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ABSTRACT

We introduce a new parameter Apg to quantify the dynamical state of galaxy clusters and test it using simulations from THE
THREE HUNDRED cluster zoom suite. Apg is a combination of three previously used dynamical state measures, namely virial
ratio, centre of mass offset, and substructure mass fraction, crafted to assume a double-Gaussian distribution, thereby yielding
a natural division between relaxed and unrelaxed clusters where the Gaussians cross. Using dark matter-only simulations, we
identify the optimal separator to be Apg = 3.424. We test this same criterion on two sets of fully hydrodynamical THE THREE
HUNDRED runs (GADGET-X and GIZMO-SIMBA), and find only a weak dependence on the input baryonic physics. We correlate
the evolution of Apg with the mass accretion history and find that halo mass changes of %30"“ < 0.12 do not typically alter the
dynamical state. We examine the relaxation period, defined as the time taken to return to relaxation after becoming disturbed,

and find a correlation between this relaxation period and the strength of halo mass change

AMoy . . .
- By fitting this correlation, we

show that the relaxation period can be estimated from % (even for multiple mass accretion events) with good accuracy.

Key words: galaxies: clusters: general —galaxies: evolution — galaxies: haloes.

1 INTRODUCTION

Galaxy clusters are the largest gravitationally bound structures in the
Universe, and as such they are highly studied objects both obser-
vationally and theoretically. In the current cosmological paradigm,
clusters grow via hierarchical structure formation from the assembly
of smaller structures, and since they are the largest virialized objects,
they are still in the process of assembling today. Thus it is interesting
to examine and quantify the dynamical state of clusters, i.e. how
close to virial relaxation it is at any given time, since this is an
important consideration when trying to e.g. estimate cluster masses
from observations for constraining cosmological parameters (e.g.
Nelson et al. 2012; Biffi et al. 2016; Gianfagna et al. 2021), measure
cluster formation times (e.g. Mostoghiu et al. 2019), and constrain
cluster concentrations (e.g. Neto et al. 2007).

Hierarchical merging can temporarily displace clusters from virial
equilibrium, and thus provide unique events to study a range of physi-
cal processes (e.g. Poole et al. 2006a; Zenteno et al. 2020). Disturbed
clusters provide test bed for ACDM model (e.g. Thompson, Davé &
Nagamine 2015; Kim, Peter & Wittman 2017; Sereno et al. 2018),
and their enhanced strong lensing efficiency provides powerful tools
to investigate the universe at high redshift (see Baldi et al. 2013;
Acebron et al. 2019, for example). The cluster dynamical state
also impacts the properties of galaxies within clusters. For example,
Morell et al. (2020) found that galaxies evolve in the same way into
a Gaussian or non-Gaussian velocity distribution system (classified

* E-mail: bz287 @cam.ac.uk (BZ); cuiweiguang @ gmail.com (WC)

as relaxed or unrelaxed clusters), but their formation histories lead to
different mixtures of galactic types and infall patterns. Furthermore,
disturbed clusters can be used to examine the most extreme ram
pressure events and study the cluster intracluster medium (ICM)
thanks to so-called jellyfish galaxies (McPartland et al. 2015). Lastly,
it has been found that the halo formation time affects the central
BCG properties (Cui et al. 2022, see also Cui et al. 2021 for a similar
result at lower halo masses), thus this can be also linked to the cluster
dynamical state.

The recent formation history of galaxy clusters correlates strongly
with its degree of dynamical equilibrium (e.g. Wong & Taylor 2012),
since an active recent merger history is more likely to result in a
cluster departing from virialization. As a result, galaxy clusters can
have a wide range dynamical states, which, at a basic level, can be
roughly classified into two categories: relaxed (or virialized) and
non-relaxed (or non-virialized). Relaxed clusters are expected to
have a nearly spherical shape and a Gaussian line-of-sight velocity
distribution (e.g. Faltenbacher & Diemand 2006), while non-relaxed
clusters can show elongated shapes (Gouin, Bonnaire & Aghanim
2021), non-Gaussian velocity distributions (Hou et al. 2009), the
presence of massive substructures (Lopes et al. 2018), and irregular
morphological properties (e.g. Mantz et al. 2015; De Luca et al.
2021). Quantifying how these (potentially) observable properties
correlate with the cluster’s dynamical state is thus of significant
interest for using clusters as a testbed for cosmology and galaxy
evolution.

To this end, many different approaches for classifying cluster
dynamical states and assessing the relaxation degree of clusters have
been developed, both theoretically using simulations (see Cui et al.
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2017, and references therein), and in observations (see De Luca et al.
2021, and references therein). In observations, cluster dynamical
states can be classified by examining both the galaxy population and
the X-ray emitting ICM. Wen & Han (2013) developed methods to
quantify the substructure and dynamical state of galaxy clusters by
using photometric data from the Sloan Digital Sky Survey. Capalbo
et al. (2021) and De Luca et al. (2021) investigated the correlation
between cluster dynamical states and cluster morphology measured
through images of the surface brightness in the X-ray band and using
the thermal Sunyaev-Zel’dovich effect. In simulations, there are a
variety of ways the halo dynamical state can be evaluated. Using
dark matter-only (DMO) simulations, Bett et al. (2007) used the
integrated virial ratio 27/|W| + 1 to classify dynamical states, and
suggested 27/|W| + 1 < 1.5 to select haloes in quasi-equilibrium
states. Neto et al. (2007) expanded the criteria by including sub-
structure mass fraction and centre-of-mass offset, which contain
the information of the constituents in the cluster and the shape
of cluster, respectively. Shaw et al. (2006) additionally took the
surface pressure energy E; into account in virial ratio calculation
(see also Cui et al. 2017, for detailed calculation for hydrody-
namic simulations). Davis, D’ Aloisio & Natarajan (2011) found the
effect of the potential energy from particles outside of haloes is
negligible.

