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Stratified Multivariate Multiscale Dispersion
Entropy for Physiological Signal Analysis

Evangelos Kafantaris, Student Member, IEEE , Tsz-Yan Milly Lo, and Javier Escudero, Senior Member,
IEEE

Abstract— Multivariate entropy quantification algorithms
are becoming a prominent tool for the extraction of informa-
tion from multi-channel physiological time-series. However,
in the analysis of physiological signals from heterogeneous
organ systems, certain channels may overshadow the pat-
terns of others, resulting in information loss. Here, we
introduce the framework of Stratified Entropy to prioritize
each channels’ dynamics based on their allocation to re-
spective strata, leading to a richer description of the multi-
channel time-series. As an implementation of the frame-
work, three algorithmic variations of the Stratified Multivari-
ate Multiscale Dispersion Entropy are introduced. These
variations and the original algorithm are applied to syn-
thetic time-series, waveform physiological time-series, and
derivative physiological data. Based on the synthetic time-
series experiments, the variations successfully prioritize
channels following their strata allocation while maintaining
the low computation time of the original algorithm. In exper-
iments on waveform physiological time-series and deriva-
tive physiological data, increased discrimination capacity
was noted for multiple strata allocations in the variations
when benchmarked to the original algorithm. This suggests
improved physiological state monitoring by the variations.
Furthermore, our variations can be modified to utilize a
priori knowledge for the stratification of channels. Thus,
our research provides a novel approach for the extraction
of previously inaccessible information from multi-channel
time series acquired from heterogeneous systems.

Index Terms— Multivariate Signals, Stratified Entropy,
Non-linear, Multiscale, Dispersion Entropy, Heterogeneous
Systems.

I. INTRODUCTION

INCREASED amounts of physiological data are becoming
available due to the advances in physiological recording

technology across a range of applications from wearable
devices to clinical environments [1]–[3]. The analysis of
these data can contribute to effective prognosis, early stage
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intervention, personalised treatments, and improved clinical
decision making. However, for the successful development of
algorithms capable of extracting viable information, certain
characteristics of the data have to be considered. These include
their multivariate nature due to the interaction of multiple
organ systems in human physiology [4]–[8], the potential non-
linear nature of their dynamics [9]–[14], and the low data-
quality arising from the recording conditions [15]–[17].

Entropy quantification algorithms are becoming a prominent
tool for the measurement of dynamics from uni- and multi-
channel time-series [18]. These algorithms are based on Shan-
non entropy [19] or on Conditional Entropy defined as the
quantity of information observed in a sample at a time-point
n that cannot be explained based on previous samples up to
time point n− 1 [20]. They have been successful in a variety
of applications such as the monitoring of machine operation
[21], [22] and the analysis of financial time-series [23], [24].

The quantification of entropy – as a measure of physi-
ological signals’ complexity – is of direct interest for the
monitoring of a system’s physiological states, particularly
when considering the Critical Slow Down (CSD) and Loss
of Complexity (LoC) paradigms as well as their combination
within the scope of the “entropy pump” (EP) hypothesis.
The CSD paradigm considers that during frail or pathological
states, a slowing down is observed in the capacity of the
system to recover from external stressors resulting in increased
output complexity for certain regulatory variables [25]–[27].
The LoC paradigm suggests that when the equilibrium of a
system is disrupted, multiple processes that displayed multi-
scale complexity produce output measurements of reduced
complexity indicating a loss in the system’s flexibility and
capacity to adapt in the presence of external stressors [10],
[28]. These seemingly opposite paradigms are combined in
the EP hypothesis that separates physiological parameters in
regulated and effector variables. Based on this hypothesis, an
“entropy pump” is observed, thanks to which homeostasis
is achieved, by maintaining a stable, low complexity output
for regulated variables through the complex and variable
outputs of effector variables [8], [29]. A pathological state is
observed when its direction is disrupted and an increase in the
complexity of regulated variables is observed as per the CSD
paradigm, while a decrease in the complexity of the effector
variables is observed in accordance with the LoC paradigm.

Entropy has been extensively used to analyse physiological
signals. Examples include algorithms based on Shannon En-
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tropy such as Permutation Entropy (PEn) [30] and Dispersion
Entropy (DisEn) [31], [32] to analyse electoencephalogram
(EEG) signals to track the state of consciousness of patients
under the effect of anaesthetic drugs [33], and to analyse
blood pressure signals to quantify the effect of aging in the
reduction of the recorded signal’s variability [31], respectively.
Algorithms based on Conditional Entropy have also been
utilized, such as Approximate Entropy (ApEn) [34] for the
investigation of abnormalities in respiratory function caused
by panic disorders [35], Sample Entropy (SampEn) [36] for
the analysis of neonatal heart rate variability to diagnose sepsis
[37], and Fuzzy Entropy (FuzzyEn) on surface electromyog-
raphy (EMG) signals for the detection of motion [38].

For the effective analysis of physiological dynamics, multi-
channel time-series have to be analyzed both in a univariate
and a multivariate manner. This is a necessary step to ensure
that, cross-channel dynamics can be quantified to allow the
study of dynamics developed across different components of
the same organ system as well as across distinct systems [4]–
[8]. For this reason, recent research has focused on producing
multivariate variations of entropy algorithms to extract features
from two or more channels: DisEn [39], PEn [40], ApEn,
SampEn [41], and FuzzyEn [42].

However, while multivariate algorithms can extract an out-
put feature from a multi-channel time-series, the approach is
limited with regards to the total information retrieved. The
dynamics of certain input channels may overshadow those of
others due to the potentially different dominant frequencies
amongst the physiological signals in each channel. This be-
comes apparent when multi-channel time-series are comprised
of signals that arise from heterogeneous organ systems such
as the combination of electrocardiograms (ECG) [43], EEG
[44], arterial blood pressure (BP) [45], and nasal respiratory
(RESP) signals [46], [47], whose dominant frequencies and
temporal structures display clear differences.

