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Abstract

Existing empiricalworkhas focused on assessing the effectiveness of non-pharmaceutical
interventions on human mobility to contain the spread of COVID-19. Less is known
about the ways in which the COVID-19 pandemic has reshaped the spatial patterns of
population movement within countries. Anecdotal evidence of an urban exodus from
large cities to rural areas emerged during early phases of the pan- demic across western
societies. Yet, these claims have not been empirically assessed. Traditional data sources,
such as censuses offer coarse temporal frequency to analyse population movement over
short-time intervals. Drawing on a data set of 21 million observations from Facebook
users, we aim to analyse the extent and evolution of changes in the spatial patterns of
population movement across the rural-urban continuum in Britain over an 18-month
period fromMarch, 2020 to August, 2021. Our findings show an overall and sustained
decline in population movement during periods of high stringency measures, with the
most densely populated areas reporting the largest reductions. During these periods,
we also find evidence of higher-than-average mobility from highly dense population
areas to low densely populated areas, lending some support to claims of large-scale
population movements from large cities. Yet, we show that these trends were tempo-
rary. Overall mobility levels trended back to pre-coronavirus levels after the easing
of non-pharmaceutical interventions. Following these interventions, we also found
a reduction in movement to low density areas and a rise in mobility to high density
agglomerations. Overall, these findings reveal that while COVID-19 generated shock
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waves leading to temporary changes in the patterns of population movement in Britain,
the resulting vibrations have not significantly reshaped the prevalent structures in the
national pattern of population movement.
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1. Introduction

The COVID-19 pandemic has led to major changes in the patterns of human mobility
within and between countries. In addition to stringent international travel restrictions,
non-pharmaceutical interventions to contain the spread of COVID-19, such as lockdowns, so-
cial distancing measures, school and business closures, have transformed daily life behaviours
resulting in reduced overall levels of mobility (Nouvellet et al., 2021). Especially during
lockdowns, mobility recorded reductions in the frequency, distance and time of trips across
the world (e.g. Abu-Rayash and Dincer, 2020; Department for Transport, 2021; Mobility,
2021). Rises in teleworking, online schooling and remote shopping activity reduced the need
to travel for work, education, shopping and leisure. Coupled to fear of crowded public spaces,
non-pharmaceutical interventions also prompted more geographically localised mobility
patterns (Engle et al., 2020; Linka et al., 2021), and a modal shift away frommass public transit
to private, active (notably walking) and e-forms of mobility, such as e-biking and e-scooting
(Li et al., 2021; Mobility, 2021).

These changes and fears have generated a passionate debate about the future of big
cities. Some have predicted that COVID-19 would create a tipping point leading to “the
end of cities”, while others have made predictions anticipating strong urban recovery and
resilience. Building on current knowledge and past pandemics, studies have carefully analysed
existing evidence and anticipated the potential immediate and long-term economic and social
reverberations of the COVID-19 pandemic on the structure and morphology of cities and
regions (Nathan, 2020; Sharifi and Khavarian-Garmsir, 2020; Florida et al., 2021). These
changes are anticipated to take place at a microgeographical scale, altering the organisation
of people and activity within urban regions, between central and suburban areas, and at fine
granular spaces, such as neighbourhoods and districts (Florida et al., 2021). Yet, these changes
are not expected to significantly reshape existing structural national patterns of population
settlement and economic systems at a macrogeographical scale (Florida et al., 2021).

During the early phases of the pandemic, reports of an “urban exodus” emerged with
rampant speculation that this trend would persist post-COVID-19. Big cities became the
epicentres of COVID-19 infection during the first wave of the pandemic. Coupled with
slow government responses to contain community transmission, high population density, air
connectivity and spatial concentration of public-facing jobs contributed to the clustering of
COVID-19 cases in large cities during early stages of the pandemic in many western countries
(Nathan, 2020; Florida et al., 2021). These factors facilitate the spread of COVID-19 through
the creation of dense networks of social interaction (Chang et al., 2021). As we were learning
about the severity of COVID-19 infection, cases spread throughout the world, deaths rose
and teleworking went mainstream during the early parts of 2020, anecdotal evidence suggests
that large numbers of city dwellers sought to leave large cities in an attempt to avoid crowded
places and in the pursuit of more personal space and access to natural amenities (Nathan and
Overman, 2020; Specia, 2021; Whitaker, 2021).
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Anecdotal evidence has also indicated that big city residents moved to second homes,
vacation towns, suburbs and nearby, smaller, less expensive locations (Quealy, 2020; Paybarah
et al., 2020; Sagnard, 2021). Adding to the existing pressures from climate change, air pollu-
tion, high housing costs and urban crime, the pandemic has brought about changes allowing
non-work related considerations to take a more important role in people’s residential choices
(Nathan, 2020). In large cities, lockdown restrictions have confined households to costly
small living spaces, with limited capacity to accommodate multi home-office-school-leisure
functionalities. Business closures and social distancing measures stripped away the efferves-
cence of social interaction, busy and dense urban spaces, and vibrant leisure activities (Florida
et al., 2021). Additionally, remote work has reduced the need for frequent commuting, and
hence, living in close proximity to workplaces. Coupled to access to green and open spaces,
larger residential living and less crowded spaces thus seem to have become more prominent
residential preferences since the start of the pandemic.

While these changes are expected to alter micro-level household decision choices, they are
not expected to significantly reshape the existing macro-level patterns of national population
settlement and economic systems (Reades and Crookston, 2021). Big cities have successfully
weathered previous pandemics (Acuto, 2020; Glaeser, 2020) and are likely to remain attractive
places to live. Agglomeration economies are an essential feature of cities. Cities facilitate
the clustering of talent and economic assets, consumer base, face-to-face interaction and
diversity that are key to fostering innovation, creativity and economic growth (Storper and
Venables, 2004). New forms of hybrid work are likely a permanent outcome of the pandemic
(Kniffin et al., 2021). Telework is a poor substitute for high-contact, knowledge-based work.
At the same time, most remote locations do not have the digital infrastructure and diversity
of services required to cater for city residents - and initiatives are already underway to make
cities more resilient to future pandemics (Bereitschaft and Scheller, 2020; Florida and Pedigo,
2020; Kraus and Koch, 2021).