A drawback of all these methods, both observational and theo-
retical, is that they usually yield a unimodal distribution for their
dynamical state parameter (in either single or combined parameters;
Haggar et al. 2020; De Luca et al. 2021). As a result, the threshold for
demarcating relaxed versus unrelaxed clusters (in order to e.g. select
a sample of relaxed clusters) is not obvious, and is often chosen
somewhat arbitrarily. It would be more satisfying if a dynamical
state parameter could be constructed that displayed a more bimodal
distribution, for which the separation between relaxed and unrelaxed
objects could be more robustly determined. Importantly, this param-
eter must be relatively insensitive to the detailed baryonic physics,
since the complex interplay particularly of feedback processes within
a cluster is currently not well-understood. Developing a dynamical
state measure satisfying these constraints will be our first key goal
in this paper.

Such a quantity is useful towards more rigorously studying
how the cluster dynamical state evolves. For instance, one key
question that is not so thoroughly studied in the literature is the
relaxation time-scale of the cluster dynamical state, i.e. how long
does it need from being disturbed to relaxing back into hydrostatic
equilibrium, which could help us understand cluster thermalization
(Sereno et al. 2021). In this work, as an application of our newly
developed dynamical state, we quantify the relaxation time-scale of
clusters.

To conduct these investigations, we will utilize the large and mass-
complete sample of cluster zoom re-simulations from THE THREE
HUNDRED project. This suite contains 324 cluster simulations run
in DMO mode, and also with two modern galaxy evolution models,
including active galactic nucleus (AGN) feedback. Furthermore, it
evolves large zoom regions out to at least 5x the virial radius,
meaning that the dynamics of infalling objects can be tracked reliably.
The large and homogeneous sample is critical for developing and
exploring our dynamical state measure.

The layout of this paper is as follows: we introduce the THE
THREE HUNDRED project in Section 2. The new parameter-free
cluster dynamical classification method and separation of relaxed and
unrelaxed clusters are presented in Section 3. Our main results on the
cluster dynamical state are shown in Section 4. We finally conclude
and discuss our study on cluster dynamical state in Section 5.

Cluster dynamical states 27

2 THE THREE HUNDRED PROJECT

The THE THREE HUNDRED! consists of 324 resimulated clusters
and 4 field regions extracted from the MultiDark Planck simulation,
MDPL2 (Klypin et al. 2016). The MDPL2 simulation has cosmo-
logical parameters of 2y = 0.307, Qp = 0.048, 2, = 0.693, h =
0.678, and 0§ = 0.823. All the clusters and fields have been simulated
using the full-physics hydrodynamic codes GADGET-X (GX in short,
Rasia et al. 2015; Steinborn et al. 2015; Beck et al. 2016), GADGET-
MUSIC (Sembolini et al. 2013), and a version of GIZMO-SIMBA
(Davé et al. 2019) re-tuned slightly to the lower resolution of THE
THREE HUNDRED (Cui et al. 2022). The first two are based on
GADGET2 (Springel 2005) using smoothed particle hydrodynamics,
while the latter is based on the GIZMO code (Hopkins 2015) using
Meshless Finite Mass hydrodynamics. In the resimulation region,
the mass of dark matter and gas particles are 12.7 x 10% 2~'M, and
2.36 x 108 h~'My, respectively. Each cluster resimulation consists
of a spherical region of radius 154~ 'Mpc at z = 0 centred on one
of the 324 largest objects within the host MDPL2 simulation box,
which is 147" Gpc on a side. The halo masses of central galaxy
clusters range from 6.4 x 10 2~'Mg, to 2.63 x 105 h~'M,.

A more detailed introduction of THE THREE HUNDRED can be
found in Cui et al. (2018). Besides these studies on the cluster
dynamical state which has been mentioned in the introduction, these
simulated galaxy clusters have been used for different proposes: the
filaments around the clusters (Kuchner et al. 2020, 2021; Kotecha
et al. 2022; Rost et al. 2021); the backsplash galaxies (Haggar et al.
2020; Knebe et al. 2020), and shock radius (Baxter et al. 2021;
Anbajagane et al. 2022b). The advanced baryon models in hydro-
dynamic simulations allow us to perform a detailed investigation
on the cluster properties, such as profiles (Mostoghiu et al. 2019;
Li et al. 2020), substructure and its baryonic content (Arthur et al.
2019; Haggar et al. 2021; Mostoghiu et al. 2021b, a), the cluster
(non-)thermalization (Sayers et al. 2021; Sereno et al. 2021), the
fundamental plane (Diaz-Garcia et al. 2022), and the cluster mass
bias (Ansarifard et al. 2020; Li et al. 2021; Anbajagane et al. 2022a).
Additional runs allow us to investigate more things: such as the effect
of environment by comparing to void/field regions (Wang et al. 2018);
constraining the dark matter cross-section with the self-interacting
dark-matter run (Vega-Ferrero et al. 2021); examining the chameleon
gravity (Tamosiunas et al. 2022).

In this paper, we only use the haloes identified by the Amiga’s Halo
Finder (AHF; Knollmann & Knebe 2009) with a spherical overdensity
of 200p.;;. The progenitors of these haloes are tracked and identified
using the MERGERTREE that is part of the AHF package. We only
focus on the main progenitors of the cluster, which is defined as
the highest matched halo in the previous snapshot, for tracking their
mass accretion history.

3 CLASSIFYING CLUSTER DYNAMICAL
STATES

This paper aims to determine a new statistic for the dynamical state
of clusters that provides a cleaner separation between relaxed and
unrelaxed systems. In this section, we review various dynamical state
parameters employed in the literature, including a combination of
parameters introduced by Haggar et al. (2020) on which we base our
statistic, and then develop our optimized combined statistic designed
to best satisfy our goals.

Uhttps://the300-project.org
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3.1 Dynamical parameters and previous work on classifying
cluster dynamical states

In the literature (see e.g. Cui et al. 2017), various parameters have
been used to describe the dynamical states of clusters. Among the
most commonly used parameters are:

(i) The virial ratio, 7.
The exact expression for the virial theorem is

1d%1
2 dr?
where [/ is the moment of inertia, 7 and W are kinetic energy and
potential energy respectively, and E; is the energy from surface
pressure P.