As a step towards addressing this challenge, recent studies
have suggested non-uniform multiscale embedding between
the input channels. This approach aims to find the optimal
combination of scales for the analysis of the multi-channel
time-series so that each channel is analyzed at the scale where
most of its dynamics would arise. While this approach offers
an interesting and modular configuration of analysis, it faces
challenges that limit its applicability. These are the potential
mismatch of each channel’s data length with the optimal scale
values, the limitation of multiscale analysis to specific scales
for each channel resulting in an incomplete multiscale output,
[48], the instability of the method for increased number of
channels [49], and the potential for overshadowing to occur
even at optimal scale combinations.

A different approach for the analysis of interdependencies
within a group of multi-channel time-series arises from the
utilization of Cross-Entropy algorithms, developed for ApEn,
SampEn [36], FuzzyEn [50], and PEn [51]. With them, an
entropy based feature quantifies the coupling between two
channels. The variations of SampEn and FuzzyEn are non-
directional, while the variations of ApEn and PEn are direc-
tional. In the latter cases, one of the two channels acts as a
“designated” channel in the measurement. Thus, the potential

overshadowing of each channels’ dynamics could be avoided
since each channel has the opportunity to be designated.
However, this approach is limited to bivariate measurements
between two channels. Therefore, it cannot capture higher-
order dynamics arising jointly from three or more channels.
A second limitation is that, by definition, it measures the
coupling between the two channels and is not a measurement
of their combined dynamics.

In this study, we propose the framework of Stratified-
Entropy to combine positive elements of both the Multivariate
and Cross- Entropy algorithms to augment the information
that can be extracted from a set of multi-channel time-series
by allowing each channel’s dynamics to have a different level
of prioritization during the quantification of the output entropy
value based on its allocation to a respective stratum. Namely,
the main contributions of the presented work are:

• The introduction of the Stratified-Entropy framework as a
new form of multivariate and multiscale analysis that in-
creases the amount of information extracted from a multi-
channel time-series via entropy quantification algorithms.

• The implementation of the Stratified-Entropy frame-
work through the introduction of three novel algorithms
of Stratifed Multivariate Multiscale Dispersion Entropy
(SmvMDE) that prioritize channels during the calculation
of the output entropy value based on their allocation to
hierarchical strata.

• The analysis and benchmarking of the SmvMDE algo-
rithms through experiments applied to synthetic time-
series, waveform physiological time-series, and derivative
physiological data.

II. METHODS

A. Stratified Entropy Framework

Within the framework of Stratified Entropy, strata are de-
fined with a clear hierarchy of prioritization. The number of
strata can vary based on the implementation of the framework.
Each channel is allocated to one of the available strata and
every channel has a weighted contribution in the calculation
of the output entropy feature based on their allocated stratum.

We build upon the existing Multivariate Multiscale Disper-
sion Entropy (mvMDE) algorithm [39] and introduce three
novel variations of the Stratified Multiscale Multivariate Dis-
persion Entropy algorithm (SmvMDE): The Threshold (T-
SmvMDE), Soft Threshold (ST-SmvMDE), and Proportional
(P-SmvMDE) variations.

For the purposes of this study, all three variations have been
designed based on a two strata configuration, a core stratum
(prioritized) and a periphery stratum. The potential extension
to configurations with higher numbers of strata is discussed in
Subsection III-E.3. The variations differ in how the dynamics
of channels allocated to the core stratum are prioritised over
the periphery channels.

The following subsections start with a description of the
original mvMDE algorithm, continue with the introduction of
the SmvMDE variations and the changes they introduce to
mvMDE, and describe the experiments conducted to analyse
and benchmark their operation.
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B. Multivariate Multiscale Dispersion Entropy

DisEn arises from the integration of Shannon Entropy
with symbolic dynamics, aiming to quantify the degree of
irregularity in an input time-series segment. It achieves good
discrimination capacity between different types of physiologi-
cal activity while maintaining a low computational time [31],
[32]. Multivariate Multiscale Dispersion Entropy (mvMDE)
allows the multivariate quantification of DisEn from multi-
channel time-series taking into consideration both temporal
and spatial dynamics, across multiple time scales [39].

1) Coarse-Graining Process for Multiscale Implementation:
For the successful quantification of a time-series’ complexity
across multiple time scales, a number of coarse graining
procedures have been suggested. These include the widely
used moving average approach [52]–[54], low-pass Butter-
worth filtering [54], [55], and empirical mode decomposi-
tion [55]. This study builds upon the original algorithmic
implementation of mvMDE and therefore utilizes the moving
average coarse graining approach for simplicity [39], although
other alternatives provide better frequency responses. Based
on this approach, in a set of p-channel time-series Y =
{yk,b}b=1,2,··· ,N

k=1,2,··· ,p , each channel is processed separately and
divided into non-overlapping segments of length equal to the
defined time scale factor, τ . For each segment, an average
value is calculated and used to derive the coarse-grained multi-
channel time-series as follows:

xk,i(τ) =
1

τ

iτ∑
b=(i−1)τ+1

yk,b, 1 ≤ i ≤
⌊
L

τ

⌋
= N, 1 ≤ k ≤ p

(1)
where L is the original channel length and N the resulting
coarse-grained channel length.

2) Application of Mapping Function: For the implementation
of mvMDE, a recommended step is the application of a
non-linear mapping function to each channel, such as the
normal cumulative distribution function (NCDF) [39]. The
selection of a non-linear over a linear mapping function seeks
to ensure that maximum and minimum amplitude values, that
can be significantly larger or smaller than the mean value
of the channel, do not disrupt the allocation of samples to
classes by forcing the majority of samples to be assigned
to a small number of classes [31], [32], [56]. For multiscale
implementations using NCDF, the mean and standard deviation
of the original non coarse-grained time-series are used and
remain constant for the mapping process across all temporal
scale factors. This ensures that the mapping based on the
NCDF remains fixed and is not affected by the averaging
taking place during the coarse graining process [39].

3) Algorithm for mvMDE: For a set of p-channel time-series
X = {xk,i}i=1,2,··· ,N

k=1,2,··· ,p of length N each, the computational
steps of mvMDE are the following [39]:

1) Production of univariate quantised time-series: A num-
ber of classes (1, 2, . . . , c) are distributed along the
amplitude range of each channel separately. Their sam-
ples are allocated to their nearest respective class based
on their amplitude. As a result, a quantized channel
uj(j = 1, 2, . . . , N) is produced for each respective

input channel, resulting in a set of p-quantized channels
U = {uk,i}i=1,2,··· ,N

k=1,2,··· ,p .
2) Formulation of multivariate embedded vectors: From

{uk,i}, the quantized samples are embedded into uni-
variate vectors of length m (with a time delay d) for
each channel. The univariate embedded vectors are then
combined in sets of p-synchronised vectors, one from
each channel. The vectors within each synchronised
set are serially concatenated for the production of a
respective multivariate embedded vector Z(j), of length
m · p, for each j = 1, 2, . . . , N − (m− 1)d.

