

Edinburgh Research Explorer

Testing Smart Contracts: Which Technique Performs Best?
Citation for published version:
Akca, S, Peng, C & Rajan, A 2021, Testing Smart Contracts: Which Technique Performs Best? in
Proceedings of the 15th ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM)., 21, ESEM '21, Association for Computing Machinery, Inc, New York, NY, USA, 15th
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, 2021, 11/10/21.
https://doi.org/10.1145/3475716.3475779

Digital Object Identifier (DOI):
10.1145/3475716.3475779

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 15th ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Sep. 2022

https://doi.org/10.1145/3475716.3475779
https://doi.org/10.1145/3475716.3475779
https://www.research.ed.ac.uk/en/publications/a8fd1fd6-5a45-4cbd-98a2-a68da66584ec

Testing Smart Contracts: Which Technique Performs Best?
Sefa Akca

University of Edinburgh
Edinburgh, United Kingdom

s.akca@sms.ed.ac.uk

Chao Peng
University of Edinburgh

Edinburgh, United Kingdom
chao.peng@ed.ac.uk

Ajitha Rajan
University of Edinburgh

Edinburgh, United Kingdom
arajan@ed.ac.uk

ABSTRACT
Background: Executing, verifying and enforcing credible transac-
tions on permissionless blockchains is done using smart contracts.
A key challenge with smart contracts is ensuring their correctness
and security. Several test input generation techniques for detect-
ing vulnerabilities in smart contracts have been proposed in the
last few years. However, a comparison of proposed techniques to
gauge their effectiveness is missing. Aim: This paper conducts
an empirical evaluation of testing techniques for smart contracts.
The testing techniques we evaluated are: (1) Blackbox fuzzing, (2)
Adaptive fuzzing, (3) Coverage-guided fuzzing with an SMT solver
and (4) Genetic algorithm. We do not consider static analysis tools,
as several recent studies have assessed and compared effective-
ness of these tools.Method:We evaluate effectiveness of the test
generation techniques using (1) Coverage achieved - we use four
code coverage metrics targeting smart contracts, (2) Fault finding
ability - using artificially seeded and real security vulnerabilities
of different types. We used two datasets in our evaluation - one
with 1665 real smart contracts from Etherscan, and another with
90 real contracts with known vulnerabilities to assess fault finding
ability. Result: We find Adaptive fuzzing performs best in terms
of coverage and fault finding over contracts in both datasets. Con-
clusion: However, we believe considering dependencies between
functions and handling Solidity specific features will help improve
the performance of all techniques considerably.

CCS CONCEPTS
• Security and privacy→ Software security engineering.

KEYWORDS
Blockchain, Ethereum, Smart Contract, Genetic Algorithm, Fault
Seeding, Input Generation, Fuzzer, Constraint Solver

ACM Reference Format:
Sefa Akca, Chao Peng, and Ajitha Rajan. 2021. Testing Smart Contracts:
Which Technique Performs Best?. In ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM) (ESEM ’21),
October 11–15, 2021, Bari, Italy. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3475716.3475779

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEM ’21, October 11–15, 2021, Bari, Italy
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8665-4/21/10. . . $15.00
https://doi.org/10.1145/3475716.3475779

1 INTRODUCTION
A blockchain is a distributed ledger that stores a growing list of
unmodifiable records called blocks that are linked to previous
blocks. Executing, verifying and enforcing credible transactions on
blockchains is done using smart contracts1 [44].

A key challenge in developing contracts is to ensure that they are
correct and free of security vulnerabilities, as bugs in their imple-
mentation may result in substantial financial losses. However, their
security and trustworthiness is still in question. For instance, failure
of the contract, DAO [42], due to unsafe design choices resulted in
losses of, approximately, $50 million. Many other vulnerabilities
in contracts have been reported recently [6, 11], like the Fomo3D
attack in 2018 that led to a loss of $4 million. Contracts can handle
large numbers of virtual coins, which provides enough financial
incentive for attacks.

