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Abstract: Traditionally, genome-wide association studies (GWAS) require maximum numbers of genotyped and 
phenotyped animals to efficiently detect marker-trait associations. Under financial constraints, alternative solutions should be 
envisaged such that of performing GWAS with fractioned samples of the population. In the present study, we investigated the 
potential of using random and extreme phenotype samples of a population including 6,700 broilers in detecting significant 
markers and candidate genes for a typical complex trait (body weight at 35 days). We also explored the utility of using 
continuous vs. dichotomized phenotypes to detect marker-trait associations. Present results revealed that extreme phenotype 
samples were superior to random samples while detection efficacy was higher on the continuous over the dichotomous 
phenotype scale. Furthermore, the use of 50% extreme phenotype samples resulted in detection of 8 out of the 10 markers 
identified in whole population sampling. Putative causative variants identified in 50% extreme phenotype samples resided in 
genomic regions harboring 10 growth-related QTLs (e.g. breast muscle percentage, abdominal fat weight etc.) and 6 growth 
related genes (CACNB1, MYOM2, SLC20A1, ANXA4, FBXO32, SLAIN2). Current findings proposed the use of 50% extreme 
phenotype sampling as the optimal sampling strategy when performing a cost-effective GWAS. 

Keywords: Body Weight, Broilers, Extreme Phenotypes 

 

1. Introduction 

Quantitative Trait Loci (QTL) detection presumes the 
availability of both phenotypic trait values and marker 
genotypic data. In livestock populations where extensive 
individual performance recording takes place, collection and 
availability of phenotypic data on large numbers of animals is 
an ongoing situation. When costs are not of primary concern, 
all individuals with phenotypic data are genotyped and 
included for QTL analysis. However, this is seldom the case 
and under a limited budget it is necessary to make an effective 
allocation of genotyping costs. The latter could be extremely 
high for large sized populations and the high-throughput 
genotyping technology [1]. A useful genotyping cost-saving 
strategy is selective genotyping (SG) in which only a selected 
fraction of the phenotyped individuals, are genotyped [2, 3]. 

The efficacy of SG to locate QTL has been extensively 
evaluated in simplified settings i.e. a single locus contributing 
to the phenotype. The basic experimental design was based on 
segregating populations arising from crosses (backcrossing or 
intercross) between parental populations displaying 
maximally different phenotypes. Following this approach, 
numerous studies have been carried out in an attempt to 
address issues related to the utility of extreme vs. random 
samples, the type of sampling strategy (one-tail vs. two-tail, 
symmetrical vs. asymmetrical sampling) and the optimum 
proportion (s) of selected samples [4-8]. 

Due to the small number of segregating polymorphic loci 
between the extreme populations, the aforementioned studies 
had limited potential for discovery of genetic associations. As 
a result, only large QTL intervals [9] and a limited number of 
trait-associated loci could be identified [10]. 
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In modern GWAS, where diverse populations are used, the 
sample sizes needed to identify SNPs that explain most of 
heritability (e.g. 80%) of polygenic traits are predicted to 
range from a few hundred thousand to several millions, 
depending on the underlying effect-size distributions of the 
traits [11]. Samples of the above sizes are now in hand in 
human studies due to the successes of the large-scale consortia 
[11]. In livestock populations as well as in wild animal species, 
such sample sizes are unable to be realized, at least for now, 
due to insufficient budgets to fully cover the expense of 
complete genotyping all phenotyped animals. 

Extreme-phenotype GWAS (XP-GWAS, [10]) are reported 
to be particularly valuable for detecting genes or alleles 
responsible for quantitative variation in species [12, 10, 13]. 
Furthermore, extreme phenotype sampling (EPS) is more 
effective in detecting (rare) variants when compared to 
random sampling (RS) [7, 14, 15] and EPS may deliver similar 
results when compared to a whole population GWAS [13]. 

So far, most of the studies carried out have aimed to compare 
the utility of RS and EPS when using comparable sample sizes 
while others have explored the statistical properties of using 
continuous vs. dichotomous phenotypes. Moreover, only a 
limited number of studies have focused on comparison of 
fractioned samples vs. whole population sampling and on 
detection of candidate genes for quantitative traits. Driven from 
the above, we have elaborated the present empirical study with 
the overarching aim to propose optimal sampling strategies when 
performing cost effective GWAS. The present report is organized 
as follows. First, we conducted a GWAS using all animals of a 
population (whole population sampling, PS) consisted of 6,700 
broilers to identify significant SNPs associated with a typical 
complex trait (body weight at 35 days of age). Next, we selected 
random and extreme phenotype samples of progressively 
increasing sizes up to 50% of the whole population and identified 
SNP signals using continuous and dichotomized phenotypes. 
Finally, we compared SNP signals between sub-samples 
(extreme and random) and the whole population and examined 
whether sub-sampling may lead to the discovery of most 
plausible functional candidate genes for the trait. 

