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Summary 
A genome-wide association study (GWAS) was performed using 6,598 broilers and dense 

genome wide SNP data to identify QTLs and positional candidate genes for body weight at 35 

days of age (BW35). A multi-locus mixed model analysis identified 12 genome-wide 

significant SNPs, dispersed on 9 autosomes and 1,012 positional candidate genes within a 

distance of 1Mb from the significant SNPs. Eight significant markers were located within 

genes and 17 genes were found to participate in skeletal system development. Candidate 

genes were found to participate in various pathways and biological processes related to 

growth. Current findings confirm previous results with regard to functional candidate genes, 

pathways and biological processes for body weight while proposing novel candidate genes for 

this trait. 
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Introduction 

 
Body weight (BW) is an economically important trait for the broiler industry and presents 

considerable biological interest as it is a typical complex (polygenic) trait. To date, the 

ChickenQTLdb (https://goo.gl/j8B6Qe) has over 7,812 QTL/SNP associations of which 3,582 

are related to growth traits and 166 to BW. Several GWASs have already been performed for 

growth traits (e.g. Xie et al., 2012). Despite the large number of findings by GWAS, the genetic 

architecture of BW in chicken remains elusive (Pettersson & Carlborg, 2010), since only a small 

number of positional candidate genes are confirmed as truly functionally relevant to the trait. 

In the present study, we first conducted a GWAS for BW at 35 days of age (BW35) using dense 

genome wide SNP data in a population of 6,598 broilers. We then employed various web-based 

tools to identify the most plausible functional candidate genes for the trait. 

 

Material and methods 

 
Data 

 



A total of n=6,598 broilers (n=3,678 males and n=2,920 females) from a purebred 

commercial broiler line with records on body weight BW35 were made available by Aviagen. 
Animals were genotyped using an Affymetrix® Axiom® high-density genotyping array. After 

applying quality control filters (only autosomal polymorphic SNPs with call rate <0.99, MAF 

(minor allele frequency)<0.01 and linkage disequilibrium (LD) r2 values greater than 0.99 

within windows of 2 Mb inter-marker distance(s); and autosomal heterozygosity outside the 1.5 

inter-quartile range) the final number of the SNPs used in this study was of 262,067 

SNPs. Data filtering was performed using the SNP & Variation Suite v8.7.2 software (Golden 

Helix: http://www.goldenhelix.com). Phenotypic records for BW35 ranged from 1,130 to 

2,630 g with an average of 1840.2 g (SD=194 g). 

 

Statistical analysis 

 

A multi-locus mixed (additive) model (Segura et al., 2012) and a stepwise regression procedure 

with forward selection and backward elimination was employed to identify genome-wide 

significant markers associated with the trait. The fixed effects part of the model included hatch 

week(36 classes), mating group (17 classes) and the sex (2 classes) as well as the SNP effects. 

The normalized genomic relationship matrix (GRM) was utilized for the 

estimation of the additive genetic effects. Statistically significant markers were selected at the 

optimal step according to the extended Bayesian Information Criterion (eBIC) and a FDR cutoff 

p-value of 0.05. This analysis was performed using SNP & Variation Suite v8.7.2 

software. 

 

 
Identification of QTL and positional candidate genes  

 

We searched for reported QTL/associations as well as positional candidate genes within a 

distance of 1Mb around the significant SNPs in ChickenQTLdb (https://goo.gl/j8B6Qe) and 

the NCBI database (https://goo.gl/bxVS3d and https://goo.gl/laPQh), respectively. 

 

Gene functional characterization and gene prioritization analysis 

 

Functional enrichment analysis of positional candidate genes was done using the PANTHER 

database (Protein ANalysis THrough Evolutionary Relationships http://pantherdb.org/) (Mi et 

al., 2017). To detect the gene families among the candidate genes the ToppFun portal (Chen et 

al., 2009) was additionally employed. Pathway analysis was done using Cytoscape 

(http://www.cytoscape.org/) of ReactomeFIViz (Wu et al., 2014) via the Reactome pathway 

database. Positional candidate genes were submitted to Guilt By Association (GBA) based 

gene prioritization analysis (PA) based on their functional similarity to a training gene list of 

n=763 annotated genes extracted from NCBI data base using relevant search terms (body 

weight, body size, BMI) in human and mouse. This analysis was performed with ToppGene 



portal (Chen et al., 2009). Finally, to perform network topological analysis (TA) of the 

candidate genes the NetworkAnalyst (http://www.networkanalyst.ca/) (Xia et al., 2014) portal 

was used. 