If the cluster system is in dynamical equilibrium, equation (1) will
reduce to

=2T +W - E; ey

2T+ W —E; =0, 2)

which can be rewritten as

27 —E, _ | 3
W] '

Therefore, the virial ratio is defined as

2T — E,

A 4
n W] 4

and a relaxed cluster is expected to have n ~ 1.
In principle, any system with n # 1 is out of equilibrium. But
typically, clusters with 7 close to 1 are still considered to be in
equilibrium. Since this statistic typically shows a unimodal distribu-
tion for simulated clusters, there is no obvious boundary on how far
away from n = 1 a cluster is required to be in order to be considered
unrelaxed or out of dynamical equilibirium. In our case, we adopt
the quantity |n — 1| as a measure for the how far out of equilibrium
a system is, which we will incorporate in our measure.

(i1) Subhalo mass fraction, f;.
fs represents the fraction of the mass of the cluster contained in
subhalos, in our case as identified by AHF. However, this fraction does
not include the most massive central substructure since it includes
all the particles that do not bound to any other substructures.
For the most relaxed clusters, the subhalo mass fraction should be
fairly small, f; < 0.1. However, in the case where a large subhalo that
has recently fallen in and not yet dynamically relaxed, there will be
substantial mass within this subhalo. Hence f; effectively serves as a
measure of how far out of equilibrium a cluster is.

(iii) Centre of Mass Offset, A,.
The offset of the centre of mass of cluster is defined as
a, =R =R, &)

Rvir

where R, is virial radius, within which virial theorem applies for a
bound system, R, is the cluster centre, here the density peak of the
cluster from AHF, and R,,, is the position of the centre of mass.
A gravitationally bounded system in equilibrium should have a
symmetric mass distribution, which would give a vanishing distance
between the centre of mass and the peak of density. In the case
of a cluster merger, however, the density peak will typically be at
the location of the largest galaxy, while the centre of mass will be
somewhere between the main halo and the merging object, leading
to a non-zero value for A,. Therefore, A, provides another measure
for how far a cluster is out of dynamical equilibrium.

MNRAS 516, 26-38 (2022)

We emphasize here that all the three parameters are only phe-
nomenological descriptions? of the cluster dynamical state due to the
lack of a physically defined quantity for it. Furthermore, it is not clear
which parameter contributes more to or describes better the cluster
dynamical state. Therefore, varying criteria are applied to classify a
cluster as relaxed. For example, Cui et al. (2017) concluded that a
relaxed cluster should satisfy three criteria: A, < 0.04, f; < 0.1, and
0.85 < n < 1.15. With these criteria, Haggar et al. (2020) combined
these three parameters that are normalized to their thresholds but
with equal weight, to a continuous, non-binary measure of cluster
dynamical states, which is defined as the ‘relaxation’ parameter of
the cluster, x ps:

3
Xps = 5 —— 5 (6)
¢%)+G£)+@w

For a cluster to be dynamically relaxed, it requires A, and f; to
be minimized, and n & 1. Therefore, the most relaxed clusters are
expected to have large x ps (x ps > 1). This is the criterion forwarded
by Haggar et al. (2020).

However, there is no distinct separation between the relaxed and
unrelaxed clusters; the distribution of the y pg exhibits a curve closer
to single peak Gaussian (see fig. 2 of Haggar et al. 2020). Thus, while
xps = 1 is areasonable choice to classify a cluster’s dynamical state
into relaxed and unrelaxed, it remains unsatisfyingly arbitrary.

3.2 The threshold-free Apg function

As discussed before, the common issue in all previous works of
classifying cluster dynamical states with either single or multiple
dynamical parameters is that the thresholds for these parameters are
chosen arbitrarily. In order to overcome such issue, we assume that
a mass-complete cluster sample at z = 0 can be roughly separated
into dynamically relaxed and unrelaxed from the DMO simulations.
Note that the mass-complete sample is required as the Apg will be
biased to the sample if it is selected in particular ways.

Here, we introduce a new relaxation parameter, Apg, which is a
generalized version of equation (6) from Haggar et al. (2020):

3
M”:¢wam+wxﬂﬂ+u—mf @

Instead of using specific pre-factors of A, and f; terms, we allow
these pre-factors a and b to be varied in such a way that Apg has as
close to a double-Gaussian distribution as possible. Since we only
care about the distribution of Apg and not about its absolute values,
the critical aspect in equation (7) is the relative contributions from the
three denominator terms. Therefore, we can arbitrarily set one term’s
prefactor in the denominator to be unity with no loss of generality,
which we choose to do for the |1-n]| term.

To determine the optimal values for a and b, we use the DMO
simulation sample from THE THREE HUNDRED. Using the DMO runs
allows us to define the values based on a robust and reproducible
methodology, which shows little variations among different codes
(e.g. Sembolini et al. 2016a, b), even if it does not yield realistic
clusters which can be significantly affected by baryonic physics (e.g.
Cui et al. 2016; Elahi et al. 2016).

25 is the closest one to the physical definition of dynamical equilibrium with
n = 1. However, the cluster can not be treated as an isolated object. For
example, even with the surface pressure correction term, we cannot fully
correct 7 for the effects of the potential coming from a nearby object.
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In order to classify the clusters into two families, we choose a
functional form for the distribution of Apg as a double Gaussian. The
pre-factors a and b can then be determined by fitting the distributions
of Xps with a double-Gaussian function, and finding out the pair of a
and b which can give the ‘best’ double Gaussian distribution, which
we describe next. After the two families of clusters are fitted, it is
natural to use the crossing point of the two Gaussian curves as the
threshold for separating the cluster into relaxed and unrelaxed.

