k clusters. In their work, Peng
et al. (2017) assumes Y (k) = Q(k?), and proves that the
space spanned by {f;}¥_, and the one spanned by {g;}*_,
are close to each other. Specifically, they show that

1. every g; is close to some linear combination of { fi}le,
denoted by f;, i.e., it holds that || g; — fi||*> < 1/Y(k);

2. every f; is close to some linear combination of {g; }%_;,
denoted by g;, i.e., it holds that ||f; — g;|> <
1.1k/Y (k).

In essence, their so-called structure theorem gives a quanti-
tative explanation on why spectral methods work for graph
clustering when there is a clear cluster-structure in G char-
acterised by Y (k). As it holds for graphs with clusters of
different sizes and edge densities, this structure theorem has
been shown to be a powerful tool in analysing clustering al-
gorithms, and inspired many subsequent works (e.g., (Chen
et al., 2016; Czumaj et al., 2015; Kloumann et al., 2017;
Kolev & Mehlhorn, 2016; Louis & Venkat, 2019; Mizutani,
2021; Peng, 2020; Peng & Yoshida, 2020; Sun & Zanetti,
2019)).

In this section we show that a stronger statement of the
original structure theorem holds under a much weaker as-
sumption. Our result is summarised as follows:

Theorem 1 (The Stronger Structure Theorem). The follow-
ing statements hold:

1. For any i € [k], there is ﬁ € R™, which is a linear
combination of f1,..., fx, such that ||g; — fi||*> <

1T (k).

2. There are vectors §i,...,Qk, each of which is
a linear combination of ¢i,...,gx, such that

S =Gl < k/T(E)

To examine the significance of Theorem 1, we first highlight
that these two statements hold for any Y (k), while the orig-
inal structure theorem relies on the assumption that Y (k) =
Q(k?). Since Y (k) = Q(k?) is a strong and even question-
able assumption when k is large, e.g., k = Q(poly log(n)),
obtaining these statements for general Y (k) is important.
Secondly, our second statement of Theorem 1 significantly
improves the original theorem. Specifically, instead of stat-
ing || f; — gil|*> < 1.1k/Y (k) for any i € [k], our second
statement shows that Zle Ifi — 3ll* < k/Y(k); hence,
it holds in expectation that || f; — g;||> < 1/ (k), the upper
bound of which matches the first statement. This implies
that the vectors fi,..., fr and g1, ..., gy can be linearly
approximated by each other with roughly the same approxi-
mation guarantee. Thirdly, rather than employing the ma-
chinery from matrix analysis used by Peng et al. (2017), to
prove the original theorem, our proof is simple and purely
linear-algebraic. Therefore, we believe that both of our
stronger statements and much simplified proof are signifi-
cant, and could have further applications in graph clustering
and related problems.
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4. Tighter Analysis of Spectral Clustering

In this section, we analyse the spectral clustering algorithm.
For any input graph G = (Vig, E¢) and k € [n], spectral
clustering consists of the three steps below:

1. compute the eigenvectors f1, ... fi of L&, and embed
each u € Vg to the point F(u) € R* according to
a 1

Vd(u)

2. apply k-means on the embedded points { F'(u) }uevys

F(u)

(fi(u), o fe(@)Ts B3)

3. partition Vi into k clusters based on the output of
k-means.

We will consider spectral clustering for graphs with clusters
of almost-balanced size defined as follows.

Definition 1. Let G be a graph with k clusters {S;}¥_,. We
say that the clusters are almost-balanced if

(1/2) - vol(Vg) /k < vol(S;) < 2-vol(Vg)/k
forallie {1,... k}.

Our main result is summarised in Theorem 2, where we take
APT to be the approximation ratio of the k-means algorithm
used in spectral clustering. Recall that one can take APT to
be some constant (Kumar et al., 2004).

Theorem 2. Let G be a graph with k clusters {S;}}_, of
almost-balanced size, and Y (k) > 2176 - (1 + APT). Let
{A;}r_, be the output of spectral clustering and, without
loss of generality, the optimal correspondent of A; is 5.
Then, it holds that

vol(G)
T(k) -

k
D vol (4;A8;) <2176 - (1+ APT) -

i=1

Notice that some condition on Y (k) is needed to ensure
that an input graph G has k well-defined clusters, so that
misclassified vertices can be formally defined. Taking this
into account, the most significant feature of Theorem 2 is its
upper bound of misclassified vertices with respect to Y (k):
our result holds, and is non-trivial, as long as Y(k) is lower
bounded by some constant’>. This significantly improves
most of the previous results of graph clustering algorithms,
which make stronger assumptions on the input graphs. For
example, Peng et al. (2017) assumes that Y (k) = Q(k?),
Mizutani (Mizutani, 2021) assumes that Y (k) = Q(k), the
algorithm presented in Gharan and Trevisan (2014) assumes

that A1 = Q (poly(k))\;ﬂl), and the one presented in

Note that we can take any constant approximation in Defini-
tion 1 with a different corresponding constant in Theorem 2.

Dey et al. (2019) further assumes some condition with re-
spect to k, A, and the maximum degree of G. While these
assumptions require at least a linear dependency on k, mak-
ing it difficult for the instances with a large value of k to
satisfy, our result suggests that the performance of spectral
clustering can be rigorously analysed for these graphs. In
particular, compared with previous work, our result better
justifies the widely used eigen-gap heuristic for spectral
clustering (Ng et al., 2001; von Luxburg, 2007). This heuris-
tic suggests that spectral clustering works when the value of
|Ak+1 — Ag| is much larger than | Ay, — Ai—1], and in practice,
the ratio between the two gaps is usually a constant rather
than some function of k.

4.1. Properties of Spectral Embedding

Now we study the properties of the spectral embedding
defined in (3), and show in the next subsection how to use
these properties to prove Theorem 2. Due to the page limit
we refer the reader to the appendix for all the technical
details used in our analysis. For every cluster S;, we define
the vector p(*) € R* by

1

@) () =
P () I

<f IR §z>7

and view these {p(¥ }¥_, as the approximate centres of the
embedded points from the optimal clusters {S;}¥_;. We
prove that the total k-means cost of the embedded points
can be upper bounded as follows:

Lemma 4.1. It holds that

S Y | PO —p

i=1 u€s;

2
< —

k
= T)

The importance of Lemma 4.1 is that, although the optimal
centres for k-means are unknown, the existence of {p(V}¥_,
is sufficient to show that the cost of an optimal k-means
clustering on {F'(u) }yev,, is at most k/Y (k). Since one
can always use an O(1)-approximate k-means algorithm
for spectral clustering (e.g., (Kanungo et al., 2004; Kumar
et al., 2004)), the output of k-means on {F(u)}yev, is
O (k/Y(k)).

In addition, we prove that any pair of different p(*) and p(/)
are far away from each other. Moreover, their distance is
essentially independent of k and Y (k), as long as Y (k) >
20. This result is as follows:

Lemma 4.2. It holds for any i, j € [k] with i # j that

(7)

Hp(i) - 2 min{vol(Sj),vol(Sj)} (é - T?k:)) '

We remark that, despite the similarity in their formulation,
most technical lemmas presented in this subsection and the
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appendix are stronger than the ones in Peng et al. (2017).
These results are obtained through our stronger structure
theorem (Theorem 1), and are crucial for us to prove Theo-
rem 2.

