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Citation data and journal impact factors are important
components of faculty dossiers and figure prominently in both
promotion decisions and assessments of a researcher’s broader
societal impact. Although these metrics play a large role in
high-stakes decisions, the evidence is mixed about whether
they are strongly correlated with indicators of research quality.
We use data from a large-scale dataset comprising 45 144
journal articles with 667 208 statistical tests and data from 190
replication attempts to assess whether citation counts and
impact factors predict three indicators of research quality: (i)
the accuracy of statistical reporting, (ii) the evidential value
of the reported data and (iii) the replicability of a given
experimental result. Both citation counts and impact factors
were weak and inconsistent predictors of research quality, so
defined, and sometimes negatively related to quality. Our
findings raise the possibility that citation data and impact
factors may be of limited utility in evaluating scientists and
their research. We discuss the implications of these findings in
light of current incentive structures and discuss alternative
approaches to evaluating research.
1. Introduction
Researchers and university administrators often assume that
journal impact factors (JIFs) and citation counts are indicators of
research quality (e.g. [1,2]). This assumption seems plausible:
high-impact journals may seem to have a more selective and
rigorous review process, thereby weeding out lower-quality
research as a consequence. One might also view citation counts
as reflecting something akin to the wisdom of the crowd
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whereby high-quality research garners more citations than low-quality research. One need not look far to
see these assumptions on display: universities often promote bibliometric indices such as citation counts
and journal impact factors as indices of ‘impact’ or ‘quality’, academic departments use these metrics for
important decisions such as hiring, tenure and promotion, and science journalists promote research from
high-impact journals. It is also common for authors to equate impact factors and citation counts with
quality [2,3]—an assumption that appears in university promotion and tenure policies [1]. For
instance, in their review of promotion policy documents, McKiernan et al. [1] found that the vast
majority of institutions that include impact factors describe them as positive indicators of quality,
significance, importance or impact. The inclusion of these metrics in high-stakes decisions starts with
the assumption that there is a positive and meaningful relation between the quality of one’s work on
the one hand, and impact factors and citations on the other. This raises the question, are we justified
in thinking that high-impact journals or highly cited papers are of higher quality?

Before proceeding, it is important to note that citation counts and JIFs are often treated as variables to
be maximized, under the assumption that high citation counts and publishing in high-impact journals
demonstrate that one’s work is of high quality. This view implicitly places these variables on the left-
hand side of the prediction equation, as if the goal of research evaluation is to predict (and promote)
individuals who are more likely to garner high citation counts and publish in high-impact-factor
journals. This view, whether implicitly or explicitly endorsed, is problematic for a variety of reasons.
First, it neglects the fact that citation counts themselves are determined by a host of factors that may
be unrelated to research quality, or for that matter even unrelated to the science being evaluated [4–6].
For instance, citation counts covary with factors such as the length of the title and the presence of
colons or hyphens in the title [7,8] and are correlated with other non-scientific variables, such as the
size of one’s social network [9], the use of social media and the posting of preprints on searchable
archives [10–14]. Citation counts also tend to be higher for papers on so-called ‘hot’ topics and for
researchers with greater citation-based reputations [15]. Not only are researchers incentivized to
maximize these, but it is also easy to find advice on how to game them [16–18].

Second, treating these variables as values to be maximized invites problematic inferences such as
inferring that mentorship quality varies by gender simply because students of male mentors tend to
enjoy a citation advantage (see the now retracted paper by AlShebli et al. [19]), and even perpetrate
systemic inequalities in career advancement and mobility due to biases in citation patterns that
disfavour women and persons from underrepresented groups [20,21]. Finally, treating citations and
impact factors as the to-be-maximized variables may alter researchers’ behaviours in ways that can
undermine science [22]. For example, incentivizing researchers to maximize citations may lead
researchers to focus on topics that are in vogue regardless of whether doing so addresses key questions
that will advance their field.

If we instead think of citation counts and impact factors as predictors of influential and quality science,
we can ask whether they are valid proxies for assessing key aspects of the quality of a researcher. To be clear,
these metrics are not and cannot be considered direct measures of research quality. But of course, addressing
this question requires a way of measuring quality that is independent of citation counts. Past work on this
topic has primarily addressed the issue by relying on subjective assessments of quality provided by experts
or peer reviews. On balance, these studies have shown either weak or inconsistent relationships between
quality (broadly defined by the authors) and citation counts (e.g. [23–25]). One challenge in relying on
subjective assessments is that their use assumes that the judges can reliably assess quality—an
assumption that has been challenged by Bornmann et al. [26], who showed that the inter-rater reliability
of peer review ratings is extremely poor. Indeed, controlled studies of consistency across reviewers also
indicate a surprisingly high level of arbitrariness in the review process (see [27–29]). Peters & Ceci [29],
for instance, resubmitted 12 articles (after changing the author names) that had previously been accepted
for publication in psychology journals and found that the majority of the articles that had been accepted
initially were rejected the second time around based on serious methodological errors. Similarly,
Larwence & Cortes [30] reported a high degree of arbitrariness in accepted papers submitted to the
Neural Information Processing Systems annual conference, widely viewed as one the premier peer-reviewed
outlets in machine learning. In this study, a random sample of submissions went through two
independent review panels; the authors estimated that 60% of decisions appeared to arise from an
arbitrary process. By comparison, a purely random process would have yielded an arbitrariness
coefficient of 78%, whereas a process without an arbitrary component would have yielded a coefficient of
0%. If reviewers who are specifically tasked with judging quality cannot agree on the acceptability of
research for publication, then it is unlikely that impact factors or citation counts, which themselves are
dependent on the peer review process, are reliable indicators of quality.
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Several issues have been raised with the use of bibliometrics for faculty evaluation and the incentive
structure for appointments, tenure and promotion. First, there is growing concern about the improper use
of bibliometrics when evaluating faculty. This concern has been expressed by several scholars [4,31–33]
and has been codified in the San Francisco Declaration on Research Assessment (DORA)—a statement
that has been endorsed by hundreds of organizations, including professional societies such as the
Association for Psychological Sciences. Second, several recent analyses challenge traditional orthodoxy
that bibliometrics are valid indicators of research quality. For instance, Fraley & Vazire [34] and
Szucs & Ioannidis [35] report a moderate negative correlation (approx. −0.42) between impact factor
and statistical power in the domains of social psychology and cognitive neuroscience, respectively (see
also [36,37]). Despite these results and repeated calls for scaling back the use of bibliometrics in
research evaluation, their use is still widespread in evaluating faculty job candidates and promoting
them on the basis of their research trajectory [1].

