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Abstract  34 

The aetiology and pathophysiology of many diseases of the motor unit remain poorly 35 

understood and the role of the neuromuscular junction (NMJ) in this group of disorders is 36 

particularly overlooked, especially in humans, when these diseases are comparatively rare. 37 

However, elucidating the development, function and degeneration of the NMJ is essential to 38 

uncover its contribution to neuromuscular disorders, and to explore potential therapeutic 39 

avenues to treat these devastating diseases. Until now, an understanding of the role of the 40 

NMJ in disease pathogenesis has been hindered by inherent differences between rodent and 41 

human NMJs: stark contrasts in body size and corresponding differences in associated axon 42 

length underpin some of the translational issues in animal models of neuromuscular disease. 43 

Comparative studies in large mammalian models, including examination of naturally-44 

occurring, highly prevalent animal diseases and evaluating their treatment, might provide 45 

more relevant insight into the pathogenesis and therapy of equivalent human diseases. This 46 

review argues that large animal models offer great potential to enhance our understanding of 47 

the neuromuscular system in health and disease, and in particular when dealing with diseases 48 

for which nerve length dependency might underly the pathogenesis. 49 

 50 
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 52 

Introduction 53 

Within the neuromuscular system, the neuromuscular junction (NMJ) plays a fundamental 54 

role: this highly specialised synapse transmits signals from motor neurons (MNs) to skeletal 55 

muscles (Sanes & Lichtman, 1999) and is comprised of four basic cell types: the pre-synaptic 56 

motor neuron and its axon (which terminates in the pre-synaptic nerve terminals); the post-57 

synaptic muscle fibre, which contains the post-synaptic motor endplate; terminal Schwann 58 

cells capping the nerve terminal (Alhindi et al., 2021) and kranocytes, which cap the NMJ 59 

(Court et al., 2008). For the majority of skeletal muscle fibres, each fibre has one NMJ 60 

(Nishimune & Shigemoto, 2018) (Figure 1 - schematic healthy NMJ), but innervation 61 

patterns differ between species and muscles: the sternomastoid muscle for example can have 62 

up to seven endplate bands in the rabbit, compared to a single band in human and mouse 63 

(Paul, 2001). 64 

Recognition of the crucial role of the NMJ in the facilitation of movement sparked interest in 65 

the study of the peripheral nervous system (PNS) as early as the 1700s (Lin & McArdle, 66 

2021). Changes in pre- or post-synaptic NMJ size and/or configuration, and structural 67 



changes of the motor neuron or post-synaptic muscle fibre, play a significant role in 68 

neuromuscular disease pathogenesis. For example, fragmentation of the endplate (Slater, 69 

2019), withdrawal of the motor nerve (denervation) (Wernig & Herrera, 1986; Chung et al., 70 

2017; Sleigh et al., 2020), poly-innervation and axonal sprouting and loss of/clumping of 71 

terminal neurofilaments are well-recognised features of NMJ remodelling (Wernig & 72 

Herrera, 1986; Gordon et al., 2004; Cifuentes-Diaz, 2002) (Figure 2 – schematic of diseased 73 

NMJ). Subsequently, the identification of a structure-function relationship at the NMJ, such 74 

as myelination of the motor axon for faster transmission, active zones juxtaposing 75 

acetylcholine receptors for targeted release of synaptic vesicles containing neurotransmitter 76 

and a “safety factor” guaranteeing generation of evoked end-plate potentials, suggested that 77 

the study of NMJ morphology could teach us not only about the basic physiology of the 78 

neuromuscular system, but also help develop treatments for motor dysfunction (Holz & 79 

Fisher, 1999). The scientific community has used many animal models to study the impact of 80 

pathological changes on the NMJ, but these consisted predominantly of small vertebrate 81 

models such as rodents and D. rerio (zebrafish), and invertebrate models such as drosophila 82 

(fruit fly) or C. elegans (roundworm). These are popular models due to their relatively 83 

inexpensive husbandry costs, easy maintenance, and the multitude of well validated 84 

experimental techniques that are available.  85 

This review covers aspects of comparative NMJ research in traditional rodent models, 86 

humans, and large mammals. It addresses translational issues in rodent models of NMJ, and 87 

how genetic, morphological and physiological differences between humans and animals 88 

might impact disease phenotypes and hence our understanding. It examines the opportunities 89 

afforded by the study of large mammalian NMJs - from understanding how NMJ form 90 

normally in a species of similar or larger size to humans, and how these NMJs respond to 91 

injury in  naturally-occurring large mammalian neuromuscular diseases (NMDs), particularly 92 

in the context of length-dependent neuropathies.   93 

 94 

Cross-species accessibility and genetic heterogeneity of the mammalian NMJ 95 

Neuromuscular junctions are plastic, both in function and morphology––these adaptations are 96 

muscle activity-driven (Deschenes et al., 1993), mediated in part by skeletal muscle-derived 97 

molecular factors such as peroxisome proliferator-activated receptor gamma coactivator 1-98 

alpha (PGC-1α) (Arnold et al., 2014). Study of the NMJ is rendered possible due to their 99 

comparatively large size and their accessible (peripheral) location: this has led to their 100 

extensive use as ‘model synapses’ in both vertebrates and invertebrates (Coers & Woolf, 101 



