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ORIGINAL ARTICLE

Sensitivity of stress testing metrics to estimation risk, account behaviour
and volatility for credit defaults

Viani Biatat Djeundje and Jonathan Crook
aCredit Research Centre, University of Edinburgh Business School, Edinburgh, UK

ABSTRACT
One approach to stress testing the amount of capital required by a bank for credit risk is to
use parameterised account level models with credit application characteristics, behavioural
characteristics and macroeconomic factors as predictors. The standard methodology under-
estimates the amount of capital required because it fails to include uncertainty over the
model parameters, over the future trajectory of behavioural variables and over volatility. We
provide a methodology for estimating the magnitudes of these additional losses and so a
methodology to gain a more accurate estimate of the amount of capital required.
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1. Introduction

Every major bank undertakes an annual stress test
to indicate whether it has enough capital to protect
depositors in the event of a rare but plausible severe
negative shock to the value of its assets. These tests
are required under the Basel Accords (Pillars I and
II) and are implemented by most western banking
supervisors including the Federal Reserve, the
European Banking Authority and the Bank of
England. Major banks also stress test their portfolios
to examine the adequacy of their computed eco-
nomic capital under their internal capital adequacy
assessment process (ICAAP). For regulatory capital
the national Banking Supervisor supplies a small
number of macroeconomic scenarios to a bank and
asks it to predict both the amount of capital it will
have under these scenarios in a 2� 5 year horizon
and its risk weighted assets (RWA) (see BCBS
(2006, 2010)). The ratio of the former to the latter
(the capital adequacy ratio) must exceed a figure
given by the regulator. Typically, statistical methods
are used to make the predictions but recently,
machine learning methods have been proposed (see
Petropoulos et al., 2020, Brummelhuis and Luo
(2019), Gogas et al. (2018) and Kupiec (2018)).
Specifically, for credit risk, there are at least two
broad methodologies that are followed to compute
the RWA and so capital required. For regulatory
capital, the bank is asked to compute the amount of
capital it must hold according to the Vasicek for-
mula (see, for example, Siemsen and Vilsmeier:
2018). The amount is essentially the amount of

unexpected losses defined as the difference between
the 99.9th percentile of the distribution of expected
losses, the Value-at-Risk (VaR) and the mean of
that distribution. An alternative methodology is to
simulate a large number of scenarios, for example of
macroeconomic values for each macroeconomic
variable and compute the expected loss distribution
and so the VaR from that distribution.

Both methodologies for predicting the VaR
required for a portfolio of loan accounts have at
least three weaknesses. First, they assume that the
parameterised models that are used hold for the
population; there is no uncertainty over the parame-
ters. Second, there is no uncertainty over the future
values of the behavioural variables which play a vital
role in credit scoring models. Third, there is no
residual error in the prediction. Clearly omission of
these sources of uncertainty results in underestima-
tion of the VaR for a loan portfolio and so of the
amount of capital required. This could mean that
depositors appear to be adequately protected when
in fact they are not. Our article suggests ways to
make the scenario approach to stress testing that is
used by financial regulators more accurate in terms
of the amount of capital needed by banks to protect
against plausible but extreme adverse events.

In this article, we contribute to the literature in
three ways. First, we give a methodology to assess
the sensitivity of the VaR of a loss distribution for a
credit card portfolio to the uncertainty over the
future values of (a) behavioural variables in a credit
scoring model used as inputs to the loss
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distribution, (b) the parameters of the credit scoring
model and (c) residual values of the scoring model.
Second we show the relative sizes of these amounts
of uncertainty for a portfolio of credit card
accounts. Third we show the sensitivity of the
amount of capital required relative to the mean that
is implied by each type of risk in terms of the VaR
and expected shortfall values. We find that the
underestimation of the amount of capital required is
substantial and therefore that regulators may need
to consider seeking estimates of these values from
banks in annual stress tests.

There is a large literature on sensitivity analysis
(see Borgonovo and Plischke (2016) for a review of
methods and Pesenti et al. for an alternative
approach). We are interested in measuring the sen-
sitivity of VaR to each of the risks we have outlined.
Considering each of the specific sources of risk, and
starting with that associated with future values of
behavioural variables, we are unaware of any papers
that evaluate the implications of uncertainty over
their future values in a credit scoring model for
metrics of the predicted loss distribution.

In contrast, there is a substantial literature on
model parameter estimation risk. Two streams of lit-
erature are most closely related to this article.1 One
stream looks at methods to reduce model uncer-
tainty. They include Bayesian model averaging
(BMA) (Henry & Kok, 2013; Siemsen & Vilsmeier,
2018) and BMA and ridge regression (Hofmarcher
et al. (2014)). The second stream of literature con-
siders methods for evaluating the implications of
different sources of prediction uncertainty. Misina
and Tessier (2008) consider a model relating indus-
try sector default rates to macroeconomic variables.
Using a Cholesky decomposition to retain the corre-
lations between the macroeconomic variables with
simulated values of the macroeconomic variables
and error terms, they illustrate the differences
between the loss distribution if the model is linear
compared with non-linear, thus arguing uncertainty
over the correct form can have major implications
for the VaR. Jacobs et al. (2015) proposed Bayesian
regression to take into account parameter uncer-
tainty. But, their model took aggregate banking sec-
tor charge-off rates as the measure of loss rather
than using account level data and included only
three macroeconomic variables. Bignozzi and
Tsanakas (2016) consider model uncertainty, param-
eter uncertainty and residual risk. They show that a
Bayesian approach with a non-informative prior
removes residual estimation risk if the model
selected is correct. Using different Bayesian
approaches, for example choose the model with the
highest posterior weight, they argue the amount of
residual estimation risk indicates the amount of

