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Organoids as tools to
investigate gastrointestinal
nematode development and
host interactions
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Gastrointestinal nematodes are a diverse class of pathogens that colonise a

quarter of the world’s human population and nearly all grazing livestock. These

macroparasites establish, and somemigrate, within host gastrointestinal niches

during their life cycles and releasemolecules that condition the host mucosa to

enable chronic infections. Understanding how helminths do this, and defining

the molecules and mechanisms involved in host modulation, holds promise for

novel strategies of anthelmintics and vaccines, as well as new knowledge of

immune regulation and tissue repair. Yet the size and complexity of these

multicellular parasites, coupled with the reliance on hosts to maintain their life

cycles, present obstacles to interrogate how they interact with the gastric and

intestinal epithelium, stroma and immune cells during infection, and also to

develop protocols to genetically modify these parasites. Gastrointestinal

organoids have transformed research on gastric and gut physiology during

homeostasis and disease, including investigations on host-pathogen

interactions with viruses, bacteria, protozoa and more recently, parasitic

nematodes. Here we outline applications and important considerations for

the best use of organoids to study gastrointestinal nematode development and

interactions with their hosts. The careful use of different organoid culture

configurations in order to achieve a closer replication of the in vivo infection

context will lead not only to new knowledge on gastrointestinal nematode

infection biology, but also towards the replication of their life cycles in vitro,

and the development of valuable experimental tools such as genetically

modified parasites.

KEYWORDS

organoid, gastrointestinal nematodes, gastric epithelium, intestinal epithelium, host-
parasite interactions, immunomodulation, nematode life cycles
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Introduction

The gastrointestinal (GI) tract is a complex enclosed system

composed of multiple organs that, together with commensal

microbes, is responsible for the digestion and absorption of

nutrients and for the protection against incoming pathogens.

Pathogen infections impact many aspects of GI function and

thus can contribute to disease; however, it has been challenging

to model infection processes in vitro. Organoids systems have

greatly improved the ability to study the GI epithelium in vitro:

by culturing either induced pluripotent stem cells or isolated

tissue adult stem cells this technology successfully recapitulates

the key features of the in vivo epithelium (Puschhof et al., 2021).

Organoids have been used to identify new interactions of the GI

epithelium with a plethora of microparasites, including viruses

(e.g. enabling the culture of norovirus for the first time) (Ettayebi

et al., 2016), bacteria (e.g. Helicobacter pylori, Escherichia coli)

(McCracken et al., 2014; Pleguezuelos-Manzano et al., 2020),

and protozoa (e.g. Cryptosporidum parvum) (Heo et al., 2018).

Organoid cultures have helped build a deeper understanding of

these infections, and their links to disease such as cancer, and

these applications have been reviewed extensively elsewhere

(Bartfeld, 2016; Dutta and Clevers, 2017; Dutta et al., 2017;

Barrila et al., 2018; Duque-Correa et al., 2020a; Puschhof

et al., 2021).

The GI epithelium is also a niche for macroparasites,

including GI nematodes, which infect a quarter of the world’s

human population and all grazing livestock (Loukas et al., 2016;
Frontiers in Cellular and Infection Microbiology 02
Jourdan et al., 2018; Charlier et al., 2020; Else et al., 2020). GI

nematodes are multicellular pathogens that establish chronic

infections, resulting in modifications of the GI epithelium that

could be driven by the parasites and their excretory/secretory

(ES) molecules, or indirectly by host immune responses to

infection (Coakley and Harris, 2020). While there is good

understanding of the immune drivers of epithelial

modification during GI nematode infection, the direct actions

of the parasites and their products on the epithelium remain

largely unknown. To date, this research has mostly used animal

infection models (Coakley and Harris, 2020; Duque-Correa

et al., 2020a; Baska and Norbury, 2022), in which teasing out

the direct impact of nematodes on the epithelium is difficult.

Moreover, for the majority of human infective GI nematodes, no

animal host systems are available, which has limited our ability

to directly study nematode-host interactions in these species.