Several smart contract test input generation techniques have
been proposed in the literature to detect security vulnerabilities [2,
13, 25, 34]. Many of the existing techniques use fuzzing approaches,
namely (1) Blackbox Fuzzing (BF) - that relies on random input
generation based on contract interface [2, 13, 25], and (2) Adap-
tive Fuzzing (AF) - feedback-guided input generation to gener-
ate high quality inputs that combines genetic algorithms with
fuzzing [34]. Coverage-guided fuzzing and genetic algorithms have
been used effectively in other domains to generate high quality
inputs [1, 19, 20, 29, 35, 40]. Consequently, we decided to support
these additional approaches for testing smart contracts. We im-
plemented the following techniques in this paper - (3) Coverage-
Guided Fuzzing with the aid of an SMT solver (GF), (4) Genetic
algorithm (GA) using opcode coverage as an objective.

In this paper, we aim to compare the above four input generation
approaches for Solidity2 contracts with respect to their effectiveness
in achieving code coverage, fault finding and overhead incurred.
All the input generation approaches mentioned, except BF, are
associated with a single implementation for Solidity - sFuzz [34]
for AF, our native implementations for each of GF and GA. There
are three available implementations/tools for Solidity testing using
BF. For ease of representation and comparison, we pick a single
BF implementation to use in our experiments – SolAnalyser [2].
SolAnalyser is an automated BF tool that generates inputs for all
transactions and functions in Solidity contracts. We picked this tool
over other BF tools [13, 25] as it achieved the best average fault
finding over the contracts in our dataset and was easy to use with
a well maintained implementation.

We evaluated the four input generation techniques using two
datasets of Solidity contracts – (1) Random-C comprising 1665 So-
lidity contracts with no known vulnerabilities, (2) Vulnerable-C
containing 90 Solidity contracts with known vulnerabilities. We

1Smart contracts are programs that execute on the Ethereum network.
2Solidity is a popular high-level programming language for writing Ethereum smart
contracts.

https://doi.org/10.1145/3475716.3475779
https://doi.org/10.1145/3475716.3475779
https://doi.org/10.1145/3475716.3475779

ESEM ’21, October 11–15, 2021, Bari, Italy Sefa Akca, Chao Peng, and Ajitha Rajan

generated inputs with each of the techniques for a fixed time of
15 seconds per contract. We measured four Solidity code coverage
metrics - branch coverage, opcode coverage, call coverage, event
coverage achieved by the inputs over contracts in both datasets. We
also seeded artificial faults for different types of security vulnerabil-
ities in the Random-C dataset. We then assessed the effectiveness
of the input generation techniques in uncovering the seeded faults
in Random-C contracts. To mitigate the problem of artificial faults
not being representative of real faults, we additionally performed
fault finding on the Vulnerable-C dataset of 90 real contracts with
known vulnerabilities gathered by authors in [16]. Among the four
input generation approaches, we found AF was most effective at
contract coverage and fault finding over both the Random-C and
Vulnerable-C datasets. AF also generated the smallest input set
with least overhead in execution.

2 BACKGROUND AND RELATEDWORK
In this section we discuss existing techniques and new ones that we
implemented, inspired by testing approaches in other domains, for
smart contract testing. We also discuss related work in measuring
effectiveness of testing in terms of code coverage and fault finding.
Finally, we briefly present related work in verification of smart
contracts.

2.1 Existing Solidity Testing Approaches
We found four testing tools in the literature that use BF or AF
techniques. We summarise the tools for these two techniques below.