3.3 Determine coefficients a and b

To determine the a and b parameters, we first compute Apg for each
cluster in the DMO THE THREE HUNDRED runs at redshift 0, for
parameters (a, b), both ranging from 0 to 15, in steps of 0.01. For
each parameter pair, we fit a double-Gaussian function with the free
parameters cy, ¢2, (1, 42 and o1, 05 to be determined by

Ca-pp)?

f)y=ce >

Several criteria are made to select the best @ and b values:

@)
2

4+ cre 2. ®)

(1) the list of Apg must not pass the Shapiro—Wilk test (Shapiro &
Wilk 1965), which tests whether a normal distribution can be fit
with a single peak. shapiro() function can be directly imported from
scipy.stats, and it will return an indicator called P,,,, when acting
on a list-like object. The distribution is normal if its P, is greater
than 0.05. For our selected range of a and b with a range which yield
the results that fit most with 2500 pair of data. 0.05 is chosen for
the threshold to reject the Gaussian distribution, as when it is below
0.05, a smaller number does not necessarily provide a better double
Gaussian fit.

(i) Six parameters (cj, ¢z, 1, M2, 01, and o) are obtained
from fitting the double-Gaussian distribution. In a well-behaved
double-Gaussian function, the two peaks are expected to have similar
heights, similar widths, and be relatively well-separated. Therefore,
additional exclusionary criteria are set to be |c; — ¢3| > 10 (heights
too different), |u; — uo| < 0.2 (small separation, in log scale), and
o1 — o3| > 0.05 (widths too different).

After excluding all (a, b) pairs with the above criteria, we select
the best set of values to be the one which has the smallest fitting error
E, given by the quadrature sum of the difference between the true
Aps distribution and the fitting function.

The best-fitting parameters for the DMO run are a = 7.30 and
b = 0.30. We note that the equivalent values from Haggar et al.
(2020) would be a = 3.75, b = 1.5, with the pre-factor for the
[1 — n| term scaled out. Hence our double Gaussian criterion
preferentially weights the A, (centre-of-mass offset) term more and
the f; (substructure mass) term less compared to the |1 — n| term. For
the best-fitting distribution, the values for ¢y, ¢z, i1, 2, 01, 02, and
E are 35.35, 30.38, 0.34, 0.80, 0.18, 0.13, and 115.20, respectively.

The Apg distribution with the fitting results is plotted in Fig. 1. The
underlying distribution of Apg for our chosen (a, b) is shown as the
blue histogram. The red line shows the best-fitting double Gaussian,
and the orange and green lines are the individual Gaussians.

It is evident that the double Gaussian provides a good fit to the
distribution. The distribution itself is not obviously bimodal, but none
the less is statistically poorly fit by a single Gaussian (Shapiro—Wilk
p = 0.01). The two underlying Gaussians are well-separated, and of
similar height and width, which satisfy our criteria for selecting (a,
b).

The double-Gaussian distribution of Apg avoids the arbitrary
choice of the threshold for separating dynamically relaxed and

Cluster dynamical states 29

Distribution of Aps, at z = 0, DMO run

Number of clusters

0.50 075 100 125 150
log1o Aps

Figure 1. Distributions of the relaxation parameter, logjoAps, for the mass-
complete cluster sample from the DMO run, at redshift z = 0. The best-fitting
parameters are a = 7.30 and b = 0.30. Red line represents the fitted Double-
Gaussian distribution. The two single-Gaussian functions are represented by
orange and green line.

unrelaxed clusters modulo that the assumption of the Double-
Gaussian distribution with similar height and width restricts the shape
of the Apg distribution. The threshold for Apg is naturally defined
as the x coordinate of the crossing point of two Single-Gaussian
functions, see Fig. 1. For our best-fitting distribution, the threshold
value is Apg = 3.424.

We note that the fitting parameters, a and b, and thus the thresh-
old for separating relaxed and unrelaxed clusters, can be sample
dependent; reducing or increasing the minimum cluster mass in the
mass-complete sample can change a and b slightly. However, we are
limited to our sample in this study, and as long as we are consistent,
our results will not quantitatively change. This is because these three
key quantities: f;, A and n are unit-less, which do not depend on
mass or redshift. Therefore, the same Apg classified as relaxed at z =
0 or for cluster with higher mass, should be equally relaxed at high
z or a lower mass. Further investigation regarding the changes of a
and b with different samples requires a much larger simulation suite,
we leave it for a later study.

3.4 The relationship between Apg and x ps

Our new dynamical relaxation parameter, Apg, is based heavily
on xps (equation 6; Haggar et al. 2020). Earlier, we showed that
the optimized parameters Apg provide a different weighting for the
various terms as compared to x ps. Here, we explore the differences
in these two measures in more detail, and compare them head to
head.

Fig. 2 shows a comparison of the values of Apg versus xps for
the DMO sample of THE THREE HUNDRED clusters. The correlation
between Aps and x ps is almost linear, showing that both methods
classify clusters into relaxed and unrelaxed systems broadly simi-
larly.

Haggar et al. (2020) split the sample into relaxed clusters (x ps
> 1.030), unrelaxed clusters (xps < 0.619), and intermediate with
0.619 < xps < 1.030. The two thresholds from Haggar et al. (2020)
are represented by two red vertical lines in. In our work, a single
threshold, Aps = 3.424, is determined from a systematical way,
which is represented by the green horizontal line.

Most clusters classified as relaxed or unrelaxed by Haggar et al.
(2020) have a similar classification with our parameter. This means,

MNRAS 516, 26-38 (2022)
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Aps Vs Xps for GX, R200
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Figure 2. Aps versus xps in logarithm scale for 324 clusters, at z = 0, in
GX run, which Haggar et al. (2020) used. Two red vertical lines represent the
threshold on x pg for relaxed clusters and unrelaxed clusters, which are x ps =
1.030 and x ps = 0.619, respectively. The green vertical line represents the
threshold on Apg, which is Apg = 3.424.

although our new relaxation parameter Apg adjusts the relative con-
tributions between dynamical parameters 7, f; and A, to rescale and
redistribute the old relaxation parameter y pg, it is still monotonically
correlated and does not qualitatively change the results from previous
works on classifying cluster dynamical states. None the less, the non-
arbitrary classification procedure to obtain Apg makes classifying
dynamical states more robust, reproducible, and extensible to other
mass and redshift ranges.