Organoids are a promising methodology to overcome these

barriers and to provide a mechanistic understanding on the

effects of these parasites on their host niches. However, using

organoids in GI nematode research is not trivial since GI

nematodes are generally 10-10,000 fold larger than viruses,

bacteria and protists (Figure 1) and have longer, and in some

cases intricate, life cycles where the parasites interact with

multiple cells and organs. In this Perspective, we detail how

the study of GI nematode-epithelial interactions has interfaced

with development of organoids and describe the potential

applications of these systems for advancement of GI

nematode research.
FIGURE 1

Comparison of sizes of examples of microorganisms that have been co-cultured with GI organoids with those of different life stages of the GI
nematode Trichuris muris alongside a GI organoid. Values refer to the approximate diameter or length of each organism, images not to scale.
Created with BioRender.com.
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Organoids as models of GI
nematode niches

GI nematodes have a tropism for specific organs of the GI

tract of their host e.g. whipworms colonise the caecum and

proximal colon, hookworms and threadworms establish in the

small intestine, while sheep GI parasites find a niche in the

abomasum. In vivo the epithelium of these organs/regions vary

greatly in their cell type content, mucus layer composition and

thickness, size, architecture, and expression of toll-like receptors,

and these features are replicated to some extent by their

respective organoid cultures (Mowat and Agace, 2014; Price

et al., 2018; Duque-Correa et al., 2020a; Kayisoglu et al., 2021).

Traditional organoid cultures use basement membrane

extracts (BME), which mimic the laminin rich extracellular

matrix, alongside the supplementation of key growth factors

and morphogens that are specific to the host and organ of origin,

and allow for the division and differentiation of stem cells

(reviewed elsewhere) (Sato and Clevers, 2013; Beumer and

Clevers, 2020; Hou et al., 2020). These cultures result in self-

organised three-dimensional (3-D) structures that display

cellular polarisation, with the apical surface of the epithelium

facing inwards towards the lumen (basal-out), and that are

capable of differentiating into multiple cell types of the

epithelium of origin (Kayisoglu et al., 2021; Puschhof et al.,

2021). Apical-out organoids are an alternate approach to 3-D

organoid cultures that allows access to the apical surface of the

epithelium. Apical-out organoids are generated by mechanical

disruption of traditional 3-D organoids followed by suspension

culture in the absence of BME. This procedure induces the

inversion of the polarity and repair of the epithelium, thus the

apical membrane faces outwards, while the organoid 3-D

structure is maintained (Co et al., 2019; Co et al., 2021).

Organoids can also be cultured in a 2-D conformation by

dissociating 3-D organoids into single cell suspensions that are

seeded into either cell culture plates, or semi-permeable

membranes (tranwells) coated with BME, laminin or collagen

(Moon et al., 2014; Aguilar et al., 2021). 2-D organoids maintain

cellular polarisation and show a degree of crypt-like spatial

organisation, albeit to a lesser extent than 3-D cultures. 2-D

organoids grown on semi-permeable membranes create a model

with physically separated apical and basal culture compartments,

which allows for greater control over delivery of growth factors,

cytokines, pathogens and other cellular populations, to either the

basal or apical membrane of the epithelium (Moon et al., 2014;

Kozuka et al., 2017; Duque-Correa et al., 2020a; Aguilar et al.,

2021; Puschhof et al., 2021). 2-D organoids grown on semi-

permeable membranes also enable longer culture lengths than 3-

D models with recent studies extending culture for up to 2

months (Boccellato et al., 2019).

Recently, more advanced technologies that allow for

enhanced recapitulation of in vivo structure and physiology
Frontiers in Cellular and Infection Microbiology 03
have been developed through the use of micro-engineered

scaffolds or microfluidic chips (termed organ-on-a-chip)

(Hofer and Lutolf, 2021). Micro-engineered scaffolds constrain

the architecture of growing organoids to physical boundaries

that mimic in vivo structures dimensions. For example, using

collagen scaffolds, enteroids successfully replicated crypt and

villus architecture, and allowed for long-term culture for up to 4

weeks (Wang et al., 2017; Nikolaev et al., 2020). Micro-

engineered scaffolds and other microchip formats are also

capable of reproducing additional physiological aspects not

present in 3-D or 2-D organoids, such as a fluid flow rate,

shear forces, stimulation of peristalsis, automated nutrient

supply and waste removal (Kasendra et al., 2018; Nikolaev

et al., 2020; Yin et al., 2021). For instance, vascularisation can

be mimicked using microchips containing multiple

microcompartments: the lower compartment is seeded with

endothelial cells while the upper is seeded with 3-D human

enteroid cells. In this system, the presence of underlying

endothelium and a fluid flow rate enhanced the differentiation

of the epithelium (Kasendra et al., 2018; Yin et al., 2021).