3) Mapping to multiple dispersion patterns: In mvMDE,
each embedded vector is mapped to multiple dispersion
patterns to effectively evaluate patterns both temporally
within the same channel as well as across channels. Each
subset of m elements in Z(j) is accessed, following all
possible

(
m·p
m

)
combinations. This formulates ϕq(j)(q =

1, . . .
(
m·p
m

)
) embedded subvectors that are then mapped

to their corresponding πv0...vm−1 dispersion pattern. As
a result, the total number of dispersion pattern instances
is (N − (m − 1)d)

(
m·p
m

)
and the number of unique

dispersion patterns is cm.
4) Calculation of Dispersion Pattern Relative Frequency:

For each of the cm unique dispersion patterns, their
relative frequency is calculated as follows, with # being
the symbol that denotes the cardinality of the set:

p(πv0...vm−1
) =

#{j
∣∣j ≤ N − (m− 1)d, ϕq(j) has type πv0...vm−1

}
(N − (m− 1)d)

(
mp
m

)
(2)

5) Calculation of Multivariate Dispersion Entropy: Utiliz-
ing the relative frequencies of the dispersion patterns
considering both temporal and spatial domains as above,
the output entropy value for X is calculated based on
Shannon’s entropy and is normalized in the range of 0
to 1 by dividing with log cm :

mvMDE(X,m, c, d) = −
cm∑
π=1

p(πv0...vm−1) · ln
(
p(πv0...vm−1)

)
ln cm

(3)

C. Stratified-Dispersion Entropy Variations
Building on the original mvMDE, we introduce three varia-

tions of SmvMDE as implementations of the Stratified Entropy
Framework. With their two strata configuration, the SmvMDE
variations separate the channels in two sets. The set of one or
more designated channels, which are allocated to the “core”
stratum, and the set of secondary channels which are allocated
to the “periphery” stratum.

The original mvMDE treats all embedded subvectors as
equal. Instead, the SmvMDE variations prioritise subvec-
tors that contain samples retrieved from designated chan-
nels. The Threshold (T-SmvMDE), Soft Threshold (ST-
SmvMDE), and Proportional (P-SmvMDE) variations use
distinct approaches for adjusting the contribution of each
combination by modifying the third and fourth steps of the
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Formulated Embedded 
Subvectors  for m=3Multi-Channel Time-Series

T-SmvMDE

Core 
stratum

Periphery 
stratum

Periphery 
stratum

Periphery 
stratum

Sample 1 Sample 2 Sample 3
Not used: No samples 
from channel in Core 

stratum

Used

Used

Used

Fig. 1. A representation of the embedded subvector inclusion and
exclusion process for the T-SmvMDE variation with m = 3 and t = 1.

original mvMDE algorithm, as described in Subsection II-
B.3. The code implementing the SmvMDE variations in
Matlab is publicly available at: https://github.com/
EvangelosKafantaris/SmvMDE.git.

1) Threshold Variation: T-SmvMDE defines the minimum
number of samples extracted from designated channels that
each subvector should contain in order to be considered. This
is achieved through a new input parameter: the threshold
(t). The initially

(
m·p
m

)
subvectors utilized in the case of the

original mvMDE are reduced to a subset of length lt that
only includes subvectors that meet or surpass the threshold of
having t or more samples in the patterns of length m. As
a result, for each multivariate embedded vector Z(j) only
ϕq(j)(q = 1, . . . lt) subvectors are mapped to dispersion
patterns. This results in the reduction of dispersion pattern
instances to (N − (m − 1)d)lt. Fig. 1 displays a diagram
illustrating the T-SmvMDE subvector selection process (Di-
agrams for ST-SmvMDE and P-SmvMDE are available in the
Supplementary Material document).

For each unique dispersion pattern, their relative frequency
is calculated with a modified denominator to match the re-
duced number of dispersion patterns:

p(πv0...vm−1
) =

#{j
∣∣j ≤ N − (m− 1)d, ϕq(j) has type πv0...vm−1 }

(N − (m− 1)d)lt

(4)

2) Soft Threshold Variation: As an intermediate algorithm
between T-SmvMDE and mvMDE, ST-SmvMDE combines
the t input parameter with the additional reduced weight (w)
parameter to reduce the contribution of subvectors that do not
meet the threshold of t, without removing them completely.
The possible values of the w parameter range from a minimum
value of 0, where the output value will match that of T-
SmvMDE, to a maximum value of 1, where the output
will match that of the original mvMDE algorithm, since no
reduction of contribution will occur.

Based on t, the subvectors are split into two subsets: A
primary subset with length lp whose contribution to the calcu-
lation of a dispersion pattern’s frequency remains unchanged;
and a secondary subset with length ls whose impact is reduced
by multiplying the number of respective dispersion pattern
instances with w. Consequently, for each Z(j): ϕp(j)(p =

1, . . . lp) subvectors are formulated from the primary and
ϕs(j)(s = 1, . . . ls) from the secondary subset, respectively.

Therefore, the maximum value of instances for a dispersion
pattern becomes (N − (m− 1)d)(lp +(lsw)). As a result, for
each unique dispersion pattern, their relative frequency is:

p(πv0...vm−1
) =

#{j
∣∣j ≤ N − (m− 1)d, ϕp(j) has type πv0...vm−1

}
(N − (m− 1)d) (lp + lsw)

+
#{j

∣∣j ≤ N − (m− 1)d, ϕs(j) has type πv0...vm−1 }
(N − (m− 1)d) (lp + lsw)

· w
(5)

3) Proportional Variation: The third variation, P-SmvMDE,
requires no additional parameters. Instead of utilizing a thresh-
old to filter subvectors, it allocates them in subsets based on
the number of samples contained in each combination that are
retrieved from designated channels and applies a proportional
factor to each category. With m being the length of each
subvector and h being the number of samples extracted from
designated channels, this factor is defined as h

m .
Therefore, the values of the proportional factor range from

a minimum of 0 to a maximum of 1 and the total number
of subsets in which the subvectors are allocated is equal to
m + 1. Consequently, for each Z(j): ϕh(j)(h = 1, . . . lh)
subvectors are formulated from each subset with lh being
the length of the respective subset. Hence, the maximum
value of instances (α) for a dispersion pattern becomes
α =

∑m
h=0 (N − (m− 1)d) (lh

h
m ).