Thus, while we have learned about changes in human mobility within cities in relation to
non-pharmaceutical interventions, less is known about the patterns of population redistribu-
tion across the national territory during the COVID-19 pandemic. A key challenge has been
the lack of suitable data to capture national-scale patterns of population movements across
the rural-urban continuum as the pandemic evolves. Traditionally census and population
register data have been used to explore human mobility patterns at such scale. However,
these data systems are not regularly updated, lacking the temporal granularity to analyse
population movements over short-time intervals. Digital traces data derived from mobile
phone applications now provide a unique opportunity to capture these movements at an
unprecedented spatial and temporal granularity (Green et al., 2021; Rowe, 2021).

Drawing on Facebook users’ mobile phone location data, this paper aims to analyse the
extent and durability of changes in humanmobility patterns across the rural-urban continuum
in Britain during the course of the COVID-19 pandemic, covering a 18-month period from
March 2020 to August 2021. Specifically this paper seeks to address the following set of
questions:
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1. To what extent have people moved away from cities, and redistributed across the
urban-rural continuum during the pandemic?

2. What have been the key interactions between places across the population density
hierarchy? Have people mainly moved to sparely populated areas?

3. To what extent the intensity of population movement from cities have been sustained
throughout the pandemic? Have the observed changes been temporary, or are likely to
persist post pandemic?

The rest of the paper is structured as follows. The next section reviews the emerging
evidence and hypotheses about the spatial patterns of population movements from cities
during the COVID-19 pandemic, before discussing the predominant trends of population
movements in Britain in the years preceding the pandemic. Section 3 describes the data, and
Section 4 discusses the methods used in this study. Section 5 presents the key results from
our analyses before they are discussed in the light of the existing literature in Section 6, which
also identifies key limitations and potential avenues for future work.

2. Background

2.1. Emerging evidence on mobility patterns across the urban hierarchy during
COVID-19

As COVID-19 expanded throughout the world in February and March in 2020, anecdotal
evidence of an “urban exodus” from big cities emerged in many western societies (Florida,
2020; Weeden, 2020; Sagnard, 2021). At early stages of the pandemic, little was known about
the virus, and globally connected cities were hit hardest (Matheson et al., 2020; Florida et al.,
2021). By November 2020, approximately 95% of all the reported infections and fatalities
had occurred in a few large cities (Pomeroy and Chainey, 2020). Newspapers’ headlines were
speculating about “the end of cities” (Florida, 2020; Hernández-Morales et al., 2020; Pomeroy
and Chainey, 2020). In the UK, reports based on data from the property website Rightmove
indicated that the number of online inquiries from residents living in the ten largest cities
looking for a village property was reported to increase by 126% in June-July 2020, relative to
the same period in 2019 (Marsh, 2020). In France, increases in real estate transactions outside
cities were also linked to city residents moving to smaller towns or villages (Sagnard, 2021).
In the US, a rise of 30 percentage points in the number of households moving from large
metropolitan areas was reported based on data from mail-forwarding requests and credit
report data (Paybarah et al., 2020). In Australia, the Australian Bureau of Statistics estimated
a net loss of 11,000 people from capital cities during the September quarter of 2020 (Davies,
2021).

COVID-19 has exposed key imperfections of living in large cities and these have been
used to articulate the “urban exodus” narrative. Facilitated by high air-travel connectivity,
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job density and spatial concentration of public-facing jobs, large cities became early global
epicentres of COVID-19 infections during the early stages of the pandemic (Florida et al.,
2021). Pre-coronavirus housing affordability and poor housing conditions were consistently
identified as urban challenges in large cities. Coupled to these issues, lockdowns, social
distancing, remote work and home schooling reportedly augmented the pressure for families
living in small and crowded living spaces, to move out of cities in the look for more space
and affordable housing (Hernández-Morales et al., 2020; Hughes, 2020). Teleworking, in-
creased familiarity and use of online shopping reduced the need for commuting and living
in proximity to work and retail locations. Business closures removed the effervescence of
urban entertainment, leisure and social spaces, and triggered a rapid spike in unemployment
in many countries during 2020 as nonesential, public-facing work was suddenly paused (Falk,
2020; Foley et al., 2020).

Enabled by automation and artificial intelligence, new digital technologies have greatly
facilitated the transition to remote activities and arguably away from large cities during
COVID-19 (Ting et al., 2020). Technologies, such as video conferencing, shared documents,
instant messaging and cloud computing became instrumental in enabling remote work and
education (Al-Maroof et al., 2020; Vargo et al., 2021). Virtual services, like video streaming
and social media platforms offer access to some of the cultural effervescence and community
that have consistently been an important factor drawing people to large cities (Harris and
Todaro, 1970; Glaeser et al., 2001). Online shopping platforms, such as Amazon and Ebay now
provide an opportunity to buy and ship products from distant locations (Ting et al., 2020).

However, preliminary evidence suggests that populationmovements during the pandemic
have been over relatively short distances. Evidence from the US and Spain suggests that the
vast majority of movement from large cities during the pandemic has been to their suburbs,
as opposed to smaller, remote cities and towns (Hughes, 2020; González-Leonardo et al.,
2022). Yet, some city leavers also appear to have moved to neighbouring areas, second
residences, holiday destinations and other cities (Paybarah et al., 2020; Kolko et al., 2021).
In Australia, larger cities have been the primary destination for migration from other large
cities, while the flow of people moving down the urban hierarchy has been much smaller
(Davies, 2021). In countries where anecdotal evidence exists, COVID-19 does not seem to
have fundamentally altered the pre-existing national structure of the net internal balances of
population movement. However, it seems to have accelerated relocation decisions that were
already in motion pre-pandemic (Davies, 2021; Kolko et al., 2021).

Persuasive cases have been made against headlines speculating about the end of cities.
Past pandemics wreaked havoc and substantially influenced medical, cultural, political and
urban design changes, but they have not dented the key role that cities play in society (Glaeser,
2020; Reades and Crookston, 2021). For instance, the Black Plagues of the 14th century
killed one-third of the population in Europe and theMiddle East (Pamuk, 2007). The Cholera
outbreaks of the 19th century decimated large cities across the world, including London,
Paris, Moscow, Hamburg, New York and Madrid (Briggs, 1961; Ali et al., 2015). Yet, large
cities have continued to be important gravitational centres for population concentration.
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Cities are critical engines of innovation, economic growth and prosperity. They enable
the emergence of agglomeration economies. Concentration in cities facilitates the exchange
of goods, knowledge, information and ideas by reducing transportation and communication
costs, offering abundant critical mass, and fostering strong firm linkages (Glaeser, 2010).
A fundamental ingredient underlying these benefits is the face-to-face interaction that can
be fostered by urban agglomerations (Storper and Venables, 2004). While routine, codified
activities can be more easily communicated and performed virtually from remote locations,
complex, innovative and less familiar tacit knowledge, tasks and ideas require face-to-face
contact (Storper and Venables, 2004). This need for face-to-face interaction comprise an
essential reason why the proliferation of internet communication has not led to the spatial
diffusion of urban agglomerations and “the death of distance”, despite its capacity to enable
complex ways of communication between distant locations (Fujita and Thisse, 1996).