1959; Slater, 2015) despite the significant differences that exist between neuromuscular and 102 

inter-neuron synapses, such as those within the synaptic cleft and the post-synaptic 103 

membrane (Zou & Pan, 2022);however, study of the NMJ has provided deeper insight into 104 

the function of less accessible synapses within the CNS (Lin & McArdle, 2021).  105 

 106 

Mammalian animal models are commonly used to study NMJ function and dysfunction. 107 

Generally, the overall body plan (Bauplan) across mammals is encoded by highly conserved 108 

structural genes that determine inter-species and intra-species variation (Travillian et al., 109 

2003). However, whilst the mammalian Bauplan is highly conserved, it is precisely those 110 

inter-species differences that define the degree of conservation; in relation to the PNS, or the 111 

NMJ in particular, this degree of cross-species conservation and its relevance to function are 112 

less well explored. Therefore, differences between human and other mammals must be 113 

considered carefully when translating research from animal models. Since rodent models are 114 

used most commonly in biomedical research (Ellenbroek & Youn, 2016), there is a clear need 115 

to establish the differences and similarities that their NMJs share with those of humans. 116 

 117 

Translational pitfalls in rodent NMJ form and physiology 118 

A translation gap exists in neurophysiological and neurodegenerative disease research, driven 119 

in part by the failure of traditional laboratory models to recapitulate their human counterparts 120 

in both phenotype and pathology (Eaton & Wishart, 2017). Economic necessity, due to costs 121 

of studies in species other than traditional models, has resulted in the majority of structural 122 

and functional features of the mammalian NMJ having been historically studied using rodents 123 

(mice and rats). Beyond the obvious difference in body size between rodents and humans, 124 

and the expected variations that exist between rodent strains (Harper, 2010; Hestehave et al., 125 

2020), there are also clear differences in NMJ form and function, over the lifetime of each 126 

species, that should be considered in a translational setting. Firstly, some obvious 127 

interspecies’ NMJ morphological differences exist: human NMJs are significantly smaller 128 

and more fragmented compared to their mouse counterparts, with much thinner pre-terminal 129 

axons, more rudimentary nerve terminals and ‘nummular’ (coin-shaped) endplates (Jones et 130 

al., 2017). Differences in neurotransmitter release represent a second distinction - the human 131 

NMJ is the smallest (currently recognised) in nerve terminal surface area amongst vertebrates 132 

(Slater, 2017; Gromova et al., 2020; Jones et al., 2017; Boehm et al., 2020) and 133 

consequently, only a small quantity of the neurotransmitter acetylcholine (ACh) is released 134 

per action potential (quantal content). However, human NMJs have deeper post-synaptic 135 



folding than mice, and the increased area containing sodium channels within the folds 136 

contributes to the amplification of the ACh signal. As such, human NMJs have a lower 137 

‘safety factor’ (Wood & Slater, 2001) compared to those of mice that release more ACh  138 

from larger nerve terminals. The safety factor is a ratio that describes the capacity of 139 

neuromuscular transmission to elicit action potentials despite changes to neurotransmitter 140 

release or physiological condition. Any value over 1 guarantees muscle contraction, a safety 141 

factor below 1 would indicate failure of neuromuscular transmission. One review highlights 142 

multiple studies from various research laboratories that have shown safety factors that vary 143 

up to 4-fold between muscles of one species (Wood & Slater, 2001). Still, there is a lack of a 144 

comprehensive comparative analysis across multiple species and muscles. Thirdly, when 145 

considering different species as models of NMJ disorders, NMJ stability varies over time, as 146 

does the occurrence of age-related NMJ degeneration. Several animal ageing studies describe 147 

NMJs as inherently unstable, suggesting that motor endplates fragment as a consequence of 148 

the ageing process, as cited by (Valdez et al., 2010). Until recently, it was unclear whether 149 

this was true in ageing humans (Oda, 1984) as the inherent complexity and ethical limitations 150 

of human tissue sampling have hindered further progress in this area. Interestingly, despite 151 

electrophysiological signs of NMJ transmission instability in ageing, such as an increase in 152 

jitter and jiggle of motor unit potentials (Piasecki et al., 2016; Hourigan et al., 2015), recent 153 

work shows that NMJ morphology in select leg muscles (extensor digitorum longus, 154 

peroneus brevis, peroneus longus and soleus) is preserved as humans age (Jones et al., 2017). 155 

Likewise, the human NMJ appears stable in affected muscles following traumatic injury of 156 

the brachial plexus and axillary nerve (Gupta et al., 2020); similarly, the NMJs of rectus 157 

abdominis appear stable in cancer cachexia (Boehm et al., 2020), a condition wherein murine 158 

models have suggested that denervation-related muscle wasting occurs (Daou et al., 2020).  159 