model risk. Wang et al. (2020) estimated Bayesian
models of PD distributions at account level using
application, behavioural and macroeconomic varia-
bles and compared the implied VaR with that from
a frequentist model. Garcia-Cespedes and Moreno
(2016) suggest uncertainty over probability of
default (PD) estimation can be computed from the
variance of the estimates and they illustrate using
estimates of the PD in different corporate credit rat-
ings. They find that the randomness of PD, rather
than the fixed value in the Basel Accord, increases
the probabilities of extreme losses but the VaR
increases by much less than the uncertainty over the
PD. A further paper that considers uncertainty over
behavioural model parameters is by Bakoben et al.
(2020) who propose a method to cluster accounts
by vector autoregression (VAR) parameters of
behavioural equations taking into account uncer-
tainty as to their values in the clustering algorithm.
They then estimate cross sectional scoring models
using cluster membership or the degree of cluster
membership uncertainty as the covariate, but they
do not consider the implications of parameter
uncertainty for the future expected loss distribution
or VaR and their application is relatively simple.

The closest paper to ours is Gross and Poblacion
(2019). They decompose prediction uncertainty about
required Common Equity Tier 1 (CET1), at the level
of the bank, using data for 75 banks across 16 coun-
tries into model uncertainty (34%), coefficient uncer-
tainty (26%) and residual uncertainty (40%).
However Gross and Poblacion consider only bank
level data rather than account level data and do not
consider a stress test of a credit scoring model. They
also do not consider the implications of stressing
behavioural variables which are important at account
level but are not normally included at bank level.

None of the papers in the literature give a meth-
odology for measuring the implications for the VaR
of a portfolio of the three types of risk in a credit
scoring model that we are interested in here: behav-
ioural variable value risk, parameter uncertainty and
residual uncertainty. Whilst there are several meth-
ods for estimating parameter uncertainty they have
not been applied to credit scoring models to predict
the amount of capital necessary to cover this risk.2

Importantly, as far as we are aware, there is no
paper that decomposes prediction uncertainty for a
credit scoring model into different sources and
shows the contribution of each to VaR. That is the
aim of our article.

Section 2 describes the baseline hazard model
that forms the credit scoring model we will be
assuming. Section 3 explains the methodology: the
use of the Poisson-Binomial distribution to measure
volatility risk, the use of multiple generated
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trajectories using account level vector auto-regres-
sions to gain a measure of the risk of not knowing
future values of the behavioural variables, and the
distribution of the maximum likelihood estimator of
the parameters to measure the risk of mis-estima-
tion. Section 4 shows an implementation for a credit
card portfolio and Section 5 concludes.

2. Dynamic models for credit risk data

Let us consider a portfolio of n credit card accounts,
and denote by qi, s the default probability for
account i at time s (from the opening date), assum-
ing that this account is still active just prior to this
time. In this article, we assume that time is meas-
ured in months. The probabilities qi, s are driven by
a number of factors including application variables,
behavioural variables and macroeconomic variables.
A standard way to quantify this dependence is via a
discrete-time survival model (also refereed to as a
dynamic model) as follows

gðqi, sÞ ¼ h0, s þ U i aþ Zi, s b, i ¼ 1, � � � , n�
(1)

In this expression, U i is a one-row matrix of time-
independent variables associated with account i (these
are often refereed to as application variables), and Zi, �
is the one-row matrix of dynamic or time-dependent
variables on account i. These time-dependent variables
often include variables measuring the behaviour of the
accounts (behavioural variables), as well as macro-eco-
nomic variables. Interactions between variables can
also be appended to the U i’s and Zi, �’s. To complete
the definition, a and b are unknown coefficients to be
estimated, h0, � is a baseline function and g is the logit
link function,.

In practice, the baseline function is often
smoothed and this allows one to reduce irregular
fluctuations from one month to the next. Various
smoothing methods can be used. Typical examples
include the use of polynomial-type functions
(Bellotti & Crook, 2013) as well as spline basis func-
tions (Djeundje & Crook, 2018); our preferred
method is to use B-splines basis functions (De Boor,
1978). The foundation and attractiveness of this
approach are discussed by Eilers and Marx (1996);
more recent exposures of the benefit of this
approach in the credit risk context can be found in
Djeundje and Crook (2018, 2019a).

Using B-splines, the baseline function can be
expressed as h0, s ¼ BðsÞa, where BðsÞ is a one-row
matrix of B-splines at time s, and a is a vector of
unknown coefficients to be estimated. In practice,
using too many B-splines leads to over-fitting.
Conversely, using too few splines results in poor fit.
An attractive way of solving this dilemma is to allow

a rich set of B-splines and then apply a penalty on
adjacent elements of the coefficient vector a to
achieve smoothing (O’Sullivan, 1986; Eilers & Marx,
1996). We prefer this method in this article.

Within credit risk, dynamic models of the form
(1) have been investigated in the recent literature,
starting with sub-models that include application or
behavioural variables only, through to larger models
involving macroeconomic variables (Djeundje &
Crook, 2019a, 2019b). Various extensions have also
been considered and implemented successfully
including varying coefficients models (Djeundje &
Crook, 2019a) and multi-state intensity models, some
with random effects to account for heterogeneity
(Lando & Skødeberg, 2002; Djeundje & Crook, 2018).