Additionally, rural and remote areas may lack the infrastructure and services needed to
support incoming urban residents. These areas do not offer the vibrancy and sophistication of
entertainment, cultural and convenient services that urbanaties are used to. Telework is likely
to remain a permanent way of interaction post-pandemic. Yet, poor broadband connectivity
in rural and remote locations has remained a key challenge across most countries in the world
(OECD, 2020). Not all forms of work can be done remotely, including: high-touch, public
facing work providing essential (e.g. healthcare and education services) and nonessential (e.g.
restaurants, bars and clothing stores) services; essential, nonpublic facing work related to
construction, infrastructure and maintenance; and knowledge-intensive activities requiring
high level abstraction and cognitive capacity (i.e. teaching and networking) (Florida et al.,
2021). Also online work fatigue has become a new phenomenon, reflected in the widespread
use of term “Zoom fatigue” (Fosslien and Duffy, 2020). Rather than full-time remote work,
hybrid forms of work are thus more likely to outlast the pandemic, requiring flexibility to
combine office and online presence. Such change may entail a need for reliable broadband
connectivity and accessibility to employment centres.

Thus, while speculations during early stages of the pandemic pointed to an “urban exodus”
as COVID-19 cases and deaths surged in large cities, emerging evidence suggests that the
effects from the pandemic have reverberated through to the internal mobility system of
countries across the world prompting residential relocations from large cities. Yet, such
shocks are less likely to have led to a significant reconfiguration of the national mobility
system. Rather, they may have accelerated existing mobility trends, with cities expected to
bounce back and remain major centres of population attraction post-pandemic. Thus far,
however, existing evidence remains largely anecdotal. We seek to offer some first evidence
assessing the ways in which the British mobility system has weathered during the start of the
pandemic to the reopening of the country’s economy.

7



2.2. Contemporary mobility patterns across the British urban hierarchy

To determine the extent of change in mobility patterns during COVID-19, we review the
pre-existing predominant trends of human mobility in the British system. Globally, the
United Kingdom (UK) occupies an intermediate rank in terms of overall levels of mobility.
Based on the 2011 UK Census, estimates indicate that 6.8 million individuals, or almost 11 in
100 people, changed their usual residential address in the last 12 months (Rowe et al., 2020).
That is above the global average but well below countries, such as Iceland, Finland, the US and
Australia (Bell et al., 2015). In the UK, while the share of short-distance migratory moves has
been declining, most movement still occurs locally with approximately 30% of all residential
changes taking place within 10km, while only less than 7% happen between distances of
50-200km and less 3% exceed 200km (Champion and Shuttleworth, 2017).

A historical feature of the internal migration system in the UK for over the last half
century has been counterurbanisation (Champion, 1989). This process is characterised by
population losses due to internal migration in major metropolitan areas and gains in smaller
towns and rural areas. Over the last decade, a general decline in the size of net migration gains
and looses across the national migration system has resulted in a weakening of the counter-
urbanisation process (Lomax et al., 2014). This diminishing process has produced a pattern
of spatial equilibrium in which migration inflows and outflows are closely balanced, resulting
in minimal population redistribution across the national urban settlement (Rowe et al., 2019).
Traditionally, acute net migration losses have been in London, the urban conurbation of the
West Midlands, metropolitan districts in the North West, Glasgow, Edinburgh and Belfast
(Lomax et al., 2014). Primary areas of net gain have been districts in the SouthWest (especially
Cornwall), and along the south coast and in the East of England (Lomax et al., 2014). Since
2008 following the global financial crisis, the number of metro-to-metro moves has hence
replaced that of metro-to-nonmetro mobility as the predominant direction of migration
flows in the UK (Lomax and Stillwell, 2017). The number of nonmetro-to-metro moves has
also increased exceeding the occurrence of nonmetro-to-nonmetro movement, although both
of these types of flows have remained smaller than those occurring between metro areas, and
from metro to nonmetro locales (Lomax and Stillwell, 2017).

The importance of London in redistributing population represents a second relevant
feature of the national internal migration network. Between 2010 and 2011, moves from
and to London accounted for 15% of the total migration moves, or one in every seven moves,
between local authority districts in the UK (Lomax and Stillwell, 2017). London plays a
key role as a social escalator region attracting young adults at rates which are higher than
elsewhere in the country but recording significant losses of population due to migration
across all other age groups as they step off the escalator andmove away fromLondon (Fielding,
1992). London has thus consistently registered netmigration losses, although these losses have
lessened during the 2000s as a result of less acute outflows and greater inflows, particularly in
inner boroughs (Champion, 2015). Relevant in the context of the COVID-19 pandemic is the
fact that net migration balances in London tend to correlate with economic cycles. Over the
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last four decades, London has registered the largest net migration losses during periods of
national prosperity and lowest negative balances when economic conditions are less buoyant
(Lomax and Stillwell, 2017). While this evidence may suggest that moderate migration losses
in London during the COVID-19 pandemic, as indicated earlier, reports have indicated large
outflows from large dense cities. Next we describe the data and methods used to assess the
extent to which the existing patterns of population movement have been altered during the
COVID-19 pandemic.

3. Data

To capture population movements during the COVID-19 pandemic, we used anonymised ag-
gregate mobile phone location data from Facebook users comprising 21 million observations
for Great Britain and covering a 18-month period from March 23th 2020 to August 15th
2021. We used two data sets Facebook Movements and Facebook Population created by Meta and
accessed through their Data for Good Initiative (https://dataforgood.facebook.com).
The data sets are built from information from users who shared their location history. Before
sharing the data, Meta applies three techniques to ensure privacy and anonymisation: random
noise, spatial smoothing, and dropping small counts. First, a small undisclosed amount of
random noise is added to ensure that precise location cannot be identified for small popu-
lation counts in sparsely populated areas. Second, spatial smoothing is applied to produce
an smooth population count surface using inverse distance-weighted averaging. Third, any
remaining population counts of less than ten are removed from the final data set - see Maas
et al. (2019) for details.