2. Material and Methods 

2.1. Animals and SNPs 

Genotypes from 6,700 broilers (3,718 males and 2,982 females) 
with corresponding records on BW at 35 days of age 
(average=2007.5 g, SD=222.8 g) were made available by Aviagen 
Ltd. The genotyping was conducted with the 600k Affymetrix HD 
SNP array [16] and included a total number of 547,904 autosomal 
SNPs dispersed on 28 chromosomes (GGA1-28). We applied the 
following quality control (QC) criteria at the marker level i.e. 
markers were excluded if: call rate<0.95, minor allele frequency 
(MAF)<0.05 and LD (r2) values>0.99 for genomic distances up to 
1 Mb. After application of QC, a final number of 215,555 SNPs 
remained for further analyses. Marker QC was carried out using 
the SNP & Variation Suite version 8.8.1 software (Golden Helix: 
http://www.goldenhelix.com). 

2.2. Sampling Scenarios 

The first sampling scenario considered was RS. In this, 
random samples as high as 5% (RS_5%, n=335), 10% 
(RS_10%, n=670), 20% (RS_20%, n=1,340), 30% (RS_30%, 
n=2,010), 40% (RS_40%, n=2,680) and 50% (RS_50%, 
n=3,350) of the whole population were taken. Adjustment of 
BW records for three statistically significant (p<0.05) fixed 
effects: sex (n=2 classes), hatch (n=36 classes) and mating 
group (n=17 classes) followed, based on the least squares 
estimates of each class effect. We then performed EPS by taking 
fractions as high as 5% (EPS_5%), 10% (EPS_10%), 20% 
(EPS_20%), 30% (EPS_30%), 40% (EPS_40%) and 50% 
(EPS_50%) of the lower and upper tails of the adjusted 
phenotypic records. Only symmetrical sampling with equal 
fractions of the two extremes (low and high) was considered 
here. One more sampling scenario was also considered by 
dichotomizing the continuous extreme phenotypes and treating 
the two extremes as two groups representing a dichotomous 
phenotype (low and high). This scenario will be referred as the 
extreme phenotypes binary case (EPSB). 

2.3. Marker-trait Association Analysis 

An additive multi-locus mixed-model (MLMM) stepwise 
regression was applied with forward inclusion and backward 
elimination [17] to detect the significant markers associated 
with the trait. In the case of the whole and random sampling, 
the following mixed model was applied to the data: 

y X wa u eβ= + +Ζ +  

where y is the n x 1 vector of the phenotypic values of BW for n 
broilers, X is the n x 55 matrix of fixed effects: sex (2 classes), 
hatch (36 classes), mating group (17 classes), β is the 55 x 1 
vector of corresponding coefficients of fixed effects, w is the 
vector with elements 0 for the major homozygous genotype, 1 for 
the heterozygote genotype and 2 for the minor homozygous 
genotype (additive genetic model), α is the vector of the fixed 
effect for the minor allele of the candidate SNP to be tested for 
association, Z is the incidence matrix relating observations to the 
polygenic random effects, u is the vector of random polygenic 
effects, and e is the vector of random residuals. The random 
effects were assumed to be normally distributed with zero means 
and the following covariance structure: 
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where xij and xik are the numbers (0, 1 or 2) of the minor allele 
(s) for the ith SNP of the jth and kth individuals, respectively, 
and pi is the frequency of the minor allele [18]. Note that 
inclusion of the genomic relationship matrix in the model has 
been shown to correct for possible population structure and 
stratification in the data [19]. This analysis was carried out 
with SNP & Variation Suite version 8.8.1 software (Golden 
Helix: http://www.goldenhelix.com). 

During the analysis of the extreme phenotype samples, only 
the vector of SNP effects (a) was included in the model as the 
rest fixed effects (sex, hatch and mating group) had been 
appropriately accounted during trait adjustment (see 
‘Sampling scenarios’). Taken together, a total number of 19 
analyses were carried out. All analyses were performed with 
SNP & Variation Suite (version 8.8.1) software (Golden Helix: 
http://www.goldenhelix.com). Each time, statistically 
significant markers were selected at the optimal step of the 
MLMM stepwise regression according to the extended 
Bayesian Information Criterion (eBIC, [20]). P-values of 
SNPs were corrected for multiple comparisons using the 
false-discovery rate (FDR) method [21] and significance was 
denoted using a FDR p-value less than 0.05. 

2.4. Quantile–quantile Plots and Estimation of the Genomic 

Inflation Factor 

Quantile-quantile (Q–Q) plots were used to analyze the 
extent to which the observed distribution of the test statistic 
followed the expected (null) distribution. Q-Q plots along 
with the estimated genomic inflation factor lambda (λ) was 
used to assess potential systematic bias due to population 
structure or to the analytical approach [22]. 

2.5. Proportion of Variance Explained (PVE) by SNP Per 

Sampling Case 

The Proportion of Variance Explained by a SNP k (PVEk) 
was calculated as: 

����	 = ��		
�	 −��		�
��		
�  

where ��		
� is the Mahalonobis root sum of squares (mrss) 
for the null hypothesis and ��		� is the same for marker k. 