In this article, we show and describe how the
framework of discrete survival models can be used
to assess and quantify the impact of three sources of
uncertainty when stress testing credit defaults.

3. Mis-estimation, volatility. and
behavioural risks

Consider a portfolio of credit card accounts over
multiple years. We denote by to the current calendar
time. Thus, we assume that data is observed only up
to to� These data include application, behavioural
and macroeconomic variables, as well as the survival
times of the accounts that have already defaulted.
We are interested in constructing and investigating
the distribution of the loss random variable over a
set future time horizon of length d; for example,
one month, six months, one year, etc.

Consider an account i still active at current calen-
dar time to. The loss associated with this account over
the future horizon ðto, to þ d� can be expressed as

EADi, ð0, d� � LGDi, ð0, d� � yi, ð0, d� (2)

where EADi, ð0, d� and LGDi, ð0, d� are the exposure and
loss given default associated with account i during the
future horizon ðto, to þ d�, and yi, ð0, d� is an indicator
variable taking value 1 if account i defaults during the
future horizon ðto, to þ d�, and 0 otherwise.

Our prime interest in this work is to assess the
impact of a number of sources of uncertainty
involved in the estimation of the risk of default.
Thus, if one assumes a 100% LGD and constant
EAD for all accounts as in Bellotti and Crook
(2013), the aggregated loss (relative to the constant
EAD) associated with the future time horizon
ðto, to þ d� is obtained as

Lð0, d� ¼
X
i2Ro

yi, ð0, d�, (3)

where Ro represents the set of accounts still active
at the beginning of the future horizon (i.e., the cur-
rent calendar time to).

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 3



If we can generate a large sample from the entire
distribution of the aggregated losses, then economic
capital can be derived as VaR less the mean (or ES
less the mean). For example, if L ¼ fl1, :::, lNg is a
reasonable sample generated from the loss distribu-
tion, the a%-level VaR relative to the expected loss,
which we denote by VaRa, can be estimated by

VaRa ¼ ath pencentile of L
mean of L

(4)

Before we proceed, it is imperative to first iden-
tify the main components or contributors of the loss
distribution. Let us denote by pi, ð0, d� the probability
that account i defaults during the future time hori-
zon ðto, to þ d�, given that this account is still
active at the opening time to. That is,

pi, ð0, d� ¼ 1�
Ys
k¼1

ð1� ~qi, toþkÞ (5)

where ~qi, toþk are the conditional monthly default

probabilities for account i at future calendar time
to þ k: The expected value and variance of the
aggregated loss are given by

lð0, d� ¼
X
i2Ro

pi, ð0, d� and

r2ð0, d� ¼
X
i2Ro

pi, ð0, d�ð1� pi, ð0, d�Þ
(6)

Hence, the structure of the loss distribution is
driven by the default probabilities ~qi, toþk over the

future horizon ðto, to þ d�, in conjunction with the
sample volatility or noise due to the composition of
the portfolio being analysed. Note that the true val-
ues of these default probabilities ~qi, toþk are unknown

themselves, but they can be predicted by applying
the fitted parameters from model (1) to the corre-
sponding variables over the future horizon. Hence, a
number of components contributing to the distribu-
tion of the credit default loss can be identified,
including model risk, behavioural risk, macroeco-
nomic risk, mis-estimation risk, volatility risk, etc.

We focus on the measurement and comparison
of behavioural, mis-estimation and volatility risks
only. By behavioural risk we mean the risk of not
knowing future values of behavioural variables. By
mis-estimation risk we mean the risk of not knowing
the process generating the population values of the
parameters. By volatility risk we mean the risk of not
knowing if an account will actually default even if we
can predict the probability of default perfectly.

In particular in Section 3.1, we show how to
quantify the impact of volatility via the Poison-
Binomial distribution. In Section 3.2, we use the dis-
tribution of the maximum likelihood estimator of
the parameters to measure mis-estimation. In
Section 3.3, we measure behavioural risk through

account-level vector auto-regressions. Section 4 then
illustrates, in terms of stress metrics, the magnitude
of different combinations of these three types of
risk within a global sensitivity analysis framework
(Borgonovo & Plischke, 2016).

3.1. Volatility risk and quantification

The aggregated loss Lð0, d� is a random variable
consisting of a sum of Bernoulli random variables
with not-all-equal individual success probabilities,
pi, ð0, d�, i ¼ 1, :::, n: Thus, conditional on the values
of the cumulated probabilities pi, ð0, d�, the aggregated
loss variable Lð0, d� follows the so-called Poisson-
Binomial (PB) distribution which we denote by

Lð0, d� � PBfpi, ð0, d�, i 2 Rog (7)

Hence, for a credible risk management strategy,
capital must be held against the fact that each port-
folio is made up of many individuals’ accounts, irre-
spective of whether the true values of the default
probabilities for these accounts are known or not.

We propose to quantify the contribution of the
portfolio-volatility on stress metrics (such as VaR or
ES) based on the PB distribution (7). Specifically,
we simulate prospective losses using (7) conditional
on the individual probabilities pi, ð0, d� and then use
these simulated losses to estimate the stress metrics.
More details on this are given in given in Sections
4.4 and 4.5.