Therefore, given these morphological and physiological differences, bridging the resulting 160 

translation gap requires more clinically relevant models of NMJ biological behaviour and 161 

stability better to mimic the human phenotype, in health and disease, without masking it with, 162 

for example, age-related degeneration.   163 

 164 

The translation gap is also evident in the Charcot-Marie-Tooth (CMT) group of disorders 165 

encompassing the most common forms of human hereditary motor and sensory neuropathy 166 

(Pereira et al., 2012); the need to find appropriate models of such human diseases is 167 

especially pertinent. For example, murine models carrying heterozygous mutations in the 168 

Dynamin 2 gene, responsible for dominant-intermediate CMT type B, do not develop signs of 169 

Commented [PRJ1]: Clearly cancer cachexia is not 
denervation - so is the point here that the changes are 
similar to those seen with denervation? Perhaps clarify. 



an axonal or demyelinating neuropathy, characteristic of the human disease (Pereira et al., 170 

2020). Another study documented severe vocal fold paresis in humans, as a rare and 171 

sometimes life-threatening clinical feature of CMT type 2, resulting from autosomal 172 

dominant mutations of the canonical Notch ligand Jagged1 gene (or JAG1). A homozygous 173 

Jag1 mutation in mice is embryonically lethal while heterozygotes display only a mild 174 

peripheral neuropathy: focally folded myelin was the only effect noted in recurrent laryngeal 175 

nerve sections (Sullivan et al., 2020). Finally, the YarsE196K mouse model of dominant 176 

intermediate CMT type C, fails to display a clear phenotype as heterozygotes; only as 177 

homozygotes do animals display very mild disease-associated features (Hines et al., 2021).  178 

 179 

These examples highlight the translational difficulties with some rodent disease models: 180 

clearly, researchers should be careful when extrapolating clinically relevant information, as 181 

insights into the potential phenotypic, mechanistic and therapeutic avenues can be masked by 182 

species differences. This, despite the historical successes of rodent models for tackling 183 

distinct research questions, for example, in elucidating the role of PGC1alpha in NMJ 184 

remodelling (Arnold et al.,2014), there is a need to identify other suitable or better models 185 

capable of more closely matching human morphology and pathophysiology. 186 

 187 

 188 

Comparative mammalian physiology and NMJ morphology  189 

As outlined in the previous section, for a model to be successful, it needs to mimic the human 190 

condition; in the context of NMJ research at least, large mammalian models might offer a 191 

solution to some phenotypic and physiological translational issues. The longer lifespan of 192 

larger mammals (for example), in comparison to rodents, has great appeal for research, as this 193 

could allow for more accurate modelling of chronic neurodegenerative disorders such as 194 

Parkinson’s Disease, Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis 195 

(ALS) (Duque et al, 2015; Holm et al, 2016; Eaton & Wishart, 2017; Yang et al, 2021) at 196 

pre-clinical levels or for following long term treatments. Age-dependent changes effect 197 

readouts in ALS research for example.  Mutations in superoxide dismutase 1 (SOD1) are 198 

among those linked to familial forms of ALS. In a SOD1 - G93A transgenic pig model, 199 

movement disorders along with SOD1 nuclear accumulation and ubiquitinated nuclear 200 

aggregates appeared (Yang et al, 2014), (something not observed in SOD1- G93A mouse 201 

models) (Yang et al, 2021). Thus, phenotypic differences between transgenic SOD1 mice and 202 



pigs suggest that large animal models might recapitulate better the age-dependent change 203 

observed in human patients. 204 

 205 

It is important to identify larger mammalian models with similar NMJ morphology and 206 

physiological characteristics to humans since species differences in the functional properties 207 

of neuromuscular transmission as previously outlined, for example, differences in quantal 208 

content, ACh release, post-synaptic folding and nerve terminal area, could ultimately affect 209 

pre-clinical translation. Similarity to human NMJ morphology might indicate similarity in the 210 

synaptic transmission according to correlations drawn between quantal content/synaptic area, 211 

and post-synaptic folding index (Wood & R. Slater, 2001). Thus, similarity in overall 212 

anatomy might predict similarity in overall physiology. Therefore, future studies including 213 

in-depth analysis of NMJ morphology via electron microscopy combined with 214 

electrophysiological experiments, would allow measurement of post-synaptic folds and 215 

morphometric correlation with variables of neuromuscular transmission such as quantal 216 

content or endplate potentials. Additionally, with advances in spatial transcriptomics, it is 217 

possible to link tissue morphology with its transcriptional landscape (Eng et al., 2019; Xia et 218 

al., 2019; Marx, 2021) which might enable correlation between NMJ morphology and sub-219 

cellular transcription. 220 

 221 

Both the advantages and disadvantages of rodent and large animal models need to be 222 

considered when studying diseases involving the NMJ. As an example, the genetic pliability 223 

of rodent models helps to recapitulate the human condition in the lab, yet, the homogeneity of 224 

their genetic background can hinder experimental findings––for example, 10% of ALS 225 

patients carry familial forms of the disease, yet representative lab animal models fail to 226 

replicate the broad spectrum of human ALS phenotypes due to the much greater background 227 

genetic heterogeneity within ALS patients (Picher-Martel et al., 2016), thus affecting 228 

translational efficacy of experimental data. In contrast, many large animal models occur 229 

spontaneously on heterogeneous (outbred) backgrounds, reflecting the human situation (Casal 230 