The Facebook Movements data set provides information on the number of Facebook users
moving between and within locations. The Facebook Population data set provides information
on the number of active Facebook users in a location at a given point in time. Both data
sets provide daily population counts over three time windows of eight hours: 00:00-08:00,
08:00-16:00 and 16:00-00:00 which are used to define the location of users. The location of
users is defined as the place where they spent most of their time at a given time window (e.g.
00:00 - 08:00). Comparing the location of individuals between two time windows provides
data on the number of people moving between locations. Both data sets include a baseline
population count indicating the number of Facebook users moving between locations, or total
number of Facebook users in a given location during a fixed baseline period. The baseline
period is defined as an average of the population counts covering 45 days; that is, the 45
days prior to March 10th, 2020. The data sets also include a ‘quality’ score indicating the
number of standard deviations by which the observed population count at a given time point
differs from the baseline population count, highlighting statistically significant changes in
population counts.

Facebook used the Bing Maps Tile System developed by Microsoft as a spatial reference
framework to organise the data. It is a geospatial indexing system that partitions the world
into tile cells in a hierarchical way, comprising 23 different levels of detail (Schwartz, 2018).
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At the lowest level of detail (Level 1), the world is divided into four tiles with a coarse spatial
resolution. At each successive level, the resolution increases by a factor of two. The Facebook
mobility data we used are based on tiles at level of detail 12 which provides ground meters-
to-pixel resolution of 38.2185 measured at the Equator. For Great Britain, that is a tile size of
approximately 5.5− 6km2.

We also used 1km2 gridded population data produced by Patias et al. (2019) derived from
the 2011 UK Census to analyse population movement across the rural-urban continuum. We
used gridded resident population counts to ensure consistency with the Facebook data. Based
on an algorithm developed by Lloyd et al. (2017) (labelled PopChange), Patias et al. (2019)
derived gridded population data from British censuses by calculating the correspondence
between small area census geographies and 1km2 grids, and allocating population counts
from each census area unit to its conforming 1km2 grids. We aggregated these data to Bing
tile level 12 to match the Facebook data. This aggregation procedure was implemented via
areal weighted interpolation using the package sf (Pebesma, 2018) in the R environment.

Based on the resulting data, we used population density at the Bing tile level to capture
the rural-urban continuum in the settlement hierarchy. This allows overcoming issues of
comparability, spatial scale and measurement associated with the use of binary rural/urban
classifications (Fielding, 1989). We used deciles of population density to classify Bing tiles into
ten discrete categories, combining tiles with similarly low population density and maximising
the differentiation across moderate to high density population tiles. Figure 1 maps the
resulting population density classes which tend to correspond to the Office for National
Statistics (ONS) rural/urban classification (see Supplementary Material (SM) Figure 1). We
preferred our population density classification as it provides a consistent definition of areas
based on population density. The ONS rural/urban classifications for England, Wales and
Scotland are generated independently based on different input data, and definitions of rural
and urban (Bibby and Brindley, 2014; Scottish Government, 2018) - see SM Figure 2.

4. Methods

The analysis involved two steps. First, we used area-based mobility metrics to measure the
extent of change in mobility inflows, outflows and intraflows across the urban hierarchy
at two key discrete points during the COVID-19 pandemic in the UK (i.e. after the first
lockdown and after the implementation of the reopening). A detailed description of these
events and the timeline of the COVID-19 pandemic in the UK is provided in Section 5.1.
Second, we used statistical modelling to assess spatial and temporal variations in the intensity
of mobility flows across specific origin-destination pairs of population density classes over
the course of the pandemic.

We adopted an open and reproducible research approach based on the use of open soft-
ware for mobility data analysis. We used data from accessible public and commercial sources
following best practices in geographic data science (Brunsdon and Comber, 2021). We pro-
duced an open data product (Arribas-Bel et al., 2021), including reproducible computational
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Figure 1. Spatial distribution of Facebook tiles into population density classes. Class 1 includes
the least densely populated, representing sparsely populated rural areas. Class 10 includes the
most densely populated and highly urban agglomerations.
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code to reproduce or extend our analysis, which is available for download as indicated in the
Data Availability Statement.

4.1. Area-based mobility metrics

Wemeasured changes in mobility inflows, outflows and intraflows across the urban hierarchy
between two distinctive four-week periods during the course of the COVID-19 pandemic:
(1) after the announcement of the first lockdown between March 23rd, 2020 and April 19th,
2020, and (2) after the implementation of the government’s re-opening plan out of lockdown,
or so so-called “freedom” day between July 19th, 2021 and August 16th, 2021. We measured
changes inmobility during these periods, relative to pre-coronavirus levels during the baseline
period as defined by Facebook; that is, a period covering 45 days before March 10th, 2020.
Specifically, we computed the percentage change in mobility inflows, outflows and intraflows
by population density class as follows:

Itc =

(
x̃tc

b̃c
− 1

)
∗ 100 (1)

where: x̃ corresponds to the median count for a specific type of population movement
(i.e. inflows, outflows or intraflows); b is the baseline median mobility count; t relates to
the two four-week periods after the first lockdown, or after the re-opening; c refers to each
population density classes, as defined in Section 3. A positive I score indicates an increase in
the extent of population movement relative to the baseline pre-pandemic period. A negative
I score represents a decrease in the extent of population movement relative to the baseline
pre-pandemic period, while a zero score denotes no changes.

For the computation of Equation 1, we collapsed individual Bing tiles belonging to a same
population density class and administrative area to create administrative-population-density
geographical units. Intuitively, this spatial framework mitigates the influence of movement
between adjacent tiles of a same population density class within the same administrative area,
focusing on moves between different population density classes and administrative areas over
relatively long distances. The resulting geographic boundaries cover 1,654 spatial units across
Britain, with individual units averaging 60km2. The administrative units in the Facebook
data correspond to the global administrative geographical classification system level 4 from
the commercial company Precisely (www.precisely.com). These are the areas used by Meta
to classify their mobility and population data.

4.2. Modelling tile-to-tile mobility flows

In a second stage, we used statistical modelling to understand differences in the intensity
of mobility between tiles of different population density classes (as presented in Figure 1)
and the extent to which the intensity of movement has evolved over time as the COVID-19
pandemic unfolds. In principle, the overall number of peoplemoving between tiles of different
population density classes could be estimated based on the original raw data. However, this
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approach could be misleading. Movement flows are not only influenced by the population
nature of the origin and destination areas. Distance between locations, size, or socio-economic
characteristics, among others, may also play a role as confounders, masking the true effect of
population class. To unpick each of these and derive a “cleaner” estimate of the relevance of
the nature of population, we opted for a regression modelling approach.