2.6. Estimation of Allelic Effects Based on PVE 

According to Falconer and Mackay [23], the PVE of a SNP 
is given by formula (1) 

��� = �(���)��
���                  (1) 

Where: 
p is the MAF of the SNP and 
�� is the phenotypic variance of the trait 
by solving formula (1) for the β term allows for the 

estimation of the SNP allelic effects (β) as follows 

� = � ������
�(���)                  (2) 

2.7. Detection Efficacy Across the Various Sampling 

Scenarios 

Detection efficacy (DE) of marker-trait associations across 
the various subsamples was explored by finding the maximum 
number of lead (i.e. significant) SNPs within 500 kb regions 
around SNPs detected in whole population sampling (PS). 

2.8. Identification of Putative Causative Genetic Variants 

In the most efficient sampling scenario, we used estimated 
PVE associated with lead SNPs to infer their importance as 
causative genetic variants for the trait. Specifically, lead SNPs 
with PVE ≥ 2.0% were considered putative evidence of large 
genetic effects [24] while those with 2.0<PVE ≥ 1.0% were 
considered evidence for moderate genetic effects [24, 25]. 

2.9. Variant Effect Prediction of Putative Causative Genetic 

Variants 

Annotation of the putative causative SNPs was predicted 
using the Variant Effect Predictor tool (VEP, 
https://www.ensembl.org/Tools/VEP, [26]) and the latest 
Gallus gallus genome assembly (ver. GRCg6a 
(https://www.ncbi.nlm.nih.gov/assembly/GCF_000002315.6: 
accessed:21st April 2019) and NCBI Annotation release 104: 
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Gallus
_gallus/104/: accessed: 21st April 2019). VEP identified 
overlapping transcripts and predicted the effects that SNP 
alleles could have on genes, transcripts, protein sequence as 
well as regulatory regions. Apart from the aforementioned, the 
VEP tool was also used to infer associations of the queried 
variants with phenotypes via connections with Animal QTL 
database (Animal QTLdb) and Online Mendelian Inheritance 
in Animals (OMIA) database for the species. 

3. Results 

3.1. Identification of Significant SNPs in Whole Population 

Sampling 

Figure 1 displays a Manhattan and Q-Q plot of SNP 
p-values in PS. As the Q-Q plot clearly shows, there is no 
evidence of any systematic bias due to population structure or 
analytical approach in our case. This can also be validated by 
the estimated value of lambda (λ=0.95). The Q-Q plot also 
shows that some SNPs depart from the expected probability 
indicating possible association with the trait. The significant 
(FDR p-value< 0.05) SNPs detected in PS are shown in Table 
1 along with estimated PVE, respective MAF and allelic 
effects (β). PVE ranged from 1.44% (rs315329074) to 0.009% 
(rs317777863) while MAF ranged from 0.066 (rs314844319) 

to 0.469 (rs15608447). Highest PVE were attained for 
markers rs15425131 (1.44%) and rs315329074 (1.42%), 
albeit for different reasons. As Formula 1 implies, PVE is the 
product of MAF and β. In case of rs15425131, PVE is the 
result of low MAF (0.091) and highest β (3.86 g) while in the 
case of rs315329074 is the product of higher MAF (0.171) 
with lower β (2.93 g). In general, highest PVE were associated 
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with highest p-values on the log10 scale (Table 1). 

 

Figure 1. Manhattan plot (left) and quantile-quantile (Q-Q) plot (right) of SNP p-values in whole population. In Manhattan plot, y-axis presents the observed 

SNP –log10 (p-values) and the x-axis the SNP positions across the 27 autosomes. Horizontal line shows the genome-wide significant threshold. In Q-Q plot, y-axis 

and x-axis represent observed SNP –log10 (p-values) and expected –log10 (p-values), respectively. Estimation of λ is also shown on the top left in the Q-Q plot. Red 

points represent the genome-wide significant SNPs for the trait. Both plots were constructed using the CMplot package (https://github.com/YinLiLin/R-CMplot) 

in R (http://www.r-project.org/). 

Table 1. Proportion of variance explained (PVE%), minor allele frequency (MAF) and allelic effects (β) per significant SNP detected in whole population 

sampling. The estimated phenotypic variance (��) was as high as 171.225 g2. 

SNP ID GGA Position (bp) p-value -log10 (p-value) FDR p-value PVE (%) MAF β (g) 

rs13923872 1 114,049,481 1.8832E-06 5.7251 0.04058 0.3069 0.414 1.041 
rs15425131 3 90,795,168 1.7989E-51 50.7450 3.88E-46 1.4411 0.091 3.861 
rs313332188 3 99,991,484 4.8484E-13 12.3144 2.09E-08 0.6833 0.437 1.542 
rs15608447 4 66,459,916 2.662E-14 13.5748 1.43E-09 0.9009 0.469 1.761 
rs317014229 10 1,288,866 1.7144E-08 7.7659 0.00046 0.1351 0.407 0.692 
rs316794400 22 5,149,585 9.6605E-20 19.0150 6.94E-15 0.6159 0.202 1.809 
rs314844319 24 1,869,760 1.4352E-06 5.8431 0.03436 0.0595 0.066 0.907 
rs312861757 25 3,326,746 2.4423E-09 8.6122 7.52E-05 0.2349 0.077 1.685 
rs317777863 25 196,842 2.9874E-10 9.5247 1.07E-05 0.00896 0.364 0.182 
rs315329074 27 6,920,352 2.4734E-22 21.6067 2.67E-17 1.4233 0.171 2.934 