4.2. Proof Sketch of Theorem 2

Now we sketch our proof of Theorem 2. While the technical
details can be found in the appendix, our focus here is to give
a high-level overview of our proof technique, and explain
why a mild condition like Y (k) > 2174(1 + APT) suffices
for spectral clustering to perform well in practice.

Let {A;}¥_; be the output of spectral clustering, and we
denote the centre of the embedded points { F'(u)} for any
A; by ¢;. As the starting point of our analysis, we claim that
every ¢; will be close to its “optimal” correspondent p( (")
for some o (7) € [k]. That is, the actual centre of embedded
points from every A; is close to the approximate centre of
the embedded points from some optimal S;. To formalise
this, we define the function o : [k] — [k] by

o(i) = arg min Hp(J) —¢ H 4)
JE(k]

that is, cluster A; should correspond to S, ;) in which the
value of ||p(®()) — ¢;|| is the lowest among all the distances
between c¢; and all of the p¥) for j € [k]. However, one
needs to be cautious as (4) wouldn’t necessarily define a
permutation, and there might exist different ¢, 7" € [k] such
that both of A; and A;» map to the same S, ;). Taking this
into account, for any fixed o : [k] — [k] and i € [k], we
further define M, ; by

= UA (5)

Jio(jd)=

The following lemma shows that, when mapping every out-
put 4; to S,(;), the total ratio of misclassified volume with
respect to each cluster can be upper bounded:

Lemma 4.3. Let {A;}%_| be the output of spectral cluster-
ing, and o and M, ; be defined as in (4) and (5). Assuming
Y (k) > 32, it holds that

VO MC”AS) k
< 64 - .
; wol(S 64 - (1+ APT) T

It remains to study the case in which o isn’t a permutation.
Notice that, if this occurs, there is some ¢ € [k] such that
M,; = 0, and different values of z,y € [k] such that
o(x) = o(y) = j for some j # 4. Based on this, we
construct the function o’ : [k] — [k] from o based on the
following procedure:

e Seto’(z) =iif z = x;

* Seto’(z) = o(z) for any other z € [k] \ {z}.
Notice that one can construct ¢’ in this way as long as
o isn’t a permutation, and this constructed o’ reduces the
number of M, ; being () by one. We show one only needs
to construct such ¢’ at most O(k/Y (k)) times to obtain the
final permutation called ¢*, and it holds for ¢* that

L

<1088 (1+APT) - .

vol(S,

Ek: vol(M,- lAS )
=1

Combining this with the fact that the target clusters are
balanced proves Theorem 2.

We remark that this method of upper bounding the ratio of
misclassified vertices is very different from the ones used in
previous references, e.g., (Dey et al., 2019; Mizutani, 2021;
Peng et al., 2017). In particular, instead of examining all
the possible mappings between {A;}*_; and {S;}F_,, we
directly work with some specifically defined function o, and
construct our desired mapping ¢* from ¢. This is another
key for us to obtain stronger results than the previous work.

5. Beyond the Classical Spectral Clustering

In this section we propose a variant of spectral clustering
which employs fewer than k eigenvectors to find k clusters.
We prove that, when the structure among the optimal clus-
ters in an input graph satisfies certain conditions, spectral
clustering with fewer eigenvectors is able to produce better
results than classical spectral clustering. Our result gives a
theoretical justification of the surprising showcase in Sec-
tion 1, and presents a significant speedup on the runtime of
spectral clustering in practice, since fewer eigenvectors are
used to construct the embedding.

5.1. Encoding the Cluster-Structure into Meta-Graphs

Suppose that {S;}¥_; is a k-way partition of Vg for an
input graph G that minimises the k-way expansion p(k).
We define the matrix A ; € R¥*F by

Autid) = { 055

and, taking A, to be the adjacency matrix, this defines
a graph M = (Vy, Epr,wpy) which we refer to as the
meta-graph of the clusters. We define the normalised ad-
jacency matrix of M by Ay, £ 1/2AMD 12 , and the
normalised Laplacian matrix of M by Ly = I — A M. Let
the eigenvalues of £y be 71 < ... < 7, and g; € R* be
the eigenvector corresponding to ; for any i € [k].

ifi #j,
ifi = j

The starting point of our novel approach is to look at the
structure of the meta-graph M defined by {S;}%_, of G,
and study how the spectral information of £;; € R¥*¥ is
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encoded in the bottom eigenvectors of L. To achieve this,
for any ¢ € [k] and vertex i € Vy, let

2D 2 (g (i), ..., ge(i)T; ©

notice that () € R’ defines the spectral embedding of
i € V) through the bottom /¢ eigenvectors of L.
Definition 2 ((6, ¢)-distinguishable graph). For any M =
(Var, Eng,wpg) with k vertices, £ € [k], and 0 € RT, we
say that M is (0, 0)-distinguishable if

* it holds for any i € [k] that ||z H2 > 0, and

* it holds for any different i, j € [k| that

In other words, graph M is (6, £)-distinguishable if (i) every
embedded point Z() has squared length at least 0, and (ii)
any pair of embedded points with normalisation are sepa-
rated by a distance of at least §. By definition, it is easy to
see that, if M is (0, ¢)-distinguishable for some large value
of @, then the embedded points {Z("};cy,, can be easily
separated even if £ < k. The two examples below demon-
strate that it is indeed the case and, since the meta-graph M
is constructed from {S;}*_,, this well-separation property
for {Z("},cv,, usually implies that the clusters {S;}%_, are
also well-separated when the vertices are mapped to the
points { F(u) }yevy, in which

(] I

F(u) £ N (fi(u), ... fo(u)T. (7)
d(u)

Example 1. Suppose the meta-graph is Cg, the cycle on
6 vertices. Figure 2(a) shows that the vertices of Cy are
well separated by the second and third eigenvectors of
Lc,.> Since the minimum distance between any pair of
vertices in this embedding is 2/3, we say that C is (2/3, 3)-
distinguishable. Figure 2(b) shows that, when using fs, f3
of L to embed the vertices of a 600-vertex graph with a
cyclical cluster pattern, the embedded points closely match
the ones from the meta-graph.

Example 2. Suppose the meta-graph is P4, which is
the 4 x 4 grid graph. Figure 3(a) shows that the vertices
are separated using the second and third eigenvectors of
Lp, ,. The minimum distance between any pair of vertices
in this embedding is roughly 0.1, and so Py 4 is (0.1, 3)-
distinguishable. Figure 3(b) demonstrates that, when using
fa, f3 of L& to construct the embedding, the embedded
points closely match the ones from the meta-graph.

3Notice that the first eigenvector is the trivial one and gives no
useful information. This is why we visualise the second and third
eigenvectors only.
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(b) Spectral embedding of G
with f2 and f3.

(a) Spectral embedding of Cg
with g2 and gs.