& Haskins, 2006).  231 

 232 

Whilst genetic conservation is one important factor (Barthélémy et al., 2019), the 233 

resemblance of anatomy and physiology between animal models and humans should also be 234 

scrutinised. The similarity of brain size, nerve length, muscle size, NMJ morphology and 235 

functional properties of muscles are essential factors to consider when assessing the 236 



advantages and disadvantages of animal models. One particular advantage of large animal 237 

models is the similarity in NMJ morphology to those of humans (Boehm et al., 2020). 238 

Exploring this similarity could prove to be of substantial translational benefit, in particular 239 

given other anatomical similarities of the CNS; for example pig and sheep are more similar to 240 

the human brain mass and skull thickness than rodents or even non-human primates 241 

(Pelekanos et al., 2018).  242 

 243 

A recent study comparing selected pelvic limb muscle NMJ morphologies in mouse, cat, dog, 244 

sheep, pig, and human, revealed baseline data of the mammalian NMJ, laying the 245 

groundwork for subsequent comparative studies of larger mammalian NMJs (Boehm et al., 246 

2020). Whilst the study identified that sheep had the closest morphology to the human NMJ, 247 

it also concluded that there are stark differences in overall NMJ morphology between human 248 

and smaller mammalian models, i.e. mouse, cat and dog. In contrast, the larger mammalian 249 

models (sheep and pig) with comparable body weight to humans, were more similar (Boehm 250 

et al., 2020). For this reason, we herein focus on larger mammalian models––here defined as 251 

animals of a similar or larger size than humans––and the benefits that the study of their 252 

neuromuscular system could have in translational research. 253 

 254 

Figure 3 illustrates the similarities in size and overall NMJ morphology between sheep, pig, 255 

pony and human, and the stark contrast between NMJs in these larger mammalian models 256 

compared with those of mice. Whilst the mouse has a much larger NMJ and wider diameter 257 

innervating motor axon, the sheep, pig and human NMJ are comparatively similar in NMJ 258 

size and axon diameter (Boehm et al., 2020). Pony NMJs (Cahalan et al, 2022, under review) 259 

are strikingly similar to the human NMJ in appearance, although their terminal motor axon 260 

diameter is larger than that of humans. The suitability then of larger mammalian models as 261 

possible substitutes or additions to rodent models of these neurodegenerative diseases will 262 

require further study.  263 

 264 

 265 

Uncovering comparative evolutionary relationships at the NMJ  266 

Aside from linking the relationship between NMJ morphology and physiology, a better 267 

understanding of the genetic mechanisms underpinning these might help address gaps in 268 

translational understanding. For example, it is unknown whether differences in NMJ 269 

morphology between species are linked to phylogenetic distance, or selective pressure and we 270 



know little about conserved mechanisms within the neuromuscular system of larger 271 

mammals. For example, mechanisms contributing to sarcopenia-related muscle wasting and 272 

neurogenic muscle atrophy are primarily being investigated using rodent models - for review 273 

see (Tintignac et al., 2015). Whilst a recent study highlighted species-specific differences––274 

and similarities––in molecular pathways during muscle ageing between mouse, rat and 275 

human (Börsch et al., 2021). 276 

 277 

Since humans and mouse are descended from a younger common ancestor (the superorder 278 

Euarchontoglires) than the sheep, pig and pony (the superorder Laurasiatheria), which 279 

diverged later, one might assume that murine models are more similar to the human (Figure 280 

4A). However, phylogenetic divergence does not necessarily inform us about similarity of 281 

genetic sequence or morphology. For example, out of 22 select genes associated with 282 

neuromuscular disorders, the pig has the highest percentage of nucleotide sequence identity 283 

to the human as compared with dog, mouse and rat (Barthélémy et al., 2019). Since there are 284 

species-specific differences in pre- and post-synaptic morphology between species (Figure 3), 285 

one might wonder whether motor nerve (pre-synapse) or target skeletal muscle fibre (post-286 

synapse) underwent different functional adaptations, or whether purely genetic drift was 287 

responsible for species-specific differences. In the case of genetic drift, one would expect 288 

both pre- and post-synaptic NMJ morphology of species from Figure 3 to cluster as they do 289 

in their phylogenetic tree (Figure 4A). Whilst mouse NMJ morphology is strikingly different 290 

from those of sheep, pig, human and pony, at both pre- and post-synapse, neither pre- nor 291 

post-synaptic NMJ morphology across species matches their phylogenetic divergence (Figure 292 

4B). Despite small differences in their clustering between pre- and post-synaptic NMJ 293 

morphology, those of sheep and pig, (at least in select pelvic limb muscles), are remarkably 294 

similar to those of humans, as exemplified by recent comparative work (Boehm et al., 2020). 295 