The different dimensional conformations in which

organoids can be cultured could be exploited to model the

diverse interactions of GI nematodes with their host during

invasion and colonisation of tissues, and as systems to

investigate nematode modification of the epithelium and host

immunomodulation during infection. In the next sections, we

will discuss important considerations on the use of organoids to

investigate these biological processes.
Unravelling GI nematode invasion
using organoids

Infection of the GI tract by nematodes occurs via

ingestion/swallowing of parasite eggs or infective larvae.

The first crucial step for GI nematodes to establish a

successful infection is the sensing by the parasites of a

suitable environment to hatch and/or invade the host

epithelium (Mkandawire et al., 2022). The specific cues,

signalling pathways and mechanisms behind these processes

are currently not well defined, but represent a key stage for

intervention in the transmission of these parasites.

Organoids are an attractive model for understanding GI

nematode invasion because they recapitulate many

physicochemical and cellular characteristics of the in vivo host

niche that may promote infection. Moreover, organoids could

allow real time visualisation of invasion dynamics, which cannot

be investigated using animal models. For example, murine

caecaloids reproduce the mucus layer and cellular composition

of the caecal epithelium and successfully promote the epithelium

invasion and formation of syncytial tunnels by Trichuris muris

first-stage (L1) larvae in vitro (Duque-Correa et al., 2022).
frontiersin.org
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When developing organoid models to study GI nematode

invasion, it is critical to consider which surface of the epithelium

the parasites are in contact with when interacting with their

hosts in vivo. For GI nematodes that invade apically, modelling

invasion using 3-D organoids is difficult due to the large size of

the parasites (Figure 1). Smaller organisms such as viruses,

bacteria or protists can be delivered to traditional (basal-out)

3-D organoids by microinjection, or by shearing of the organoids

followed by co-incubation (Aguilar et al., 2021; Puschhof et al.,

2021). However, microinjection is not suitable for delivery of any

life stage of GI nematodes, as even eggs and larval stages are too

large for the microinjection needles, and the luminal volume of

3D-organoids is not big enough to host the parasites (Duque-

Correa et al., 2020a). Moreover, shearing of 3-D organoids

followed by co-incubation with whole parasites is unlikely to

result in their successful incorporation into the organoid lumen.

An alternative method to deliver live GI nematodes into the

lumen of traditional 3-D organoids is their addition to the

organoid culture media. This strategy was used to infect both

ovine and bovine abomasum organoids with Teladorsagia

circumcinta and Ostertagia ostertagi, respectively (Smith et al.,

2021; Faber et al., 2022). Strikingly, T. circumcinta and O.

ostertagi L3 larvae migrated through the BME and transversed

the organoid membrane, from the basal to apical side into the

lumen (Smith et al., 2021; Faber et al., 2022). L3 larvae of O.

ostertagi also transversed bovine organoids from the apical to the

basal side (Faber et al., 2022). However, as the authors noted, T.

circumcincta and O. ostertagi are not previously described to

cross the epithelial barrier during their life cycles, instead they

are thought to invade through gastric neck opening of gastric

glands (Smith et al., 2021; Faber et al., 2022). Whether

transversion of the epithelium occurs in vivo or is unique to

these cultures is unknown (Faber et al., 2022). Similarly, it is not

known if other GI nematodes co-cultured in this fashion can

invade the BME and migrate across the epithelium into the

organoid lumen.

2-D organoids grown in semi-permeable membrane systems

allow for both basal and apical delivery of GI nematodes, which

is advantageous for the in vitro modelling of invasion by some

species. For instance, L3 Heligmosomoides polygyrus bakeri

larvae burrow from the GI lumen through the epithelium into

the submucosa, where they moult twice to reach adulthood; the

adult parasites then transverse the epithelium to emerge into the

duodenal lumen (Camberis et al., 2003). Therefore, apical

delivery would be better suited to studies on invasion of the

epithelium by L3 H. bakeri, while basal delivery of H. bakeri

adult parasites could mimic conditions for re-emerging into

the lumen.