The relative frequency of each unique dispersion pattern is
calculated by counting dispersion pattern instances in subvec-
tors of each subset multiplied by their respective ( h

m ) factor,
divided by the maximum value of instances:

p(πv0...vm−1
) =

1

α
·

m∑
h=0

#{j
∣∣j ≤ N − (m− 1)d, ϕh(j) has type πv0...vm−1

} · h

m

(6)

D. Synthetic Time-Series Experiments

The SmvMDE variations and the original mvMDE are
applied to synthetic time-series, to study the differences in
their operation and their multiscale outputs.

1) Uncorrelated white Gaussian and 1/f noise: We use
combinations of uncorrelated white Gaussian noise (WGN)
and 1/f noise due to their differences in complexity and
irregularity. Complexity in a time-series arises from consistent
structural dynamics and therefore, when measured, is expected
to follow a stable multiscale profile [52], [57]. Irregularity
consists of random fluctuations that do not arise from under-
lying structural dynamics and is expected to have a decreasing
multiscale profile. The complexity of 1/f noise is higher than
WGN while the irregularity of WGN is higher than 1/f [41],
[58]. Thus, multivariate combinations of WGN and 1/f time-
series have been used in previous research to test multiscale
entropy quantification algorithms [59], [60].

https://github.com/EvangelosKafantaris/SmvMDE.git
https://github.com/EvangelosKafantaris/SmvMDE.git
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TABLE I
PARAMETERS VALUES FOR SYNTHETIC TIME-SERIES (ST) WAVEFORM

PHYSIOLOGICAL TIME-SERIES (WPT) AND DERIVATIVE

PHYSIOLOGICAL DATA (DPD) EXPERIMENTS.

Parameter (Symbol) ST WPT DPD
Embedding Dimension (m) 2 3 3

Number of classes (c) 5 6 4
Time Delay (d) 1 1 1

Scale Factor Range (τ ) 1 to 20 1 to 10 1
Threshold (T and ST SmvMDE) (t) 1 2 2
Reduced Weight (ST SmvMDE) (w) 0.5 0.5 0.5

2) Formulation of Experimental Setups: To test the operation
of mvMDE, all possible combinations of WGN and 1/f
noise are formulated in 3-channel time-series, resulting in the
following inputs for the experiments:

1) Three WGN channels.
2) Two WGN and one 1/f channels.
3) One WGN and two 1/f channels.
4) Three 1/f channels.
Considering the operation of SmvMDE, the output entropy

value will be affected to a larger degree by channels allocated
to the core stratum over the periphery. This would not affect
experimental setups 1) and 4). However, it would lead to
different results for setups 2) and 3) which contain both WGN
and 1/f channels based on their allocation to strata. Therefore,
for SmvMDE variations, experimental setups 2) and 3) are
expanded. In a first iteration, the designated channel assigned
to the core is one of the WGN channels, followed by a second
iteration where a 1/f channel is designated. This results in a
total of six experimental setups for SmvMDE:

1) Three WGN channels.
2) Two WGN and one 1/f channels with WGN designated.
3) One WGN and two 1/f channels with WGN designated.
4) Two WGN and one 1/f channels with 1/f designated.
5) One WGN and two 1/f channels with 1/f designated.
6) Three 1/f channels.
3) Statistical Analysis: Each experimental setup is repeated

40 times independently and the respective mean and and
standard deviation are calculated for each τ value from 1 to
10. All experimental setups are replicated for channel lengths
of 15,000 and 300 samples to assess potential differences
due to long versus short time-series. The parameter values
used for mvMDE and SmvMDE are chosen based on the
limitations introduced by the short length time-series and
match those used in the original mvMDE study to allow for
easy comparison between both studies [39]. They are displayed
in Table I.

4) Computational Time Experiments: To ensure that
SmvMDE variations maintain the low computation time prop-
erties of the original mvMDE, 2-channel, 5-channel, and 8-
channel time-series are formulated from uncorrelated WGN
with channel lengths ranging from 1,000 up to 100,000 sam-
ples. Each experimental setup is repeated over 20 independent
realizations and the average computation time is calculated
and reported for the mvMDE and SmvMDE algorithms. For
the implementation of SmvMDE algorithms, an arbitrary des-
ignated channel is selected. The computations are carried out

using a PC with Intel(R) Core(TM) i7-8750H CPU @ 2.2
GHZ, 16 GB RAM running MATLAB R2018b. The parameter
values of mvMDE and SmvMDE remain the same with the
exception of τmax being reduced from 20 to 10 to be consistent
with [39].

E. Waveform Physiological Time-Series Experiments
Experiments are conducted on waveform physiological

time-series to study the extend to which the SmvMDE
algorithms have increased discrimination capacity between
physiological states. We benchmark the effect size difference
of output distributions extracted using SmvMDE to those
extracted using mvMDE.

1) MIT-BIH Polysomnographic Database: To access multi-
channel time-series formulated from high sampling rate signals
recorded from different organs, the publicly available MIT-
BIH Polysomnographic Database is used. It contains a total
of 18 records of multiple physiological waveforms, initially
recorded for the evaluation of chronic obstructive sleep apnea
(OSA) syndrome and sampled at 250 Hz [61], [62].

For the purpose of this study, we select the records slp41 and
slp45 due to the availability of extensive sections of healthy
stage 2 sleep; and the records slp04 and slp16 due to the
existence of multiple incidents of OSA with arousal during
stage 2 sleep. All records contain complete and synchronized
recordings of EEG, ECG, BP, and RESP signals. The EEG
signal is split into the frequency bands of: delta (0.5-3.5
Hz), theta (4-7.5 Hz), alpha (8-11.5 Hz), sigma (12-15.5 Hz),
and beta (16-19.5 Hz) [63]. Hence, 8-channel time-series are
extracted from each record consisting of the channels: Delta,
Theta, Alpha, Sigma, Beta, ECG, BP, and RESP.