A study of NMJ morphology between Drosophila species showed a similar result: whilst 296 

differences in NMJ morphology were found between Drosophila species, these were not 297 

aligned with phylogenetic distance between these species - differences in Drosophila NMJ 298 

structure and function result from selection pressure and adaptation to environmental factors 299 

rather than purely genetic drift (Campbell & Ganetzky, 2012). Data from dogs suggests a 300 

similar conclusion and indicates that larger mammals might be genetically more similar to 301 

humans than rodents (Wang et al., 2013; Barthélémy et al., 2019); selection pressure due to 302 

environmental factors and functional adaptations might shape both genetic factors and 303 

associated NMJ morphology. 304 



Advances in molecular biology and sequencing technologies will hopefully allow us to shed 305 

light on conserved pathways associated with NMJ morphology and function between larger 306 

mammalian models and humans and might uncover the mechanisms of parallel evolution that 307 

can ultimately aid in our translational efforts and drug discovery in certain neuromuscular 308 

diseases.  309 

   310 

 311 

 312 

An unexplored area of NMJ research: large mammalian NMDs 313 

Comparatively little is known about healthy large mammalian NMJ morphology in general, 314 

and this is condensed within a few recent papers - this knowledge deficit is more conspicuous 315 

in the field of large animal neuromuscular diseases, where there is little to no published NMJ 316 

data. 317 

As previous sections have outlined, significant differences exist between human and rodent 318 

models. For example, compared to rodents, it seems reasonable that large animal models, 319 

with similar axon lengths to humans, will reveal more about neuropathies with a length-320 

dependency.    321 

Axonopathies, characterised by axonal degeneration and ultimately fragmentation, are the 322 

most common form of PNS disease in all species (Lanigan et al., 2021). The nerve fibres are 323 

affected in a length-dependent pattern in distal dying-back axonopathies. In humans, height is 324 

correlated with an increased risk of various peripheral neuropathies, including in HIV and 325 

type 2 diabetes patients (Cheng et al., 2006; Cherry et al., 2009). Thus, taller subjects are 326 

more likely to develop lower extremity peripheral neuropathy, with a cut off at >1.70 m of 327 

height (Cherry et al., 2009). This is likely because the longer the nerve, the more vulnerable 328 

the axon is to insult, and to disturbances in axonal transport, likely because of its exaggerated 329 

metabolic demands. Therefore, the first advantage of using large mammals is a better 330 

recapitulation of the length of affected nerves. For example, pigs and sheep have recently 331 

successfully been used as preclinical models to study nerve regeneration following peripheral 332 

nerve injury (D. Alvites et al., 2021; Burrell et al., 2020), suggesting potential for future 333 

translational clinical applications to humans and other veterinary species.   334 

Given the deficiency of knowledge regarding large mammal NMJ morphology in disease 335 

states, it seems reasonable that its study will have translational impact, allowing a better 336 

understanding of changes at the human NMJ. As such, what follows is a summary of 337 



pertinent large animal NMDs. For each, there is an opportunity for NMD translational 338 

discovery.   339 

 340 

Horses 341 

Equine recurrent laryngeal neuropathy (RLN) 342 

Equine recurrent laryngeal neuropathy (RLN) is a common neuromuscular condition 343 

primarily affecting tall horse breeds such as Thoroughbreds and various Draughts (Draper & 344 

Piercy, 2018); as a neurodegenerative disorder affecting the recurrent laryngeal nerves (RLn) 345 

- the longest equine motor axons, measuring up to 2.5 m - it is likely one of the more 346 

prevalent, length-dependent neuropathies in large mammals. It is characterised by varying 347 

degrees of arytenoid cartilage paresis, primarily on the left side, likely because the left-sided 348 

nerve is longer than that on the right side. Indeed, evidence suggests that most, if not all, 349 

large breed horses have varying severities of this disorder (Draper & Piercy, 2018). Affected 350 

horses produce abnormal respiratory sounds during exercise and show exercise intolerance in 351 

the most severe cases caused by the associated paresis of the denervated cricoarytenoideus 352 

dorsalis muscles that normally abduct the vocal cords, opening the rima glottidis. Despite the 353 

high prevalence, the exact cause of RLN remains unclear, though it likely includes acquired 354 

and genetic factors (Draper & Piercy, 2018). Length-dependency is also a common feature of 355 

human peripheral neuropathies that have a genetic basis, such as in CMT 1A (Scherer & 356 

Wrabetz, 2008; Krajewski et al., 2000), or in certain acquired diabetic neuropathies (Kazamel 357 

& Dyck, 2015).  Typically, CMT involves the distal extremities, although a few patient 358 

subtypes (mainly CMT4A, CMT2A and CMT2C - select familial examples are mentioned in 359 

the section ‘Translational pitfalls in rodent NMJ form and physiology' ) also develop 360 

laryngeal paralysis (Zambon et al., 2017). Note that in some patient subsets, CMT first 361 

presents with atrophy and weakness of the intrinsic muscles of the hands, without 362 

involvement of lower limbs until later in the disease course, indicating the clinical 363 

heterogeneity of CMT disorders (Macken et al., 2020) and the presence of disease factors 364 

beyond pure length-dependency. Some of the neuropathological features associated with 365 