Figure 2. The spectral embedding of a large graph G whose clus-
ters exhibit a cyclical structure closely matches the embedding of
the meta-graph Cs.
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(a) Embedding of P, 4 with g2
and gs.

(b) Embedding of G with f>
and fs.

Figure 3. The spectral embedding of a large 1600-vertex graph G
whose clusters exhibit a grid structure closely matches the embed-
ding of the meta-graph Py 4.

From these examples, it is clear to see that there is a close
connection between the embedding {Z("} defined in (6)
and the embedding {F'(u)} defined in (7). To formally
analyse this connection, we study the structure theorem
with meta-graphs.

We define vectors gi,...,9r € R™ which represent the
eigenvectors of £ “blown-up” to n dimensions. Formally,
we define g; such that

_ D1/2Xj )
gi = ; M 'gi(]),

where x; € R" is the indicator vector of cluster S; defined
in (1). By definition, it holds for any u € S; that

d(u)
vol(S;)

gi(u) = - 9:(J)-

The following lemma shows that {g; }%_, form an orthonor-
mal basis.

Lemma 5.1. The following statements hold:

1. it holds for any i € [k] that ||g;|| = 1;
2. it holds for any different i, j € [k] that (g;, g;) = 0.

Next, similar to the function Y(k) defined in (2), for any
input graph G = (Viz, E¢, we) and (6, £)-distinguishable
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meta-graph M, we define the function ¥(¢) by

Notice that we have by the higher-order Cheeger inequality
that v;/2 < pas(i) holds for any i € [¢], and pyr(i) <
pa (k) by the construction of matrix A ;. Hence, one can
view W(¢) as a refined definition of Y (k).

We now show that the vectors f1,..., foand g1, ..., ge are
well approximated by each other. In order to show this, we
define for any i € [¢] the vectors

L L

fi= Z(%fj)fj and  gi =Y (fi,9;)3;

j=1 j=1
and present the structure theorem with meta-graphs.

Theorem 3 (The Structure Theorem with Meta-Graphs).
The following statements hold:

12
1. it holds for any i € [{] that ’ i — fill <vi/ANesrs

2. it holds for any ¢ € [k] that

¢ ¢

~ 112 i
ZHfi_giH SZ ‘
i=1 i=1

Art1

5.2. Spectral Clustering with Fewer Eigenvectors

Now we sketch our analysis of spectral clustering with fewer
eigenvectors. Our presented algorithm is essentially the
same as the standard spectral clustering described in Sec-
tion 4, with the only difference that every u € V is embed-
ded into a point in R by the mapping defined in (7). Our
analysis follows from the one from Section 4 at a very high
level. However, since we require that { F'(u) } ,cv,, are well
separated in R’ for some ¢ < k, the proof is more involved.

For any i € [k], we define the approximate centre p(?) € R
of every cluster S; by

14

N 580 - 9200,

=1

1

@y L
P (j) = A

and prove that the total k-means cost for the points
{F(u)}uev, can be upper bounded.

Lemma 5.2. It holds that

ﬁi}jd@ﬁkﬁ»—ﬂﬂ

i=1 ucs;

2
< W),

Secondly, we prove that the distance between different p(*)
and pU) can be lower bounded with respect to 6 and W (¢).
This result is summarised as follows:

Lemma 5.3. It holds for different i, j € [k] that

2 /

~ 16 min {vol(S;), vol(S;)}’

It is important to recognise that the lower bound in
Lemma 5.3 implies a condition on 6 and ¥(¢) under which
p@ and pU) are well-spread. In other words, spectral clus-
tering with few eigenvectors works when the optimal clus-
ters present a noticeable pattern. Combining these with the
other technical ingredients, including our developed tech-
nique for constructing the desired mapping ¢* sketched in
Section 4.2, we obtain the performance guarantee of our
designed algorithm, which is summarised as follows:

Theorem 4. Let G be a graph with k clusters {S;}*_, of
almost balanced size, with a (0, £)-distinguishable meta-
graph that satisfies U(0) < (2176 - (1 + APT)) "' - 63. Let
{A;}r_| be the output of spectral clustering with ¢ eigen-

vectors, and without loss of generality let the optimal corre-
spondent of A; be S;. Then, it holds that

k
Y vol (4;A8;) < 2176 - (1 + APT) - w

i=1

Notice that if we take ¢ = k, then we have that 0 = 1
and ¥ (¢) < k/Y (k) which makes the guarantee in Theo-
rem 4 the same as the one in Theorem 2. However, if the
meta-graph corresponding to the optimal clusters is (6, ¢)-
distinguishable for large ¢ and ¢ < k, then we have that
U(¢) < k/Y (k) and Theorem 4 gives a stronger guarantee
than the one from Theorem 2.

6. Experimental Results

In this section we empirically evaluate the performance
of spectral clustering for finding %k clusters while using
fewer than k eigenvectors. Our results on synthetic data
demonstrate that for graphs with a clear pattern of clusters,
spectral clustering with fewer than % eigenvectors performs
better. This is further confirmed on real-world datasets
including BSDS, MNIST, and USPS. We detail the experi-
ment setup in the appendix, and the code to reproduce our
results is available at https://github.com/pmacg/
spectral-clustering-meta—-graphs.

6.1. Results on Synthetic Data

We first study the performance of spectral clustering on
random graphs whose clusters exhibit a clear pattern. Given
the parameters n € ZT, 0 < ¢ < p < 1, and some meta-
graph M = (V)y, Es) with k vertices, we generate a graph
with clusters {Si}le, each of size n, as follows. For each
pair of vertices u € S; and v € S, we add the edge (u,v)
with probability p if ¢ = j and with probability ¢ if i # j
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and (i,7) € Ej. The metric used for our evaluation is
defined by - Zle |S; N A;|, for the optimal matching
between the output {A;} and the ground truth {S;}.

In our experiments, we fix n = 1,000, p = 0.01, and
consider the meta-graphs Cyo and P, 4, similar to those
illustrated in Examples 1 and 2; this results in graphs with
10,000 and 16, 000 vertices respectively. We vary the ratio
p/q and the number of eigenvectors used to find the clusters.
Our experimental result, which is reported as the average
score over 10 trials and shown in Figure 4, clearly shows that
spectral clustering with fewer than k eigenvectors performs
better. This is particularly the case when p and ¢ are close,
which corresponds to the more challenging regime in the
model.

o
=]

0.99

== 3 vectors == 6 vectors

== 6 vectors == 12 vectors

== 10 vectors == 16 vectors

p/q p/q
(a) Meta-Graph C'g (b) Meta-Graph Pj 4

Figure 4. A comparison on the output of spectral clustering with
meta-graphs C1o and Py 4, when different number of eigenvectors
are used.