 

Results 

 
Significant SNPs, QTLs and positional candidate genes 

 
Twelve SNPs dispersed across nine chromosomes were significant at the genome-wide level 

(FDR p-value<0.05, Table 1). A total number of 197 published QTL/associations related to 

growth traits and 1,012 positional candidate genes were identified to lie within the searched 

regions (Table 1). From the candidate genes, n=349 could not be identified as they involved 

orthologs that have not yet been identified (LOC genes). Eight out of twelve significant markers 

were located within genes (Table 2). 

 

Functional enrichment and pathway analysis 

 

Functional enrichment analyses of candidate genes showed 17 genes (Table 2) participating in 

the skeletal system development (GO:0001501, Bonferroni p-value=0.00398). Furthermore, 

88 out of 1,012 genes were members of the S100 calcium binding proteins, the HOXL 

subclass homeoboxes and the type I Keratins gene families. Table 3 shows the candidate genes 

participating in the most significant pathways detected. 

 

 

Gene prioritization and gene network analysis 

 

A total number of 248 (out of 559) positional candidate genes were prioritized as most 

functionally relevant to the trait. The first 10 top ranked genes are presented in Table 2. Seven 

genes were always involved in six pathways (Table 3). The comparison of the PA and TA 

gene lists revealed 182 common genes, with 8 genes displaying the highest degree(s) of 

centrality (>50) (Table 2). A minimum network of the candidate genes is depicted in Figure 1. 

 

 

Discussion 
 

Current results confirm previous findings suggesting that GGA1 and GGA4 (Xu et al., 2013) 

as well as GGA10, GGA15, GGA22, GGA26 (Van Goor et al., 2015) and GGA27 (Lien et 

al., 2017) harbor QTLs/Associations related to BW. Five genes that participate in skeletal 

system development belong to the super-family of homeobox genes which play a fundamental 

role in embryonic development, cell proliferation and metabolic processes (Procino & Cillo, 

2013). Additional genes in the same biological process were MFGE8 that promotes obesity in 

mice (Khalifeh-Soltani et al., 2014), SCUBE3 that affects fast muscle development in 



zebrafish (Tu et al., 2014) and PHOSPHO1 associated with body growth in piglets (Hu et al., 

2016). Our findings also confirmed the importance of Wnt-signaling, MAPK and insulin 

signaling pathways for growth traits in the species (Xu et al., 2013) as well as the TXK and 

PHOSPHO1 genes that are reported as significant for BW (Gu et al., 2011) and feed intake 

(Xu et al., 2016) in the species. 

Pathway analysis highlighted the importance of UBC, PSME3 and the PSMD3 genes 

that participate in pathways relevant to BW (e.g. PSMD3 in pigs, Wang et al., 2005). With 

regard to gene families, S100 proteins are regulators in several functions such as Ca2+ 

homeostasis, energy metabolism, proliferation and differentiation (Donato et al., 2013), while 

type I keratins are necessary for normal structure and tissue function (Schweizer et al., 2006). 

Regarding the eight common genes between PA and TA, UBC is significant for liver 

development in mice (Hallengren et al., 2013), while SHC1 mediates the IGF-1 pathway and 

contributes to the activation of Ras/MAPK pathway leading to cell proliferation (Wagner et 

al., 2004). Furthermore, DDX3X participates in multiple functions including transcriptional 

and translational regulation as well as cell growth (Lai et al., 2010) and KPNB1 plays an 

important role in embryonic development in mice (Miura et al., 2006). SMAD4 regulates the 

balance between muscle atrophy and hypertrophy while, generally, common SMADs are 

coactivators and mediators of the signal transduction by TGF-beta (transforming growth factor) 
(Seong et al., 2007). The TERF2 gene is involved in telomerase structure, conformation and 

tumor development (Benhamou et al., 2016), SETDB1 participates in cell growth and tumor 

genesis (Ishimoto et al., 2016) and RARA affects the hippocampal development (Huang et al. 

2008). Our findings being in agreement with previously published results point to several 

biological pathways affecting BW phenotype while at the same time supporting the hypothesis 

that its genetic architecture approximates the infinitesimal model. 
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Table 1. Genome-wide significant SNPs for BW35. QTL/associations and positional candidate 

genes in flanking regions of 1Mb around the significant markers. 