CMT diseases (particularly CMT2A, E and F), such as loss of myelinated nerve fibres and 366 

organelle-containing paranodal evaginations (Millecamps & Julien, 2013), also occur in RLN 367 

(Duncan, 1978) – the study of the equine NMJ in these cases might then yield translatable 368 

insights into chronic NMJ (mal)adaptions in these disorders. Recently, novel treatments for 369 

RLN have shown promising results. For example, a cervical nerve transplantation technique 370 



enabled reinnervation of the cricoarytenoideus dorsalis muscle (Rossignol et al., 2018) in 371 

affected horses.  372 

 373 

Equine motor neuron disease (EMND) 374 

Equine motor neuron disease is a neurodegenerative neuronopathy characterised by 375 

generalised paresis, muscle fasciculations, muscle atrophy, and progressive weight loss (Sisó 376 

et al., 2006; Sasaki et al., 2016; Banfield et al., 2019). Pathology studies show motor neuron 377 

degeneration in the spinal cord and brain stem, leading to axonal degeneration in the CNS 378 

and PNS. The aetiology appears to be related primarily to an acquired deficiency of anti-379 

oxidants, especially of vitamin E (Mohammed et al., 2007).  380 

 381 

Acquired equine polyneuropathy (AEP) 382 

Acquired equine polyneuropathy is a sometimes-fatal neurological disease characterised by 383 

pelvic limb paresis. It has been mainly described in Sweden, Norway, and Finland and is also 384 

referred to as “Scandinavian knuckling syndrome” (Gröndahl et al., 2012; Hanche-Olsen et 385 

al., 2017a). Despite the geographical pattern and association with forage feeding, the 386 

aetiopathogenesis is unclear. Affected horses present with a polyneuropathy with 387 

inflammatory demyelination and Schwann cell inclusions, suggestive of a primary 388 

Schwannopathy (Hanche-Olsen et al., 2017a,b). These horses, regardless of size, develop 389 

recurrent laryngeal nerve lesions yet do not demonstrate clinically defective laryngeal 390 

function.  391 

 392 

Goats 393 

Laryngeal neuropathy has been described in goats with clinical signs of copper deficiency 394 

(Sousa et al., 2016). The main lesions were axonal degeneration of the RLns and atrophy of 395 

intrinsic laryngeal muscles. Another acquired peripheral neuropathy in the goat is caused by 396 

coyotillo (Karwinskia humboldtiana, also known as Humboldt’s Buckthorn) poisoning 397 

(Charlton et al., 1971), where the results suggested a primary mitochondrial injury in 398 

Schwann cells with resulting impaired axonal transport, myelin splitting and segmental 399 

demyelination in long nerves such as the sciatic. A subclinical demyelinating polyneuropathy 400 

was recently studied in goats (Skedsmo et al., 2020). This disease was caused by the loss of 401 

the cellular prion protein (PrPC), confirming the importance of PrPC for peripheral nerve 402 

myelin maintenance.  403 

 404 



Sheep 405 

The most common neurodegenerative disorder described in sheep is neuroaxonal dystrophy, 406 

characterized by numerous axonal swellings, myelin loss, and axonal degeneration, 407 

particularly in the spinal cord and sciatic nerve (Finnie & Manavis, 2017). It has been 408 

observed in juvenile and newborn Australian Merino lambs and Suffolk sheep (Harper et al., 409 

1986; Bourke, 1995; Sisó et al., 2006). 410 

 411 

As previously mentioned, the ovine NMJ most closely resembles the human NMJ (Figure 3) 412 

(Boehm et al., 2020). Sheep have been used as models of periphery nerve injury affecting the 413 

cervical nerve roots (Hems & Glasby, 1992), C6 ventral root avulsion (Fullarton et al., 2001) 414 

and the facial nerve (Starritt et al., 2011). Sheep models have been used to recapitulate Batten 415 

disease (Weber & Pearce, 2013), and the first gene-edited ovine model of neuronal ceroid 416 

lipofuscinoses has recently been generated (Eaton et al., 2019).  417 

Additionally, aged sheep are used as a model for functional electrical stimulation of the 418 

recurrent laryngeal nerve, advancing the understanding and the clinical translation of 419 

conditions with atrophied laryngeal muscles such as vocal fold paralysis (Karbiener et al., 420 

2016; Gugatschka et al., 2018).  421 

 422 

 423 

Pigs 424 

Similar to the ovine NMJ, the porcine NMJ closely resembles those of humans (Figure 3), 425 

improving its translational potential for the study of motor neuron diseases (Boehm et al., 426 

2020). A spontaneous porcine motor neuron disease (SPMND), with features similar to the 427 

equine disease, has been described in feeder pigs (Wohlsein et al., 2012). A putative 428 

peripheral neuropathy with unclear aetiology has been described in suckling piglets (Sályi et 429 

al., 2000). This was characterised by degeneration, demyelination, and necrosis of the tibial 430 

nerve and the common fibular nerve, with no CNS involvement.  431 

Pigs are used to model Spinal Muscular Atrophy (SMA), a human genetic disorder 432 

characterised by motor neuron degeneration and paresis (Duque et al., 2015). Results from 433 

porcine models and other large animals of SMA have not only shed light on the molecular 434 

mechanisms of the disease, they have also provided valuable insights into biomarkers and 435 

gene delivery strategies, therefore allowing a quicker advancement of gene therapy and 436 

similar molecular approaches to the clinic (Bevan et al., 2011; Iyer et al., 2017).  437 