6.2. Results on the BSDS Dataset

In this experiment, we study the performance of spectral
clustering for image segmentation when using different num-
bers of eigenvectors. We consider the Berkeley Segmenta-
tion Data Set (BSDS) (Arbelaez et al., 2011), which consists
of 500 images along with their ground-truth segmentations.
For each image, we construct a similarity graph on the pixels
and take £ to be the number of clusters in the ground-truth
segmentation. Then we apply spectral clustering, varying
the number of eigenvectors used, and evaluate the output
using the Rand Index (Rand, 1971). Figure 1 shows two im-
ages from the dataset along with the segmentations produced
with spectral clustering, and more details and examples are
shown in Appendix D. These examples illustrate that spec-
tral clustering with fewer eigenvectors performs better. This
is confirmed in our experiments on the entire BSDS dataset.
The average Rand Index of the algorithm’s output is reported
in Table 1, and it is clear to see that using k/2 eigenvec-
tors consistently out-performs spectral clustering with &
eigenvectors.

6.3. Results on the MNIST and USPS Datasets

We further demonstrate the applicability of our results on the
MNIST and USPS datasets (Hull, 1994; LeCun et al., 1998),

Number of Eigenvectors  Average Rand Index
k 0.71
k/2 0.74
OPTIMAL 0.76

Table 1. The average Rand Index across the BSDS dataset for dif-
ferent numbers of eigenvectors. OPTIMAL refers to the algorithm
which runs spectral clustering with ¢ eigenvectors for all possible
£ € [k] and returns the output with the highest Rand Index.

which consist of images of hand-written digits, and the goal
is to cluster the data into 10 clusters corresponding to dif-
ferent digits. For each dataset, we construct the k-nearest
neighbour graph for k¥ = 3, which results in a graph with
60, 000 vertices for the MNIST dataset and 7, 291 vertices
for the USPS dataset. We use spectral clustering to parti-
tion the graphs into 10 clusters. We measure the similarity
between the found clusters and the ground truth using the
Adjusted Rand Index (Gates & Ahn, 2017), and plot the
results in Figure 5. Our experiments show that spectral clus-
tering with just 7 eigenvectors gives the best performance on
both datasets. Appendix D includes results with additional
clustering metrics which also show that using 7 eigenvectors
is optimal.

o
©
o
=3

o
o
L J
L ]

Adjusted Rand Index
°
>
]
Adjusted Rand Index
°
S
[}

“2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Number of Eigenvectors

(b) USPS

Number of Eigenvectors

(a) MNIST

Figure 5. Experimental results on the MNIST and USPS datasets.
These experiments show that spectral clustering with 7 eigenvec-
tors gives the best partition of the input into 10 clusters.

7. Future Work

Our work leaves a number of interesting questions for fu-
ture research. For spectral clustering, the only non-trivial
assumption remaining in our analysis is that the optimal
clusters have almost balanced size. It is unclear whether,
under the regime of Y (k) = Q(1), this condition could be
eventually removed, or if there’s some hard instance show-
ing that our analysis is tight. For spectral clustering with
fewer eigenvectors, our presented work is merely the start-
ing point, and leaves many open questions. For example,
although one can enumerate the number of used eigenvec-
tors from 1 to k and take the clustering with the minimum
k-way expansion, we are interested to know whether the
optimal number of eigenvectors can be computed directly,
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and rigorously analysed for different graph instances. We
believe that the answers to these questions would not only
significantly advance our understanding of spectral cluster-
ing, but also, as suggested in our experimental studies, have
widespread applications in analysing real-world datasets.
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A. Omitted Details from Section 3

In this section, we present the proof of the improved structure theorem.

Proof of Theorem 1. Let ]?, = Z?:1<gi’ fj)fj, and we write g; as a linear combination of the vectors fi,..., f, by

Gi = Z?’zl (i, f5)f;- Since ﬁ is a projection of g;, we have that §; — f; is perpendicular to ﬁ and

n k n
12
g-h = Hginz—]f S (i, fi)? Z G 1) = S (g 1)
J=1 Jj=1 j=k+1
Now, let us consider the quadratic form
n n
g;r‘Cng = Z<gl7fj gufJ Z gzafj )\_} >)‘k+1 fz ’ 3
=1 =1 j=1
where the last inequality follows by the fact that A; > 0 holds for any 1 < ¢ < n. This gives us that
2
T gi(u) Gi(v) )
9 Lcgi = w(u,v) -
I, e (- 5
2
=Y ( xw  xu) )
(w.yeBe VVol(S;)  \/vol(S;)
w(SZ-, %4 \ Sz)
= ———— < p(k). 9
ol(s;) = p(k) C)
Combining (8) with (9), we have that
~112 a¥ a:
‘gi_fi < 9Lagi ph) 1
Akt1 Aet1 — Y(k)
which proves the first statement of the theorem.
Now we prove the second statement. We define for any 1 < < k that g; = Z?Zl (fi,3;)3;, and have that
ko k
~ 12
Z 1 = Gl Z (P = 10G07) = &= 32> g, £i)?
i=1 j=1
k k k 5
_ 2 n
—z(l—zgj,fl ) =32 (1 - )
=1 =1 j=1
k 2 k 3
o5 <X rm - 1w
j=1 j=1
where the last inequality follows by the first statement of Theorem 1. O

B. Omitted Details from Section 4

This section discusses the details omitted from Section 4, and the section is organised as follows: we first analyse the
properties of spectral embedding in Section B.1; in Section B.2, we analyse the approximation guarantee of spectral
clustering, and prove Theorem 2. Throughout the paper, the COST function for any partition A4, ..., Ay of the vertices of
G is defined by

COST(A4,...,A) =  min F(u) — ¢,
(A e zz ) IF () - cil

where d is the dimension used for the embedding; i.e., the COST function minimises the total /5-distance between the points
F(u)’s and their individually closest centre c;, where cy, ..., ¢y are chosen arbitrarily in RY.
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B.1. Omitted Analysis on the Spectral Embedding

We first prove Lemma 4.1, which states that the total £3-distance between all the embedded points { F'(u)},€ Vi and their
corresponding approximate centres {p()}¥_, is upper bounded with respect to Y (k).

Proof of Lemma 4.1. We have

- 2 & NSTOREN RN
d(w) ||[F(u) —p@|| = d(u i) (G fj

k

:Z Z(fj(U) (@i, f1)5i(u)”
i=1u€s; j=1
k k

=D D (fi(w) = gj(w)”
i=1u€es; j=1
k o k

:;Hfj 9]” = T(/ﬂ)’

where the final inequality follows by the second statement of Theorem 1 and it holds for v € S, that g;(u) =

S (i8035 (W) = (fir 5250 (w). O

Next, we show that the ||p()||? approximately equals to 1/vol(S;), and this fact will be used in our subsequent analysis.
Lemma B.1. It holds for any i € [k] that

1 1 1 < H @1? < 1
vol(S;) Tk ) =P =SSy
Proof. By definition, we have
, k 12 2 1
1(5; H(l) = ‘,71‘2:‘1‘ >1- =,
vol(5y) (Ip ;Ug g =\ >1- 505
where the inequality follows by Theorem 1. The other direction of the inequality follows similarly. O
Lemma B.2. It holds for any different i, j € |k| that
NI ]
H”ml vl | =2