Blackbox Fuzzing (BF) . is a simple technique that generates ran-
dom test data according to a distribution for the different inputs [17].
This technique can generate input for all kinds of programs by
generating a bit stream for representing the required data types.
Three out of the four testing tools in the literature use BF. Contract-
Fuzzer [25] takes ABI and bytecode files generated by the Solidity
compiler as inputs and generates inputs using blackbox fuzzing.
Echidna [13] is a Haskell library designed for property-based test-
ing. It uses grammar-based fuzzing to generate test inputs based on
user provided predicates or test functions. Writing the predicates
and test functions requires significant expertise and is time con-
suming. SolAnalyser [2] generates random test inputs for detecting
security vulnerabilities. For ease of representation and comparison,
we pick a single BF implementation to use in our experiments –
SolAnalyser [2] as it achieved the best average fault finding over
the contracts in our dataset compared to other BF tools and it was
easy to use with a well maintained implementation.

Adaptive Fuzzing (AF). refers to the technique used by sFuzz [34],
that combines the fuzzing strategy in American Fuzzy Lop [47]
(AFL) with a search-based technique for selecting seeds. The objec-
tive used in selecting the seeds is a quantitative measure (distance)
on how far a seed is from covering any just-missed branch (one con-
trol flow edge away from covered node) . The technique evolves the
initial random population by selecting test cases that cover a new
branch and selecting one test case for each just-missed branch that
is closest according to their distance metric. sFuzz keeps the number
of test inputs generated small by only keeping the best seed for
each just-missed branch. Overhead is reduced by only computing
distance to just-missed branches, not all uncovered branches.

2.2 New Solidity Testing Approaches
Coverage-Guided Fuzzing with SMT solver (GF). uses a combi-

nation of blackbox and whitebox fuzzing. It first generates ran-
dom inputs for a predetermined time and measures code coverage
achieved. It then switches to whitebox fuzzing to gather path con-
ditions for uncovered conditions. These constraints for uncovered
regions are given to an SMT solver which returns inputs exercising
feasible paths [10, 39].

The approach for GF is not new, and has been performed exten-
sively in other domains [4, 24, 26, 39]. There is no existing tool for
smart contracts that uses GF, and our implementation is the first in
this domain.

Genetic Algorithm (GA) . finds the desired solution by using fit-
ness functions and genetic operations: crossover and mutation [27,
45]. Fitness functions typically used in test generation are max-
imising coverage, minimising execution time (cost). The genetic
operation, crossover, is a process of taking two existing test inputs
(parents) and producing a new test input by combining them (off-
spring). The mutation operator modifies one or more test inputs
in an individual according to a given probability. The goal of the
mutation process is to increase the diversity of the population and
to reduce similarity between individuals. Genetic algorithms have
proven effective for testing Java programs [19], mobile [7, 31, 32],
web [3, 14] and Internet of Things (IoT) applications [5] among
others.

To our knowledge, there is no existing tool implementing GA
for testing smart contracts. The implementation in this paper is a
first for Solidity contracts.

Summary. Fuzzing techniques like BF rely almost entirely on ran-
dom mutations to detect security vulnerabilities. Although proven
to be powerful in revealing security bugs in real-world software [22,
30, 47], they are unlikely to reach certain parts of the code and have
trouble reaching deeper branches. Approaches like GF, AF and
genetic algorithm combine random mutations with guided input
selection to avoid this problem. We aim to compare the effective-
ness of the four techniques with respect to code coverage, fault
detection and overhead.

2.3 Measuring Test Effectiveness
Effectiveness of testing has been traditionally measured in terms of
(i) code coverage achieved, and (ii) fault finding [23, 38]. There is
limited existing work in defining and measuring Solidity specific
code coverage. We found 3 pieces of work – (1) Path coverage
measurement proposed by Fu et al. [21] in 2019, (2) Statement
and branch coverage measurement by Brownie [9], (3) Statement
coverage implemented by solidity-coverage [41]. Fu et al. measure
path coverage for symbolic execution by gathering sequences of
opcode and branch conditions. Measuring path coverage incurs
high overhead and their implementation is not easy to use with test
inputs from other techniques. Brownie and solidity-coverage
tools assess statement or opcode coverage (and branch coverage
with Brownie) by instrumenting the abstract syntax tree followed
by analysing the execution trace to detect the opcodes and branches
executed. Our approach for coverage measurement is similar but
we measure call coverage and event coverage in addition to opcode
and branch coverage.