The PB distribution itself is not new. It was first
considered by (Neyman, 1939) and an early applica-
tion was by (Barrett, 2007) in the context of crim-
inal and civil courts. But more recent investigations
of the properties of this distribution can be found in
Daskalakis et al. (2015), Hong (2013), or Chen and
Liu (1997). In particular, Daskalakis et al. (2015)
explore the sample complexity of learning from PB
distributions, while the other two papers explore dif-
ferent methods of computing and sampling for PB
distributions. In this work, we sample from any given
PB distribution based on the Fourier transform of its
characteristic function as in Hong (2013).

3.2. Mis-estimation risk and quantification

In practice, for each account still active at current
calendar time to, its conditional monthly default
probabilities over the future horizon ðto, to þ d� are
unknown. They must be predicted using the fitted
model. Hence uncertainty exists over the portfolio’s
underlying default rates, since these can only be
estimated to a degree of confidence linked to the
size and richness of the data. Part of this uncertainty
is reflected in the estimation process of the model
parameters a, a and b (where a represents the
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vector of parameters used to model the baseline
function h0, �).

For notational convenience, let us denote by h

the joint vector of all parameters. That is,

h :¼ ½aT , aT , bT �T , (8)

Also, let ĥ denote the maximum likelihood esti-

mator of h and HðĥÞ denotes the Hessian matrix
evaluated at the maximum likelihood estimate
(MLE) of h: It is well known from the theory of

MLE that ĥ is efficient and asymptotically normal:

ĥ � Nðh, �HðĥÞ�1Þ (9)

We can use expression (9) with MLE plugged in,
to generate plausible alternative values of the param-
eters of the model, which can be used in turn to cal-
culate alternative plausible default probabilities and
to quantify the amount of capital that should be
held against the risk of mis-estimation. More details
on this are provided in Sections 4.3 and 4.5. A simi-
lar approach was used in the context of longevity
risk insurance by Richards (2016) to quantify the
cost of mis-estimation for capital adequacy
and solvency.

3.3. Behavioural risk and quantification

Accounts are assumed to be observed from opening
date up to current calendar time to only. Thus, the
values of the behavioural variables beyond to are
unknown. In order to generate plausible values of
default probabilities pi, ð0, d�, we first need to generate
plausible monthly values of the underlying behav-
ioural variables (for each account still active at time
to) over the future horizon ðto, to þ d�:

One possibility is to consider each behavioural
variable in isolation and then sample plausible
future values based on past observed values, separ-
ately for each account. However, behavioural varia-
bles are potentially correlated with one another.
Thus, it is unrealistic to generate plausible future
values of each behavioural variable in isolation.

In this work, we propose to generate plausible
future values of the behavioural variables through
account-level vector-auto-regressive processes.
Hence, for a given account i still active at the calen-
dar time to, we consider models of the form

Zi, s ¼ ao, i þ
Xp

k¼1

Hi, k Zi, s�k þ ei, s, ei, s � Nð0,RiÞ,

(10)

where Zi, s represents the vector of behavioural proc-
esses associated with account i at duration time s,
ao, i is the vector of intercepts, p is the lag, Hi, k is
the matrix of coefficients associated with lagged

values of these processes, ei, s is the vector of error
terms, and Ri is the covariance matrix Ri:

In particular, if p¼ 1 and elements within Hi, 1

are set to the identity matrix, then Equation (10)
simplifies to a multivariate random walk with drift
vector ao, i, in which case the correlation between
the behavioural processes are measured through the
correlation matrix Ri alone. Similarly, if the Hi, k are
diagonal, then Equation (10) simplifies to a set of
correlated or uncorrelated auto-regressive processes,
depending of the structure imposed on Ri: But in
general, Equation (10) allows each behavioural pro-
cess to affect the prediction of its counterparts
through the coefficients matrices Hi, k and covari-
ance matrix Ri:

Models of the form of (10) can be fitted using
observed data up to calendar time to. In this article,
these models are fitted separately for each account
via the method of least squares. The fitted parame-
ters are then used to simulate plausible values of the
behavioural processes for each account over the
future horizon ðto, to þ s�: These simulated values
are used subsequently in conjunction with the
regression coefficients estimated from model (1) to
generate prospective default probabilities and to
construct the loss distribution. Details about the
exact forms of models (10) implemented in this art-
icle are presented in Section 4 below.

4. Data, implementation and results

4.1. Data and base survival model

The data that motivated this work is a sample of
about 50,000 credit card accounts from a major
bank in the UK. The accounts in the sample were
opened from 2002 through to 2011.

This dataset comprises a number of application
variables as well as behavioural variables; the list of
variables used in this analysis is summarised in the
first column of Table 1. In particular, four behav-
ioural variables are used in this investigation,
including the Credit limit (denoted by CL), the
Repayment amount (denoted by PAY), the percent-
age of time spent with one outstanding payment
(denoted by DEL), and the Proportion of the credit
limit that is drawn (denote by PDR). An illustration
of three of these behavioural variables for a typical
account is shown in Figure 1.

We define an account as being in default if and
when it became three months in arrears. The three
missed payments are not required to have been
missed consecutively. To ensure a consistent defin-
ition over time we computed a minimum payment
each month using constant parameters over time.
This definition is not the same as that used in prac-
tice by the data provider.