3.2. Detection Efficacy Across the Various Sampling Scenarios and Estimated PVE 

 

Figure 2. Radial network of the genome-wide significant SNPs detected across the various sampling scenarios (PS: whole population sampling, RS: random 

sampling, EPS: extreme phenotype sampling and EPSB: extreme phenotypes sampling binary case). Figure was constructed using the data. tree and networkD3 

packages in R (http://www.r-project.org/). 
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Figure 2 presents the genome-wide significant SNPs (n=49) 
and the corresponding sampling scenario (s) in which each SNP 
was found to be significantly associated with the trait. 
Specifically, 10 unique SNP signals were detected in PS plus 39 
more in the rest sampling scenarios. As shown in more detail in 
Table 2, within sampling scenarios, the maximum number (n=13) 
of SNPs was identified in EPS_20%, followed by EPS_50% 
(n=11). DE i.e. number of SNP signals that were common or lied 
within 500kb distances from the PS SNPs are presented in Table 
3. DE ranged from a minimum n=3 in RS_30% and EPSB_50% 
to a maximum n=8 in EPS_50% (Figure 3). A detailed view of 

SNPs detected across the sampling scenarios in relation to the 
position of PS SNPs on the same autosomes is provided in Figure 
4. As Figure 4 displays, there were 3 SNPs detected within a 
distance of 436,398 bp (2,890,348-3,326,746 bp) on GGA25 
with two markers (rs317093585 and rs313194380) detected in 
EPS_50% and one (rs312861757) in PS. Of the three markers, 
rs317093585 and rs313194380 were distanced 29,091 bp apart 
and displayed moderate LD levels (D'=0.37), while markers 
rs313194380 and rs312861757 were distanced 407,307 bp and 
were in strong LD (D'=0.99). 

Table 2. Genome-wide significant SNPs across the sampling scenarios (RS: random sampling, EPS: extreme phenotype sampling, EPSB: extreme phenotypes 

binary case). 

RS 

Sample proportion (%) SNP ID GGA Position (bp)a p-value -log10 (p-value) FDR p-value PVE (%) MAF 

5 rs314268898 18 1,026,668 3.62E-11 10.4411 7.81E-06 12.4112 0.089 

10 rs316975706 26 805,527 2.15E-15 14.6670 4.64E-10 7.5871 0.324 

20 

rs314007348 4 66,225,823 2.64E-08 7.5777 0.0019 2.1494 0.447 

rs318098582 11 18,407,493 7.93E-34 33.1007 1.71E-28 5.7627 0.133 

rs16192702 24 494,813 4.76E-12 11.3224 5.13E-07 1.5934 0.093 

rs317587988 28 4,553,250 6.48E-07 6.1880 0.03496 2.6190 0.465 

30 

rs314007348 4 66,225,823 3.44E-08 7.4628 0.00248 1.5643 0.438 

rs314066852 10 13,562,465 1.07E-06 5.9667 0.03879 0.1417 0.191 

rs312428343 22 2,016,328 1.06E-07 6.9720 0.00575 0.0212 0.294 

rs316794400 22 5,149,585 6.93E-07 6.1590 0.02989 1.2122 0.191 

rs317288536 25 2,173,372 6.15E-21 20.2109 1.33E-15 3.1489 0.089 

rs315329074 27 6,920,352 3.14E-15 14.5037 3.38E-10 2.8260 0.173 

40 
rs315329074 27 6,920,352 5.67E-26 25.2460 1.22E-20 3.3903 0.177 

rs317792664 28 4,336,570 1.94E-24 23.7121 2.09E-19 2.8250 0.079 

50 

rs313097265 2 93,140,828 7.79E-42 41.1081 1.68E-36 2.7875 0.101 

rs314007348 4 66,225,823 5.43E-13 12.2646 3.91E-08 1.4746 0.446 

rs312428343 22 2,016,328 5.88E-10 9.2302 3.17E-05 0.0368 0.302 

rs315329074 27 6,920,352 1.76E-30 29.7535 1.90E-25 2.4251 0.174 

 

EPS 

Sample proportion (%) SNP ID GGA Position (bp)a p-value -log10 (p-value) FDR p-value PVE (%) MAF 

5 
rs317414603 20 6,729,013 1.47E-10 9.8301 3.19E-05 20.9532 0.384 

rs316714498 27 5,853,588 2.11E-10 9.6739 2.28E-05 21.0961 0.385 

10 

rs312675887 9 17,794,694 7.92E-14 13.1010 8.54E-09 9.2336 0.299 

rs317414603 20 6,729,013 5.17E-07 6.2864 0.03716 12.2069 0.385 
rs316714498 27 5,853,588 2.78E-23 22.555 6.01E-18 12.9160 0.385 