2) Formulation and Selection of Analysis Windows: These
time-series are split into 8-channel non-overlapping windows
with 7,500 samples per channel corresponding to the 30-
second annotation interval of the database. Based on the an-
notations, we extracted 235 multi-channel “healthy” windows
corresponding to healthy stage 2 sleep (slp41 = 96 windows,
slp45 = 139 windows), and 235 multi-channel “apnea” win-
dows corresponding to OSA with arousal during stage 2 sleep
(slp04 = 140 windows, slp16 = 95 windows). The indices used
for the extraction of the respective windows are available in
the Supplementary Material document.

3) Calculation of DisEn: The parameter values for the ex-
traction of multiscale entropy distributions from the 235
“healthy” and 235 “apnea” windows are chosen based on the
considerations discussed in Subsection III-E and displayed in
Table I under the waveform physiological time-series (PT)
column. Per window, we obtain ten values, one for each τ
(1 to 10).

We use mvMDE to obtain one multiscale distribution from
the “healthy” and one from the “apnea” datasets. For the effec-
tive study of SmvMDE variations (T, ST, and P), the variations
are applied in eight iterations each per dataset. During each
iteration a different channel is designated. This leads to the
extraction of eight multiscale distributions from each dataset to
study how the prioritization of each channel’s dynamics affects
the output entropy values and the physiological differentiation
capacity of SmvMDE.
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4) Statistical Analysis: To effectively benchmark the dif-
ferentiation capacity of SmvMDE variations to mvMDE, the
following steps are completed for each τ separately:

1) We compute the Hedges’g effect size [64] for the
“healthy” versus “apnea” output distributions using a
non-parametric permutation test [65].

2) We calculate the effect size difference when moving
from mvMDE to a certain SmvMDE variation with a
particular designated channel.

3) We estimate the confidence intervals for each calculated
effect size difference to verify their significance.

In Step 3, bootstrapping is applied to the “healthy” and “ap-
nea” output distributions to estimate the confidence intervals.
The bootstrapping is implemented by sampling with replace-
ment the sets of 235 multiscale entropy values in each output
distribution. For each output distribution of the SmvMDE
variations, 40 independent realizations of bootstrapped dis-
tributions are generated. No bootstrapping is applied to the
output distribution of mvMDE since we seek to benchmark the
SmvMDE distributions to the same, original mvMDE results.

To implement this analysis, the bootstrapped distributions
of each SmvMDE and the original distribution of mvMDE
are used in the following steps, which are applied for each
designated channel selection and at each τ (1 to 10):

1) Each of the 40 bootstrapped “healthy” distributions
is paired at random with one of the 40 bootstrapped
“apnea” distributions. (This pairing is kept the same
across all SmvMDE variations for consistency.)

2) The non-parametric permutation test [65] (with 100,000
permutations) is applied to the two distributions of each
pair, resulting in 40 sets of Hedges’g effect size values.

3) Hedges’g effect size values are also computed between
the “healthy” and “apnea” distributions of mvMDE.
These benchmarking values are given in the Supplemen-
tary Material document.

4) The benchmarking effect size values of mvMDE are
subtracted from the effect size values extracted from
each pair of boostrapped distributions. This results in
40 multiscale sets of effect size differences whose mean
and 95% confidence intervals are calculated.

We plot the mean and 95% confidence intervals of the effect
size difference separately for each designated channel selection
and τ value (1 to 10).

F. Derivative Physiological Data Experiments
The operation of SmvMDE is also studied for low-temporal

resolution, derivative data. The performance of SmvMDE
variations is benchmarked to that of mvMDE via the difference
in output entropy for separate individuals, when moving from
physiological states of low to high external stress.

1) Maximal Exercise Dataset: For the application of
SmvMDE to derivative physiological data the publicly avail-
able Treadmill Maximal Exercise Test Dataset is used [17],
[66]. This dataset was collected, curated, and published by
the Exercise Physiology and Human Performance Lab of the
University of Malaga. The recordings include five cardiores-
piratory variables: heart rate (HR, in beats per min), oxygen

consumption (VO2, in mL/min), carbon dioxide production
(VCO2, in mL/min), respiration rate (RR, in respirations/min),
and pulmonary ventilation (VE, in L/min). All variables were
recorded in a synchronized manner with the sampling event
being each breath measurement, resulting in a varied sampling
period (usually in the range of 1-4 s).

Each test consisted of an individual walking and running
on a treadmill, starting with a warm-up period of treadmill
speeds close to 5 km/h, followed by a period of gradual speed
increase that reached speeds in the range of 14 to 17 km/h,
and completed with a cool-down period with speeds close to
5km/h. A total of 857 individuals participated in the study
with some people having more than one test, resulting in 992
recordings. The participants’ ages ranged from 10 to 63 y.o.

2) Formulation and Selection of Analysis Windows: Two
physiological state classes are formulated: a low speed (LS)
class that corresponds to data recorded during warm-up until
the speed reached 7 km/h; and a high speed (HS) class that
corresponds to data recorded while the treadmill speed was
higher than 15 km/h. We selected recordings with at least 120
synchronised samples for each class to ensure an adequate
window size for analysis. In the few cases where an individual
had more than one eligible test, the first one was selected.
A total of 98 eligible recordings with age range 14 to 50
y.o. are extracted. The recordings’ ids are available in the
Supplementary Material document.

3) Calculation of DisEn: The extracted data are 98 pairs of
multivariate 120-sample windows, with each pair including
one segment from the LS class and one from the HS. Due to
the low temporal resolution of the data and the consequent
small window size, the analysis is done only at temporal
scale τ = 1. The selected parameter values are displayed in
Table I. All SmvMDE variations (T, ST, and P) are applied
in five iterations each, during which a different channel is
designated. Consequently, for each algorithm and designated
channel selection 98 pairs of DisEn values are extracted.