 438 



 439 

Cattle 440 

CMT type 4H in humans arises through homozygous mutations in the FGD4 gene. A recent 441 

study of Holstein Friesian cattle with a homozygous splice site mutation in this gene revealed 442 

clinical signs of stumbling and loss of coordination in animals close to 2 years of age (early 443 

adulthood).  Gross post-mortem abnormalities were not observed. Examination of a range of 444 

peripheral nerves revealed demyelination and remyelination, with Schwann cell hyperplasia 445 

and hypertrophy, onion bulb formation and decreased myelinated fiber density. These 446 

changes can also be found in human CMT type 4H and in FGD4 KO mouse models (Dittmer 447 

et al, 2022).  448 

 449 

Bovine spastic paresis (BSP) is a relatively common progressive NMD affecting many breeds 450 

of cattle and is characterised by spastic contractions of one or more pelvic limb muscles. The 451 

gastrocnemius muscle is the most commonly affected, with spastic paresis causing the animal 452 

to repetitively stretch the affected limb in a caudal direction.  BSP likely has a genetic basis, 453 

however, an exact aetiopathogenesis is unknown – histopathology of the spinal cord, tibial 454 

nerves and muscle tissue of affected animals do not reveal abnormalities. A functional 455 

pathology occurring from overstimulation and/or lack of inhibition from centrally controlled 456 

spinal cord γ motor neurones is presumed to occur. (De Vlamynck et al., 2014). 457 

 458 

Llamas and alpacas 459 

Paralysis of the diaphragm with phrenic nerve degeneration has been reported in llamas and 460 

alpacas (Bedenice et al., 2002; Byers et al., 2011; Uzal et al., 2012). Neuropathological 461 

studies showed that affected axons varied from being intact to being vacuolated and 462 

degenerated with loss of neurofilaments. The aetiology of this phrenic nerve neuropathy 463 

could not be elucidated.  464 

 465 

The promise and practice of stem cell work  466 

Stem cell technologies have emerged over the last two decades to create a field with much 467 

promise for generating therapeutics and cellular regenerative biology insights for chronic 468 

degenerative disorders (Zakrzewski et al., 2019). Insights into the physiological and 469 

pathological function of the NMJ might come from iPSC-derived models (Thompson et al., 470 

2012; Lin et al.,2019), or cultured neurons, which have now been generated from large 471 

mammals (Pessôa et al., 2019; Bressan et al., 2020), including horses (Adalbert et al, 2022). 472 



iPSCs can be differentiated into muscle or neural tissue, with a future promise of in vitro 473 

NMJ models (Jongh et al., 2021), providing an understanding of the cellular and molecular 474 

mechanism and the aetiology underlying many NMJ-related disorders and peripheral 475 

neuropathies. Besides offering a possible disease modelling platform, iPSC- and other cell-476 

based models can also act as an ex vivo platform to test potential therapeutic strategies and 477 

drugs.  478 

 479 

Large animal models are essential for the translation of therapeutics that utilise stem cell and 480 

tissue engineering strategies (Ribitsch et al., 2020). In addition, trials to treat large animals 481 

(e.g., dogs and horses) with stem cell- and biomaterial-based therapies are also underway. For 482 

example, stem cell therapy using adult mesenchymal stem cells derived from bone marrow is 483 

approved in equine medicine for musculoskeletal disorders (Ortved, 2018). Veterinary 484 

regenerative medicine is growing in popularity (Koch et al., 2009; Smith et al., 2014; 485 

Barrachina et al., 2018). In the future, these novel approaches could be applied to peripheral 486 

nerve regeneration in humans, providing a treatment for peripheral neuropathies. 487 

   488 

 489 

Weighing the translational benefits and costs of studying NMJs in large animal models 490 

The complexity of human diseases necessarily means that no one animal model will likely 491 

replicate all aspects of the disease. However, to facilitate the most efficient translation from 492 

bench to bedside, the research community should aim to recapitulate the condition wherever 493 

possible (Eaton & Wishart, 2017). Murine models are currently the most popular model for 494 

the study of human disease––in particular due to their quick reproductive rate, low 495 

maintenance cost, ease of genetic manipulation and variety of experimental tools developed 496 

to study them (Chung et al., 1997)––The emergence of nuclease-mediated genome editing 497 

technology (CRISPR/Cas9) however, recently used to create a knock-in pig model with 498 

features of Huntingdon’s disease (Yan et al., 2018), has greatly improved the efficiency of 499 

generating transgenic animals  - see review of genetically modified neurogenerative large 500 

animal models (Yang et al., 2021). Thus, the appeal of large animal models across a range of 501 

clinical applications should be considered.  502 

Despite the comparatively higher cost and level of maintenance and workforce involved with 503 

large animals, the benefits that the similarity of these models could bring, should be 504 

considered as an encouragement for the research community. A higher cost is somewhat 505 

offset by the very high prevalence of certain large animal diseases––for example, RLN has a 506 



cited worldwide clinically-relevant occurrence of between 2-11% in Thoroughbred horses 507 