20 

rs15272503 1 54,426,960 5.98E-12 11.2233 4.30E-07 3.3308 0.410 
rs315936751 1 61,491,143 4.58E-07 6.3385 0.01412 1.7151 0.179 

rs14265664 2 138,095,717 2.59E-07 6.5851 0.00934 3.9939 0.078 
rs317466272 5 23,021,657 1.25E-07 6.9020 0.0054 1.8507 0.052 

rs315882280 6 8,228,013 1.63E-08 7.7858 0.00088 5.7124 0.444 
rs313850906 6 11,119,203 2.63E-27 26.5792 5.68E-22 3.5653 0.469 

rs315438523 8 8,011,741 1.49E-06 5.8267 0.03212 1.1993 0.324 
rs312675887 9 17,794,694 1.91E-16 15.7171 2.07E-11 5.4086 0.292 

rs318099392 19 7,931,078 0.0000011 5.9561 0.0265 3.4601 0.225 
rs314275684 23 4,557,952 2.52E-06 5.5976 0.04538 0.1370 0.112 

rs313580984 24 2,201,697 5.53E-07 6.2566 0.01492 1.6366 0.068 
rs315052836 25 3,861,162 2.59E-06 5.5859 0.04303 0.4813 0.051 

rs312334304 28 1,708,458 2.05E-06 5.6880 0.04019 0.6336 0.064 

30 

rs15608447 4 66,459,916 3.45E-07 6.4610 0.01491 1.1560 0.479 

rs318098582 11 18,407,493 5.19E-25 24.2844 1.12E-19 3.4025 0.167 
rs312732833 15 3,230,864 5.68E-10 9.2452 3.06E-05 1.0124 0.219 

rs316794400 22 5,149,585 2.11E-15 14.6739 1.52E-10 1.8574 0.162 
rs315329074 27 6,920,352 3.12E-22 21.5045 3.37E-17 4.5656 0.219 
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EPS 

Sample proportion (%) SNP ID GGA Position (bp)a p-value -log10 (p-value) FDR p-value PVE (%) MAF 

40 

rs15608447 4 66,459,916 8.84E-08 7.0534 0.00381 1.0826 0.476 

rs318098582 11 18,407,493 1.15E-27 26.9357 2.50E-22 2.9356 0.154 
rs312732833 15 3,230,864 4.79E-10 9.3192 2.58E-05 0.6029 0.234 

rs316794400 22 5,149,585 2.12E-16 15.6727 1.53E-11 1.6535 0.171 
rs315329074 27 6,920,352 7.63E-26 25.1171 8.23E-21 3.9738 0.204 

50 

rs14265664 2 138,095,717 1.07E-08 7.9691 0.00046 1.3448 0.097 
rs15425131 3 90,795,168 1.94E-38 37.7102 4.20E-33 2.1237 0.121 

rs313332188 3 99,991,484 4.59E-08 7.3380 0.00165 0.9527 0.413 
rs15608447 4 66,459,916 6.91E-10 9.1601 3.73E-05 1.1722 0.471 

rs317466272 5 23,021,657 4.53E-07 6.3435 0.01086 0.6491 0.059 
rs312834930 7 11,436,451 1.88E-07 6.7243 0.00508 0.8102 0.061 

rs316794400 22 5,149,585 1.28E-14 13.8921 1.38E-09 1.2500 0.180 
rs313580984 24 2,201,697 1.26E-07 6.8975 0.0039 0.7371 0.078 

rs313194380 25 2,919,439 2.01E-06 5.6963 0.03943 0.7341 0.071 
rs317093585 25 2,890,348 6.43E-07 6.1911 0.01388 0.3532 0.100 

rs315329074 27 6,920,352 5.09E-10 9.2925 3.66E-05 3.1952 0.195 

 

EPSB 

Sample proportion (%) SNP ID GGA Position (bp)a p-value -log10 (p-value) FDR p-value PVE (%) MAF 