Testing Smart Contracts: Which Technique Performs Best? ESEM ’21, October 11–15, 2021, Bari, Italy

Test InputTest inputTest input

Apply crossover &
mutation

Test InputTest inputTest input

Fitness of
offsprings
better than
parents?

No

Yes

Test InputTest inputTest input

 ABI file

Bytecode
 file

Opcode file
Initialize population
(random selection)

Name of the Contract,
Population size ,
Min. Coverage,
Max. iteration,
Crossover rate,
Mutation rate,

Select the best two
individuals for mating

 Compute
 & check
 stop cond.

Yes

No

New Generation

 Final Input Set

Sort the population
based on fitness

score

Smart Contract
through Solidity
Compiler

Figure 1: Genetic Algorithm working scheme

To measure fault finding, we use both artificially seeded (mu-
tants) and real faults in our evaluation. Artificially seeding faults
has been explored previously for Solidity contracts. Eth-mutants [8]
is an open-source mutant generator for Solidity contracts. However,
the mutation types supported are limited. It only performs replace-
ment of <= to < and >= to >. MuSC [28] and MuContract [2] are
mutation tools that support a wider range of mutation types, includ-
ing ones specifically targeting Solidity syntax. Both mutation tools
operate at the AST level. The primary difference between them is
that MuSC makes every possible change in the AST for a given
mutation type. For instance, for a relational operator mutation type,
if there are 100 possible changes of this type in the original con-
tract, then MuSC will generate 100 mutants covering all locations
and options. MuContract, on the other hand, selects one change
randomly among all possibilities of a relational operator change
in the AST. It then generates one mutant for that mutation type.
We use MuContract in our experiment to generate mutants for
different vulnerability types to keep our dataset tractable. For fault
finding with real faults, we use a dataset of 90 vulnerable contracts
gathered by Durieux et al. [16]. Durieux et al. manually tagged the
lines that contain the vulnerability for all 90 contracts facilitating
the assessment of fault finding.

3 IMPLEMENTATION
In this Section, we discuss the following, (1) implementations of
the four Solidity testing techniques, (2) definition and measure-
ment of four Solidity code coverage metrics, and finally, a (3) fault
seeding framework for different types of vulnerabilities. We sup-
port Solidity compiler versions - 0.4.25 and 0.5.8 to compile the
contract code in our experiment for Ethereum Virtual Machine
(EVM) version 3.0.0. Our implementations for testing techniques,
code coverage and fault seeding are publicly available at https:
//github.com/doubleblind-conf/empirical_evaluation_for_sc.

3.1 Testing Techniques
3.1.1 BF. As mentioned in Section 2, we use an existing BF tool,
SolAnalyser [2], in our experiments. BF implementation in SolAnal-
yser framework takes two arguments as inputs – the Application
Binary Interface (ABI), and a bytecode file. These are generated
from the Solidity contract with the Solidity compiler. ABI file holds
information regarding functions in the contracts such as function

name, function type, input types, and output types. Bytecode file
holds the predefined bytecode of the smart contract. SolAnalyser
implementation supports all Solidity types such as signed/unsigned
integers types with widths ranging from 8 to 256 bits. The gener-
ated inputs call each of the functions in the smart contract and are
written into a JSON file.