Proof. We have

2
H vol(S;) - p@ — \/vol(S;) - pD|| =" ((fuy i) — (fur G5))°
x=1
k

= fm;gz ) <Z<fxvgj >_22 fxvgz facagj>

= =1
Z f HfJH foj‘
22(1—T(1k)>—2‘(gi+ﬁ—gi)T(9j+fj—gj)
ZQQ_TéQ—z@%ﬁ—www%ﬁ—mwuﬁ—%ﬁ—%m

1 1 8

>2(1‘m>‘6'm>2‘r<k> -
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Lemma B.3. It holds for any different i.j € [k] that

Proof. Assume without loss of generality that \/vol(S;) [|[p”|| < /vol(S;) |[|[p\]|. Let a; = /vol(S;)p™ and o; =
\/vol(S;)p?) and notice that ||| < |la;|| < 1. Then, using Lemma B.1 we have

[T 0 I T
> [lai — el = (lle || = flewill)

Zwkﬁ%_p@mwwwﬂmmm

>\/§<1_T?k)>+‘/1_r(1k)_l

44/2 1 7
2V2- 30 w2V

where the second inequality follows by the triangle inequality, and the third and fourth use Lemma B.2. We also use the fact
that for z < 1, it is the case that v/1 — x > 1 — x. This gives
p(® p@)

| lPO1 - [P

which proves the lemma. O

‘p@)

)

14v/2 20
SR (O R ()

With these lemmas above, we’re ready to prove Lemma 4.2, which lower bounds the distance between different p(i) and p(j ),

Proof of Lemma 4.2. Assume without loss of generality that ||p(i)|| > Hp(j)H. Then, let Hp(j) || =« ||p(i) H for some
« € [0,1]. By Lemma B.1, it holds that

b > s (- i
b ~ min{vol(S;), vol(S;)} T(k) )"
Additionally, notice that we have by the proof of Lemma B.3 that

p@ p@)

(4) (7) 1
p p
Y <V2 -2 R
<Hp(” |p<”|\> 2| [l [l
where we use the fact that if 22 + y2 =1,thenxz +y < v/2. One can understand the equation above by considering the
right-angled triangle with one edge given by p(*)/ ||p(")|| and another edge given by (p(*)/ ||p||).(p'9)/ ||p?)]|). Then,

. 2 2 N2 @ () ‘ ‘
oo = 1 2 o g 1)
2 O - (v ) o
> (1 ~(V2-1)a— T(7k)> Hp@
1 1 7 1
ey (o~ 1m) ()
1 1 8
min{vol(S;), vol(S;)} (2 a W) ’
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which completes the proof. O

B.2. Omitted Analysis on Approximation Guarantee of Spectral Clustering

In this subsection, we analyse the total volume of misclassified vertices by spectral clustering, and prove Theorem 2. We
will first prove that, under the function o : [k] — [k] defined in (4), the value of Zle W will be upper bounded.

Proof of Lemma 4.3. Let us define B;; = A; N S; to be the vertices in A; which belong to the true cluster S;. Then, we
have that

k ko k
VOI(MaiASi) ( 1 1 )
— e = vol(Bi; +
; vol(S;) ; ; (Bia) vol(Sy¢y)  vol(S)
J#o (i)
k
vol(B;;)
<2 J 10
- ; jz:; min{vol(S,;), vol(S;)}’ (10)
J#o ()
and that
k
COST(Ay,... Ap) =Y Y d(u) [|F(u) — i
i=1 ucA;
k
2
>3 S dw) [P - el
i=1 1<j<k u€B;
g#o (i)
k @) — ¢ 2
p Ci
> Z d(u) <H2H Hp(J) F(u )H >
i=1 1<j<k u€Bij
j#o (i)
k k
d(u) |[p) _p<o< P 2
239 -2 X X dwp? - P
=1 1<j<ku€B;; 1i=1 1<j<kueB;;
J#o(i) j#i
b G) — pe@|® & 2
p p i
i=11<j<k i=1 u€s;
j#o(i)
k
vol(B;;) (1 8 ) , 2
> s - - () [ = Fw)
;KE;@ 8 min{vol(Sy(;y),vol(S;)} \2  T(k) ;1;1
J#U( )
1 Z’“: vol(MiA8)\ (1 8\ k
T 16 \4= vol(Si) 2 Y(k) Y(k)’
where the second inequality follows by the inequality of |la — b||* > M — |la — ¢||?, the third inequality follows since

¢; is closer to p("(i)) than p(j ), the fifth one follows from Lemma 4.2, and the last one follows by (10).
On the other side, since COST(Ay, ..., Ax) < APT - k/Y(k), we have that

1 (G vol(M,,AS)) (1 8 k k
m@}wmﬂfm%WMWW'

This implies that

k
(k)

L

k
3 vollMo,i 258) 4. (1+ APT) - 0

1 g \ !
2 ol(s)) (3 70y) <orueaen.
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where the last inequality holds by the assumption that Y (k) > 32. O

Next, we show how to apply Lemma 4.3 to prove Theorem 2. In particular, we will present a method to construct our desired
permutation from the function o defined in (4) without significantly increasing the overall cost, and show why the final
constructed permutation suffices for our purpose.

Proof of Theorem 2. By Lemma 4.1, we have

k
COST(51,..-, k) < =
(S50 = 3y
Combining this with the fact that one can apply an approximate k-means clustering algorithm with approximation ratio APT
for spectral clustering, we have that

k
COST(Ay,...,Ax) <APT - ——.
Wi A = APT 5

Then, let o : [1, k] — [1, k] be the function which assigns the clusters A;, ..., Ay to the ground truth clusters such that
o(i) = arg min ey [|[pY) — ¢;|. Then, it holds by Lemma 4.3 that

N Vo MUZAS) k

= <64-(14+APT)  ——. 11

Z vol(S (1+ ) T(k) (i

=1

Now, assume that ¢ is not a permutation, and we’ll apply the following procedure inductively to construct a permutation
from o. Since o isn’t a permutation, there is ¢ € [k] such that M, ; = (). Therefore, there are different values of x,y € [k]
such that o(x) = o(y) = j for some j # i. Based on this, we construct the function ¢’ : [k] — [k] such that o/(z) = i
if z = z, and 0/(2) = o(%) for any other z € [k] \ {z}. Notice that we can construct ¢’ in this way as long as o isn’t a
permutation. By the definition of €(-) and function ¢”, the difference between e(o’) and €(o) can be written as

e(o’) —e(

O‘) o (VOI(MUIJ‘ASi) VO](Mg’iASi)) <V01(MU/’jASj) VO](MUJ'AS]‘)) (12)

vl(S)  vol(Sy) vol(S;)  vol(S))
—a =8

Let us consider 4 cases based on the sign of «, 3 defined above. In each case, we bound the cost introduced by the change
from o to ¢, and then consider the total cost introduced throughout the entire procedure of constructing a permutation.

Case 1: o < 0,8 < 0. In this case, it is clear that €(¢’) — (o) < 0, and hence the total introduced cost is at most 0.