We adopted a spatial interaction framework. We used population flows between tiles
by time window and day (as described in Section 3), and modelled them as a function of
characteristics of the flow itself (Fij ), the origin (Tilei) and destination (Tilej ) tiles, and the
temporal nature of the flow (Tw). Crucially, we included indicator variables that capture the
pair of population classes (Figure 1) of the origin and destination tile. In mathematical form,
this can be expressed as:

µijw = α+
∑
IJ

γIJ + β1dij + β2qijw︸ ︷︷ ︸
Fij

+

T ilei︷ ︸︸ ︷
β3Popi + β4Popj︸ ︷︷ ︸

T ilej

+

Tw︷ ︸︸ ︷
D +H +Wk (2)

where µijw is the expectation of the flow of people from tile i to tile j in the time window
w; α is an intercept; γIJ is a series of indicator variables that reflect the pair of population
density classes of a given origin i (I ) and destination tile j (J ), resulting in 99 pairs (10
classes ×10 classes minus one so it is not collinear with α); dij is the geographic distance
between tiles i and j; qijw is a measure of the quality of the flow estimate provided by Meta-
Facebook and related to the uncertainty behind the user count of the flow as described in
Section 3; Popi/j represents the population at the origin (i) and destination (j) tiles; β1/2/3/4
are parameters to estimate in the model linking their respective covariates to µijw;D is a
trend tracking the day to which the flow relates to during the period in analysis; whileH and
Wk are indicator variables capturing day of the week (i.e. weekday or weekend) and hour
window (i.e. 00:00-08:00, 08:00-16:00 and 16:00-00:00), respectively.

Our focus in Equation 2 is centered on γIJ . Controlling for all other variables in the
model, these parameters capture the extent to which, the expected flow between a given
origin-destination population density class pair of tiles (e.g. a high density origin to a low
density destination) is systematically higher or lower than if it occurred between a baseline
origin-destination population density class pair of tiles (e.g. a low density origin to a low
density destination). Additionally, we standardised continuous variables (dij , qijw, Popi/j ),
α so that they can be interpreted as the expected flow on the first day (D = 0), during
the first time window (H=00:00-08:00), on a weekday (Wk = 0), for the baseline origin-
population population density class pair, when all the other variables are at their mean
value. In this context, each γIJ can also be seen as the “modulation factor” around that
expectation associated with each pair of origin-destination classes. The baseline origin-

13



destination population density class pair is the lowest population density class as origin and
destination.

To model the flows, we used a count data regression model. Specifically, we fitted a
generalised linear model (GLM) where the error term is assumed to be distributed following a
Poisson distribution, with a flow expectation of (µijw) linked to the flow count (Fijw) through
a log link:

logE(Fijw) = µijw (3)
Fijw ∼ Pois(eµijw) (4)

The Poisson regression model (PRM) assumes that equidispersion; that is, the equality of
mean and variance in the responde variable (Cameron and Trivedi, 2013). In practice, the
equidispersion property is commonly violated because of overdispersion. This refers to the
situation in which the variance exceeds the mean. When this occurs, the PRMmay produce
biased parameter estimates, causing the standard errors of the estimates to be underestimated,
and compromising the statistical inference process regarding the extent, significance and
direction of the influence of covariates (Hilbe, 2011). To test for overdispersion, we used a
regression-based test based on an auxiliary regression of the conditional variance generated
from the predicted dependent variable on the conditional mean, without intercept term as
described in Cameron and Trivedi (2005).

Following (Gelman and Hill, 2006, pp. 115-116), we used a quasi-PRM to address overdis-
persion in our response variable. This is one of the most common strategies to deal with
overdispersion in count data models (Hilbe, 2011, pp. 158-159) Intuitively, this model adjusts
the standard errors of the estimates to account for the extra dispersion in the data. To im-
plement this, we estimated Equation 2 by using robust variance estimators. The number of
active Facebook users were used as weight to account for the variability of observed count
of population movement over time. This strategy is also used as a way to mitigate for any
potential biases regarding the variation in the observed number of active Facebook users
changes over time across Britain.

We fitted Equation 2 using iteratively reweighted least squares (IWLS). We separately
estimated models for individual months in our data, resulting in 18 sets of estimates. Our key
aim is on estimates for α and γIJ , so that we focused on discussing the evolution of these
estimates in a grid of line plots with ten rows and ten columns, each of them representing one
of our population density classes (as displayed in Figure 1). The plot corresponding to the
I-th row and J-th column displays the evolution of the parameter that tracks the intensity of
population flows from tiles in population density class I-th to those in population density
class J-th.1

1Since we estimated 99 γIJ coefficients relative to α, we display the estimates for that parameter in the first
column and first row cell of the grid.
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5. Results

5.1. Timeline of COVID-19 in Britain

Understanding the timeline of government interventions during the COVID-19 pandemic
in Britain is critical to the broader context within in which mobility patterns have occurred.
A range of non-pharmaceutical interventions were implemented to reduce the spread of
COVID-19 during the course of the pandemic. Figure 2 shows the stringency index for the
18 months period covered by our data (March 2020 to August 2021). The stringency index is
a composite measure developed by Hale et al. (2020), which captures the level of restrictions
imposed by governments, ranging from 0 (loosest) to 100 (strictest).

Figure 2. Level of COVID-19 stringency measures in Britain, March 2020 to August 2021. The
stringency index measures the level of non-pharmaceutical interventions to COVID-19, such as
social distancing and lockdown measures and ranges from 0 to 100 (100 = strictest). The stringency
index was sourced from COVID-19 government response tracker - )https://www.bsg.ox.ac.uk
/research/research-projects/covid-19-government-response-tracker). See Hale et al.
(2020) for more information.