3.1.2 GA. Figure 1 shows the working scheme of the GA technique
we implemented. We use Java for our implementation and take nine
arguments as inputs. Four out of the nine input arguments are ABI,
name of the contract, bytecode and opcode files. Opcode file holds
the predefined opcode of the smart contract. We use these four
arguments to generate the first random population. The remaining
five arguments are directly related to GA operators – namely, size
of the population, minimum desired coverage, number of iterations,
mutation rate and crossover rate. Stopping condition for evolution
is a pre-defined time of 15 seconds in our experiment. The reason
to set 15 seconds for test generation time was inspired by time limit
set within existing input generation tools [2, 25]. The papers report
total experiment time and based on the number of contracts in their
dataset, we calculate average test generation time to be around 25
to 30 seconds per contract. We fixed the limit at a slightly lower 15
seconds per contract to allow the experiments to be tractable. We
use single-point crossover, along with user-defined crossover and
mutation rate in our implementation. We ran our GA technique
using different mutation and crossover rates ranging from 0.1 to
0.4 for each. We found the best mutation and crossover rate to be
0.2 based on opcode coverage achieved. The crossover operator
creates two offspring test inputs, O1 and O2 from parent test inputs,
P1 and P2. A value between 0 to 1 is chosen as the crossover rate,
α . The first offspring contains α ×|P1| test inputs from P1 and (1
- α) ×|P2| test inputs from P2. The second one contains α ×|P2|
test inputs from P2 and (1 - α) ×|P1| test inputs from P1. After the
offsprings are generated, they are mutated by randomly updating
some of the input values based on a user-defined mutation rate
(between 0 and 1) that defines the extent to which the offspring
is changed. Resulting offsprings are added to the new generation
if they improve the fitness score achieved by their parents. We
used opcode coverage as the fitness score. We measure opcode
coverage of a candidate test input with our coverage measurement
framework discussed in Section 3.2. We sort the population based
on opcode coverage using fast-sorting dominance algorithm [12]

https://github.com/doubleblind-conf/empirical_evaluation_for_sc
https://github.com/doubleblind-conf/empirical_evaluation_for_sc

ESEM ’21, October 11–15, 2021, Bari, Italy Sefa Akca, Chao Peng, and Ajitha Rajan

Solidity
Compiler

 ABI

Smart Contract Bytecode file

Random Input
Generator

Test InputTest inputTest input

SIF Framework

All
Branch
cond.

All
Branch
cond.

All
Branch
cond.

Covered
Branch
cond.

Covered
Branch
cind.

Covered
Branch
cond.

All Branch
cond.

All Branch
cond.

Uncovered
Branch
cond.

Z3 solver Test InputTest inputTest input

CovCal

 Final Input Set - part 1

 Final Input Set - part 2

Figure 2: Coverage-Guided fuzzing with Z3 constraint solver

with time complexity O (MN 2), where N is the population and M
is the number of objectives. After sorting, we select the top two
test inputs to be parents for mating. We then apply crossover and
mutation to generate offsprings. If any of the offspring test inputs
achieve better fitness score than their parent test inputs, we add
them to the population. We maintain population size by removing
an equal number of poorly performing test inputs. We repeat this
process until the stopping condition is met.

3.1.3 GF with Z3 constraint solver. Figure 2 shows the workflow of
our GF test generation technique. We first generate random inputs
for a fixed time (half the input generation time in our experiments)
and measure branch coverage achieved using the coverage measure-
ment tool, presented in Section 3.2. For the remaining half of the
time, we gather path constraints for uncovered branch conditions
and feed them to the Z3 SMT solver. The solver returns inputs for
uncovered branches that can be triggered. A Python script is then
used to analyse uncovered branches and synthesise a Z3 program
containing constraints to cover those branches. Finally, the Z3 pro-
gram produces inputs for covering feasible conditions. The initial
random inputs along with inputs from Z3 form the final input set.

Consider the following example contract named Magi.

Listing 1: setValue function from the Magi smart contract

1 function s e tVa l u e (uint idx , uint newValue) {
2 i f (i d x == 0) {
3 do something . . .
4 } e l s e i f (i d x == 1) {
5 do something . . .
6 } e l s e i f (i d x == 2) {
7 do something . . .
8 } e l s e i f (i d x == 3) {
9 do something . . .
10 } e l s e {
11 r e v e r t () ;
12 }
13 }

With BF, we sample inputs from the range of a 256 bit unsigned
integer. Majority of the random inputs execute the last else branch,
since the likelihood of choosing values 0, 1, 2 and 3 in this range
is low. GF technique, on the other hand, generates constraints
to be solved for each condition checking idx variable values. The
example below shows the contraint gathered by the instrumentation
when visiting the function AST for the first if condition checking
idx == 0.