4) Statistical Analysis: For each experimental setup and
within each of the 98 pairs of DisEn values, the entropy
difference observed when moving from the LS to the HS state
is recorded. Boxplots are generated to compare the output dif-
ference distributions between SmvMDE and mvMDE for each
designated channel selection. Additionally, the mean absolute
difference observed in each difference distribution and the
number of entries that displayed an increased absolute value
of difference during each SmvMDE configuration, compared
to their mvMDE values, are reported. Finally, to highlight a
potential directionality that could match the EP hypothesis [8],
[29], the number of entries with a higher entropy value in
the LS state than in the HS state are also reported for each
configuration.

III. RESULTS AND DISCUSSION

A. Synthetic Time-Series Experiments

The results of the application of mvMDE and SmvMDE on
3-channel time-series of WGN and 1/f noise, are presented
in Fig. 2 and Fig. 3 for univariate length of 15,000 and 300
samples, respectively. For each experimental setup, replicated
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for 40 independent iterations, the mean and standard deviation
of DisEn values are plotted for each τ (1 to 20).

1) mvMDE Operation: The operation of the mvMDE
matches the patterns that have been verified by prior research
[39]. As τ increases, the output entropy value has a stronger
decline for the 3-channel WGN time-series. As the number
of 1/f channels increase, the output entropy value follows a
more stable profile with the 3-channel 1/f time-series being
the most stable.

2) SmvMDE Operation: For experimental setups that con-
tain solely WGN channels and 1/f channels respectively,
the operation of all three SmvMDE variations is identical to
mvMDE, as expected. In contrast in the other experiments, a
stronger decline of output entropy is observed as τ increases
when a WGN channel is designated. Instead when a 1/f
channel is designated, the output follows a more stable profile
for increasing values of τ .

When comparing the results of the three SmvMDE varia-
tions for the same experimental setup:

1) Using the mvMDE output values as reference, the largest
deviations are observed by the P-SmvMDE variation,
followed by the T-SmvMDE, and then the ST-SmvMDE
variation.

2) The ST-SmvMDE outputs are between those of T-
SmvMDE and mvMDE as expected by its design and
the w value set to 0.5.

3) The higher deviation of the P-SmvMDE outputs from T-
SmvMDE is expected when considering that for an m =
2 the P-SmvMDE variation gives a higher prioritization
to the core stratum than the respective implementation
of T-SmvMDE with m = 2 and t = 1.

3) Short Length Time-Series: Fig. 3 displays the results for
the 300 sample length experiments. For all tested algorithms,
the outputs follow the same patterns as their 15,000 sample
length equivalent, indicating that the operation of SmvMDE
remains the same regardless of time-series length. However,
for all experimental setups, the standard deviation values are
increased, with the increase being stronger for larger τ values,
as expected. Consequently, between the outputs of SmvMDE
variations, overlapping can be observed between experimental
setups that combine WGN and 1/f . This indicates that during
the analysis of multi-channel time-series, the sample size of
the window being analyzed should be larger than the respective
minimum size for mvMDE.

B. Computational Time

The results in Table II indicate that SmvMDE variations
maintain the low computational time of the original mvMDE,
as expected, since no computationally critical operations have
been modified and the linear time complexity is maintained.
Across all variations the main factor affecting the computa-
tion time is the univariate length of the time-series. When
comparing the results for experimental setups with the same
univariate length, the differences in computation time between
the original mvMDE and the SmvMDE variations become
more noticeable for higher number of channels.

TABLE II
COMPUTATIONAL TIME OF MVMDE AND SMVMDE IN SECONDS.

Samples and Channels mvMDE T ST P
1,000 samples and 2-channels 0.024 0.025 0.026 0.026
1,000 samples and 5-channels 0.061 0.059 0.064 0.065
1,000 samples and 8-channels 0.100 0.0095 0.117 0.126
3,000 samples and 2-channels 0.067 0.069 0.069 0.070
3,000 samples and 5-channels 0.177 0.171 0.183 0.187
3,000 samples and 8-channels 0.302 0.285 0.339 0.356
10,000 samples and 2-channels 0.241 0.251 0.250 0.255
10,000 samples and 5-channels 0.649 0.631 0.663 0.685
10,000 samples and 8-channels 1.182 1.029 1.240 1.254
30,000 samples and 2-channels 1.056 1.091 1.101 1.108
30,000 samples and 5-channels 2.839 2.612 2.879 2.870
30,000 samples and 8-channels 4.789 4.526 5.044 5.044

100,000 samples and 2-channels 8.048 8.067 8.202 8.181
100,000 samples and 5-channels 20.550 20.157 20.820 20.967
100,000 samples and 8-channels 33.571 32.436 35.243 35.133

The maximum differences in computation time are noted in
the experimental setup with a time-series length of 100,000
samples and 8-channels. The maximum increase of 1.672
seconds (4.98%) is noted when moving from the mvMDE to
the ST-SmvMDE algorithm while the maximum decrease of
1.135 seconds (3.38%) is noted when moving from mvMDE
to T-SmvMDE. The decrease of computation time in the case
of T-SmvMDE is an expected benefit due to the lower number
of subvectors utilised in that variation.

C. Waveform Physiological Time-Series Experiments
The results of the statistical analysis implemented on the

output entropy distributions extracted from the 235 “healthy”
and 235 “apnea” 8-channel windows using T-SmvMDE and
P-SmvMDE, are presented in Fig. 4, with each subplot cor-
responding to a different designated channel selection. The
mean Hedges’g effect size difference and the 95% confidence
intervals are plotted for each τ (1 to 10).For clarity, only the
confidence intervals that do not overlap with 0 are plotted.

ST-SmvMDE is, by design, an intermediary variation be-
tween T-SmvMDE and mvMDE. Thus, its outputs also follow
an intermediary pattern, closer to the operation of mvMDE,
leading to smaller effect size differences that are available in
the Supplementary Material document.

1) T-SmvMDE Operation: The benchmarking of T-
SmvMDE, indicates that the prioritization of the following
channels leads to consistent increases in differences between
the output entropy distributions extracted from ”healthy”
vs ”apnea” windows when moving from the application of
mvMDE to T-SmvMDE:

• ECG, RESP, and Alpha channels across all values of τ .
• Beta channel for τ values of 2 to 10.
• BP channel for τ values of 5 to 10.
The multiple cases of increase in effect size indicate that

the T-SmvMDE variation may quantify differences between
the two states that the direct application of mvMDE was not
able to highlight.