 

SNP ID GG 

A 

Position 

(bp)1 

FDR p-value Number of 

positional 

candidate genes 

Number of 

QTL/ 

associations 

rs13923872 1 112741685 0.0112 45 22 

rs15608447 4 66885210 4.25E-09 38 37 

rs312691174 4 29074989 0.00037 26 14 

rs318199727 10 13536548 0.04111 44 13 

rs318098582 11 18651449 0.00012 87 14 

rs317945754 15 3557083 0.04594 29 21 

rs316794400 22 4594855 6.07E-07 25 1 

rs317288536 25 976833 8.05E-09 113 0 

rs312758346 25 2412866 1.59E-05 198 0 

rs317627533 26 4597439 2.12E-05 105 6 

rs314452928 27 104022 0.0105 110 4 

rs315329074 27 4528275 8.05E-16 192 65 
1Positions are based on Gallus gallus-5.0 genome assembly 

 

Table 2. Genes participating in various descriptions according to analysis applied. 

Description Number 

of genes 

Genes 

SNPs within 

genes 

7 SLAIN2, ZC3H18, TMEM132D, F-KER, FCRL4, 

LEMD2, CACNB1 

Enrichment 

analysis: 

skeletal system 

development 

(GO:0001501) 

17 HOXB4, BGLAP, MFGE8, HOXB9, ACAN, 

HOXB3, HAPLN3, ADAMTS4, MEOX1, 

PHOSPHO1, CNTNAP1, SCUBE3, PRICKLE4, 

HOXB13, BCAN, HOXB5,HAPLN2 

Top ranked 

genes by PA 

10 SMAD4, CHRNB2, CDH1, NTRK1, RARA, STAT5B, 

SCARB1, NR1D1, SHC1, CYBB, PHB. 

Top prioritized 

genes by 

TA 

16 UBC, STAT3, SHC1, APP, ELAVL1, DDX3X, 

HNF4A, KPNB1, SMAD4, ERBB2, TERF2, 

SETDB1, RARA, SUMO2, CUL3, UBQLN4 



Common 

genes in PA 

and 

TA 

8 UBC, SHC1, DDX3X, KPNB1, SMAD4, TERF2, 

SETDB1, RARA 

 

Table 3. Prioritized genes involved in significant pathways. 

Pathway FDR  Number 

of  genes 

Genes 

Signaling by 

NGF 

2.37E-

06 

22 NTRK1,  SHC1,  PHB,  NGF,  NRAS, LAMTOR2,  

NCSTN, PIP5K1A, UBC, PIP4K2B,THEM4,

 APH1A, FRS3, PSME3, PSMD7,

 PSMD4 ,PSMB4 ,AKAP13,

 PSMB3, PSMD3, RIT1 , ARHGEF11 

Signaling by 

EGFR 

1.94E-

03 

15 SHC1, PHB, NRAS , LAMTOR2, PIP5K1A, UBC, 

PIP4K2B, THEM4, FRS3, PSME3, PSMD7, 

PSMD4, PSMB4, PSMB3, PSMD3 

TCF dependent 

signaling in 

response to WNT 

3.19E-

03 

7 UBC, PSME3, PSMD7, PSMD4, PSMB4, PSMB3

 ,PSMD3 

MAPK6/MAPK4 

signaling 

5.31E-

03 

9 UBC, CCND3, IGF2BP1, PSME3, PSMD7, PSMD4

 ,PSMB4, PSMB3, PSMD3 

Signaling by 

Type 1 Insulin-

like Growth 

Factor 1 

Receptor 

(IGF1R) 

1.83E-

02 

13 SHC1 ,PHB ,NRAS ,LAMTOR2, UBC, THEM4, 

FRS3, PSME3 , PSMD7, PSMD4 ,PSMB4

 ,PSMB3 ,PSMD3 

Signaling by 

Insulin receptor 

2.53E-

02 

14 SHC1 ,PHB ,NRAS ,LAMTOR2, ATP6V0A1, 

UBC, THEM4, FRS3, PSME3, PSMD7

 ,PSMD4 ,PSMB4 ,PSMB3, 

PSMD3 

 

 



 

Figure 1. Depiction of a minimum gene network comprised of 1,163 nodes, 5,020 edges and 

481 seed proteins. Genes with red color (see Table 2) represent the 16 top prioritized genes 

due to topological features i.e. degree of centrality >50. Orange, yellow and white colors 

represent genes with degree(s) of centrality <50. 

 