5 
rs317414603 20 6,729,013 7.13E-11 10.1464 1.54E-05 21.6499 0.384 

rs316714498 27 5,853,588 6.28E-10 9.2020 6.77E-05 21.0301 0.385 

10 

rs14265664 2 138,095,717 4.08E-08 7.3887 0.00294 7.1316 0.070 

rs317668107 3 33,354,124 1.01E-16 15.9946 1.09E-11 9.0454 0.357 

rs317414603 20 6,729,013 9.02E-17 16.0446 1.95E-11 12.7644 0.385 

20 

rs315961647 6 11,017,574 1.04E-11 10.9814 2.25E-06 3.1560 0.220 

rs318061321 7 946,559 1.01E-06 5.9932 0.04379 1.5109 0.214 

rs312675887 9 17,794,694 5.72E-08 7.2423 0.00308 4.7857 0.292 

rs318098582 11 18,407,493 7.00E-10 9.1548 5.03E-05 4.4808 0.190 

rs316714498 27 5,853,588 3.36E-10 9.4724 3.63E-05 5.7656 0.366 

30 

rs15608447 4 66,459,916 2.51E-08 7.5997 0.00135 1.2989 0.479 

rs14512409 5 9,351,944 6.40E-17 16.1932 6.91E-12 2.1006 0.181 

rs312589151 14 1,126,506 3.64E-18 17.4382 7.86E-13 3.7173 0.463 

rs315411246 27 4,002,212 5.42E-13 12.2653 3.90E-08 2.5922 0.077 

rs315329074 27 6,920,352 3.19E-07 6.4959 0.01376 3.6633 0.219 

40 

rs15608447 4 66,459,916 1.29E-07 6.8887 0.00557 1.0654 0.476 

rs313093970 10 16,409,109 1.32E-09 8.8791 7.12E-05 0.6982 0.233 

rs318098582 11 18,407,493 2.45E-22 21.6102 5.29E-17 2.5404 0.154 

rs316794400 22 5,149,585 5.05E-17 16.2965 3.63E-12 1.7230 0.171 

rs315329074 27 6,920,352 5.42E-18 17.2652 5.85E-13 3.2505 0.204 

50 

rs314723705 1 109,156,565 9.26E-07 6.0330 0.03329 0.6008 0.497 

rs15608447 4 66,459,916 3.32E-09 8.4782 0.00018 1.0125 0.471 

rs318098582 11 18,407,493 1.03E-12 11.9857 1.11E-07 2.1187 0.145 

rs316794400 22 5,149,585 2.82E-12 11.5493 2.03E-07 1.2014 0.180 

rs316297839 25 1,567,147 3.99E-09 8.3982 0.00017 1.7609 0.106 

rs315329074 27 6,920,352 1.83E-15 14.7353 3.96E-10 2.5462 0.195 

Table 3. SNP signals across the sampling scenarios in relation to position of the SNPs in whole population sampling (PS). 

Random Sampling 

Sample proportion (%) SNP ID GGA Position (bp) Distance from PS SNP (bp) 

20 rs314007348 4 66,225,823 234,093 

30 

rs314007348 4 66,225,823 234,093 

rs316794400 22 5,149,585 0 

rs315329074 27 6,920,352 0 

40 rs315329074 27 6,920,352 0 

50 
rs314007348 4 66,225,823 234,093 

rs315329074 27 6,920,352 0 
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Extreme phenotype sampling 

Sample proportion (%) SNP ID GGA Position (bp) Distance from PS SNP (bp) 

20 rs313580984 24 2,201,697 331,937 

30 

rs15608447 4 66,459,916 0 

rs316794400 22 5,149,585 0 

rs315329074 27 6,920,352 0 

40 

rs15608447 4 66,459,916 0 

rs316794400 22 5,149,585 0 

rs315329074 27 6,920,352 0 

50 

rs15425131 3 90,795,168 0 

rs313332188 3 99,991,484 0 

rs15608447 4 66,459,916 0 

rs316794400 22 5,149,585 0 

rs313580984 24 2,201,697 331,937 

rs313194380 25 2,919,439 407,307 

rs317093585 25 2,890,348 436,398 

rs315329074 27 6,920,352 0 

 

Extreme phenotypes binary case 

Sample proportion (%) SNP ID GGA Position (bp) Distance from PS SNP (bp) 

30 
rs15608447 4 66,459,916 0 

rs315329074 27 6,920,352 0 

40 

rs15608447 4 66,459,916 0 

rs316794400 22 5,149,585 0 

rs315329074 27 6,920,352 0 

50 

rs15608447 4 66,459,916 0 

rs316794400 22 5,149,585 0 

rs315329074 27 6,920,352 0 

 

Figure 3. Chord diagram showing detection efficacy (DE) across sampling strategies (RS: random sampling, EPS: extreme phenotype sampling and EPSB: 

extreme phenotypes sampling binary case) in relation to whole population sampling (PS). Figure was constructed with the DescTools package in R 

(http://www.r-project.org/). 
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Figure 4. Positions of SNPs detected across sampling scenarios (RS: random sampling, EPS: extreme phenotype sampling and EPSB: extreme phenotypes 

sampling binary case) in relation to position of SNPs in whole population sampling (PS) on the same autosomes. SNP positions denoted by yellow color. Figure 

was constructed with the chromoMap [45] package in R (http://www.r-project.org/). 

DE was also found to be dependent on MAF as markers 
with moderate MAF such as rs316794400 (MAF=0.17) and 
rs315329074 (MAF=0.20) were detected even in small sized 
samples while markers with lower MAF such as rs15425131 

(MAF=0.09) were detected only in large sized samples (50%) 
(Table 2). PVE associated with lead SNPs were higher in EPS 
than RS (Table 2) and estimated PVE in subsamples (random 
or extreme) were invariably higher than in PS due to the 
Beavis effect [27] or the winner’s curse [28] as it is known in 
the biostatistics literature. 