Figure 2 identifies key five time intervals (Jennifer and Kirk-Wade, 2021), with pink
indicating increases in stringency and green denoting reductions in stringency. Darker
colours points to greater changes in either of these directions. The first period corresponds to
the first lockdown, which was announced on March 23th 2020 and imposed a “stay at home”
order. During this period, only essential travel and outdoor physical activities were permitted,
with the stringency index rising to 80. The second phase involves a period of partial reopening,
with schools and non-essential shops being re-open on June 1st 2020. Workers who could
not work from home were also permitted to return to workplaces, but public transit was to be
avoided. This partial re-opening was reflected in a moderately high stringency index ranging
between 60 and 70. The third phase involves a period of fluctuating levels of stringency
between October 14th 2020 until January 6th 2021 in response to changing COVID-19
cases and hospitalisation rates. It was marked by the introduction of a tier system with local
lockdowns to locally contain centres of contagion, and then followed by a four-week second
national lockdown between November 5th 2020 and December 2nd 2020, in response to
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rapidly spreading of COVID-19 across Britain. The fourth phase was characterised by a third
national lockdown announced on January 6th 2021 to contain a rapid rise in COVID-19 cases
due to the Delta variant. Levels of stringency during this phase peaked with an stringency
index of 87. The fifth and final phase represented in Figure 2 displays the implementation of
the government’s plan out of the third national lockdown which sought to gradually lifted
existing COVID-19 restrictions in four steps. Step 1 began on March 8th 2021 with the
re-opening of schools and outdoor gatherings, followed by non-essential shops and outdoor
venues (step 2), and subsequently indoor venues re-opening and large outdoor events (step
3). The re-opening strategy was completed on “freedom” day on July 19th when most of
COVID-19-related legal restrictions were lifted.

5.2. Mobility patterns after the First Lockdown and “Freedom” Day

Next we analysed the percentage change in human mobility intensity at two distinctive points
during the COVID-19 pandemic in Britain. As described in Section 4.1, Figure 3 shows
percentage changes in inflows, outflows and intraflows between pre-pandemic mobility
patterns during mobility and mobility patterns after the first lockdown, and mobility patterns
post “freedom” day across population density classes. Positive percentage changes indicate
increases in mobility intensity relative to the pre-pandemic period. Reductions in mobility
are captured by negative scores and zeros denotes no no change.

A key pattern from Figure 3 is an overall decline in mobility inflows and outflows across
the urban hierarchy after the first national lockdown was enacted. On average, mobility
declined by a 44% change. The sharpest declines are observed in highly densely populated
areas, with declines exceeding 50%. Figure 3 also reveals a high level of variability in inflow
and outflow mobility outcomes across the urban hierarchy. While high density population
areas registered a consistent reduction in mobility intensity, less densely populated areas
experienced more variable outcomes. These low density areas recorded increases in inflows
and outflows of up to 80%, compared to those mobility levels observed before the pandemic.
These areas tend to comprise locales near and around national parks, such as the Pennines,
Northumberland National Park, Peak District National Park, Galloway Forest Park and
Nartmoor National Park, and coastal areas in South Wales. Instead, reductions in inflows
and outflows tended to be larger and concentrate in highly density areas within large cities,
including London, Birmingham and Manchester.

Declines in mobility inflows and outflows coincided with an overall rise in intraflows
across the urban hierarchy, reflecting the effect of non-pharmaceutical interventions to
contain the spread of COVID-19. Relative to pre-pandemic levels, intraflow movements
increased by an average of 30%. Coupled with business and school closures and working
from home, restrictions on outdoor activities and social gathering foster local mobility to
access green spaces and essential services.

Following the full implementation of the government’s exit strategy out of the third
lockdown on July 2021, we observe increases in mobility intensity across the urban hierarchy.
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(a)

(b)

(c)

Figure 3. Inflows (a), outflows (b) and intraflows (c) percentage change from pre-pandemic mobility
standards after the first lockdown and freedom day across different population density classes.
Positive values indicate % increase in flows compared to the baseline, negative values indicate %
decrease, while zeros signal no change.
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Mobility intensity bounced back closer to pre-pandemic levels, with less densely populated
locations recording levels much closer to pre-pandemic patterns. Highly dense populous
areas continued to record mobility levels between 15% to 20% lower than those occurring
before the COVID-19 pandemic in 2020. Intraflows, however, reported a descending pattern
across the urban hierarchy. Generally higher than pre-pandemic levels are observed in low
density population areas, gradually declining as population density increases.

5.3. Variations in mobility across the urban hierarchy

Based on our modelling regression estimates, we then examine variations in the intensity of
mobility across the urban hierarchy over the course of the COVID-19 pandemic. As described
in Section 4.2, estimates were derived from a GLMQuasi-PRM using the number of moves
as a function of a range of variables. In this section, we focus our analysis on estimates for our
origin-destination class variables capturing variations in population density across origin
and destination pairs. Estimates were derived from fitting individual regression models on
pooled data sets for individual months. Full regression estimates and models diagnostics are
reported in SM Figure 3 and Tables 1-2.

Figure 4 reports monthly regression estimates for the intercept (red line) and origin-
destination class pairs (blue lines). The y-axis of Figure 4 represents origin population density
classes, while destination classes are reported on the x-axis. Population density classes are
encoded with numbers, with 1 indicating the least dense and 10 denoting the most dense
population density class. Individual plots are arranged according to these population density
classes, with coefficients for the least dense population class at the top left of Figure 4, gradually
increasing as we move towards the bottom and right. Each plot displays Poisson regression
coefficients (y-axis) for individual origin-destination population density classes over time
(x-axis). These coefficients capture changes in the intensity of mobility between origins
and destinations of specific population density levels over the course of the COVID-19
pandemic. Coefficients for origin-destination pairs were derived from a fixed effects model,
including a regression intercept as the baseline category. The first plot at the top-left corner
of Figure 4 reports the regression intercept, indicating expected log mobility count between
the least dense origins and destinations if all covariates are zero. This is interpreted as a
baseline mobility count estimate, and the set of coefficients reported in the remaining plots
are interpreted as deviations from this baseline estimate. Adding the regression intercept
and a specific individual origin-destination pair produces an estimate of the overall effect
relating to a particular class. We report individual coefficients for origin-destination pairs
as they enable more easily determining the marginal effect of specific population density
class on mobility flows. It enables isolating these marginal effects from overall effects which
capture systematic nation-wide changes in human mobility patterns. Coefficients for origin-
destination population class pairs indicate the expected log mobility count depending on
their density class. A coefficient of 3 for origin class 10 and destination class 1, for instance,
indicates that an additional 20 (= exp(3)) people, on average, moved from the highest to the
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least population density class, relative to the baseline estimate. For visualisation purposes, we
used a different y-axis scale for the regression intercept.

Recalling the national levels of mobility during the course of the period in analysis is
important to contextualise our estimates. Evidence so far points to reduced overall levels of
mobility post announcement of the first national lockdown onMarch 23th 2020, bouncing
back to pre-coronavirus levels following the implementation of the government’s re-opening
plan out of lockdown starting on March 8th 2021. Focusing first on the regression intercept,
Figure 4 shows a positive coefficient for the least dense population origins and destinations
fluctuating between 0 and 1 fromMarch 2020 to February 2021, with a sharp drop in March
2021 and rise in April 2021, trending to 1 during the period from May to August. These
patterns are consistent with low levels of mobility exchanges between the least dense pop-
ulation areas during periods of lockdown and partial re-opening during March 2020 to
February 2021; a sudden reduction in mobility between these areas as the first stage of the
re-opening plan out of lockdownwas implemented inMarch 8th 2021; and, a marked increase
as non-essential retail reopen in April 12th 2021.