2-D organoid systems also enable the study of interactions

between the mucus layer and GI nematodes. The mucus layer, or

layers in the case of the caecum and colon, overlays the epithelial

cells and acts as a substantial physical barrier that protects the

epithelium from incoming luminal contents, microbiota and
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pathogens (Herbert et al., 2009; Bergstrom and Xia, 2022). GI

nematodes need to transverse the mucus layer(s) to reach the

epithelial cells, but the mechanisms used by the parasites are not

well understood. On the other hand, the mucus layer could

provide uncharacterised cues for parasite egg hatching and

larvae invasion. Thus, modelling the mucus barrier in an

accessible way is important for investigations of GI nematode

invasion. Studying these processes in vivo is challenging due to

the size of infective larvae and the lack of protocols to generate

stably labelled nematodes for in vivo imaging (Duque-Correa

et al., 2022). For instance, in vivo studies on mucus degradation

by L1 T. muris larvae during invasion of the caecal epithelium

are impeded by the small ratio of larvae versus caecal epithelial

cells, which dilutes any effects the larvae have on the mucus

layer. However, using 2-D transwell caecaloid cultures in which

higher numbers of L1 larvae to a smaller surface area can be

achieved, degradation of mucus during early infection was

detectable (Duque-Correa et al., 2022).
In vitro modelling of epithelial
changes and immunomodulation
during GI nematode infection

A major focus of GI nematode research is on understanding

the impact of parasite ES products on the modulation of host

tissues (Maizels et al., 2018). Research in this area has focussed

on the effects these molecules on immune cells. However, during

GI nematode infection there are significant modifications of the

host GI epithelium that result in parasite expulsion, or that

promote parasite persistence (Coakley and Harris, 2020).

Currently, little is known on the specific interactions and

mechanisms by which GI nematodes and their ES molecules

alter epithelial cell proliferation and differentiation (Maizels

et al., 2018; Duque-Correa et al., 2020a).

Due to the complex cellular make up in vivo, teasing apart

the direct effects of the parasites and their ES products on the

epithelium from those driven indirectly by host immune

responses using animal models is challenging. On the other

hand, the reductionistic nature of organoid cultures enables the

introduction of live parasites, ES products and immune factors

in a controlled manner, and thus they allow the dissection of

their individual effects on the GI epithelium. For instance,

several GI nematode infections, including H. bakeri, induce

goblet and tuft cell hyperplasia with subsequent increases in

mucus and alarmin production that mediate parasite expulsion

(Coakley and Harris, 2020; Baska and Norbury, 2022). The

goblet and tuft cell hyperplasia is a consequence of host

production of the cytokines interleukin (IL) 25, IL4 and IL13

in a feed-forward loop that is driven by tuft cell sensing of

nematode infection (Howitt et al., 2016; Von Moltke et al., 2016;

Schneider et al., 2018; Luo et al., 2019). In parallel, GI nematodes
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immunomodulatory molecules act to minimise these responses

in order to persist in their hosts. To understand how this is

achieved, Drurey et al. added adult H. bakeri ES products to the

media of traditional basal-out 3-D enteroids and observed this

co-culture resulted in suppression of tuft cell differentiation

(Drurey et al., 2021). Surprisingly, this effect was maintained

when ES treatment was given in combination with IL4 and IL13,

indicating that H. bakeri ES products conteract the tuft cells

hyperplasia driven by the immune response to the parasite

despite an overall increase in tuft cell during in vivo infection

(Gerbe et al., 2016; Howitt et al., 2016; Von Moltke et al., 2016;

Drurey et al., 2021). However, because adult H. bakeri parasites

reside within the lumen of the small intestine and thus interact

with the apical surface of the epithelium, it is unclear how this

co-culture approach where the ES products are in contact with

the basal membrane, reflects in vivo interactions.