2) P-SmvMDE Operation: The respective benchmarking re-
sults for P-SmvMDE indicate that increases in difference
between the output entropy distributions are observed when
prioritizing one of the following channels:
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Fig. 2. The mean and standard deviation of output DisEn are plotted for τ values of 1 to 20 for the four experimental setups of mvMDE and the
six experimental setups of SmvMDE with time-series length of 15,000 samples. For SmvMDE, the designated channel is displayed within ().
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Fig. 3. The mean and standard deviation of output DisEn are plotted for τ values of 1 to 20 for the four experimental setups of mvMDE and the
six experimental setups of SmvMDE with time-series length of 300 samples. For SmvMDE, the designated channel is displayed within ().

• Alpha across all values of τ .
• Beta for τ values of 3 to 8.
• ECG for τ values of 7 to 10.
Consequently, the designated channels displaying increased

discrimination capacity for P-SmvMDE were also highlighted
by T-SmvMDE. However, increases observed by moving to P-
SmvMDE were smaller in magnitude and for fewer designated
channel selections compared to T-SmvMDE. Considering the
parameter values used for the SmvMDE variations in this
setup, the T-SmvMDE sets a higher prioritization to the
core stratum over the periphery compared to P-SmvMDE.
This may indicate that this particular application benefited
from implementations that defined stronger prioritization. Fur-
thermore, within the framework of Stratified Entropy, the
detection of certain prioritization cases as more effective in
extracting distinct feature distributions between physiological

states, highlights the potential for the development of feature
selection methodologies that would aim to optimize physio-
logical classification tasks.

D. Derivative Physiological Data Experiments
The DisEn differences observed when moving from the

LS to the HS state for each of the 98 exercise tests are
displayed in the boxplots of Fig. 5. Each panel corresponds
to a different designated channel selection and includes the
boxplots with the distributions of differences observed through
the application of mvMDE, T-SmvMDE, and P-SmvMDE.
The mean absolute difference observed during the application
of mvMDE is equal to 0.0894 while the respective mean
absolute differences, number of entries with increased entropy
difference compared to mvMDE and number of entries with
larger entropy during LS versus HS are displayed for each
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Fig. 4. The mean and the 95% confidence intervals of the effect size difference calculated from subtracting the multiscale mvMDE Hedges’ g effect
sizes from those of T-SmvMDE and P-SmvMDE. Each subplot corresponds to a different designated channel selection.

TABLE III
MEAN ABSOLUTE DIFFERENCE, NUMBER OF ENTRIES WITH INCREASED

ENTROPY DIFFERENCE COMPARED TO MVMDE, AND NUMBER OF

ENTRIES WITH LARGER ENTROPY DURING LS VERSUS HS.

T-SmvMDE Mean Absolute Difference Improved Positive
HR 0.093 46 64

VO2 0.093 51 49
VCO2 0.100 68 64

RR 0.115 66 87
VE 0.097 54 78

P-SmvMDE Mean Absolute Difference Improved Positive
HR 0.097 57 71

VO2 0.086 40 51
VCO2 0.095 69 67

RR 0.103 64 81
VE 0.093 53 69

SmvMDE and designated channel in Table III. Respective
information for ST-SmvMDE is available in tabular format
in the Supplementary Material document.

1) SmvMDE Operation: When benchmarking the operation
of SmvMDE to mvMDE, an improvement in differentiation
capacity is noted when the VCO2, RR, and VE channels
are designated. This improvement is consistent for both T-
SmvMDE and P-SmvMDE with increases in the mean abso-
lute difference and the entries with increased LS-HS differ-
ence. The selection of HR as a designated channel displayed
increased differentiation capacity for P-SmvMDE.

Similarly to Subsection III-C, the majority of designated
channels for which an increase in the discrimination capacity

of SmvMDE is noted are common between T-SmvMDE and
P-SmvMDE, indicating that while the two variations provide
different ways to prioritise strata, they have the capacity of
highlighting similar dynamics that were overshadowed by
traditional multivariate analysis.

It is important to note that when designating the RR channel,
the largest mean absolute difference is observed for both T-
SmvMDE and P-SmvMDE as well as the largest number of
entries where the LS DisEn values are higher than the HS ones.
This points towards a LoC process [10], [28] when moving
from a steady state to a state that induces increased stress in
the system, in alignment with the EP hypothesis [8], [29].

E. On the implementation of Stratified Entropy
1) Input Window Length: For the implementation of entropy

quantification, the selection of the c and m parameters defines
the minimum length of each channel within the input window.
The univariate DisEn algorithm is capable of analysing short-
length time-series [32] with minimum length (L) being L >
cm · τmax. The mvMDE variation of the algorithm further
improved its capacity to operate on short-length time-series
due to the utilization of larger-multivariate embedding vectors
compared to their univariate counterparts [39] leading to a
minimum length of: L > cm·τmax

(m·p
m )

. For SmvMDE variations,
the minimum input length is between the limits of univariate
DisEn and mvMDE. As shown in Subsection III-A, overlap-
ping is observed in the short-length time-series among the
large τ value outputs while analyzing the same time-series
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Fig. 5. Boxplots comparing the DisEn Entropy difference calculated when moving from LS to HS using T-SmvMDE, mvMDE and P-SmvMDE. The
plots correspond to different designated channel selections with the benchmarking values of mvMDE remaining the same. The lines connect the
difference of the same experimental pair across the output differences of each algorithm.

with different channels being prioritized. Consequently, we
would recommend the utilization of a stricter minimum, closer
to the univariate DisEn: L > cm · τmax when deploying
SmvMDE variations.

2) Number of designated channels: With m being an ex-
ponent in defining the minimum input window length, it
is important to consider that during the implementation of
Stratified Entropy, an increased value of m might be needed
when increasing the number of designated channels. In such
case, it is important ensure that there are not multiple subvec-
tors consisting entirely of samples retrieved from designated
channels which would lead to them being treated equally and
result to an output profile that would resemble that of mvMDE.
Furthermore, while an increase in the value of m would allow
additional designated channels this might not be an optimal
approach, since an overshadowing of dynamics would now
be possible to occur within the core stratum itself. Thus, we
recommend that the majority of Stratified Entropy applications
follow a conservative approach when allocating channels to the
core stratum.