Figure 4 reveals three key patterns. First, it reveals an overall predominant pattern
of relatively high mobility involving low density areas (i.e. population density classes 1-5)
as both origins and destinations during March 2020 to February 2021, rapidly declining
during March to August 2021. This pattern suggests higher than average mobility levels
from highly and less dense populated areas to low population density areas during periods of
high stringency involving lockdowns, strict social distancing measures, school and business
closures, as well as higher than average mobility levels from low density areas to high density
areas. Declining patterns of mobility to and from low density areas post February 2021
coincide with the rolling out of the government’s four-staged plan for re-opening fromMarch
2021. The extent of this decline displays a clear spatial gradient of large reductions in inflows
to low population density destinations, moving to more moderate declines in inflows to more
densely populated locations. Changes in mobility relating to highly sparsely populated locales
stand out displaying relatively high levels of movement, followed by a sudden decline when
the third national lockdown was enacted.

A second key pattern relates to population exchanges between highly dense population
areas (i.e. population density classes 6-10) across different population density classes. These
areas tend to display relatively stable coefficients betweenMarch 2020 and August 2021. This
suggests limited variations in the size of populationmovements in high density agglomerations
during the course of the pandemic, compared to population exchanges involving low density
areas.

A third key feature involves population movements between population density areas of
similar classes reported in the diagonal of Figure 4. These exchanges tend to show a gradient
of lowmobility with limited variation in low density areas moving to higher levels of mobility
in highly dense locations with a sudden rise in intensity following the implementation of the
COVID-19 exit strategy. This sudden increase in mobility intensity seems to have coincided
with Stage 2 of the re-opening plan involving the resumption of nonessential retail activity
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and long-distance travel. These rises reflect increases in mobility exchanges between highly
dense areas, but also higher intra-mobility intensity within these locations.

6. Discussion and Conclusion

6.1. Key results and interpretation

During the early stages of the COVID-19 pandemic, anecdotal reports of an “urban exodus”
from big cities in various western societies emerged. Using smartphone application data
from Facebook users, we sought to analyse the extent and durability of changes in human
mobility patterns across the rural-urban hierarchy in Britain during the COVID-19 pandemic
fromMarch 2020 to August 2021. We found evidence of an overall and sustained decline in
human mobility between areas during the enactment of non-pharmaceutical interventions
between March 2020 and February 2021, bouncing back to pre-coronavirus levels following
the roll out of the government lockdown exit strategy in March 2021. Declines in mobility
between areas during high levels of stringency co-occurred with increases in mobility within
areas, probably reflecting rises in active travel and e-forms of transport (Li et al., 2021). These
patterns are largely consistent with evidence emerging from global data from Apple (Apple,
2020) and Google mobility reports (Google, 2020). We also showed that declines in mobility
levels between areas in Britain varied markedly across the urban hierarchy, with the most
densely populated areas experiencing the largest reductions; that is, a 60% decline from
pre-pandemic levels. Declines in less populous areas were less acute and more variable, with
some areas at intermediate levels of population density displaying rises in population of up to
80% in relation to pre-pandemic levels. These patterns are consistent with “the donut effect”
used – by Ramani and Bloom (2021) – to describe population movement out of dense city
centers to suburban areas around the largest twelve US cities during COVID-19.

We presented evidence of higher than average patterns of mobility from highly dense pop-
ulation areas to low densely populated areas as stringent non-pharmaceutical interventions
were enacted and overall levels of mobility declined across Britain. This pattern is consistent
with arguments of migration away from dense agglomerations as they became key early epi-
centres of COVID-19 infections and lost their urban vibrancy as a consequence of business,
school closures, social distancing and lockdowns (Florida et al., 2021). This is in addition to
pre-existing housing affordability and poor housing conditions, particularly in cities, like
London (Edwards, 2016). Collectively, these challenges seem to have exerted pressure tomove
out of dense cities as urban life was virtually shut down and small housing units had to be
re-purposed into 24-hr multi-functional spaces to accommodate home schooling, telework
and day-to-day activities (Capolongo et al., 2020; D’alessandro et al., 2020). However, we
also presented evidence of higher than average mobility in the reverse direction (i.e. from
low density areas to high density locations) and sustained high mobility between areas of
relatively high population density. Taken together, our findings indicate that while patterns
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of population movement from densely populated agglomerations were higher than average,
we found no evidence of COVID-19 leading to a “population exodus” from large cities.

We showed evidence of a systematic decline in mobility to low density areas, sustained
mobility between high density areas, and a rise in mobility intensity between areas of simi-
larly high population density levels as COVID-19 restrictions began to be lifted in Britain.
These findings suggest that while COVID-19 generated shock waves leading to temporary
changes in the patterns of population movement in Britain, the resulting vibrations have not
significantly reshaped the prevalent existing structures in the national internal migration
system. Large and dense urban areas are likely to remain key centre of population movement.
Hybrid forms of working are likely to become widely adopted and predominant ways of in-
teraction. Sparsely rural locations lack the infrastructure and services need to support hybrid
working arrangements (OECD, 2020). Poor broadband connectivity and deficient transport
connectivity are likely to represent major challenges for these locations (OECD, 2020). At
the same time, urban areas already offer the required digital infrastructure. Economies ag-
glomeration in dense urban spaces are likely to continue to facilitate and foster knowledge
exchange, innovation and economic growth (Storper and Venables, 2004). And in a similar
way that the advent of internet communication has not led to the geographic dispersal of
urban agglomerations (Rietveld and Vickerman, 2004), it is difficult to envisage how the
changes brought about by COVID-19 can trigger an urban exodus and redraw the national
pattern of human population settlement.