Case 2: a > 0, 8 < 0. In this case, we have

/ 1
—¢(0) < (M, ;AS;) — vol(M, ;AS; (M, i AS;) — vol(M, ;AS;
6(0) 6(0) — min(vol(Si),vol(Sj)) (VO( o ,lAS’L) VO( U,ZAsl) + |VO( g :]ASJ) VO( U:]ASJ)D
1
= (Mg ;AS;) — vol(My ; AS; WM, :AS:) — vol(M, s AS.
min(VOI(Si),VOI(Sj)) (VO( o’ Sz) VO( 0,1 Sz)+VO( g,] S]) VO( o’,j S]))
1

= min(vol(SZ-), VOI(SJ)) (VOI(AQC \ Sl) - VOI(A:C N S’L) + VOI(AQT \ Sj) - VOI(Ax N Sj))

2-vol(A; \ Sj)
~ min(vol(S;), vol(S;))
8- VOl(Aw \ S])
Covol(Sy)

where the last inequality follows by the fact that the clusters are almost balanced. Since each set A, is moved at most once
in order to construct a permutation, the total introduced cost due to this case is at most

k
3 SVOI Y Z MM, AS><512-(1+APT).L.

vol T (k)
j=1A,eM, ;



A Tighter Analysis of Spectral Clustering, and Beyond

Case 3: o > 0,8 > 0. In this case, we have

" —e(o .
e(0") —e(o) < min(vol(S;), vol(S;))

1
RETTTESTEARTSITSY (vol(Az \ Si) — vol(Az N S;) + vol(A, N S;) — vol(A, \ Sj))
1
= min(vol(.S;), vol(S;))
2- VOl(Sj)
~ min(vol(S;), vol(S;))
S 87

(vol(Myr ; AS;) — vol(My, ;AS;) 4+ vol(Myr jAS;) — vol(My ;AS;))

(2 vol(A, N S;))

where the last inequality follows by the fact that the clusters are almost balanced. We will consider the total introduced cost
due to this case and Case 4 together, and so let’s first examine Case 4.

Case 4: a < 0,8 > 0. In this case, we have

e(0’) —e(o) <

(Mg ;AS;) — vol(My ; AS;
VOI(S]) (VO ( [aR¥) SJ) vo ( a,J SJ))

<

voI(S;) (vol(A; N'S;) — vol(Az \ S5))
vol(S5;)

VOl(Sj)
=1.

<

Now, let us bound the total number of times we need to construct ¢’ in order to obtain a permutation. For any ¢ with
M, ; = 0, we have
VOI(MUYZ'ASi) o VOI(SZ) -1
vol(S;)  wvol(S;)

so the total number of required iterations is upper bounded by

k
ol(My, ZAS ) k
i M, | < <64 -(1+APT) - ——.
It - g vol(S 64-(1+ ) T(k)
As such, the total introduced cost due to Cases 3 and 4 is at most
8-64-(1+APT)- =% —512. (14 APT) - o _
T(k) Y(k)
Putting everything together, we have that
€(0") < e(0) + 1024+ (1 + APT) - —— < 1088 - (1 + APT) -
B T(k) ~ Y(k)
This implies that
k
ZVO](MU* JAS;) <2176 - (1 + APT) - vol(Va)
= | (k)
and completes the proof. O

C. Omitted Details from Section 5

This section presents the omitted details from Section 5.
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C.1. Omitted Details for Section 5.1

We first analyse the properties of {g;}¥_,, and prove Lemma 5.1.

Proof of Lemma 5.1. By definition, we have that

k 2 k
lg:l* = a7 g: = Z > aiu)? = Z (d(us)) '91‘(.7)) = Zgi(j)2 = |lg:ll* =

which proves the first statement.

To prove the second statement, we have for any ¢ = j that

(Gi,95) Z > gilu Z > Vol - gi( Zgz =glg; =0,

z=1u€eS, r=1u€eS,

which proves the second statement. O

We will later use the following important relationship between the eigenvalues of £, and Lg.
Lemma C.1. It holds for any 1 < i < k that \; < ;.

Proof. Notice that we have for any j < k that

gLegi= Y, waluv) ( jcg(ulz) - gﬁzz)))

(u,v)EEG

S g;(2) MOMY
= w(Sy, Sy J -2
> 52 wisno (- )
=9;Lmg;

=

By Lemma 5.1, we have an ¢-dimensional subspace S; C R such that

T Lax
max =
z€S; zTx i
from which the statement of the lemma follows by the Courant-Fischer theorem. [
Now we prove the structure theorem with meta-graphs.
Proof of Theorem 3. For the first statement, we write g; as a linear combination of the vectors f1,..., fn, i.€., gi =

2?21 (i, f5)f;. Since f; is a projection of g;, we have that §; — f; is perpendicular to f;, and that

Now, we study the quadratic form g} £ g; and have that

n

2 n V4
f’L = Z<§Z7f]>2 - Z<§’L7f]>2 = Z <gzafj>2
j=1 j=1

j=t+1

gi_fz

2
-2
= gl - |

n

g Lcgi= | Y@ Fi)IT | Lo | D (g fi)fi Z 9is F1)* X 2 Ao ‘
7=1 j=1

j=1

fz
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By the proof of Lemma C.1, we have that g] £g; < ;, from which the first statement follows.

Now we prove the second statement. We define the vectors gi+1, - . . , gn, to be an arbitrary orthonormal basis of the space
orthogonal to the space spanned by g, . . ., gx. Then, we can write any f; as f; = Z;Z:l (fi,9)9;, and have that

stm Z@m mﬂe7iin%z< i%ﬁ)
:;(%%mm Z%-ﬂ

where the last inequality follows by the first statement of the theorem. O

C.2. Omitted Details from Section 5.2

In this section we present all the technical details used for analysing the spectral embedding (7). We first prove Lemma 5.2,
which upper bounds the total distance between all the embedded points and their corresponding approximate centres.

Proof of Lemma 5.2. By definition, it holds that

k N2 k ¢ fi(u) 9z (%) i
>3 dtw) [P -0 = X0 3 dtw) Z( iuuf(Z““ ) 1(5)))

=1 ues; i=1 ueSs; j=1 =1

55 (s (L))

where the final inequality follows from the second statement of Theorem 3. O
Lemma C.2. It holds for i € [k] that

(1_ 4\/W> ¢ ’|| <[lo

0 vol(S;

< (H Wm) =]

0 VOI(SZ) '

Proof. It holds by definition that

¢ 2
= Z (Z f:rvgy gy )
1 \y=1

r=

vol(S, Hp

[ 4

ZZZm%nwmmm

(fas §y> (fos gZ)Qy(i)gz(i)

I
N
Fﬂ
=
s
CSN
+l\3
M-~
M~
M~

8
I
—
<
Il
—_
8
I
—_
<
I
—
N3RS
I
@ =

13)

Il
(]~
(]~
N
)
<
)
<
—
~—
[ V)
_|_
(]~
(]~
(]~
)
<
—~
~
~—
)
I8}
S
~—
YoumnN
<R
o)
N—

RN
Yl
< =
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We study the two terms of (13) separately.