The use of impact factors and citation counts as indices of a scholar’s future performance also
highlights that these metrics are not only used retrospectively, they are also intended to be diagnostic
of how scholars will perform in the future. One of the principle functions of the hiring and tenure
processes is prediction: the goal is to predict (and select) scientists with the most promise for
advancing science. Realizing this goal requires both that we have access to valid predictors of future
scientific accomplishments and that we use those indicators appropriately. To our knowledge, there is
no evidence for either of these claims [22]. As discussed, there are several reasons to think that these
metrics do not predict quality [4,31–33]. In order for hiring and tenuring committees to establish their
usefulness would require formally modelling how these factors accounted for a scholar’s future
performance. Moreover, even if hiring and tenuring committees actually built such a model, they
would need to calibrate their decision-making in accordance with the model. We suspect, again, that
this is not done, nor would it be.

According to the view that impact factors and citations are useful for assessing research quality, we
would expect reasonable, or even strong, positive statistical relationships with objective indices of
research quality. Evidence to the contrary or even evidence of a lack of relationship would suggest
that their utility has been overestimated. Existing research already suggests that JIFs and citation
counts are given weight beyond how well they could plausibly predict future performance, potentially
at the expense of other diagnostic measures. Although quality is a complex construct, there are several
factors that we believe are indicative of research quality (though, without question, these indicators
are themselves only proxies). These include methodological features of an article such as use of
random assignment (when feasible) and the use of appropriate control groups, the representativeness
of the participant population, the appropriate reporting and transparency of statistical analyses, the
accuracy with which results are reported, the statistical power of the study, the evidentiary value of
the data (i.e. the degree to which the data provide compelling support for a particular hypothesis,
including the null hypothesis) and the replicability of research findings. Many indicators of research
quality can be assessed only with close inspection by domain experts (e.g. [23–25]), but some others
can be identified using automated data mining tools.

In this paper, we take the latter approach by examining how citation counts and JIFs relate to three
aspects of research quality: (i) accuracy of reporting statistical conclusions as measured by the number of
errors in the reporting of statistics in a paper, (ii) the strength of statistical evidence provided by the data,
as defined by the Bayes factor (BF) [38] and (iii) the replication of empirical findings. Inasmuch as impact
factors and citation counts are measures of research quality, we would expect that papers in higher-
impact journals and highly cited papers should ‘pass’ some key diagnostic checks; for instance, some
indicators of problems or virtues in a paper may be the presence (or absence) of reporting errors, the
strength of evidence provided by their data and the independent replicability of the findings. For
citation counts and impact factors to be useful for research evaluation, at least as they are currently
used, we expect that the associations should be reasonably large. The advantages of our approach are
that our chosen indices are quantifiable, verifiable, transparent and not reliant on subjective
evaluations of reviewers who may not agree about the quality of a paper.

The analyses reported herein bring together three data sources to address whether citation counts and
JIFs have as much utility for assessing research quality as how they are used in practice. These data
sources include a dataset used in a large-scale assessment of statistical reporting inconsistencies across
50 845 articles in behavioural science and neuroscience journals published between 1985 and 2016 [39]
and 190 replication studies from a collection of repositories (see [40]). Each dataset was merged with
the 2017 JIFs and/or article-level citation counts. The raw data and code used to generate our
analyses and figures are available on the Open Science Framework: https://osf.io/hngwx/.

https://osf.io/hngwx/
https://osf.io/hngwx/
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There are benefits and limitations that must be acknowledged when using this kind of ‘big data’
approach. Large datasets afford the possibility of detecting even small effects. We expect that citation
counts and impact factors are over-weighted, but if these metrics are even relatively weak predictors,
that might provide some reason for optimism about their use. However, there is one key limitation
that must be acknowledged at the outset. To some extent, we sacrifice some fidelity in distinguishing
between statistical tests that reflect more ‘central hypotheses’ tested by researchers, versus hypotheses
that reflect more ‘peripheral hypotheses’.

It may be tempting to assume that this limitation of our research indicates that—at the outset—our
results may be quite limited because they do not focus on a paper’s central hypotheses. However, a
paper is not encapsulated by a single or even a few hypothesis tests. Rather, a paper is the
conjunction of the tests authors decided ought to be reported to provide the necessary details for the
reader to understand the phenomena of interest; authors do not report tests at random. So, even if a
given test does not represent the most central prediction of a study, the test reported should
nonetheless be accurate and have evidential value.1
Soc.Open
Sci.9:220334
2. Analytic strategy
Throughout, we perform a combination of Bayesian multi-level modelling to estimate effects and BFs to
quantify support for the alternative hypothesis, while including an index of out-of-sample predictive
accuracy to aid in assessing the utility of each predictor. Bayesian analyses afford some advantages
for fitting models with complex random-effects structures. For all Bayesian models, we set weakly
regularizing priors in brms [41], which are detailed in our analysis scripts on the Open Science
Framework. Crudely put, weakly regularizing priors guide the Markov chain Monte Carlo estimation
process but, particularly when a dataset is large, allow the posterior to primarily reflect the data.
Posterior predictive checks were conducted for each model to verify model fit. Posterior predictive
checking involves simulating the data from the fitted model and graphically comparing the
simulations to the observed distribution. This step is useful for diagnosing mis-specifications of the
statistical model and ensuring that the model adequately reproduces the distribution. Code for
conducting the posterior predictive checks is included in the analysis scripts provided on Open
Science Framework.