Listing 2: Constraints generated

1 # I n i t i a t e t h e Z3 s o l v e r
2 S = s o l v e r ()
3 # D e c l a r e i d x v a r i a b l e i n Z3
4 # The U In t t y p e i s a c u s t om i s e d Z3 t yp e
5 i d x = UInt (' i d x ')
6 #Add t h e c o n t r a i n t t o t h e s o l v e r
7 s . add (i dx == 0)
8 # S o l v e t h e c o n s t r a i n t
9 s . check ()

For all the conditions checking idx values, a unique Python script,
resembling the above listing, is generated with different constraints
on the values for idx corresponding to respective conditions. These
constraints are then fed to the Z3 solver which in turn generates
inputs for feasible conditions.

3.1.4 AF. Weused the sFuzz tool implemented byNguyen et al [34]
as AF in our experiments. The source code of the tool is publicly
available at https://github.com/duytai/sFuzz. We set the time for in-
put generation in the sFuzz implementation to 15 seconds, matching
the time set in the other tools.

3.2 Solidity Code Coverage
In this Section, we discuss the coverage measurement framework,
CovCal, and the code coverage metrics we use in our measurement.

3.2.1 CovCal implementation. Executing the Solidity contract with
an input in the EVM produces an execution trace. We implemented
CovCal in nodejs v8.11.3 as an extension to EVM to analyse the
execution trace produced by EVM. We capture both the execution

Testing Smart Contracts: Which Technique Performs Best? ESEM ’21, October 11–15, 2021, Bari, Italy

result and progression steps returned by EVM. The execution result
shows the return value of the function, validation code - 0 or 1,
gas usage, gas refund, among other information. The progression
step shows the execution trace in the form of runtime opcodes,
similar to assembly code. The recorded execution result is used to
determine gas usage. The recorded progression steps are used for
calculating coverage metrics defined below,

3.2.2 Opcode Coverage. Defined as fraction of opcodes executed
by test inputs to total number of opcodes in the contract. To mea-
sure this, we record the opcodes executed at runtime. We removed
duplicate opcode sequences that may occur within loops or re-
peated function calls. Total number of opcodes in the contract is
inferred using the Solidity compiler. We calculate the opcode cov-
erage achieved by a test input or input set using the following
formula,

Opcode Coveraдe =
#Opcodes executed

Total #opcodes in contract
(1)

Brownie [9] and solidity-coverage [41] use the same defini-
tion for Opcode coverage.

3.2.3 Branch Coverage. Measured as number of branches covered
by the input set to total number of branches in the contract. We
first compile a list of all the branches in the contract. Every branch
executed by a test input in the input set is marked as covered. We
then calculate branch coverage achieved by an input set using the
following formula,

Branch Coveraдe =
#Covered branches

Total #branches in contract
(2)

Branch coverage measured by Brownie [9] matches this definition.

3.2.4 Event Coverage. Measured as number of executed events
to total number of events in the contract. For event coverage cal-
culation, we first record opcodes executed by all the test inputs
in the input set. From these recorded opcodes, we retrieve ‘LOG’
opcodes, since EVM will return this opcode whenever an event is
triggered [46]. We calculate event coverage achieved by an input
set using the formula below.

Event Coveraдe =
#Executed events

Total #events in contract
(3)

3.2.5 Call Coverage. Defined as number of calls executed by test
inputs in the input set to the total number of calls present in the con-
tract. We record runtime opcodes executed and gather the ones that
correspond to ‘CALL’. Etherum yellow paper [46] confirms EVM
will return this opcode whenever a call is triggered. We calculate
call coverage using the formula below.

Call Coveraдe =
#Executed calls

Total #calls in contract
(4)

We are not aware of any other existing tool supporting event or
call coverage for Solidity code.