Accordingly, the use of organoids to model host– parasite ES

product interactions requires careful consideration of epithelium

polarity. The apical and basolateral epithelium have different

functions partly defined by the differential localisation of

proteins including receptors (Weisz and Rodriguez-Boulan,

2009). Therefore, the accessibility to target receptors could

influence the detection of functional effects and should

ultimately determine how parasites and their products are

delivered when designing organoid experiments. Unlike live

nematodes, ES products can be delivered into the organoid

lumen via microinjection. For example, extracellular vesicles

(EVs) derived from T. muris, Ascaris suum and Nippostrongylus

brasiliensis have been successfully microinjected into traditional

3-D organoids, replicating parasite interactions with the apical

membrane of the host epithelium (Eichenberger et al., 2018a;

Eichenberger et al., 2018b; Chandra et al., 2019; Duque-Correa

et al., 2020b). However, microinjection is laborious, does not

allow control over the volume/dose injected, and requires

specialised equipment and training (Duque-Correa et al.,

2020a). Multiple studies have administered ES products from

GI nematodes to the culture media of 3-D organoids with the

assumption that functional molecules will diffuse through the

BME and find their target cells (Drurey et al., 2021; Karo-Atar

et al., 2021; Faber et al., 2022). Results from these experiments

should be cautiously interpreted as depending on the localisation

of the particular parasite life stage this method of delivery may

not replicate in vivo infection context. Alternatively, apical-out

organoids could facilitate the replication of interactions of GI

nematodes with the apical epithelium and thus, may be used in

future studies (Smith et al., 2021).

2-D organoids grown in semi-permeable membranes

overcome the limitations of 3-D organoids by allowing a more

accurate modelling of the stimuli the epithelial cells encounter

during infection. This includes: 1) the controlled (dose and

volume) co-culture of nematodes or their ES products with the

apical or basal compartment that mimics the interactions of

larval and adult stages with the GI epithelium, and 2) the
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stimulation with cytokines on the basal compartment to

replicate interactions with immune cells that can occur before

or after exposure to ES products.

To advance our understanding of how nematode ES

interacts with the host epithelium and the functional

implications of these interactions on underlying cells, it will be

beneficial to introduce additional cell types such as immune and

stromal cells, or microbiota, alongside organoids (Duque-Correa

et al., 2020a; Sasaki et al., 2020; Puschhof et al., 2021). Adding

immune or stromal components to 2-D or micro-engineered

scaffold organoid cultures at controlled timings could be used to

model nematode-host interactions during either primary or

secondary infections, or to increase numbers of rare cell types

of interest for experimental purposes which are difficult to study

in vivo due to low numbers.
Organoids as systems to recreate
the life cycles of GI nematodes

While organoids have been used to study interactions of the

GI epithelium with parasitic nematodes or their ES products at a

specific developmental stage, their application to recreate the life

cycle of these parasites has not been explored yet. Developing in

vitro systems that support a part or the entire life cycle of GI

nematodes will enable studies on their developmental biology

and basic requirements for moulting. In vitro life cycles would

also permit real time observation of the behaviour of the

parasites while they undergo the transitions between larval and

adult stages. Moreover, these models could allow the

investigation of the host-nematode interactions across the life

cycle of the parasites, not being restricted to any specific life

stage. In vitro life cycles could also hold particular value in the

capacity to genetically engineer parasites, where targeted

mutagenesis of specific life stages may be required to achieve

genetic modification.

A key advantage of organoids is that they enable studies on

GI nematodes with cells derived from their own host. Thus,

organoids could overcome barriers in research focused on

aspects of the infection that are host-restricted and cannot be

replicated using an animal model due to significant interspecies

differences (Duque-Correa et al., 2020a). This is particularly

relevant for human GI nematodes that do not have any system

for investigation besides controlled infections that have limited

experimental read outs (Diemert et al., 2018; Alabi et al., 2021;

Pritchard et al., 2021). The lack of models for human infective

nematodes has driven the use of nematode parasites of rodents

or other mammals, which have similar life cycles or induce

comparable pathogenesis as human infective species.

Specifically, T. muris as a natural whipworm of mice serves as

a model of T. trichiura (Klementowicz et al., 2012; Else et al.,

2020). The rodent hookworms H. bakeri and N. brasiliensis do

not model the full life cycle of any significant human pathogen
frontiersin.org
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but have similar life cycles to Ancylostoma ceylanicum and A.

caninum and Necator americanus, respectively (Camberis et al.,

2003; Bouchery et al., 2017). Moreover, Trichinella spiralis,

Ascaris suum and T. suis infect pigs, and T. vulpis, A.

duodenale, A. ceylanicum and A. caninum can infect dogs,

making pigs and dogs viable animal models for the study of

GI nematodes (Jenkins, 1970; Hendrix et al., 1987; Gottstein

et al., 2009; Pittman et al., 2010; Dold and Holland, 2011;

Shepherd et al., 2018). However, the use of large mammals as

animal models has considerable limitations including the

requirement for specialised housing facilities, associated cost of

maintaining these animals, ethical considerations, and the

limited ability to track host-parasite interactions over the

course of infection in these models.