We had specific questions we sought to answer about the relationship between citation counts, impact
factors and measures of research quality, but our analyses were not preregistered and are nonetheless
exploratory. Consequently, we checked the robustness of our inferences by changing model
parameterizations and prior choices, including or excluding different covariates and group-level
effects, and making alternative distributional assumptions (e.g. comparing model fits with Gaussian
versus Beta distributions). Throughout the paper, we report the mean posterior parameter estimates
and the 95% credible intervals (CIs), but our focus is on characterizing the magnitude of the effects,
rather than on binary decisions regarding statistical significance (or not). To assess the usefulness of
the various covariates for prediction, we also computed the Bayesian analogue of the R2 statistic
based on leave-one-out (LOO) cross validation [42]. The LOO adjusted R2 provides a better estimate
of out-of-sample prediction accuracy compared to the Bayesian R2. Finally, we also estimated the BFs
for all single-predictor mixed effects models and ordinal analyses. The BF expresses the odds in
favour of one model compared to an alternative. Here, we use BF10 as an index of the alternative
hypothesis relative to an appropriately formed null hypothesis. Unless otherwise noted, we use a
point-null hypothesis of no effect, with the prior centred on zero. BFs for mixed effects models used
BF functions provided in the brms and bayesresrR [43] packages, whereas the BFs for Kendall’s tau
and Mann–Whitney U statistics used methods developed in [44] and the Bayesian t-tests used the
BayesFactor package in R [45]. All Bayesian t-tests used the default Cauchy prior with a width
parameter of 0.707. This prior places roughly 50% of the mass on effects between −0.707 and 0.707.2
1A further point worth considering is that the distinction between central and peripheral tests may not be so clear. For instance, an
exploratory analysis indicating a manipulation check behaved as predicted might initially be regarded as ‘peripheral’, but if the
check did not behave as predicted, this test could become more central because it would become an observation the author would
need to account for.
2Although impact factors and citation counts have traditionally been assumed to reflect quality, we anticipated that any observed
relationships were likely to be modest at best. The default prior captures this prior belief by weighing small to modest effects more
heavily than large effects. Aside from this general justification, we had no other information to guide the setting of the prior.
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A BF10 greater than 1 reflects the degree to which the data support the alternative hypothesis, while
values less than 1 reflect cases in which the data support the null hypothesis. As a rule of thumb,
BF10 within the range of 1/3 and 3/1 is interpreted as uninformative, with more extreme values
interpreted as providing greater evidence for one hypothesis relative to the other. Although prior
authors provide categorical distinctions for BFs of different magnitudes [46], we prefer to interpret
BFs as a continuous index of degree of support. We note here that many of the BFs we report are
based on large samples, which can result in extremely large values even for relatively small effects.
Thus, readers should interpret the magnitude of the BFs within the context of the reported R2, along
with the graphical analyses of the data.
/journal/rsos
R.Soc.Open

Sci.9:220334
3. Question 1: Do article citation counts and journal impact factors predict
more accurate statistical reporting?

Hartgerink [39] used statcheck [47], an automated data mining tool, to identify statistical reporting
inconsistencies among 688 112 statistical tests appearing in 50 845 journal articles in content areas
related to the behavioural and brain sciences. Articles included in the dataset were published between
1985 and 2016. A full description of the data and initial analyses are provided by Nuijten et al. [47],
but we detail critical aspects of the statcheck dataset which suggest it is a valid measure of our
research question. statcheck is an R package that uses regular expressions to extract American
Psychological Association (APA) formatted results in a null hypothesis significance testing framework
[48]. Among other things, statcheck recalculates the p-values within a paper based on the
test statistics and degrees of freedom reported with each test. statcheck has been shown to be a
reliable indicator of inconsistencies in APA formatted papers. For instance, Nuijten et al. [47]
calculated the interrater reliability between statcheck and hand coding finding that statcheck

and handcoders had an interrater reliability of 0.76 for inconsistencies between p-values and reported
test statistics and 0.89 for the ‘gross inconsistencies’. We should note that although quite reliable,
naturalistic datasets—including the dataset used here—will often entail minor limitations that can
affect data quality. These data quality issues can arise for several reasons including errors in
converting PDF files to text files, or more systematic errors due to some subfields reporting their
analyses in ways which deviate from the American Psychological Association style guide. To consider
one example, in reviewing the statcheck data, we observed that many χ2 statistics appeared to be
miscoded. In particular, we observed that statcheck sometimes mis-identified sample size as the
degrees of freedom for the χ2 statistic. This leads to an incorrect computation of the p-value. To
address this issue, we ran analyses both including and excluding all χ2 statistics. The reported
conclusions are based on analyses that included the χ2 statistics, but we note here that analyses with
the χ2 statistics converged with those without. The only analyses for which the miscoded χ2 are
included are those reporting decision error rates.

These issues notwithstanding, because of the established reliability of the statcheck dataset,
we merged this open-source dataset with article-level citation counts and the impact factors from
2017 to understand the relationship between reporting errors and citation counts and JIFs. Citation
counts were obtained using the rcrossref [49] package in R and the impact factors were obtained
using the scholar [50] package in R. Although our dataset includes articles from 1985 to 2016, we
used only the 2017 JIFs. We chose to use only impact factors from a single year for two reasons.
First, review committees evaluating faculty for promotion, tenure and awards generally are not
provided JIFs for the year of publication, but rather are provided with the JIF in the most recent
year. Given that our ultimate goal is to identify statistical relationships as they might manifest in
professional contexts, this approach seems most defensible. However, we recognize that others
addressing this problem may make other analytic decisions. Second, and more practically, obtaining
JIFs for the full set of articles was not possible, given that existing databases only provided JIFs
dating back to 1997. Limiting our analyses to papers published since 1997 would have reduced our
dataset by roughly 20%.

Data from each article were then summarized to reflect the number of statistical reporting errors per
article and the total number of statistical tests. Articles with fewer than two statistical tests were excluded
from our analyses. The motivation for this decisions was again twofold. First, it is rare for an empirical
paper to report only a single statistical test. We reasoned that these papers likely reflected commentaries,
notes, or editorials and were, therefore, not empirical contributions. Second, articles with fewer than two
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statistical tests do not allow for computing variability across tests. The final dataset used for our analysis
included 45 144 articles and 667 208 statistical tests.3