0)-(fF) < <Yl Y 0l

For the second term, we have that

=1 y:l y=1 1<2<¢
27y
¢ -~ T ~
Z Z |gz (gy+fu_gy) (gz+fz_§z)
y=1 1<z<4
z#y
e ~ ~ o~
=D o@D 9= [(fy = 9y 92) + (f= = G2,9) + (fy
y=1 1<z<¢
27y
14 4
= gy (1D 9= |(fy — 7y, 32)
y=1 z=1
27y
2
14 4
< (Zgy(i)2> S D0 lg:) ‘ — Gy, =)
y=1 y=1 | 1<z<¢
2y
Z ~
< DD e | DD (Fy—94:82)
y=1 | 1<z<¢ 1<2<¢
z#y z#y
e ~
< D2y —832)
y=11<2<¢
£y
TN 2
< S 1i-al
y=1
< VY(0),

where we used the fact that 25:1 gy(i)? = 1 forall i € [k]. Therefore, we have that

vol(S;) Hp(i)

_z@ ‘.

y=1
2
1+

<[

On the other hand, we have that

WK&W@@
y=1

where the last inequality holds by the fact that H:E(i) H < land ¥(¢) < 1. Hence, the statement holds.

> f: <é<fz7gy )

gy > )+\/\I/(€)§

2/ (0)
o).

4
> 9y()* + VU(
y=1

- 2\/7 Z nyH gy (i
290

@wf

i) 2( 4«/\1!(6))
1- =),

_gyvfz -

)2 — 2,/T(0)

gz)
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Lemma C.3. It holds for i # j that

‘\/vol 0 — /vol(S pl) 20_3 /7\11(6)

12] HW’H
Proof. By definition, it holds that
2
vol(S, Vf)l(S]) o)
uww B

gy (1) 9y(5) 9:(1)  g:(j)
*ZZZ (Fe g i) <|| gy ||f<j>||> (nzwu nfwu)'
22y

We upper bound the second term by

i 9(0) _ 00) | 5~ | ) :0) éﬁg o)
2|70 ~ Teo]| 2=, | o] ~ ]| & e
z#y
l .
gy(@)  gy(4) 9:(1)  9:04) | |2 =
= S = T — T~ T AN
2| o] ~ e | 2=, | ~ e |1
27y
/ . .
gy(@)  gy(4) g:(8) g9 |1/ 2 NT/. o~
= T T T — T~ T gy +fy— 3 g:+f:—g
2 |wo ~ ey | 22, |fwoy ~ oy || @+ Fomaw) (o4 2 -a)
2#y
¢
ay(@)  gy(4) g:(1) 9.9 | 1,2 _
= o =G —o = | [y — 9y, 32)
2| [F] a0 ]| 2, |Teo] ~ o |I¥r — %
27y
2
¢ 2
9,(0) gyu)) () 9:() s
>~ — - — - <f _gvgz>
(Z<HW>H o] =
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from which we can conclude that

| V/vol(S ) \/vol(S p(])

|M“H R H

>(1—0(0) 0 —2/T(0) > 0 — 3,/T(0).

With this we proved the statement. O

Lemma C.4. It holds for any different i, j € (k] that

(J) H
TeT “>|| ||p”>||

)

Figure 6. Illustration of the proof of Lemma C.4. Our goal is to give a lower bound on the length of ( B Eli I Hi Ej; I ) , which is the

[l |

blue dotted line in the figure. We instead calculate a lower bound on the length of <ai 1 L I ) , which is the green dotted line, and use
o

the fact that ||| < 1 and ||oy|| < 1.

Proof. We set the parameter € = 41/¥ /6, and define a; = (7”01(,51) -p, as well as a; = #ﬁzz“ - pU). By the

definition of € and Lemma C.2, it holds that ||a;|| < 1, and ||| < 1. We can also assume without loss of generality that
lai|] < |ley]|. Then, as illustrated in Figure 6, we have
, L2
0 |
(T

and so it suffices to lower bound the right-hand side of the inequality above. By the triangle inequality, we have

2
o]

[l |

i —

s — HalH HO"_O"H_ Oé‘-”aiHOz'
F e T T ol
1 1( 1(
T HT Y- (ﬁ | = ol = leull)
z0| ||
Now, we have that
||a-||—||a,-\\—ﬂ H (])H,i\/VOI( ‘ <1- L—e 2
/ T 1+ |0 1+¢) ||z l+e 1+¢€

and have by Lemma C.3 that

\/vol(S o0 \/vol(S;) )

Hﬂﬂ| |11

0 —3vVU() > V0 — V2> Vo -




A Tighter Analysis of Spectral Clustering, and Beyond

since € = 4/ W /6 < 1 by the assumption on W. This gives us that

i 0—2 2 1
%Jmujzwrefffz{ﬁf@.
[le ] 1+e 1+e ™ 2
Finally, we have that
(@ @ "1 v\ 6w
p p
— | > V16— | > 2 -8y —2,
| ||p(l)|| Hp(J)H 4 < 0 > 4 0
which completes the proof. O
Proof of Lemma 5.3. We assume without loss of generality that || p@) ||2 > || p) H2 Then, by Lemma C.2 and the fact that
2|2 > 6 holds for any i € [k], we have
e 2 (a2
Hp(i) S 1 4/(0) [2@]] Hp(j)H2 > {12 4/V(0) | |29
. 0 vol(S;)’ - 0 vol(S;)’
which implies that
0 —4,/V(0)

N2
Hﬂw >

min {vol(S;), vol(S;)}
Now, we will proceed by case distinction.

Case 1: ||p®|| > 4 ||pY||. In this case, we have |[p() — p@)|| > ||pD]| — ||[p@| > 2 ||p||, and

o ot 9 04T 0 (0 —20,/%(0)/0) N2 103
Hp —P H =16 " min {vol(S;),vol(S;)} = 16 min {vol(S;),vol(S;)} 16 min {vol(S;),vol(S;)}’

since 6 < 1.

Case 2: ||pY)|| = a ||p'?|| for some v € (,1]. By Lemma C.4, we have

(@) () 1(6 \/E 0 \/ﬁ
p p
<||p<i>||”|p<j)||>§1_2<4_8 0>§1_8+2 0

2 P 9\
‘2<Hp<i> 0] |+

2—2(1—Z+2\/\1jég)>aup(i)

Then, it holds that

(@)

, 2 2 .
Hﬂw_ﬁn :Hﬁw +H¢ﬁ

I

, 2
> (1+a?) Hp(’)

> (1 +a? - 20+ Za—élw \Ilég)a> Hp(i) i
(0 [T ., a0
—\4 0 min {vol(S;), vol(S;)}

0 U (0) 1
= (16 - 9) (6-0v®) - [vol(5,), vol(S,)}
S (225 Jawa !
= (16 4 ( )> " min {vol(S;), vol(S;)}

62 — 20,/00(0)

16 min {vol(S;), vol(S;)}

which completes the proof. O
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With these lemmas stated above, we analyse the performance of spectral clustering when fewer eigenvectors are employed
to construct the embedding.