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 5



For illustration, we set the current calendar date
to to December 2010. Thus, the base survival model
(1) is fitted using data available from 2002 through
to December 2010. The accounts still active at the
end of December 2010 form the stress-testing set.
We can use this stress-testing set to quantify the
impact of different sources of uncertainty, going for-
ward. Various future horizons can be considered;
the illustrations in this article correspond to a twelve
months future horizon (i.e., d¼ 12).

The starting point is to fit the base survival
model (1). The fitted coefficients are shown in Table
1. The coefficients have the expected signs and are
consistent with the literature. Thus, holding other
variables constant, the higher the credit limit, the
greater the percentage of duration time the account
has been one payment behind and the higher
the proportion of the limit that is drawn the higher
the PD. Also the higher is the repayment amount the
lower the PD. Older account holders are seen to have
lower PDs and those with more cards of types C and
D have a higher PD. More discussion of the magni-
tude and significance of most of these coefficients can
be found in Djeundje and Crook (2018, 2019a). Our
aim in this article is the quantification of uncertainty.

In the next few sections, we shall focus on the
assessment of the three sources of uncertainty
described in Section 3. We use four scenarios to inves-
tigate and compare the impact of these sources over
the future time-period ðDec2010� Dec2011�: As
we shall see, each source can be switched on/off when
estimating the aggregated loss distribution.

4.2. Scenario1: Behavioural risk only

In this first scenario, we consider behavioural risk
alone. To quantify its impact, we generate N¼ 5000
plausible trajectories for each behavioural variable
and for each account (in the stress-testing set) over
the future twelve months (i.e., January to December
2011). These generated behavioural trajectories are
then used in conjunction with the MLE of the
regression coefficients from the base survival model
to estimate plausible monthly PDs (over the future
horizon) and subsequently N candidates for the
cumulative probabilities pi, ðDec2010,Dec2011� for each
account. The application variables were set at their
observed values in the data. A sample of N plausible
aggregated losses can then be derived using
Equation (6), and used to construct the empirical
loss distribution, as well as to estimate the VaR
according to Formula (4).

To generate future trajectories of the behavioural
variables, we consider three alternative variants of vec-
tor autoregressive models for the behavioural processes.

First, we consider multivariate random walks
with drift terms, which we outline as follows

CLi, s ¼ ai, 1 þ CLi, s�1 þ ei, s, 1
PAYi, s ¼ ai, 2 þ PAYi, s�1 þ ei, s, 2
DELi, s ¼ ai, 3 þ DELi, s�1 þ ei, s, 3
PDRi, s ¼ ai, 4 þ PDRi, s�1 þ ei, s, 4:

8>>>><
>>>>:

(11)

This is a very simplified version of model (10),

where Zi, s ¼ ðCLi, s ,PAYi, s,DELi, s,PDRi, sÞT , a ¼
ðai, 1, ai, 2, ai, 3, ai, 4ÞT , Hi, 1 is the identity matrix,

Table 1. Fitted coefficients for the base survival model. Interaction terms have been omitted. The
variable Number of cards measures the number of cards that the applicant already has at the time
of application. Names of some variables cannot be revealed for commercial confidentiality reasons.
Variables’ type Variables’ name/categories Coefficient S.E. p-val

Application variables Employment: employed 0
Employment: self-employed �0.029 0.028 0.294
Employment: retired or unemployed 0.002 0.060 0.971
Employment: students 0.352 0.036 0.000
Employment: not given �0.153 0.028 0.000
Number of cards: “0 card” 0
Number of cards: “1 card” �0.048 0.022 0.031
Number of cards: “2 to 5 cards” 0.146 0.023 0.000
Number of cards: “ >5 cards” 0.307 0.077 0.000
Variable X: group B �0.011 0.029 0.704
Variable X: group C 0.068 0.032 0.032
Variable X: group D �0.042 0.032 0.184
Variable X: group E 0.019 0.035 0.590
Age at application: � 22 year old 0
Age at application: (22� 27) �0.070 0.033 0.035
Age at application: (27� 32) �0.083 0.037 0.026
Age at application: (32� 37) �0.146 0.040 0.000
Age at application: (37� 42) �0.125 0.042 0.003
Age at application: (42� 47) �0.177 0.044 0.000
Age at application: (47� 52) �0.221 0.048 0.000
Age at application: (52� 57) �0.327 0.054 0.000
Age at application: (57� 62) �0.388 0.063 0.000
Age at application: 	 62 year old �0.562 0.069 0.000

Behavioural variables
Adjusted credit limit (CL) 0.586 0.012 0.000
Adjusted delinquency index (DEL) 1.757 0.034 0.000
Adjusted repayment amount (PAY) �0.227 0.004 0.000
Adjusted proportion drawn (PDR) 4.263 0.028 0.000
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and ei, s ¼ ðei, s, 1, ei, s, 2, ei, s, 3, ei, s, 4Þ: In this reduced
model, the correlation between the behavioral varia-
bles is captured by the ð4� 4Þ covariance matri-
ces Ri, s ¼ covarðei, sÞ:

For each account, the drift vector a can be esti-
mated using the method of least squares, and an
estimate of the covariance matrix Ri, s derived from
the residuals. For each account we simulate by
choosing values of ei, s ¼ ðei, s, 1, ei, s, 2, ei, s, 3, ei, s, 4Þ
randomly to predict each behavioural variable one
month ahead. These predicted values are used as
inputs to generate future predictions. We follow this
simulation method in all of the following models.