To address the question of whether article citation counts and JIFs predict more accurate statistical
reporting, we examined the degree to which citation counts and impact factors predict diagnostics of
quality in three ways. First, we examined whether articles containing at least one error were cited
more or less than articles with no errors.4 Of the 45 144 articles included in the analysis, roughly
12.6% (N = 5710) included at least one statistical reporting inconsistency that affected the decision of
whether an effect was statistically significant or not. The majority of the decision errors (N = 8515)
included in these articles involved authors reporting a result as significant (p≤ 0.05), when the
recalculated p-value based on the reported test statistic (e.g. t = 1.90) and d.f. (e.g. d.f. = 178) was
greater than 0.05. Only N = 1589 consisted of the reverse error, in which a p-value was reported as
non-significant or p > 0.05 when the test statistic indicated otherwise. This asymmetry suggests that
these reporting errors are unlikely to be random. Indeed, of the reported tests in which the re-
computed p-value was greater than 0.05 (N = 178 978), 4.76% (N = 8515) were incorrectly reported as
significant, whereas only 0.32% (N = 1589) of the re-computed p-values that were significant (N =
488 154) were incorrectly reported as non-significant—a difference that was statistically reliable with
strong evidence for the alternative hypothesis (BF10 > 1.0 × 1016 with a proportion test, beta(1,1)). This
result directly replicates prior work by Nuijten et al. [47]. More interesting, articles containing at least
one reporting error (M = 52.1, s.d. = 111.7) garnered more citations than articles that did not contain
any errors (M = 46.8, s.d. = 98.3). Although the magnitude of the effect is small—indicating that papers
with at least one decision error have on average 5 more citations than those without errors—the BF
provides strong evidence for the alternative hypothesis, BF10 = 18.1 (Jeffreys–Zellner–Siow prior two-
sample BF, rscale = 0.707 [45]). This conclusion was robust to transformation: correcting for skew in
citation counts with the log transformation yielded even more convincing evidence that papers with
errors are cited more frequently (BF10 = 2.4 × 108). Thus, at least by this criterion, and in contrast to the
conventional assumption that citations are positively related to quality, this analysis indicates that
citations are actually inversely related to quality.5 Although the above analysis of citation counts
neglects the multi-level structure and complexity of the data, we share it because it is likely that
people use citation counts in a similar way when inferring research quality, following the general
principle of ‘more is better’ without adjusting appropriately for differences across sub-disciplines or
accounting for other relevant factors.

Next, we examined the relationship between frequency of errors and impact factor and citations
counts using a Bayesian multi-level zero-inflated Poisson model. This model predicted the frequency
of errors per paper on the basis of the log of a journal’s impact factor and the log of an article’s
citations (+1), controlling for the year of publication and number of authors, with the total number of
reported statistical tests per paper included as the offset in the model. Including the offset allows us
to appropriately model the error rate per paper, while adjusting for the total number of reported
statistical tests. Year of publication was included because there have been large changes in APA
formatting of statistical analyses since 1985, as well as changes in statistical software over this period
of time. We also considered it plausible that the number of authors on a paper could affect error rates
in a paper (e.g. more authors may check over the work being submitted and so could reduce the
errors in a paper) and so we conducted our analyses with and without the number of authors as a
covariate in this model. The inclusion of this covariate did not materially change the conclusion of
this set of analyses. Finally, we also classified each journal into one of 14 content areas within
psychology (clinical, cognitive, counselling, developmental, education, experimental, general, health,
industrial/organizational, law, methodology, neuroscience, social and ‘other’). The classification of the
journals into content areas allowed us to control for potential variation in publication practices across
3Although this dataset is quite comprehensive, we nonetheless report inferential statistics throughout the paper. This is because even
though we have the population of articles for specific years and journals, the statcheck dataset does not reflect the entire population of
articles in, for example, cognition, social psychology or clinical psychology. Rather, this dataset is specifically from large publishers like
the American Psychological Association, Springer and Taylor & Francis.
4Analysis of non-decision errors are provided in the electronic supplementary material. Conclusions based on these analyses are
generally consistent with those based on the decision errors.
5One question is whether researchers conceive of citation counts as an index of research quality in the first place rather than as an index
of research impact. Replacing ‘quality’ with ‘impact’, raises the question, what is an appropriate index of impact independent of
citations? If what we mean by ‘impact’ is societal impact, then it is clear that citation counts are not the right metric prima facie,
because citations counts primarily reflect academic, not societal consideration. We suggest that regardless of how else we might
define impact, it is bound up with an initial assumption that the research in question is high quality (i.e. replicable, robust and so on).
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Analyses based on N = 45 144 published articles.
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areas by including content area as a grouping factor. However, journal was not treated as a
grouping factor in the model because it is perfectly co-linear with JIF (i.e. the population and
grouping-level effects are identical).

Figure 1 plots the change in error rate (per 100 statistical tests for legibility) as a function of the
predictors based on the posterior distribution of the Poisson regression model. As shown, the number
of decision errors per 100 statistical tests drops from roughly 4 errors per 100 for the lowest impact
factor journals to a little under 2 errors per 100 for the highest impact factor journals, and most of this
drop occurs for journals with impact factors between 0 and 2; there is virtually no difference between
journals with impact factors greater than 2. Statistically, only journal impact factor b =−0.210 (−0.280,
−0.139), BF10 = 597.57 and year of publication b =−0.108 (−0.134, −0.082), BF10 = 2.05 × 106 predicted
decision errors, with both BFs strongly supporting the alternative hypothesis, indicating 0.23 fewer
errors for a one unit increase in the log of JIF, and 0.11 fewer errors for papers published 1 year more
recently, respectively.6 Analysis of both citation counts b =−0.008 (−0.030, 0.015), BF10 = 1/1000 and
number of authors b = 0.023 (−0.001, 0.046), BF10 = 1/142 strongly supported the null hypothesis. This
later finding is consistent with the work of Veldkamp et al. [51].

Table 1 provides leave-one-out R2 and the BF, along with the parameter estimates for each predictor
when modelled separately. We include these analyses for two reasons. First, we wanted to verify that
the specific findings obtained for the full model were not dependent on the inclusion of the covariates.
Thus, the analyses provide a ‘robustness’ test. Second, given that impact factor and citation counts are
likely treated independently in faculty evaluations, we wanted to construct models that more closely
approximated this type of decision context. For these models, each predictor was entered into the model
separately as a fixed effect, including content area as a random effect with total number of reported
statistical tests per article controlled by including it as the offset. The BFs were estimated from the
posterior distributions using the bayestestR package [43]. All of the analyses included in table 1 support
6When only considering journals that have impact factors that are two or greater (N = 36 499), the relation between JIF and decision
errors is diminished, b =−0.009 (−0.116, 0.134), BF10 = 1/166.67. This suggests that the negative relationship between impact and
quality should be interpreted with a considerable amount of caution.



Table 1. Parameter estimates, Bayesian leave-one-out (LOO) adjusted R2 for each predictor modelled separately, and BFs. Each
model includes the predictor, with the random-effects factor (area of psychology), and when appropriate the offset, included as
control variables. BFs express the evidence in favour of each model relative to a a model with the control variables only.
Question 3 includes the year as a random factor as well.