3) Number of Strata: The total number of strata defined in a
Stratified Entropy implementation affects both its design and
its implementation since appropriate algorithmic steps have to
be formulated for the prioritization of channels based on their
strata allocation, while proper selection of parameter values
is required for effective operation. For example, in the case
of expanding the presented SmvMDE variations from a two
to a three strata configuration, the T-SmvMDE and the ST-
SmvMDE variations could be modified to operate with two
different t and w (in the case of ST) values based on which
strata are prioritized, while P-SmvMDE could be modified
with having two tiers of proportional factors respectively.

This design modification could be complemented with an
appropriate increase of the m value to allow samples of varied
prioritization to be included in the same subvectors similarly to
the process discussed for having multiple designated channels.

However, while the expansion of the total number of strata
is possible, it increases algorithmic complexity and restricts
the range of effective parameter values, particularly of m
as discussed above. Therefore, configurations with increased
numbers of strata might be more relevant for applications
that would clearly benefit from their utilization despite the
increased complexity, such as for example when a priori
knowledge exists with regards to a hierarchy of channels.

F. Limitations and Future Work
Our algorithmic variations illustrate successful implemen-

tations of the Stratified Entropy framework, with effective
prioritization of the channels allocated to the core stratum over
the periphery, and the extraction of novel features. However,
it is important to expand its implementation using additional
entropy quantification algorithms, such as PEn, to acquire a
more complete perspective on the utility that the framework
offers. Furthermore, due to its capacity to be applied in a
modular manner and with low computational cost, it would be
worthwhile to combine Stratified Entropy with other variations
of entropy algorithms to target specific applications. Examples
include its integration with the aforementioned non-uniform
multiscale embedding to incorporate a priori knowledge, with
optimal scale selection for each channel, or the utilization of
a fuzzy membership function in DisEn [67].

The results in the experiments of derivative physiological
data indicate a directionality in agreement with the LoC
paradigm and the EP hypothesis. Hence, it would be important
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to replicate the analyses in other datasets and study the
capacity of SmvMDE to quantify the directionality of EP
phenomena. Moreover, the combination of SmvMDE with
machine learning would allow for physiological state classi-
fication and prediction tasks. Consequently, strata allocations
should be selected with appropriate justification or through
effective feature selection processes to avoid data dredging or
overfitting.

IV. CONCLUSION

We introduce the framework of Stratified Entropy and
present three algorithmic variations for its implementation.
Stratified Entropy allows the extraction of features that would
not be accessible through traditional multivariate entropy
analysis by allowing the prioritization of certain channels’
dynamics over others’ based on the allocation of channels to
different strata. The SmvMDE variations significantly extend
mvMDE through the inclusion of algorithmic steps that priori-
tize samples extracted from channels in the prioritized stratum
during the calculation of the entropy value.

The results from the application of SmvMDE to time-
series consisting of uncorrelated WGN and 1/f noise indicate
that the variations successfully prioritize the dynamics of
the designated channel. The low computation time profile
of the original mvMDE variation is maintained due to no
computationally critical steps being modified. When applying
the SmvMDE variations to 8-channel waveform physiological
time-series, certain SmvMDE features produce distributions
with higher statistical difference between healthy versus OSA
sleep of stage 2, indicating increased discrimination capacity
of SmvMDE over mvMDE for applications that would benefit
from a stratification of the time-series’ channels. The respec-
tive results from low temporal resolution derivative physiologi-
cal data further highlight the increased discrimination capacity
of SmvMDE and its potential use to detect the directionality
of “entropy pump phenomena”.

The presented framework is flexible with regards to the
number of channels allocated to the prioritized stratum and
the total number of strata. Furthermore, it can be extended
to other entropy quantification algorithms and combined with
machine learning. Consequently, with appropriate algorithmic
design and parameter configuration, we expect the framework
of Stratified Entropy to provide novel and effective method-
ologies for the extraction of viable physiological information.
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and H. Butt, “Wearables in Medicine,” Adv. Mater., vol. 30, no. 33, p.
1706910, Aug. 2018.

[2] D. R. Witt, R. A. Kellogg, M. P. Snyder, and J. Dunn, “Windows into
human health through wearables data analytics,” Current Opinion in
Biomedical Engineering, vol. 9, pp. 28–46, Mar. 2019.

[3] C. W. Paine, V. V. Goel, E. Ely, C. D. Stave, S. Stemler, M. Zander,
and C. P. Bonafide, “Systematic Review of Physiologic Monitor Alarm
Characteristics and Pragmatic Interventions to Reduce Alarm Frequency:
Review of Physiologic Monitor Alarms,” Journal of Hospital Medicine,
vol. 11, no. 2, pp. 136–144, Feb. 2016.

[4] S. Cerutti, “Multivariate and multiscale analysis of biomedical signals:
Towards a comprehensive approach to medical diagnosis,” in 2012 25th
IEEE International Symposium on Computer-Based Medical Systems
(CBMS). Rome, Italy: IEEE, Jun. 2012, pp. 1–5.

[5] E. Pereda, R. Q. Quiroga, and J. Bhattacharya, “Nonlinear multivari-
ate analysis of neurophysiological signals,” Progress in Neurobiology,
vol. 77, no. 1-2, pp. 1–37, Sep. 2005.

[6] S. Cerutti, D. Hoyer, and A. Voss, “Multiscale, multiorgan and multi-
variate complexity analyses of cardiovascular regulation,” Phil. Trans.
R. Soc. A., vol. 367, no. 1892, pp. 1337–1358, Apr. 2009.

[7] R. P. Bartsch, K. K. L. Liu, A. Bashan, and P. C. Ivanov, “Network
Physiology: How Organ Systems Dynamically Interact,” PLoS ONE,
vol. 10, no. 11, p. e0142143, Nov. 2015.

[8] R. Fossion, A. L. Rivera, and B. Estañol, “A physicist’s view of
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Carrión, M. I. J. Ávila, J. C. Valladares-Garcı́a, P. E. Vanegas-Cedillo,
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