Second, we consider correlated autoregressive
processes for the behavioural processes as follows

CLi, s ¼ ai, 1 þ bi, 1 CLi, s�1 þ ei, s, 1

PAYi, s ¼ ai, 2 þ bi, 2 PAYi, s�1 þ ei, s, 2

DELi, s ¼ ai, 3 þ bi, 3 DELi, s�1 þ ei, s, 3

PDRi, s ¼ ai, 4 þ bi, 4 PDRi, s�1 þ ei, s, 4

8>>>>><
>>>>>:

(12)

In this case, the matrices of coefficients Hi, 1 are
diagonal with unknown parameters to be estimated on
the diagonal. The interaction between the individual
behavioural processes are captured by the diagonal ele-
ments of Hi, 1 and the covariance matrix V i: An illus-
tration of simulated paths by applying this process to
a typical account is shown in Figure 2.

Third, we consider a full vector autoregressive
model of order one. That is

In this case, Hi, 1 is a full 4� 4 matrix filled with
the b’s, and the structure of the interactions between
behavioural processes is more complex and flexible
compared to models (11) and (12).

We quantify the size of the behavioural risk in
terms of the VaR and ES relative to the mean of the
predicted losses. The latter are the aggregated values
of those losses predicted by the base hazard model,
(1), where the observed values of the application
variables and the predicted values of the behavioural
variables are substituted in.

Among the three model structures (11), (12), and
(13) for the behavioural processes, the multivariate
random walks are the easiest to implement. However,
this structure can struggle to capture certain important
features seen in the data. In contrast, the full vector
autoregressive process is more flexible and can adjust
to capture more complex associations between the
behavioural processes. However, it can become com-
putationally intensive as the number of accounts
increases. High order vector autoregressive processes
were considered but were found to be too complex for
the vast majority of accounts, especially those with a
small number of observations or low variability.

An illustration of the aggregated loss (correspond-
ing to a 12months horizon) subject to behavioural risk
alone is shown in Figure 3. To create this graphic,
plausible trajectories of the underlying behavioural
processes over the future horizon were jointly simu-
lated based on the correlated autoregressive processes
in Equation (12). Similar distributions can be con-
structed based on correlated random walk models (11)
or the full vector autoregressive models (13).

A comparison of the VaR and ES relative to the
mean when using these three processes to quantify

behavioural risk is shown in Table 2. This highlights
the sensitivity of risk measures and economic capital
with respect to the choice of the behavioural process
models. In particular, modelling behavioural
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Figure 1. Monthly behavioural data for a typical account from opening date through to December 2010.

CLi, s ¼ ai, 1 þ bi, 1, 1 CLi, s�1 þ bi, 1, 2 PAYi, s�1 þ bi, 1, 3 DELi, s�1 þ bi, 1, 4 PDRi, s�1 þ ei, s, 1
PAYi, s ¼ ai, 2 þ bi, 2, 1 CLi, s�1 þ bi, 2, 2 PAYi, s�1 þ bi, 2, 3 DELi, s�1 þ bi, 2, 4 PDRi, s�1 þ ei, s, 2
DELi, s ¼ ai, 3 þ bi, 3, 1 CLi, s�1 þ bi, 3, 2 PAYi, s�1 þ bi, 3, 3 DELi, s�1 þ bi, 3, 4 PDRi, s�1 þ ei, s, 3
PDRi, s ¼ ai, 4 þ bi, 4, 1 CLi, s�1 þ bi, 4, 2 PAYi, s�1 þ bi, 4, 3 DELi, s�1 þ bi, 4, 4 PDRi, s�1 þ ei, s, 4

8>>>><
>>>>:

(13)

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 7



patterns using the simplest multivariate random
walk (11) leads to more uncertainty compared to
the other two models. This is expected since the
second and third processes (12) and (13) are exten-
sions of (11), and so would be expected to model
the data more accurately. What is especially interest-
ing is that the VaR and ES of the autocorrelated
process (12) and the VAR model (13) are very simi-
lar; there is little benefit from using a VAR
model (13).

4.3. Scenario2: Mis-estimation risk only

Under this scenario, we consider the impact of mis-
estimation risk alone as follows.

(i) Upon fitting the base survival model (1), the
Hessian matrix is estimated and used to simu-
late N alternative plausible vectors for the
regression parameters h via distribution (9).

(ii) The behavioural processes are jointly fore-
casted over twelve months using correlated
auto-regressive models (12) at account level.

(iii) Each simulated vector of regression parame-
ters from (i) is applied (to the application
variables and central forecasts of the behav-
ioural variable from (ii)) yielding a sample of
N monthly default probabilities over 12
months for each account. Finally, these
monthly probabilities are used to compute
the cumulated probabilities pi, ðJan2011,Dec2011�
and to generate a sample of N potential loses.

An illustration of the negative inverse of the

Hessian matrix (i.e., the covariance matrix of ĥ) is
shown in Figure 4. We find the values of VaR and
ES required for mis-estimation risk are 6.5% and
7.3% of the expected values, respectively. These are
a little less than those due to behavioural risk.

4.4. Scenario3: volatility risk only

Under this scenario, we consider the impact of vola-
tility risk alone. To generate the cumulated
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Figure 2. Two simulated future paths for a typical account
using correlated autoregressive processes (12). The dotted
line is the central/expected forecast.