We do not directly connect Apg with observation classification
methods, such as morphology (see De Luca et al. 2021, for example),
velocity distribution deviation (see Roberts & Parker 2017; de
Carvalho et al. 2017, for example) or the projected phase space
of cluster galaxies (Pasquali et al. 2019). However, we note that the
connection between y pg and observational methods has been studied
in De Lucaet al. (2021), which has shown a good correlation between
them. Given the broad similarity of Apg in terms of classification,
we expect that this will provide a similarly good correlation with
observational approaches.

4 APPLICATIONS

4.1 The effect of baryons

Different hydrodynamical simulations use different baryonic models,
which can result in different best-fitting Double-Gaussian functions.
For simplicity in this investigation, and to highlight the changes
due to different baryon models, we apply the same fitting results
from DMO fitting as the baseline, i.e. with a = 7.3, b = 0.3,
to calculate Apg in GX and GIZMO runs. See Section A for more
information. Nevertheless, by applying the same parameters with
threshold, we can examine the effects of baryons. For example, with
the same threshold, Aps = 3.424, applied to GX and GIZMO run,
we find that 151/171/170 clusters are classified as relaxed clusters in
DMO/GX/GIZMO run. It looks that hydrosimulations with baryon
model tend to increase the number of relaxed clusters. More details
will be presented in Section 4.1.

We further investigate the baryon effect on dynamical parameters
N, fs» A,, and Aps. We matched the corresponding clusters from
different runs at z = 0. For each cluster, the differences in these
parameters between hydrodynamical simulation (GX or GIZMO)
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and DMO simulation are shown in Fig. 3. Distributions of these
differences are plotted in histograms. Then, for each parameter, the
median numbers of these differences are used to quantify the baryon
effect. Those median numbers and standard errors are marked as
vertical lines in Fig. 3 and listed in Table 1. The main results of
baryon effects are discussed below:

(1) n from the GX run and the GIZMO run are reduced by about
2 per cent compared to the median value from the DMO run. The
differences distribution between the two hydrodynamical simulations
is very small, which gives the insight that the impact on n depends
weakly on baryon models. Cui et al. (2017) showed a similar result
on the weakly model-dependent effect of the decrease in n, but with
a more significant difference, about 10 percent, for cooling, star
forming and feedback (CSF) run and AGN run. Here, CSF run refers
to a hydrodynamical simulation ignoring the AGN feedback, and the
AGN run includes AGN feedback. They also concluded that the ratio
between 7 from the hydrodynamical run and n from DMO run shows
no dependence on cluster mass.

(i1) Standard deviations of the differences between A, from
GX/GIZMO run and from DMO the run are comparable to the
scale of the median number of A, from the DMO run, which shows
the scattering distribution of A, in hydrodynamical simulation, in
agreement with the result in Cui et al. (2017). This is because the
position of the substructure can be largely affected by baryons.
However, the average amount of change for all clusters is small,
which behaves as a slight decrease about 5 percent compared
to the DMO run. This could be mainly caused by the central
galaxy formation, which deeps the potential and increases the halo
concentration. Thus, more weights are contributed from the central
region.

(iii) Compared to the DMO value, f; increases by 17 percent in
the GIZMO run. This is in agreement with the result on Cui et al.
(2017): their CSF run increases the f; by 40 per cent for higher cluster
mass and by 20 per cent for clusters with lower abundances.
However, the median change of f; in GX run is negligible, smaller
than 5 per cent. The difference between f; from GX run and GIZMO
run should come from the feedback models that control the galaxy
formation in these less-massive substructures. The comparison of
satellite stellar mass function in Cui et al. (2022) makes it clear that
the satellite stellar-mass function from the GIZMO run agrees better
with the observation results at lower galaxy mass than GX, which is
about five times lower.

(iv) Apsin GX (GIZMO) run is 9 (6) per cent higher than in DMO
run, which indicates a weak baryon-model dependence of A ps. This is
not surprising as the baryon models weakly influence the individual
parameters.

4.2 Dynamical state and cluster mass accretion history

It is clear that the cluster dynamical state changes are caused by the
accretion of mass, especially in the case of major merger events (see
Poole et al. 2006b; Sampaio et al. 2021, for example). However, it
is unclear how significant the cluster dynamical state can be altered
and how long the cluster will return to a relaxed state after a merger
event. In this section, we will try to quantify the relationship between
cluster dynamical states and the mass changes and investigate the
relaxation time scale — from the beginning of a disturbance to the
final relaxed state (see more details in the following section). In Fig. 4,
we illustrate the evolution tracks of Apg and A,Sfég“ over time for one
arbitrary example cluster, where the variation AM,gois estimated
by My in the snapshot i minus Mg in snapshot i-1. The original
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behaviour of the evolution track of Apg is highly jagged because
of the frequent mergers along with difficulties in correctly tracking
the progenitors in the simulation, so the function savagol_filter
from SciPy.signal is applied to smooth the evolution curve (see
scipy.org). In this function, the length of the filter window is set
to be 11 data points, and the order of the polynomial to fit the
sample is set to be 3. Note that relaxation time-scale estimated in
this way is depending on Aps. Furthermore, this estimation differs
from the standard relaxation time-scale calculation based on two-
body relaxation (Binney & Tremaine 1987). This is because the
latter is only true when the system is isolated, while our calculation
is more practical considering the merger events during the cluster’s
evolution. Therefore, we use the relaxation period for our calculation
to distinguish them later.