Lemma C.5. Let {Ai}le be the output of spectral clustering, and o and M, ; be defined as in (4) and (5). Assuming
U (0) < 63/1600, it holds that

§ o VoMo 250) M“A*” <61 (14 aPT). 2.

vol(S,
=1

Proof. Let us define B;; = A; N S; to be the vertices in A; which belong to the true cluster .5;. Then, we have that

P vol(M, i AS;) & 1 1
2 vol(S;) :,Z 2 vol(By) (Vol(sa(i)) +V01(Sj)>

i=1 i=1 j=1
J#ali)
k
VOl(Bij)
<2 14
= ; ; min{vol(S, ), vol(S;)} (14)
J#a(i)

and that

k
COST(A1,... A1) =3 S S d(w) [F(u) - ¢

i=11<j<k u€Bi;
J#o (i)

k ) — e l?
Y Y Y aw (HP”ZCZH_HPO»_F(U)HQ)
i=11<j<k u€Bi;
J#o (i)
k () _ pla(9) k
oy vy MO S s S - o
1=1 1<j<k u€B;; =1 1<j<ku€B;;
Jj#o(i) Jj#o(i)
S s I
SRR 5 ¥ o]
=11<<k i=1 u€eS;
i#0()
k k
AR -
> . 0° —20+/0 -V () — d - F
_;gjzgk 16-mln{vol(SU(i)),vol(Sj)}( ()> ;uezs () |p (u)
Jj#o (i)

k
1 VOI(MU ZASZ) 2
> —. —————= | (6 —20/0-9(¥)) — V(¢
— 32 <; vol(S;) > ( ( )) (@),
where the second inequality follows by the inequality of

b el :
P o -,

the third inequality follows since ¢; is closer to p("(i)) than p(j ), the fifth one follows from Lemma 5.3, and the last one
follows by (14).

On the other hand, since COST (A4, ..., Ax) < APT - ¥(¢) by Lemma 5.2, we have that

la— blJ* >

" vol(M, ;A\S;)
Z#gz (1+APT)- ¥ (atzox/o Wl ) <64 (1+APT) - T(0),
VO i
i=1
where the last inequality follows by the assumption that ¥ (¢) < §2/1600. Therefore, the statement follows. O

Proof of Theorem 4. This result can be obtained by using the same technique as the one used in the proof of Theorem 2, but
applying Lemma 5.2 instead of Lemma 4.1 and Lemma C.5 instead of Lemma 4.3 in the analysis. O
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D. Omitted Details from Section 6

In this section we provide additional details on our experimental setup and provide some supplementary results on the BSDS
dataset. We implement the spectral clustering algorithm in Python, using the scipy library for computing eigenvectors, and
the k-means algorithm from the sk 1learn library. Our experiments on synthetic data are performed on a desktop computer
with an Intel(R) Core(TM) i5-8500 CPU @ 3.00GHz processor and 16 GB RAM. The experiments on the BSDS, MNIST,
and USPS datasets are performed on a compute server with 64 AMD EPYC 7302 16-Core Processors.

D.1. Omitted Detail for the BSDS Experiment

Ground-truth segmentations. The BSDS dataset provides several human-generated ground truth segmentations for each
image. Since there are different numbers of ground truth clusterings associated with each image, in our experiments we take
the target number of clusters for a given image to be the one closest to the median.

Constructing the similarity graph. Given a particular image in the dataset, we first downsample the image to have at
most 20,000 pixels. Then, we represent each pixel by the point (r, g, b, z,y) € R where 7, g,b € [1,255] are the RGB
values of the pixel and = and y are the coordinates of the pixel in the downsampled image. We construct the similarity
graph by taking each pixel to be a vertex in the graph, and for every pair of pixels u,v € R, we add an edge with weight
exp(— [|u — v||* /20%) where o = 20.

Evaluation. We evaluate each segmentation produced with spectral clustering using the Rand Index as implemented in the
benchmarking code provided along with the BSDS dataset. For each image, this computes the average Rand Index across all
of the provided ground-truth segmentations for the image. Figures 7 and 8 give some additional examples of our results
from the BSDS dataset.

D.2. Omitted Detail for the MNIST and USPS Experiments

In both the MNIST and USPS datasets, each image is represented as an array of grayscale pixels with values between 0
and 255. The MNIST dataset has 60, 000 images with dimensions 28 x 28 and the USPS dataset has 7, 291 images with
dimensions 16 x 16. In each case, we consider each image to be a single data point in R(@*) where d is the dimension
of the images and construct the k-nearest neighbour graph for each dataset. For the MNIST dataset, this gives a graph
with 60, 000 vertices and 138, 563 edges; for the USPS dataset, this gives a graph with 7,291 vertices and 16, 715 edges.
Figure 9 shows the accuracy (ACC) (Rand, 1971) and Normalised Mutual Information (NMI) (Lancichinetti et al., 2009)
metrics for clustering with different numbers of eigenvectors; these results are consistent with the one based on ARI shown
in Section 6.
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e ® o [ JIPY o ® % o ® © ¢ o o °
0.6} o 0.6| ® 0.7] [
PY P ) o 0.75 ° o o
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=
2 04 g o4fe E [ Q 06 ®
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[ ] [ ]
0.2 0.2 0.60 05 ®
ool ool 04557. 04
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Number of Eigenvectors Number of Eigenvectors Number of Eigenvectors Number of Eigenvectors
(a) MNIST NMI (b) MNIST ACC (c) USPS NMI (d) USPS ACC

Figure 9. The clustering accuracy (ACC) and Normalised Mutual Information (NMI) when clustering MNIST and USPS with different
numbers of eigenvectors. Spectral clustering with 7 eigenvectors gives the best result across the two metrics.
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(b) Segmentation into 24 clusters with (c) Segmentation into 24 clusters with
8 eigenvectors; Rand Index 0.82. 24 eigenvectors; Rand Index 0.77.

(d) Original Image (e) Segmentation into 18 clusters with (f) Segmentation into 18 clusters with
6 eigenvectors; Rand Index 0.77. 18 eigenvectors; Rand Index 0.74.

(g) Original Image (h) Segmentation into 7 clusters with (i) Segmentation into 7 clusters with 7

3 eigenvectors; Rand Index 0.76. eigenvectors; Rand Index 0.74.

J ;: f

(j) Original Image (k) Segmentation into 13 clusters with (1) Segmentation into 13 clusters with
8 eigenvectors; Rand Index 0.80. 13 eigenvectors; Rand Index 0.77.

Figure 7. Examples of the segmentations produced with spectral clustering on the BSDS dataset.
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(a) Original Image (b) Segmentation into 16 clusters with  (c) Segmentation into 16 clusters with
4 eigenvectors; Rand Index 0.78. 16 eigenvectors; Rand Index 0.65.

. i =_ "o -

(e) Segmentation into 8 clusters with  (f) Segmentation into 8 clusters with 8
5 eigenvectors; Rand Index 0.86. eigenvectors; Rand Index 0.79.

| G F

(g) Original Image (h) Segmentation into 9 clusters with (i) Segmentation into 9 clusters with 9
7 eigenvectors; Rand Index 0.69. eigenvectors; Rand Index 0.61.

Figure 8. Examples of the segmentations produced with spectral clustering on the BSDS dataset.