DV predictor effect (95% CI) LOO R2 BF10

Question 1

decision errors 2017 JIF −0.146 (−0.214, −0.079) 0.021 inf

citations 0.004 (−0.016, 0.024) 0.021 1/945.4

authors 0.002 (0.012, −0.024) 0.021 1/861.65

year −0.079 (−0.11, −0.06) 0.022 1.48 × 107

Question 2

Bayes factor 2017 JIF −0.056 (−0.067, −0.044) 0.0049 4.23 × 1015

citations −0.014 (−0.017, −0.011) 0.0048 4.31 × 1012

authors −0.010 (−0.014, −0.006) 0.0050 124

year 0.021 (0.018, 0.025) 0.0045 1.75 × 1023

degrees of freedom 0.190 (0.131, 0.254) 0.0044 1.47 × 107

Question 3

replication 2017 JIF −0.640 (−1.202, −0.115) 0.022 1/2.31

citations 0.068 (−0.141, 0.281) −0.007 1/75.32

authors 0.158 (−0.187, 0.503) −0.005 1/38.51
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the conclusions from the full model: the evidence for citations and number of authors strongly supports the
null, while evidence for JIF strongly supports the presence of a positive relation.

The above findings notwithstanding, it is clear that none of the predictors are of ‘practical’
importance, as evidenced by the R2. Articles in higher-impact journals are associated with fewer
statistical decision errors; however, the fact that the change in error rate only decreases from 4% for
journals with impact factors close to zero to a little under 2% for journals with impact factors greater
than 10 implies that the relation may not be particularly diagnostic for judging the quality of
individual research papers.7

The negative relation between the number of errors and the JIF may reflect the quality of the review
process (maybe reviewers or editors of higher-impact journals are more likely to catch errors), the
strength of the journal editorial team or (perhaps) the possibility that authors are more careful when
submitting to higher-impact-factor journals. To address the question of quality more directly, we next
evaluate whether the strength of evidence presented in papers varies with impact factors or citation
counts.
4. Question 2: Do highly cited papers and papers in high-impact-factor
journals report stronger statistical evidence to support their claims?

Carl Sagan noted that extraordinary claims require extraordinary evidence. From a Bayesian perspective, this
can be interpreted to mean that surprising or novel results, or any result deemed a priori unlikely, require
greater evidence. Many papers published in high-impact journals are considered a priori unlikely
according to both online betting markets and survey data [52]. Moreover, editorial policies for some
higher-impact journals emphasize novelty as a criterion for publication—authors understand that
research reports should be ‘new’ and of ‘broad significance’. Assuming high-impact journals are more
likely to publish novel and surprising research, then one might also expect these journals to require a
7To put this in perspective, the Kendall tau rank-order correlation between impact factor and per cent decision errors per paper, an
analysis that does not control for the other factors, is inconsequentially small and favours the null (τ =−0.002, BF10 = 1/142), while
the rank order correlation between decision errors and citation counts is also small, the evidence supports a positive (Kendall’s τ =
0.024, BF10 = 9.1 × 107). Adjusting for the necessary grouping and population effects, however, decreases this small bivariate correlation.



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220334
9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 S

ep
te

m
be

r 
20

22
 

higher standard of evidence. One way to quantify the strength of the evidence is with the BF [53]. The BF
provides a quantitative estimate of the degree to which the data support the alternative hypothesis versus
the null. For instance, a BF10 of seven indicates that the data are seven times more likely under the
alternative hypothesis than under the null as those hypotheses are specified. All else being equal, studies
that provide stronger statistical evidence are more likely to produce replicable effects [54], and hold
promise for greater scientific impact because they are more likely to be observable across a wide
variety of contexts and settings [55,56].

To conduct these analyses, we computed the BFs for all t-tests, one degree of freedom F-tests and
Pearson’s r (N = 299 504 statistical tests from 34 252 journal articles) contained within the dataset [39]
in which the re-computed p-value based on the test statistic and degrees of freedom was p≤ 0.05. This
procedure allows us to evaluate the general strength of evidence presented by authors in support of
their claims, but does not allow us to evaluate cases in which authors’ theoretical conclusions are
based on a single statistic among many that might be presented.

The BF was computed using the meta.ttestBF function in the Bayesfactor package in R using the
default Cauchy prior (rscale = 0.707). This function computes the BF based on a t-statistic and sample size.
The default prior was used in part because it weights the range of effect sizes that are plausible in
behavioural science (i.e. small to medium) more heavily than larger effects and in part because we had
no other prior beliefs to justify an alternative to the default. We did not evaluate any alternative priors.
We first converted the F and r statistics to t statistics before computing the BF for a given test. Because
our automated approach cannot differentiate between within- and between-subjects designs, we
computed two separate BFs for each statistic, one assuming within-subjects and one assuming between-
subjects. Sample size for the meta.ttestBF function was estimated from the degrees of freedom, with
N = d.f. + 1 for the one-sample case and N1 =N2 = (d.f. + 2)/2 for the two-sample case, rounded to the
nearest integer. Because the two estimates are highly correlated (r = 0.99) and yield similar findings, we
report only the results of the two-sample case. It is important to note that while this procedure makes
the intercept of our models difficult to interpret, our primary interest was in the slope parameters—we
sought to understand the relationship between evidential strength and both JIFs and citation counts, not
the overall or average magnitude of BFs in the papers in our dataset.

Because the distribution of the BFs was extremely skewed, we converted them to probabilities using
BF10/(BF10 + 1) and used Beta regression to analyse the data. This conversion is both natural and justified,
and does not alter the interpretation of the data, as it merely re-expresses the BF from the relative
probability of two competing models to the probability of a particular model (in our case, the model
representing the alternative hypothesis). The Beta regression model is the appropriate approach for
analysing data bounded by 0 and 1. The conversion to the probability scale was not possible for a
small number (N = 188) of the BFs due to their extremity, resulting in a total of 299 316 total
observations being used in the final analysis. The BFs reported below for the model predictors were
obtained using the bayestestR package [43]. As a robustness test, we also repeated all of the analysis
after applying the rank normal transformation to the BF. These analyses are provided on Open
Science Framework, and are consistent with the results of the beta regression models reported here.8

Under the common assumption that citation counts and impact factors reflect scientific impact or
quality, one would expect these indices to be positively correlated with the evidentiary value of the data
represented in the publications. However, this does not seem to be the case. In fact, as we demonstrate
next, there is a tendency for the evidentiary value of the data to be weaker in high-impact journals.