4.3 The cluster relaxation period

To investigate the evolution of cluster dynamical states, we define the
‘relaxation period’ to describe the time taken by a cluster to evolve
from a relaxed state to an unrelaxed state and then return to the
relaxed states. As shown in Fig. 5, one relaxation period starts with
the local maximum of Aps above the threshold before decreasing,
after which the A pg of cluster continues decreasing until it reach some
local minimum below the threshold. Then, the relaxation period ends
with the first crossing point between Apg evolutionary track and the
threshold, through which the cluster return to a relaxed state again.
Note that we exclude the evolution track in the very beginning 4 Gyrs.
This is because the halo still have a small mass, and its dynamical
state can be dramatically changed due to frequent merging events.
Our definition of this relaxation period is very similar to the merger
time, which is defined in Contreras-Santos et al. (2022). We share
the same initial point to mark the start of relaxation period. However,
Contreras-Santos et al. (2022) requires the cluster returning to a
following peak of the dynamical relaxation parameter for the end,
instead of the crossing of the threshold (our case). Besides that, they
used y ps parameter to quantify the cluster dynamical state, which is
very similar to our Apg as shown in Fig. 2. Therefore, we expect a
similar scale between their merger time and our relaxation time. It is
worth noting that their studies focus on major merger events (A /M
> (0.5), while we will provide a more statistical view of the relaxation
period.

As shown in Fig. 5, one cluster can have more than one relaxation
period during its evolution process. The distributions for relaxation
periods for clusters in samples are shown in Fig. 6. The relaxation
period is quantified as the median number of relaxation periods,
which are 1.9 (1.8) Gyr, 1.6 (1.6) Gyr, and 1.4 (1.6) Gyr for DMO run,
GX run, and GIZMO run, respectively, the numbers inside brackets
are standard deviations.

4.3.1 Connection to the halo mass changes

The relaxation period provides valuable information about the evo-
lution of cluster dynamical states, especially when connecting with
the merger events. As mentioned above, it is intuitively correlated
to the mass accretion history of a cluster, with an increase in halo
mass leading to a decrease on Apg. It worth noting that there can be
multiple % peaks in a relaxation period, which corresponds to
multiple mergers in the cluster formation.

To quantify such correlation, we start from simple cases which
only contain one % peak in a relaxation period. We leave the
relaxation period with multiple peaks for validating our analytical
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Table 1. The median numbers of the differences of (from left to right) n, A,, f5, and Aps between GX run (the first
row)/GZIMO run (the second row) with standard errors and DMO run, The third row displays the median numbers of

each parameter in DMO run.

n I ADS
GX - DMO —0.039 £ 0.232 —0.005 £ 0.030 —0.003 + 0.036 0.289 +2.471
GIZMO - DMO —0.034 £+ 0.256 —0.003 + 0.036 0.025 + 0.036 0.180 + 2.554
DMO 1.155 0.143 3.017
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Figure 4. Evolution tracks of Apg (orange) and v (green) over time for
the fifth cluster, in (a) DMO run, (b) GX run, and (c) GIZMO run. The red
horizontal line represents the threshold Apg = 3.424. The region above this
line represents the cluster in a dynamically relaxed state.
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Figure 5. Aps evolutionary track for the fifth cluster in DMO run. The red
brackets labels two relaxation periods identified in the evolutionary process
of the cluster. The red horizontal line represents the threshold of cluster
dynamical states, above and below which are relaxed and unrelaxed states,
respectively.

formulae. Contradicting to our expectation, we do not find any strong
correlation between the relaxation time period versus the maxima of
fractional halo mass change. We think different mass accretions could
cause this, for example, multiple small merge at the same time, or
mass accretion from local environments versus a single major merger.
Furthermore, the host halo mass may play an important role. For
example, 10 per cent of mass accreting to a 10'° M, halo should have
different relaxation periods compared to a 10! Mg, halo. Therefore,
we normalize the relaxation period with the dynamical time-scale,
tayn» Which is defined as

RE O\ 12
tdyn = (G};]n > B (9)

where R,;- and M,;. are virial radius and virial mass, respectively.
Here, we simply adopt Ry as the virial radius and My as the virial
mass. Then, we correlate the normalized relaxation period with the
% peak.

From equation (9), itis easy to show that the dynamical time-scale,
tayn, 18 only a function of critical density, p., which solely depends
on redshift z. Hence, the dynamical time-scale can be determined
only with a given redshift. In this study, 74, is determined from the
redshifts at which the relaxation periods start.

The scatter plots of relaxation period/dynamical time-scale versus
AMZOU are shown in Fig. 7. The Spearman rank-order correlation coef-
ﬁ(:1ent is 0.59/0.55/0.52 for DMO/GX/GIZMO run, which indicates
a moderate correlation. Including more halo properties may give a
better correlation. We retain that for a future study. Note that, as have
discussed in Section 4.3, it is no surprise to see a similar distribution
of tyetax/1,,, in Fig. 7 compared to the fig. 3 of Contreras-Santos et al.
(2022).

Then, we fitted these scatter plots with a linear function:

A My

tayn Moy

trelax —k x

+h (10)
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and we obtain k = 12.047/10.706/9.794 and h = 1.169/1.111/1.183
from DMO/GX/GIZMO run, respectively. For the two hydrody-
namical simulations, we calculate their mean square fitting errors
and compare them with the mean square errors from DMO fitting
function, i.e. data are from the hydrodynamical run. Still, predictions
are made with equation (10) with parameters k and h yielded from
DMO fitting. For GX run, the mean square error from DMO fitting (k
=12.047, h =1.169) is 0.36, and that from GX fitting (k = 10.706,
h = 1.111) is 0.34. For GIZMO run, the mean square error from
DMO fitting is 0.34, and that from GIZMO fitting (k = 9.794, h
= 1.183) is 0.33. The differences in mean square fitting errors from
DMO fitting and hydrodynamical fitting are small in both cases.
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peak,

Therefore, we use the values of k and h from the DMO fitting for all
three simulations.