The recreation of the life cycle of human and livestock GI

nematodes in vitro using organoids could revolutionise the

helminthology field by al lowing not only a better

understanding of their pathogenesis but also of their

“beneficial” effects on the control of inflammation. Organoids

could become a key tool to interpret the results of controlled

hookworm and whipworm human infections (Diemert et al.,

2018; Alabi et al., 2021; Chapman et al., 2021) and on the

identification of parasite ES molecules produced by specific

larval/adult stages that mediate anti-inflammatory actions of

GI nematodes (Maizels et al., 2018). Moreover, organoids could

also have a great impact on the development of new

anthelmintics and on studies of anthelmintic resistance by

allowing investigations on the effects of drugs on the different

life cycle stages. Overall, organoids would allow a reduction and,

in some cases, a complete replacement of the use of animals in

GI nematode research.
Considerations and challenges on
the development of in vitro life
cycles of GI nematodes using
organoids

The life cycles of GI nematodes range from those that are

simple, usually taking place in one organ upon ingestion, to

complicated ones, involving migration through different tissues

(Bouchery et al., 2017). While “body-on-a-chip” technologies are

being developed, they are still in their infancy, thus the complete

in vitro modelling of complicated life cycles, such as those of

hookworms (N. americanus, A. duodenale, N. brasiliensis),

roundworms (Ascaris spp) and threadworms (Strongyloides

stercoralis, S. venezuelensis and S. ratti) is not foreseeable soon.

In contrast, GI organoids, and organ-on-a-chip technologies

could serve as systems to recreate a part (limited to the stages

that take place in the GI tract) or the complete life cycle of some

GI nematodes.
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would need to replicate the key host features and interactions

that serve as cues for the invasion of tissues, growth and

moulting of the parasites. Some limitations of current

organoids systems to reproduce such cues are their lack of

vascularization and innervation. Moreover, while some of the

interactions of the epithelium with other cells present in the

organ and microbiota can be recreated by the co-culture of

organoids with immune and stromal cells and few bacterial

species, the full complexity of the tissue is far from

being modelled.

To enable the growth and moulting of GI nematodes,

organoid cultures should provide an area/volume that

accommodates the different life stages, which can range from a

few hundred micrometres in the eggs and infective stages up to

centimetres in the adults of Ascaris spp. In addition, to support

life cycle transitions organoid systems sustaining long-term

culture would be required as life cycles can take from days

to months.

Among GI nematodes, the recreation of the life cycle of T.

spiralis in enteroids should be the most straightforward, as

already Caco-2 cells sustain L1 invasion, moulting, ecdysis,

development to adulthood and reproduction of the parasite in

only 4-6 days of culture (Gagliardo et al., 2002). Because

organoids better replicate the intestinal epithelium than Caco-

2 cells, this system would allow an enhanced understanding of

the mechanisms used by T. spiralis to establish and moult in its

intra-multicellular niche.

Like T. spiralis, T. trichiura and T. muris inhabit multi-

intracellular epithelial burrows but in the caecum and

proximal colon of their hosts (Else et al., 2020). We have

recently developed an in vitro model using murine

caecaloids grown in transwells that recapitulates the early

events of infection by T. muris L1 larvae (Duque-Correa

et al., 2022). We are currently using this model to further

recreate the life cycle of T. muris, which in vivo takes around

32 days. We have maintained whipworm-infected caecaloids

for several weeks and preliminary data indicate that this

system supports growth and moulting of whipworms

(personal communication). These results would indicate

that the interactions of whipworm larvae with the caecal

epithelium are sufficient to support parasite development.

However, optimisation of this model is still required to

improve the numbers of whipworms reaching late larval

stages potentially by removing accumulating mucus and

dead cells and preventing the exit of larvae from their

syncytial tunnels during moulting.