The ‘centrality’ of a hypothesis can only be assessed indirectly in these analyses, but we work from
the assumption that tests reported in a paper, particularly those that are statistically significant, will tend
to be the tests most central to an author’s argument. Focusing on significant tests, we used citation counts
and impact factors as predictors of a test’s BF, controlling for content area, year of publication, number of
authors of the paper and the reported degrees of freedom (as a surrogate for sample size).9 The
magnitude of the BF was negatively related to the JIF, b =−0.033 (−0.046, −0.021) and number of
authors b =−0.014 (−0.018, −0.010). Both of these findings strongly support the alternative hypothesis
(BF10 = 60.52 and 3.91 × 103 for impact factor and number of authors, respectively). Citation counts
also showed a small negative relationship, b =−0.004 (−0.008, −0.0001), though the evidence
convincingly supported the null hypothesis (BF10 = 1/500) in this case. Both year of publication b =
0.019 (0.015, 0.023) and degrees of freedom b = 0.184 (0.124, 0.248) were positively related and showed
8The log transformation of the BF did not sufficiently correct for the skewness; models other than the beta model or a Gaussian model
applied to the rank normal transformation generally failed posterior predictive checks.
9The inclusion of degrees of freedom also serves as a sanity check, as the BF should scale with sample size, ceteris paribus.
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convincing support for the alternative hypothesis (BF10 = 1.31 × 107 and 1.30 × 105 for year and degrees of
freedom, respectively). Table 1 provides the regression coefficients, LOO R2, and BF for each predictor
modelled separately. Again, these models are included as both robustness tests and to examine impact
factors and citations counts in particular, but also number of authors, independently as they might be
used in tenure and promotion contexts. The BF10 values reported in table 1 were computed using the
bayestestR package [43].

Although the BFs for each predictor provide convincing support for each predictor, the magnitudes of
the effects are quite small and likely not of much practical relevance. For instance, as shown in figure 2,
the estimated probability of H1 decreased from approximately 0.90 to 0.87 (corresponding to BF10 = 9 and
BF10 = 8, respectively) across the full range of impact factors plotted. Similarly, the probability of H1 is
only marginally higher in papers cited a mere 10 times relative to those cited over 1000. Thus, while
the strength of evidence presented in papers is clearly related to JIFs, citations and number of authors,
this relation is small. Nevertheless, what should be clear from these analyses is that the use of impact
factors and citations as positive indicators of quality is not justified. These indices are, at best,
uninformative indicators of research quality (as defined by strength of evidence) and, at worst,
misleading indicators in which higher-impact factors and greater citations reflect poorer quality.

The small yet convincing negative relationship between evidentiary value and number of authors
indicates that papers with greater numbers of authors were also associated with a given test
providing less evidentiary value. To speculate, in the absence of preregistered analysis plans, the
number of alternative ways the data could be analysed may grow as a function of number of authors,
a hypothesis consistent with the findings of Silberzahn et al. [57]. In turn, it is possible that weak
evidence discovered during extended exploratory data analysis is over-interpreted. However, further
research would be needed to confirm this hypothesis. As with analyses of the decision errors, the
Bayesian R2 for these analyses are small, indicating that despite the fact that the results are reliable,
none of the predictors account for much variance in the magnitude of the BF (see table 1).

4.1. Further exploratory analyses
Another way to look at the data is to model the distribution of p-values directly. We next examined the
degree to which the magnitude of the computed p-value co-varied with impact factors, citation counts
and number of authors, controlling for year of publication, number of statistical tests reported for each
article, and content area within psychology. We modelled only those p-values ≤0.05 under the
assumption that these are the most meaningful of authors’ findings. Of the 667 208 total statistical
tests included in the dataset, 488 151 of the re-computed p-values were less than 0.05. Bayesian beta
regression again revealed that both the impact factor b = 0.041 (0.032, 0.050) and the number of
authors b = 00.008 (0.006, 0.011) predicted the magnitude of the reported p-values with BFs supporting
the alternative hypothesis (BF10 = 1.31 × 108 and 3.27, respectively). Journals with higher impact factors
and papers with more authors were associated with reporting higher p-values (i.e. p-values closer to
the critical threshold of 0.05), though the BF for number of authors indicates weak evidence. The BF
for citation counts indicated support for the null (BF10 = 1/36), though the majority of the posterior
distribution was negative, b =−0.004 (−0.007, −0.002). The BF for year of publication clearly supported
a negative relation, b =−0.017 (−0.020, −0.014), BF10 = 4.53 × 109, suggesting that more recent
publications report smaller p-values to support their claims. Generally, the effect of the log of the total
number of tests included in each paper supported the null hypothesis as well, BF10 = 1/16, though
again the majority of the posterior distribution was negative b =−0.007 (−0.01, −0.003). As a
robustness check, we fitted a separate model without controlling for the total number of reported
statistical tests. This analysis did not alter our conclusions.
5. Question 3: Do citation counts or journal impact factors predict
replicability of results?

To address this third question, we used an openly available dataset that included data from eight
different replication projects, including the Reproducibility project [58], Many Labs 1 [59], Many Labs
2 [56] and Many Labs 3 [55], a special issue of Social Psychology [60], the Association of
Psychological Sciences Registered Reports Repository [61], the pre-publication independent replication
repository [62] and Curate Science [63]. Reinero et al. [40] collated these data, which also includes the
number of citations to each original article, the number of authors on the original article, year of
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Figure 2. Bayesian estimated posterior probability for H1 for all t-tests and one degree of freedom F-tests that were statistically
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publication and the Altmetric score for the original article. The full dataset curated by Reinero et al. [40] is
available on the Open Science Framework (https://osf.io/pc9xd/). We merged these data with the 2017
JIFs obtained using the scholar [50] package in R and coded each journal by subdiscipline (clinical,
cognitive, social, judgement and decision making, general, marketing and ‘other’).10 Of the 196 studies
included in [40], we were unable to obtain JIFs for four of the publications; an additional two papers
were not coded for replication success. Thus, the total number of studies included in our analysis was
N = 190, of which 80 (42.1%) were successfully replicated.
10We also manually looked up each impact factor on the journal website to verify the accuracy of the automated tool. The manually
obtained impact factors correlated r = 0.99 with impact factors obtained using the Scholar package. We, therefore, report analyses based
on the Scholar data. However, we note here that the conclusions based on the manual impact factors are essentially the same.