(Boyko et al., 2014), whereas most human neuropathies are comparatively rare. A high 508 

natural prevalence of certain large animal diseases might negate the need to maintain colonies 509 

of affected animals, with associated welfare and ethical advantages. 510 

Neurodegenerative conditions that occur naturally in large animals and humans, such as the 511 

neuropathies outlined above, should be of particular benefit for clinical translation (Eaton & 512 

Wishart, 2017), as one could expect more commonalities in disease onset and progression.  513 

More translatable data ultimately contributes to a reduced failure rate of therapeutics within 514 

the drug discovery pipeline, as currently, which still occurs commonly in human clinical 515 

trials (Seyhan, 2019). Given that drugs typically take over 12 years to get from the lab 516 

through to approval and development costs can exceed $1 billion (Mohs & Greig, 2017), it is 517 

in everyone’s interest to accelerate this process and reduce the attrition rate of therapeutics 518 

and also reduce associated costs. Animal models that better mimic human NMJ morphology, 519 

and length dependency of axon functions, will hopefully allow researchers to identify drugs 520 

that are less likely to fail in clinical trials, whilst reducing costs. 521 

 522 

Conclusions  523 

The species and disease model of choice are undoubtedly relevant to answering both research 524 

questions and clinical problems. The aetiology of peripheral neuropathies in large animals is 525 

often undetermined, and the NMJ involvement is overlooked. Large animal models have 526 

great potential to enhance our understanding of the neuromuscular system in health and 527 

disease. Although elevated costs can constrain large animal studies, their high prevalence and 528 

application of a more appropriate comparative approach should help close the translational 529 

gap between preclinical and clinical responses.  530 
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Figure 1: A schematic diagram of the healthy motor axon. 1047 
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Figure 2: A schematic diagram of the unhealthy motor axon. 1049 
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 1051 

 1052 

Figure 3: Heterogeneity of the mammalian NMJ 1053 

Confocal micrographs representing average NMJ morphology in soleus, a predominantly 1054 

slow-twitch pelvic/hind/lower limb muscle, across mammalian species arranged in ascending 1055 

body size: the mouse, sheep, pig, human and pony. The upper panel depicts composite 1056 

images of pre- (cyan) and post-synapse (magenta), pseudo-coloured in Fiji. The bottom 1057 

panels depict the pre- and post-synapse individually in greyscale. 1058 

SV2 = synaptic vesicle protein 2 (cyan); 2H3 and 3A10 =  neurofilament (cyan); -BTX (-1059 

bungarotoxin) = acetylcholine receptors (magenta);  1060 

Scale bar = 10 µm across all images. 1061 

 1062 

Figure 4: Evolutionary divergence of large mammalian models in comparison to mouse and 1063 

human 1064 

https://github.com/Boehmin/NMJ_analysis.git


(A) Phylogenetic tree depicting the timeline of divergence in million years ago (MYA) 1065 

between mouse and human (both part of the superorder Euarchontoglires), sheep and 1066 

pig (both part of the order Artiodactyla) and pony (all three part of the superorder 1067 

Laurasiatheria). It is evident that despite mouse and human sharing the same clade, 1068 

they diverged many million years sooner than the here listed domestic animals. 1069 

Phylogenetic tree generated on http://www.timetree.org. 1070 

(B) This so-called tanglegram showcases the difference between two dendrograms. In this 1071 

case, the individual dendrograms depict pre- and post-synaptic components of the 1072 

NMJ. Comparison via such a tanglegram allows to assess the differences or 1073 

similarities between species, across pre-synaptic, or post-synaptic components of the 1074 

NMJ. Both dendrograms showcase clustering of species according to the similarity in 1075 

post-synaptic (left dendrogram) or pre-synaptic (right dendrogram) NMJ variables 1076 

and their associated and derived variables resulting from analysis with NMJ-1077 

morph/aNMJ-morph (Jones et al., 2016; Minty et al., 2020). Red lines indicate 1078 

similarities in subtree branches: the mouse is most different from the other species in 1079 

post- and pre-synaptic morphology. Thick black lines at the edges of the dendrogram 1080 

indicate differences in branch distance from their node of origin: whilst sheep and 1081 

human are most similar in their post-synaptic morphology, the sheep and pony are 1082 

most similar in their pre-synaptic morphology.  1083 

Mouse and human data were reproduced from (Jones et al., 2017). Sheep and pig data 1084 

were reproduced from (Boehm et al., 2020). Pony data yet unpublished (Cahalan et 1085 

al, 2022, under review). Tanglegram was generated in RStudio (version 1.4.0) using 1086 

the packages tidverse, usedist, vegan, magrittr and dendextend (Galili, 2015). 1087 