The distributions of fitting errors for relaxation periods with single
AM 20 peak inside are shown in Fig. 8. Most errors between predicted
and ‘real relaxation periods (89 per cent/91 per cent/89 percent for
DMO/GX/GIZMO run) are less than ~0.5 Gyr. These are con-
siderably less than the median length of those relaxation periods
with single Aﬂym peak, which is 1.847/1.577/1.413 Giga years in
DMO/GX/GIZMO run. The median fitting errors of three distribu-
tions are close to 0, and slightly deviating towards a positive direction.
The skewness and kurtosis of the distribution in DMO/GX/GIZMO
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run are —1.159/—1.030/—0.461 and 3.075/4.050/2.429, respectively.
The negative skewness means that there is more weight in the left
tail of the distribution.

Given the linear correlation shown in Fig. 7, it is not surprising to
see such a relatively small fitting error. To verify this fitting function,
we adopt it for making predictions of the relaxation periods with more

than one % peaks by simply linear summation of contributions

AM
from all =2% peaks:
Moo p

- AMoy. i
frelas = Tayn X Y (12.047 x Tm + 1.169> , (11

Py 200.i

where 14y, is calculated by the redshift at which the relaxation
period starts, and n represents the total number of AAZf)gO peaks that
happen within the relaxation period. Note that a different #4, for
each peak may give a better prediction. The distributions of fitting
errors for those relaxation periods with multiple peaks inside are
showed in Fig. 9. Most errors (82 per cent/88 per cent/88 per cent in
DMO/GX/GIZMO run) are less than ~2 Gyrs. However, the median
numbers of these distributions deviate towards the positive direction
(< 0.5 Gyr), which means that equation (11) slightly overestimates
the length of the relaxation period. The skewness and kurtosis for the
distribution in DMO/GX/GIZMO run are 0.429/—0.008/0.042 and
3.602/2.363/3.371, respectively.

The fractional fitting error distributions of relaxation periods
with multiple % peaks for DMO, GX, and GIZMO run are
plotted altogether in Fig. 10. The histograms are not normal-
ized. The total number of relaxation periods identified in two
hydrodynamical runs is significantly larger than that in DMO
run, which implies an increased merger events by the baryon
effect. 81.3 percent/74.1 percent/71.2 percent of fractional er-
rors in DMO/GX/GIZMO run are less than 0.6. The skewness
and kurtosis for the distribution in DMO/GX/GIZMO run are
1.602/1.230/1.980 and 4.396/2.033/6.342, respectively. In agreement
with the behaviours in absolute error distributions, all fractional error
distributions deviate towards positive direction. The deviation of
the median number of fractional fitting error is most substantial in
the GIZMO run. The median number in GX run also has a larger
deviation than that in DMO run.

5 CONCLUSIONS AND DISCUSSIONS

In this work, we use the mass-complete cluster sample from THE
THREE HUNDRED to study the cluster dynamical states and proposed
a new parameter Apg to classify the clusters into dynamical relaxed
and unrelaxed without a manually set threshold. Benefiting from
the different runs (DMO, GX, and GIZMO) within this project, we
can also investigate the baryon effect on the cluster dynamical state.
Furthermore, we define a relaxation period and connect it to the halo
mass changes. The main findings are summarized below:

(i) Based on the relaxation parameter y ps in Haggar et al. (2020),
a new threshold-free function of Apg is proposed to classify cluster
dynamical states, which is

3
Aps = 12
” \/(7.30 X A2+ (0.30 x £ + 1 =P (2

The threshold distinguishing relaxed and unrelaxed states is naturally
set by the double-Gaussian fitting of the Apg distribution. At redshift
z = 0, 151/171/170 clusters of all 324 clusters are classified
to be dynamically relaxed in DMO/GX/GIZMO run. The Xpg

MNRAS 516, 26-38 (2022)

Fitting errors for tyejax, DMO

Number of Events

0 T T T T T
=3 =2 = V] 1

trelax, fit - trelax, real (GYT)
(a)

Fitting errors for tyejax, GX

100 4

20

Number of Events
8

0 T T T T T
-3 -2 -1 0 1 2

t're.‘au\(, fit = trefax, real (Gyl')
(b)
Fitting errors for trejax, GIZMO

=l
&

=1
=]

20

Number of Events

_‘2 —I]. 6 i ‘2
trelax, fit = tretax, rear (GYT)

(c)

AMaoo

Figure 8. Fitting errors of relaxation periods with single o peak inside
the duration, for (a) DMO run, (b) GX run, and (¢) GIZMO run. Red vertical
line represents the median number of fitting errors.

parameter is linearly correlated to xps parameter, and it preserves
the classification results based on yx ps.

(i1) Including baryons in simulations can slightly reduce the virial
ratio 1, which is 2 per cent lower in GX and GIZMO run compared
to DMO run.

The baryonic effect results in the scattering distribution of the
centre of mass offset, A,, the standard deviation of the difference
between A, from GX/GIZMO run and DMO run is large (more than
50 per cent) compared to the scale of A, from DMO run.

Subhalo mass fraction f; is 17 per cent higher in the GIZMO run than
in the DMO run, while the GX run is about 2 per cent lower.
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In combination, the Apgs in the GIZMO run is 3 per cent lower than
in the GX run, which has about 10 per cent higher value than the
DMO run. Therefore, more relaxed clusters are presented in the
hydrodynamic simulations. Nevertheless, the baryons play a weak
role in altering the cluster dynamical state.

(iii) The median number of relaxation periods (the time taken by
a cluster to evolve from the most relaxed state to unrelaxed state and
then return to relaxed state), also regarded as a relaxation period, is
1.913/1.610/1.419 for DMO/GX/GIZMO run, respectively.
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(iv) The relaxation period is correlated to cluster mass accretion
history. For relaxation periods with a single % peak inside, a
moderate linear correlation is observed, which is described as

t, AM
clax _ 12.047 x =222 4 1.169. (13)
Layn Moo

In general case, the length of relaxation periods can be predicted

. AM- .
from the heights of Mzgg" peaks with
- A My, )
trelax = tayn X 12.047 x ————— +1.169 (14)
: “ Z ( M0,

i=1
with a considerable small error, basically less than 2 Gyrs.