Though H. bakeri is a rodent parasite, it has enormously

contributed to the knowledge of Type 2 immunity, and

research on its immunomodulatory products and their

potential therapeutic effect on inflammatory diseases is an

area undergoing intense study (McSorley and Maizels, 2012;
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Maizels et al. , 2018; Maizels, 2020). Therefore, the

development of an in vitro life cycle for this parasite would

greatly benefit those investigations. However, there are

challenges to creating such a model. First, the requirement

of infective L3 larvae to ex-sheath in the stomach before

infecting the small intestine (Camberis et al., 2003), which

suggests the need of both gastric and intestinal organoids for

an in vitro system. Second, the creation of complex models

mimicking not only the epithelia but also the gastric and

small intestinal mucosa and including an outer muscularis

layer of the small intestine, where the L3 larvae migrate to ex-

sheath and moult to reach adulthood, respectively (Camberis

et al., 2003; Bouchery et al., 2017).

Finally, vascularization of organoids or supplementation

with blood or its components would be required in an in vitro

system sustaining GI nematodes that feed from blood such as

hookworms and Haemonchus contortus (Roeber et al., 2013;

Loukas et al., 2016; Ehsan et al., 2020).
Outlook

The advancement of organoid technologies in the last

decade has synergised with increased interest and research on

the mechanisms by which GI nematodes interact and

manipulate gastric and intestinal epithelia during their life

cycles. A particular strength of organoids is that they enable

the direct effects of these multicellular parasites and their ES

products on the epithelium to be dissected and uncoupled

from the changes that result to this tissue due to the immune

response to infection. Already from research using organoids

in the last years we have learned how GI nematodes and their

products degrade mucus during invasion of the epithelia and

can directly impact stem cell differentiation and epithelial cell

signalling altering their epithelial niches. These findings

reveal the value in integrating studies of GI nematodes and

their immune modulatory products with those of gut

physiology and stem cell biology. Needed future advances

on organoid platforms include the incorporation additional

cells from the stem cell niche (immune, stromal and neural

cells) and the modelling of parameters that impact physiology

and function of this tissue, which may also be targeted by the

parasites. Further cross-disciplinary initiatives combining

parasitology with stem and epithelial cell biology will be

pivotal for the advancement of in vitro systems that can

replicate the in vivo host-parasite interactions and life

cycles of GI nematodes. These concerted efforts could reveal

new signalling mechanisms relevant to multiple disease

contexts, and could also help pinpoint the reliance of GI

nematodes on host physiology, potentially pointing to new

strategies for anthelmintics (most of which were developed

more than 50 years ago and show mounting issues with
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resistance). Finally, a still un-tapped application of

organoids is in the ability to maintain and track individual

parasites for extended periods, across multiple life stages.

Ultimately, this ability could enable screening and selection of

parasites for genetic modification, a missing platform on the

research on GI nematodes.
Data availability statement

The original contributions presented in the study are

included in the article/supplementary material. Further

inquiries can be directed to the corresponding author.
Author contributions

RW wrote sections of the manuscript regarding the use of

organoids as models of GI nematode niches and contributed to

the formatting and referencing of the text. FB created the

figure accompanying the manuscript and contributed to the

article Introduction. AB supported the writing of the

introduction and outlook sections. MAD-C contributed to

the writing and editing of all sections of the manuscript. All

authors edited the article and approved the submitted version.
Funding

MD-C is supported by a Sir Henry Dale Fellowship jointly

funded by the Wellcome Trust and the Royal Society (Grant

Number 222546/Z/21/Z)’. RW is funded by the Darwin Trust.

FB and AB are supported by ERC Consolidator Award

101002385 to AB.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.976017
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


White et al. 10.3389/fcimb.2022.976017
References
Aguilar, C., Alves da Silva, M., Saraiva, M., Neyazi, M., Olsson, I. A. S., and
Bartfeld, S. (2021). Organoids as host models for infection biology – a review of
methods. Exp. Mol. Med. 53, 1471–1482. doi: 10.1038/s12276-021-00629-4

Alabi, A., Hussain, M., Hoogerwerf, M.-A., Mengome, C. N., Egesa, M., Driciru,
E., et al. (2021). Establishing a controlled hookworm human infection (CHHI)
model for Africa: A report from the stakeholders meeting held in lambaréné,
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