Loss (scaled)

0.90 0.95 1.00 1.05 1.10

Figure 3. Distribution of the aggregated loss (relative to the
mean) subject to behavioural risk alone over twelve months
(d¼ 12); the dashed line represents the 99:5th percentile.
Plausible values of the underlying behavioural processes
over the future horizon were jointly simulated based on cor-
related auto-regressive processes; see Equation (12).

Table 2. Assessment of behavioural risk in terms of VaR
and ES over a 12-months horizon relative to the mean. The
VaR99:5 values are estimated based on a sample of 5000
losses, and the the loss samples were computed based on
simulated values of the behavioural processes, in conjunc-
tion with the MLE of the vector of regression parameters h:
The underlying simulated behavioural processes over the
12months horizon were generated using three different
forms of vector auto-regressive processes; see Equations
(11)(12) and (13).
Model for behavioural processes: VaR99:5 ES99:5
Multivariate random walk 113.6% 115.9%
Correlated auto-regressive processes 108.3% 109.3%
First order vector auto-regressive process 108.7% 110.1%
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predicted probabilities pi, ðJan2011,Dec2011� and hence
the potential losses, we proceed as follows:

� The MLE estimate ĥ of the vector of regression
parameters is obtained by fitting the base sur-
vival model (1).

� The behavioural processes are jointly forecasted
over a 12-months horizon using vector auto-
regressive models, separately for each account.

� The MLE ĥ is applied (unto the application vari-
ables and forecasted behavioural variables) yield-
ing (a) predicted values of the monthly default
probabilities over 12 months and (b) the cumu-
lated probabilities pi, ðJan2011,Dec2011�:

� Potential losses are then simulated based on
these cumulated probabilities within the Poisson-
Binomial distribution (7).

A quantification of the volatility risk in terms of
VaR and ES is presented in the third row of Table 3.
This suggests that the volatility risk is much higher

than either that associated with behavioural or misesti-
mation risk.

4.5. Scenario4: volatility, mis-estimation and
behavioural risks

In this scenario, all three sources of uncertainty (i.e.,
volatility, mis-estimation and behavioural risks) are
switched on, through the following steps.

(i) Upon fitting the base survival model (1), the
normal distribution (9) is used to simulate a
plausible alternative vector of regres-
sion parameters.

(ii) For each account, upon fitting the vector
auto-regressive model (12) to its behavioural
data, a path is simulated of each behavioural
variable over the twelve month horizon.

(iii) For each account, the simulated vector gener-
ated in (i) is applied to the application varia-
bles and the simulated behavioural paths
generated in (ii). This yields a potential path
of monthly default probabilities over twelve
months, and subsequently the cumulated
probabilities pi, ðJan2011,Dec2011�:

(iv) These cumulated probabilities are then used
to generate a potential loss through the
Poisson-Binomial distibution (7).

(v) Steps (i)-(iv) above are repeated N times,
yielding a sample of N potential losses.

A summary of the resulting aggregated risk is
shown in the bottom row of Table 3 in terms of
VaR and ES. Notice that the VaR and ES resulting
from all three sources of risk together is not the
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Figure 4. Covariance matrix of the fitted regression coefficients from the survival model.

Table 3. Assessment of three sources of uncertainty in
terms of VaR and ES over a 12-months horizon. The VaR99:5
are estimated based on a sample of 5000 losses, and the
ES99:5 are estimated as the average of simulated losses
above VaR99:5: In this table, the underlying projected behav-
ioural processes were carried out using correlated auto-
regressive models separately for each account; we use this
model form for illustration because an early investigation
(e.g., Table 2) showed that, for our dataset, this model form
produces stress metrics that are similar to those from full
VAR(1) models.
Source of uncertainty VaR99:5 ES99:5
Behavioral only 108.3% 109.3%
Mis-estimation only 106.5% 107.3%
Volatility only 121.8% 125.9%
Behavioral & mis-estimation & volatility 129.6% 133.9%
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sum of the values for each individual risk compo-
nent because the risk sources are not independent.

4.6. Risk assessment by employment class

So far, the assessment of uncertainty has been pre-
sented at portfolio level. In practice, a portfolio is
often made up of different business segments, each
segment having a different composition and can
cause different risk to the lender. To illustrate the dif-
ferences between applicant segments we undertake
an assessment of the risk separately for each of three
levels of employment. We follow the same method-
ology as above. A summary is shown in Table 4.

Table 4 shows that for all five segments the cap-
ital required for volatility risk is much higher than
for the other two risks. But the segments differ
noticeably in the amount of each type of risk they
are associated with. The employed segment has con-
siderably higher behavioural and mis-estimation risk
than the other segments and the employed segment
and that for which there is no data available have
higher volatility risk than those in the other risk
segments. Overall, the retired or unemployed seg-
ment has the lowest volatility and behavioural risk
and the lowest overall risk from these three sources.
If all other sources of risk were the same for all seg-
ments these results suggest that the amount of cap-
ital that needs to be held for the employed segment
and the segment where no details are available is
larger than that for those retired or unemployed or
self employed or students and so these former seg-
ments would yield, ceteris paribus, a lower return
on equity when lent to.