6.2. Limitations and future work

Assessing thewider generalisability of our findings is challenging. Digital trace data are known
suffer from biases and issues of representation reflecting differences in digital technology
penetration, usage and accessibility (Rowe, 2021). In the US, for instance, young adults
particularly in the ages of 20 and 40 tend to be over-represented in Facebook data, while
population over the age of 60 appear to be consistently under-represented (Ribeiro et al.,
2020). Yet, these biases do not seem to change our conclusions as these patterns of user
representation concur with the mobility age schedule, with high intensity of mobility during
young adult ages and gradually decreasing with ageing (Rogers et al., 1978). Thus, data are
collected on the age groups that aremore likely tomove. Additionally, a recentUK-based study
using the same mobility Facebook data set employed in our study demonstrated that they
are strongly correlated with the spatial distribution of census and ONS mid-year population
estimates (Gibbs et al., 2021). It also showed no systematic association between the percentage
of Facebook users, and the average age, percent minority ethnic, population density, or index
of multiple deprivation (Gibbs et al., 2021). Future work could extend our work triangulating
other sources of data innovation, drawing a larger number of smartphone applications, as
well as traditional data sources, like the 2021 British census when it becomes available. Such
analysis could provide further ground-truthing of our results.
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We analysed the spatial patterns of mobility across the rural-urban continuum. Future
work is needed to establish the causes of the observed changes in the spatial direction of
mobility during COVID-19. Understanding these causes can help anticipating long-term
structural changes in mobility intensity extending beyond the pandemic. A combination
of factors, including school shutdowns, business closures, social distancing, telework, em-
ployment density, housing space and affordability have been cited as key forces altering the
pre-existing patterns of population movement during the pandemic, and triggering moves
away from cities. While some of these factors have already dissipated as COVID-19 restric-
tions have been lifted, factors such as telework will most likely to endure the pandemic and
become a main form of engaging with work (Florida et al., 2021). Assessing the extent to
which companies can and will adopt remote work is key to understand the ways in which
hybrid working can affect location decisions within and away from cities, in order to improve
and design urban spaces by re-purposing office spaces, and equip rural locations with needed
digital infrastructure and transit connectivity.
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Supplementary Tables

SupplementaryTable 1. Quasi-Poisson regression coefficients bymonth,March 2020-
August 2021.We report the regression model estimates included in Equation 2, excluding the
estimates for origin-destination population density class pairs. Standard errors are provided
in brackets.
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Supplementary Table 2. Quasi-Poisson regression model diagnostics by month,
March 2020-August 2021.We report model diagnostics for our models, including measures
ofmodel fit (i.e. Akaike information criterion, PseudoR Squared and Log-Likelihood), degrees
of freedom and number of observations for each set of monthly estimates.

Month-Year Akaike Pseudo R squared Number of Obs. Degrees of Freedom Log-Likelihood
2020-03 5.200832e+11 0.819 291439 291331 -2.600416e+11
2020-04 1.447032e+12 0.826 831840 831732 -7.235162e+11
2020-05 1.714408e+12 0.82 1046802 1046694 -8.572042e+11
2020-06 1.860963e+12 0.809 1227192 1227084 -9.304816e+11
2020-07 1.947047e+12 0.798 1405916 1405808 -9.735233e+11
2020-08 1.822569e+12 0.798 1389682 1389574 -9.112844e+11
2020-09 2.022856e+12 0.79 1462133 1462025 -1.011428e+12
2020-10 2.084085e+12 0.79 1444114 1444006 -1.042042e+12
2020-11 1.930502e+12 0.792 1320533 1320425 -9.652510e+11
2020-12 1.825322e+12 0.796 1296650 1296542 -9.126612e+11
2021-01 1.729239e+12 0.802 1173129 1173021 -8.646193e+11
2021-02 1.596884e+12 0.801 1126290 1126182 -7.984422e+11
2021-03 1.742603e+12 0.823 1290628 1290520 -8.713015e+11
2021-04 1.730555e+12 0.808 1331641 1331533 -8.652774e+11
2021-05 6.719025e+11 0.905 1287563 1287455 -3.359513e+11
2021-06 7.480849e+11 0.9 1498527 1498419 -3.740424e+11
2021-07 7.691850e+11 0.898 1523778 1523670 -3.845925e+11
2021-08 3.720952e+11 0.891 720563 720455 -1.860476e+11
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Supplementary Figures

Supplementary Figure 1. Population density classes by decile and adjusted decile
classes. As described in Section 3, population density data were classified into ten discrete
classes based on deciles. We generated an initial classification which was adjusted to reduce
within-population density-class variability and maximise between-population-density-class
variability. Specifically, areas belonging to the first four deciles were combined into a single
class, the least densely populated category as very little differentiation exists across these
classes as shown in the figure below. Areas belonging to the tenth decile were split into four
classes based on the tenth decile’s quartiles. The figure shows how the adjusted classes which,
unlike official classifications (as discussed below), provide a consistent population density
classification across the rural-urban continuum, and tend to better capture variations in the
distribution of population densities in Britain. Figure 1 shows the spatial distribution of our
final population density classification.
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Supplementary Figure 2. Rural-urban classification for Britain. This figure dis-
plays the official rural-urban classification covering the British national territory for (a)
England and Wales, and (b) for Scotland. These classifications were sourced from the Office
for National Statistics and the Scottish Government, respectively. While these classifications
offer a categorisation of the national territory across the rural-urban continuum, they are
based on different definitions. Hence, we developed our own classification which maps to
these categorisations offering a consistent framework.

(a) Urban-Rural Classification in England and Wales.

(b) Urban-Rural Classification in Scotland.
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Supplementary Figure 3. Quasi-Poisson regression model coefficients by month,
March 2020-August 2021.We plot the regression model estimates included in Equation 2,
excluding the estimates for origin-destination population density class pairs. These estimates
are reported in Figure 4. Detailed information on our model specification estimation can be
found in Section 4.2. In the figure below, four colours are used to differentiate between model
components: 1) distance; 2) population size at the origin and destination (i.e. OD population);
3) quality score, which is a metric provided by Facebook assessing the uncertainty in mobility
flow estimates; and, 4) time, which refers to the temporal dynamics of our model involving a
eight-hour window, day trend, and differences between weekdays and weekends.

The figure below shows a remarkably consistent association between time, ODpopulation
and quality score components and mobility flows over the course of COVID-19 pandemic,
with coefficients ranging from -0.2 to 0.4. All coefficients show the expected direction
of influence with larger populations at origin and destination, relating larger population
movements. Coefficients for day, hours and weekend reflect small variations in the size of
mobility flows over time, reflecting time trend linear changes, fluctuations in during the
course of the day, and between weekdays and weekends.

As expected, distance shows a statistically significant negative coefficient, pointing to
a negative association between the size of mobility flows and geographical distance. There
is some variation in this association over time which tends to coincide with changes in
stringency. Periods of high levels of stringency tend to correlate with greater coefficients for
distance, reflecting the fact that people were deterred from moving over long distances and
encourage to move within the local area.
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