https://osf.io/pc9xd/
https://osf.io/pc9xd/
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A subset of the replications included in this dataset are from the replication project [58] and include a
variety of other variables, including ratings of the ‘surprisingness’ of each original finding (the extent to
which the original finding was surprising, as judged by the authors who participated in the replication
project) as well as citations to the first author of the original paper and prestige of the authors’ institution.
Our original analyses provided in early drafts of this paper (https://psyarxiv.com/9g5wk/) focused
only on the 100 studies included in the repository [58]. We expanded our analysis in March 2021 to
include all of the studies reported in [40]. The dataset [58] includes only three journals (Journal of
Experimental Psychology: Learning, Memory and Cognition, Journal of Personality and Social Psychology and
Psychological Science), and the impact factors for these three journals are completely confounded with
content area within psychology. The expanded dataset includes 190 total publications in 27 different
journals, thereby enabling us to include impact factor as a predictor in our models.

To examine whether impact factors and citation counts predict replication success (as defined by the
original authors who replicated the prior studies), we conducted a Bayesian multi-level logistic regression
predicting replication success from the log (impact factor), log (citation count + 1) and the log (number of
authors) with year of publication and area within psychology included as a random or grouping factors,
using weakly informative priors. Figure 3 plots the Bayesian estimated posteriors. The relation between
impact factor b =−0.822 95% CI (−1.433, −0.255) and replication success was negative, indicating a 30%
decrease in replication success for a one unit increase in the log of a JIF. This is in the opposite direction
than would be desired by proponents of their use, though the BF was equivocal, indicating that the data
do not differentiate between the null or alternative hypotheses (BF10 = 1.5). Analyses of citation counts
b = 0.237 95% CI (−0.010, 0.490) and number of authors b = 0.179 95% CI (−0.178, 0.536) indicated that
the data strongly support the null hypothesis in both cases (BF10 = 1/13 and 1/34, respectively). As a
robustness analysis, we fitted alternative models excluding ‘area’ as a grouping factor, modelling the
predictors individually and specifying alternative prior distributions. These models all yielded
consistent findings, with the slope of the impact factor consistently negative ranging from −1.03 to −
0.53, and the evidence for the effect of citation counts and number of authors showing support for the
null. Note that the bulk of the articles used in this analysis were from journals with impact factors
less than 10, and that the relation between impact factors and replication success is strongest in this
range. An exploratory analysis eliminating the eight articles with impact factors greater than 10
indicated relatively stronger support for the negative relation among this subset of papers, b =−1.227
95% CI (−1.990, −0.492), BF10 = 6.6.

As noted above, a subset of the data was drawn from the repository [58]. This dataset included a
number of additional variables that might be viewed as reflective of quality, including institutional
prestige, number of citations garnered by the author, as well as number of citations to the original
paper. As an index of ‘novelty’, the dataset also includes ratings of surprisingness. Figure 4 displays
violin and boxplots for the subset of studies in [58], split by whether they were successfully
replicated. We conducted a Bayesian logistic regression using number of citations to the original
paper, number of citations to the first author, institutional prestige and surprisingness as predictors of
whether the original finding was replicated, with replication success defined based on whether the
replication study was statistically significant. Of these indices, only surprisingness showed a relatively
strong relation with successful replication b =−0.663, 95% CI (−1.225,−0.121), though there was no
clear support for either the alternative or null hypothesis (BF10 = 1/1.58). Nevertheless, the observed
negative relationship is consistent with other recent work [52,64] showing that effects viewed as
having low prior probability were less likely to replicate. Neither the number of citations to the
original paper (BF10 = 1/1202), b = 0.005 95% CI (−0.003, 0.014), nor the number of citations garnered
by the first author of the original paper (BF10 = 1/131062), b =−0.00005 95% CI (−0.0002, 0.00005), nor
the institutional prestige of the first author (BF10 = 1/67) were predictive of replication success
b = 0.014 (−0.317, 0.274) among this subset of replications.11

The above analyses are consistent with the results presented for Questions 1 and 2, in that neither JIF
nor citation counts reflect key aspects of research quality. Table 1 summarizes the key findings for all
three questions we sought to address for all of the single-predictor models. If anything, the evidence
seems to suggest that higher-impact-factor journals publish work that is less replicable consistent with
recent research using a smaller, less representative sample [65]. Thus, in regard to the question of
whether citation counts or JIFs are positive indicators of quality, as defined by replicability, the answer
appears to be ‘no’, at least given the data used to address this question.
11We also conducted analyses using the total number of citations to the senior author of each paper and institutional prestige of the
senior author’s institution. The conclusions are unchanged.

https://psyarxiv.com/9g5wk/
https://psyarxiv.com/9g5wk/
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Altogether, the only reason for optimism for the use of JIFs as a metric for research quality is the slight
reduction in decision errors in these journals (Question 1). Though, as indicated elsewhere in our
analyses, this optimism should be tempered by the fact that higher-impact-factor journals also tend to
publish papers that present less evidentiary support (Question 2).
6. Discussion
Goodhart’s Law states that a measure ceases to be a good measure when it becomes a target [66]. Even if
citation counts and JIFs were once reasonable proxies for quality (though there is no evidence to suggest
this), it is now clear that they have become targets and as a result lack validity as positive indicators of
faculty performance [67]. On balance, our findings are consistent with this conclusion: in only one
case were either impact factor or citation counts a positive predictor of quality. In almost all other
cases, there was either convincing evidence that these variables were associated with poorer quality or
convincing evidence for the null. Regardless, in all cases, the magnitudes of the observed relations
suggest that neither citation counts nor impact factors were meaningfully related to research quality, as
defined by errors in statistical reporting (Question 1), strength of evidence as determined by the BF
(Question 2) or replicability (Question 3). The strongest relation was observed for replicability, though
this finding should be interpreted cautiously due to the limited nature of the dataset and the
uncertainty of the estimates. Though there is evidence in Question 1 that impact factor is inversely
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related to statistical reporting errors (fewer errors in higher-impact journals), this finding comes with
numerous caveats. For example, the magnitude of this relationship was trivially small and completely
absent for the subset of articles in journals with impact factors greater than 2.0 and for articles with
fewer than 10% decision errors. Nevertheless, it is possible that some aspect of quality could underlie
this relation, whether due to the quality of the copy-editing team, better reviewers catching obvious
statistical reporting errors or diligence on the part of authors.