5. Discussion and conclusions

Many regulators require banks to adopt model risk
management principles. For example the UK’s

Prudential Regulation Authority (PRA) states that
banks must engage in “appropriate testing of models
to take into account potential limitations, assess
their robustness and stability over time, and across a
variety of economic and market conditions”
(Prudential Regulation Authority, 2018, pp. 8). The
PRA does not specify exactly how uncertainty over
the future values of behavioural variables, uncer-
tainty over model parameters and uncertainty over
the occurrence of default given the predicted PD,
should be analysed. In this article, we have devel-
oped a framework for the quantification of the
impact of these three sources of uncertainty in the
prediction of the VaR for a credit portfolio and so
the amount of capital a bank is required to hold for
that portfolio. There are, of course, many other
sources of uncertainty in the computation of
required capital, for example the state of the macro-
economy. However, in this article, we are concen-
trating on different types of modelling risk,
conditional on the state of the macroeconomy.

The sources of model risk we are considering
are typically omitted from the calculation of the
VaR of a retail credit portfolio. In this case the
behavioural variables take on fixed values as do
the PD model parameters, and so does the pre-
dicted PD for each account. The aggregated loss
across all accounts (given by Equation 3) takes on
a single value; conditional on the macroeconomy,
there is no additional uncertainty. In this case the
VaR in Equation (4) has the value 1. Comparing
the values of the VaR under each scenario from
Table 3 with the value of 100% we can see the
increase in VaR and so capital if the three sources
of uncertainty are incorporated rather than
ignored. Thus, in the portfolio we considered, if all
three sources of uncertainty are incorporated, the
value of capital to be held will increase by up to
30% relative to if they are omitted.

Table 4. Assessment of three sources of uncertainty by employment group.
Source of uncertainty Employment class VaR99:5 ES99:5
Behavioural risk only Employed 110.0% 111.2%

Self-employed 104.2% 104.6%
Retired, unemployed 102.4% 102.8%

Students 103.1% 103.5%
Not given 103.1% 103.5%

Mis-estimation only Employed 106.2% 107.1%
Self-employed 101.6% 101.7%

Retired, unemployed 102.5% 102.8%
Students 100.8% 100.9%
Not given 103.5% 104.2%

Volatility only Employed 126.8% 130.2%
Self-employed 111.8% 104.0%

Retired, unemployed 107.2% 108.9%
Students 107.5% 109.2%
Not given 125.3% 129.0%

Behavioral & mis-estimation & volatility Employed 134.1% 138.1%
Self-employed 115.1% 117.7%

Retired, unemployed 109.5% 111.4%
Students 116.8% 119.1%
Not given 130.2% 135.3%
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Our article contributes to prudential policy by
offering a methodology to incorporate all three
sources of risk in the VaR calculation for a portfolio
of credit products. Given the potential under-capit-
alisation if this is not done, this is an important
message to lenders and to regulators. We offer a
method that regulators might consider advancing to
lenders to protect depositors and others and the
methodology might be wisely adopted by lenders
when computing their economic capital. Parts of the
methodology may also be incorporated into the the
prediction of expected cash flows for loans for
which risk has increased under IFRS9 (and similarly
CICL). Under IFRS9 (International Accounting
Standards Board, 2013) expected cash flows from
loans may be computed using PD probabilities in
each future month for which a loan is outstanding
and these can be gained from a survival model. The
Standard requires that a range of possible outcomes
is assessed and their probabilities of occurrence. A
survival model of PD may include behavioural vari-
ables (as we have shown). So, the range of PDs may
be gained following the methods in our article: by
simulation of survival model parameters, simulation
of behavioural variables values and of the occur-
rence of defaults given the PD. Of course, other
sources of uncertainty would also be included such
as possible changes in macroeconomic variables.

We have concentrated on uncertainty associated
with PD modelling. A limitation of our approach is
that we have not considered uncertainty over the
future states of the macroeconomy—we have con-
centrated on model risk. A second limitation is that
the residuals from the VAR that is used to model
the behavioural variables may not include enough
values or range of values to represent the population
distributions. This means the analyst should use as
long a time series of the behavioural variables as
possible. A further limitation is that aggregate loss is
the product of PD, LGD and EAD (Equation 2) and
we have concentrated only on the former. However,
a similar approach may be applied to these other
two terms since there would be uncertainty over the
estimation model parameters, and uncertainty as to
the future values of behavioural variables which
might enter both models. In principle, uncertainties
over these variables should be included in the esti-
mation of the VaR.

On the other hand, our method has a number of
strengths. One of these is that one can follow it to
gain the VaR at a time horizon of the analyst’s
choice. This follows from our use of a survival
model for PD prediction and a VAR to product the
future values of the behavioural variables. This
means that the method could inform managerial
decisions over different time horizons: for example

one year, as in Basel or five years. Different stake-
holders may be interested in these predictions over
different horizons: certain institutions may be more
interested in a five year horizon and some deposi-
tors only in a one year horizon.

Notes

1. A further group of papers considers worst outcomes;
that is, theoretical upper bounds on VaR from model
risk (Cont, 2006; Embrechts et al., 2013; Puccetti &
Ruschendorf, 2012; Bernard et al., 2017; Bernard
2017; and Glasserman & Xu, 2014.

2. In the context of credit risk, Jacobs et al. (2015) and
Gross and Poblacion (2019) give methods for
estimating parameter uncertainty, but they do not do
so for a credit scoring model and hence not for
capital prediction for a specific credit portfolio. Wang
et al. (2020) do give a method for estimating
parameter uncertainty but do not decompose
predicted loss into the three types of risk we are
interested in.
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