3.3. Identification and Effect Prediction of Putative 

Causative Genetic Variants 

Tables 4 and 5 show the putative causative SNPs in the 
most efficient sampling scenario i.e. EPS_50%. 
Specifically, two SNPs i.e. rs315329074 and rs15425131 
had PVE ≥ 2.0% (Table 4) while three markers (rs14265664, 

rs316794400 and rs15608447) had PVE<2.0% and 
PVE ≥ 1.0% (Table 4). rs315329074 (PVE=3.2%, 
MAF=0.195) is an intron or downstream variant (at 3') of 
CACNB1 gene where six growth-related QTLs (such as BW 
hatch, femur weight etc.) are reported. rs15425131 
(PVE=2.1%, MAF=0.12) is a synonymous variant within 
MYOM2 gene where a comb weight QTL is reported. 
rs14265664 (PVE=1.3%, MAF=0.10) underlies a region 
where a wattles weight QTL is reported. This intergenic 
variant is detected between genes FBXO32 and 
LOC112531900. Of these, FBXO32 is the nearest gene 
distanced only 9247 bp from the marker. rs316794400 
(PVE=1.3%, MAF=0.18) lies at 5' of SLC20A1 gene and at 
3' of the ANXA4 gene in a region where 2 growth-related 
QTLs (breast muscle percentage, abdominal fat weight) are 
reported. Finally, rs15608447 (PVE=1.2%, MAF=0.47) is 
an intron variant in SLAIN2 gene (Table 5). 

Table 4. Putative causative SNPs in the most efficient sampling scenario. 

SNP ID GGA Position (bp) p-value -log10 (p-value) FDR p-value PVE (%) MAF 

rs315329074 27 6,920,352 5.09E-10 9.2925 3.66E-05 3.1952 0.195 
rs15425131 3 90,795,168 1.94E-38 37.7102 4.20E-33 2.1237 0.121 
rs14265664 2 138,095,717 1.07E-08 7.9691 0.00046 1.3448 0.097 
rs316794400 22 5,149,585 1.28E-14 13.8921 1.38E-09 1.2500 0.180 
rs15608447 4 66,459,916 6.91E-10 9.1601 3.73E-05 1.1722 0.471 
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Table 5. Positional candidate genes and reported QTLs associated with putative causative SNPs in the most efficient sampling scenario. 

SNP ID GGA Position (bp) Allele Consequence Candidate Gene QTL (s) 

rs315329074 27 6,920,352 T 
Downstream gene variant, 
Intron variant 

CACNB1 

Body weight hatch (135726, Animal QTLdb), 
Comb weight (127127, Animal QTLdb), 
Femur bone mineral content (130479, Animal 
QTLdb) 
Femur weight (130480, Animal QTLdb), 
Proventriculus weight (96672, Animal QTLdb), 
Wattles weight (127120, Animal QTLdb) 

rs15425131 3 90,795,168 G Synonymous variant MYOM2 Comb weight (127114, Animal QTLdb) 

rs14265664 2 138,095,717 A Intergenic variant 
FBXO32 

Wattles weight (127117, Animal QTLdb) 
LOC112531900 

rs316794400 22 5,149,585 A 
Upstream gene variant SLC20A1 Breast muscle percentage (95429, Animal QTLdb), 
Downstream gene variant ANXA4 Abdominal fat weight (96666, Animal QTLdb) 

rs15608447 4 66,459,916 G 

Intron variant SLAIN2 

- 
Downstream gene variant, intron 
variant, LOC107053243 

Non coding transcript variant, 
Upstream gene variant LOC112532289 

 

4. Discussion 

4.1. Detection Efficacy of EPS 

A first interesting finding of the present study relates to the 
type of sampling and specifically the superiority of EPS vs. RS. 
This finding is not new and has been repeatedly validated in the 
relevant literature [7, 14, 15]. Yet, the most striking result 
obtained here was the remarkable efficiency of EPS in detecting 
marker-trait associations that reached a maximum value of 80% 
in the case of EPS_50%. This finding complies with results of a 
GWAS in Larimichthys crocea reporting that 40-60% EPS can 
deliver similar results as using whole population sampling PS 
[13]. Results on GGA25 have also demonstrated that 
GWAS-identified SNPs serve only as representatives for the 
SNPs in the same haplotype block and it is equally likely that 
SNP peaks may arise as a result of strong LD between the 
array-identified SNPs [29]. Apparently, this finding has 
important implications in terms of identifying true causative 
genetic variants and the underlying functional candidate genes. 

A second important outcome deals with the utility of 
continuous vs. dichotomized phenotypes. Dichotomized 
phenotypes are favorable when accurate phenotyping is 
expensive, or phenotypes cannot be measured at a continuous 
scale and may offer additional advantages due to application of 
more powerful statistical methods [30, 31]. However, there is 
also evidence (e.g. [7, 15]) that this specific design can cause a 
loss of information and decrease the power. In concordance with 
the latter studies, present results have demonstrated that 
dichotomized extreme phenotypes did not offer any advantage 
over continuous phenotypes, at least in detection of causal SNPs. 