More problematic, however, is that some of our analyses indicate that impact factors and citation
counts are associated with poorer quality. For instance, articles in journals with higher impact factors
are associated with lower evidentiary value (Question 2) and appear to be less likely to replicate
(Question 3)—again noting the considerable uncertainty in the estimates, the magnitude of the R2, and
the BFs. Unlike the presence of statistical reporting errors, these later findings cannot be easily
dismissed as typographical errors, as they speak directly to the strength of the statistical evidence and
are generally consistent with prior results that show a negative relationship between impact factors
and estimates of statistical power in social psychological [34] and cognitive neuroscience [35] journals.
Regardless of the causal mechanisms underlying our findings, they converge on the emerging
narrative that bibliometric data are weakly, if at all, related to fundamental aspects of research quality
(e.g. [4,23–25,34–37,68,69]).
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6.1. Practical relevance
Promotion and tenure is, fundamentally, a process for engaging in personnel selection, and it is
important that it is recognized as such. In personnel psychology, researchers often look for metrics
that predict desired outcomes or behaviours without creating adverse impact. Adverse impact occurs
when a performance metric inherently favours some groups over others. In this context, a good metric
that does not create adverse impact might have a modest correlation with work performance yet not
produce differential preferences. Conscientiousness, for example, has a validity coefficient of only
about r = 0.2 [70], but is widely used because it produces minimal adverse impact [71]. It is
questionable that JIFs and citation counts are predictively valid and have minimal potential for
adverse impact. As suggested above, citation counts and JIFs likely play an out-sized role in hiring
and promotion and for predicting future research productivity (see also [1]). Yet, the research
presented above and elsewhere suggests these metrics are over-weighted relative to their utility. There
is also plenty of evidence to suggest that they hold the potential to produce adverse impact. Citation
counts are known to be lower for women and underrepresented minorities [72–74], and there is some
evidence for a negative relationship between impact factor and women authorship [75] and so hiring,
tenuring or promoting on their basis may perpetuate structural bias. Second, the present research
highlights that the use of these indicators in this context is predicated on the assumption that they
reflect latent aspects of either research quality or impact. But, inasmuch as the accuracy of statistical
reporting (decision errors), evidentiary value (BF) and replication are key components of research
quality, our results are inconsistent with this assumption. More problematic, however, is the potential
for the misuse of these indicators to ultimately select for bad science. Using an evolutionary
computational model, Smaldino & McElreath [76] showed that the incentive and reward structure in
academia can propagate poor scientific methods. Insofar as impact factors and citation counts are
used as the basis for hiring and promotion, our analyses, as well as several other recent findings (e.g.
[34,35,69]) are consistent with this model.

The observed inverse relationships between the key indicators of quality on the one hand, and
citations and impact factors on the other, have been reported across numerous publications. That is to
say, decisions that reward researchers for publishing in high-impact journals and for having high
citation counts may actually promote the evolution of poor science [76] as well as select for only
certain types of science or scientists [22]. Though our analyses indicate that the consequences might
be rather small for any given decision, these selection effects could theoretically accumulate over time.

6.2. Limitations and future directions
A rebuttal to our observations that impact factors are either unrelated or negatively related to quality is
that our indices of quality (e.g. evidential strength) do not capture other dimensions such as ‘theoretical
importance’ or novelty. One can interpret ‘surprisingness’ (see Question 3) as an indicator of novelty, and
we are willing to cede that higher-impact journals may well publish more novel research on balance (but
see [69] for data suggesting otherwise)—indeed, the ratings of ‘surprisingness’ of studies included in the
Open Science Framework replication project were positively, though weakly, associated with impact
factors, b = 0.151 95% CI = (0.011, 0.293). However, acceptance of this assumption only strengthens our
argument. If papers in higher-impact journals are a priori less likely to be true (i.e. because they are
novel), then it would require more evidence, not less, to establish their validity. Our analyses suggest
that the opposite is actually the case. This finding implies the presence of a perverse trade-off in
research evaluation: that reviewers and editors for higher-impact journals are more likely to trade
strength of evidence for perceived novelty. Regardless of the underlying reasons for this pattern,
higher-impact journals are more likely to be read, cited and propagated in the literature, despite the
fact that they may be based on less evidence.

We note that each of the datasets we used has certain limitations, although they do not undercut the
importance of our results. For example, the program statcheck was used to curate the data for
Questions 1 and 2. This program only extracts statistics reported in written text and in APA format
(e.g. statistics reported in tables are excluded) and does not differentiate between statistics reported for
‘central’ hypotheses versus more ‘peripheral’ hypotheses, though as we have noted, there is some
reason to be cautious in drawing this distinction. A second limitation is the studies included in the
replication studies for Question 3 were not a representative sample of many psychology studies.
Keeping these limitations in mind, all of our analyses converge on the same point: impact factors and
citation counts may be over-weighted relative to their predictive utility.
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Several recent working groups have begun drafting recommendations for changes in how the quality
of research is evaluated. For instance, Moher et al. [32] provide six principles to guide research evaluation.
Chief among these principles are the elimination of bibliometric indicators such as the JIF and citation
counting, reducing emphasis on the quantity of publications and developing new responsible
indicators for assessing scientists that place greater emphasis on good research practices such as
transparency and openness. Moher and colleagues’ recommendations also include the need to
incentivize intellectual risk taking, the use of open science practices such as data sharing, the sharing
of research material and analysis code and the need to reward honest and transparent publication of
all research regardless of statistical significance. Some of these recommendations may require
fundamental changes in how researchers and administrators view publication.

To conclude, our analysis supports the growing call to reduce the role that bibliometrics play in the
evaluation system, and line up with recommendations made in the San Francisco DORA (https://sfdora.
org/), the Leiden Manifesto [31] and by numerous scholars [4,32]. More concretely, several researchers
have argued that evaluation should focus more on research process and less on outcome, to
incentivize behaviours that support open, transparent and reproducible science [32,77,78]. Changing
the focus of the evaluation to how faculty conduct their work from what is produced may shift the
incentives to aspects of the research enterprise that is both under the control of the researcher and
arguably promotes good scientific practices.
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