As shown in Fig. 2, the new proposed Apgs is basically linear
correlated with the x pg. So it can be correlated with these observa-
tional measured quantities, such as M (Cialone et al. 2018; De Luca
et al. 2021) and C (Capalbo et al. 2021) parameters. The clusters
can be naturally separated into relaxed and unrelaxed by applying
its threshold from a double-Gaussian fitting,. With this single and
non-arbitrary classification, it is straightforward to define some time-
scale to describe the transition rate of dynamical states of a cluster.
Such time-scale can be determined entirely from the features of the
evolution track of Apg (see Fig. 5), which makes it applicable to be
analysed statistically for a large number of clusters, thus evaluate
its overall correlation with other observables (e.g. fractional mass
change of cluster).

In this work, we only impose two constraints on the A g parameter:
having well-behaved Double-Gaussian distribution over clusters and
preserving classification results with x ps. Meanwhile, the observed
linear correlation between subhalo mass fraction f; and centre of
mass offset A, is likely to introduce additional degrees of freedom in
Double-Gaussian fitting. Therefore, we acknowledge that there may
be some other values of a and b in equation (7), or even a different
form of function to combine dynamical parameters together, which
can make Apg satisfy our requirements. In future work, it will be
worthy of investigating the potential improvement of the formalism
of Aps with some advanced statistical methods.

Although the baryons can affect the cluster properties in different
aspects (see Cui et al. 2016, for example), the cluster dynamical state
seems to be less influenced by the baryons. That is understandable
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as baryons have the strongest effect at very small scale, while the
dynamical state describes the full dynamical information of the
cluster. This is similar to baryon effects on the total cluster mass
(see Cui et al. 2012; Cui, Borgani & Murante 2014, for example).
Agreed with Zhang, Yu & Lu (2016), the baryon effect does shirk
the cluster’s relaxation period, which results in slightly more relaxed
clusters in the hydrodynamical runs. However, unlike their ideal
case study, which does not include any baryon processes in two-
haloes merger event, the hydrosimulated clusters from THE THREE
HUNDRED project do not show significantly change in the relaxation
period. This can be explained as the merger speed and gas content
are relatively low in reality, which is in agreement with their results
— ~70 per cent reduction in the merger time-scale.

Note that our definition of the cluster relaxation period is slightly
different from the merger time, which is widely used in the semi-
analytical models (for example Boylan-Kolchin, Ma & Quataert
2008; Jiang et al. 2008; Jiang & van den Bosch 2014). Our definition
focused on the overall cluster dynamical state, while the merger
time is mainly interested in the dynamical friction, for example, a
satellite galaxy moving in a dark matter halo. The two time-scales
are very similar when a major merger happens. Moreover, by using
the relation between the cluster dynamical state relaxation period
with the cluster mass changes in this study, one can roughly predict
how long the cluster will return to a relaxed state.

As the merger events can lead to the cluster/galaxy property
changes, Contreras-Santos et al. (2022) using the cluster dynamical
changes (similar to our relaxation period definition) to define pre-
and post-merger phases, we found that stellar content of BCGs grows
significantly during mergers: The main growth mechanism is the
accretion of older stars; there is a burst in star formation induced
by the merger. Furthermore, the evolution of the hydrodynamic
equilibrium bias can be also tightly connected to the major mergers
(Gianfagna et al., in preparation). Therefore, through the observed
accretion in mass, we can predict the cluster relaxation period, which
can be used to predict the changes in these quantities.
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APPENDIX A: THE Aps DISTRIBUTIONS FOR
GX AND GIZMO

It is interesting to see whether the parameters determined by the
DMO run give similar distributions of Apg from the two hydroruns.
Note that due to the baryon effect on the three key quantities: 1, A,
and f;, the A pg distributions are not guaranteed to be double Gaussian.
We show the results in Fig. A1. Although the distribution of Apg from
GX can be fitted to double-Gaussian, there is a shift of the threshold
value compared to the DMO result. While GIZMO can not be fitted
by a double Gaussian distribution. Note that we never expect the
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Figure Al. Distributions of relaxation parameter, Apg, in logl10 scale (the
same as Fig. 1) for 324 clusters at redshift z = 0, in GX run (a) and GIZMO
run (b). Red lines represent Double-Gaussian fit and single-Gaussian fits are
represented by orange and green lines in each plot.

hydrodynamic simulated clusters can be fitted by double Gaussian
curve as the baryon models will change cluster dynamical state.
Indeed, by looking at the baryon effects on individual key quantity
in Fig. 4, we find that there is a shift in f; for GIZMO compared to
GX. Though the median Apg from GIZMO shows little change to the
one from DMO, its distribution seems not to be fitted by a double-
Gaussian curve. Nevertheless, we only interest in separating relaxed
and un-relaxed clusters. Given its Apg values, as well as the fixed
threshold from the DMO run, the relaxed and un-relaxed clusters
from GIZMO are also fixed.

APPENDIX B: Aps AND THRESHOLD FOR R500
DATA

For R500 data, a halo mass cut, Msoy = 4.6¢14 is applied to exclude
low-mass clusters. Then the same method is applied to the left 246
clusters, and the free coefficients for A in equation 7 are determined
to be a = 15.85 and b = 1.04. The distribution of Apg for R500 is
showed in Fig. B1.

The threshold is Apg = 2.61, as the X coordinate of the crossing
point of two Single-Gaussian functions. With this threshold, 101 in
246 clusters are classified as relaxed.
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Figure B1. Distributions of the relaxation parameter, logjoAps, for the mass-
complete cluster sample from the DMO run, R500, at redshift z = 0. The
best-fitting parameters are a = 15.85 and b = 1.04. Red line represents the
fitted Double-Gaussian distribution. The two single-Gaussian functions are
represented by orange and green line.
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