4.2. Detection of Causative Genetic Variants 

Perhaps, the most intriguing task when performing a 
XP-GWAS is as how to screen and identify the putative 
causative SNPs. An obvious solution here is to select SNPs 
with highest PVE, or better, those surpassing a certain 

threshold (e.g. 1%). In doing so, one should be wary of the fact 
that inferences on the true PVE of the causative variants are 
expected to be biased (inflated) due to the Beavis effect. The 
severity of the bias depends on sample size but also on the 
underlying distribution of the true PVE of all causative 
variants which is assumed to be exponentially or gamma 
distributed, with an abundance of low PVE loci and very few 
high PVE loci [32]. As King and Long [32] emphasized, when 
the vast majority of causative variants contribute 1% or less to 
the phenotype, the resulting bias is expected to be severe, even 
in large sized samples (e.g. 1000), because power declines 
with decreasing PVE. 

Despite the aforementioned inherent limitations, in our case, 
the use of the PVE threshold has proved particularly useful in 
identifying true causative genetic variants for the trait under 
study. This may be fairly concluded by the fact that all 5 
implicated markers with PVE ≥1.0% resided in genomic 
regions harboring a total number of 10 growth-related QTLs 
and 6 growth relevant genes. Among the implicated QTLs are 
breast muscle percentage, abdominal fat weight, body weight 
hatch, femur weight etc., just to mention some of the reported 
QTLs in the area. At the same time, the list with the candidate 
genes includes CACNB1 (calcium voltage-gated channel 

auxiliary subunit beta 1) that affects skeletal muscle 
development in mice [33], MYOM2 (myomesin 2) that 
encodes a fast-fibre isoform of myomesin called M-protein 
[34] that is mainly expressed in adult cardiac and fast-twitch 
fibers in skeletal muscles [35], SLC20A1 (solute carrier 

family 20 member 1, also known as PiT1) that is necessary for 
normal liver development [36], ANXA4 (annexin A4) that 
participates in epithelial cell proliferation [37], FBXO32 

(F-box protein 32, also known as Atrogin 1 or MAFbx) a 
skeletal and cardiac muscle-specific F-box motif- containing 
protein associated with muscle atrophy [38] and SLAIN2 

(SLAIN motif family member 2) that controls the microtubule 
growth during interphase [39]. Intuitively, genes including 
lead SNPs and at the same time presenting functional 
relevance with the trait under study are considered ideal 
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functional candidates for the trait under study. Yet, it is 
important to bear in mind that, due to LD, the list with the 
plausible causative genes may eventually include tens or 
hundreds of genes. In line with this scenario, a total number of 
34 modular genes implicated in developmental processes have 
been identified in strong LD genomic regions around markers 
rs316794400, rs315329074 and rs15608447 [40]. 

Another important aspect for successful detection of 
causative SNP when performing a XP-GWAS relates to MAF. 
Specifically, the lower the MAF of the causal SNP, the smaller 
the range of allele frequency in the genotyped SNPs which 
will result in LD between the two. Therefore, for low-MAF 
QTLs there are likely to be fewer genotyped SNPs which are 
in strong enough LD to detect the association. In line with this 
hypothesis, MacLeod et al. [41] demonstrated, via simulations, 
that QTLs with low MAFs were harder to detect than those 
with higher allele frequencies. This scenario may explain why 
rs315329074 (CACNB1 gene) with MAF=0.17 and effect size 
β=2.9 g was consistently detected across almost all sampling 
cases, while rs15425131 (MYOM2 gene) with lower 
MAF=0.091 and highest effect size (β=3.9 g) could be 
detected only in EPS_50%. Even so, successful detection of 
low MAF variants is dependent not only on the selected 
fraction of the extreme tails but also on the detection 
methodology used. While a EPS_50% GWAS was required 
here to detect rs15425131 and the MYOM2 gene, this specific 
association could be detected when using FST genome scans 
even in low sized (10%) extreme samples [42]. 

5. Conclusions 

In conclusion the use of EPS resulted in identification of 5 
putative causal genetic variant residing in non-coding 
regulatory regions. Non coding variants constitute the 
majority of signals in GWAS [43]. Specific methods are 
needed to translate these results to elucidate the role of 
noncoding variants [44]. To this end, Claussnitzer et al. [44] 
have generated a roadmap by utilizing combined public 
resources (epigenomic annotations, chromosome 
conformation, and regulatory motif conservation), targeted 
experiments for risk and non-risk haplotypes (enhancer 
screening, gene expression, and cellular profiling) and 
directed perturbations in primary cells and mouse models 
(regulator–target knockdown and overexpression and 
CRISPR–Cas9 genome editing). Finally, while the present 
study has delivered some practical guidance to perform 
cost-efficient GWAS, many issues still need to be addressed. 
These issues relate to the usefulness of alternative sampling 
strategies such as a two-stage design [12], asymmetrical 
sampling and the comparison between diverse methods such 
as signatures of selection in same or different sized samples. 
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