3.3 Fault Seeding
Fault seeding is also referred to as mutant generation where a mu-
tant is a faulty contract with a single seeded fault. We use two exist-
ing tools for seeding faults in Solidity contracts - MuContract [2]
and Mutec [36]. MuContract exists as part of the SolAnalyser frame-
work [2] to seed Solidity-specific vulnerabilities. Mutec is a tool for

seeding operator faults in C/C++ programs [36]. We extend Mutec
to support operator mutations in Solidity contracts as MuContract
does not support this mutation type.

We generate ten mutations of different types for each Solidity
contract. Seven out of the ten mutation types are specific to Solidity
syntax. We use the MuContract tool to generate these mutation
types, namely – integer overflow, integer underflow, division by
zero, timestamp usage, tx.origin usage, unchecked send, repetitive
function call [2]. The remaining three mutation types were tradi-
tional operator-related mutations for relational, logical and arith-
metic operators. For these, we modified the Mutec tool to support
Solidity syntax. Mutec is based on the Clang LibTooling framework
that recursively visits the AST of C and C++ programs to seed faults
of a given type. To support Solidity, we combine SIF [37], a Solidity
instrumentation framework, with Mutec. Mutec marks locations of
relevant operators for arithmetic, logical and relational mutations
while SIF traverses the AST. Once SIF finishes visiting the entire
AST, Mutec generates mutations for relevant operators in Solidity
contracts.

The ten mutation types used in our fault seeder are inspired from
known attacks on Ethereum smart contracts listed in [33]. We also
support reentrancy mutations in our fault seeder implementation.
However, our execution environment does not provide multiple
threads to help simulate this attack. We, therefore, do not report
on reentrancy mutations in our experiment.

For a given contract, fault finding ability of an input set is mea-
sured as

Fault Findinд Score =
#Vulnerabilities Killed
Total #Vulnerabilities

(5)

Execution environment. helps determine the fault finding score
for mutations and real vulnerabilities. Our execution environment is
implemented as an extension to EVM to analyze the execution traces
and report triggered vulnerabilities.We used external node.jsmod-
ules to combine EVM and execution trace analysis. Execution traces
from EVM are in the form of opcode sequences. To determine if a
mutation is killed, we first run the original and mutated contract
in the execution environment. We then compared their execution
results, which comprise function return values, validation code,
gas usage, and refund. Comparing execution results will suffice
for certain mutation types like integer overflow, integer under-
flow, division by zero, arithmetic, logical, relational. For vulnerable
contracts where the original correct contract is unavailable, we
monitor the execution and compute expected results using an ex-
ternal big-integer module in our execution environment that
provides a larger value range to help avoid overflow or underflow
in arithmetic operations.

For other mutation types, such as timestamp-usage, tx. origin,
unchecked send and repetitive call, execution results between orig-
inal and mutated contracts remain unchanged. For these types, we
analyze the execution traces (opcode sequences) to detect mutations
or vulnerabilities. For example, If we find a Call operation in an
execution trace with no matching Revert, we signal the presence
of an unchecked send vulnerability. If the vulnerability detected
matches the description of a seeded fault or known vulnerability,
we mark it as killed/detected.

ESEM ’21, October 11–15, 2021, Bari, Italy Sefa Akca, Chao Peng, and Ajitha Rajan

4 EXPERIMENT
We evaluate effectiveness of the four testing techniques using two
data sets - (1) Random-C - 1665 randomly sampled contracts from
Etherscan that are assumed correct with no known vulnerabilities,
and (2) Vulnerable-C - 90 contracts with known vulnerabilities from
the SB curated dataset [43]. We fix input generation time at 15
seconds per contract for each of the four testing techniques. The
time we used is comparable to input generation times in other con-
tract testing papers [2, 25]. We investigate the following research
questions:
Q1. Code Coverage comparison: Which input generation tech-
nique achieves best code coverage on average?

To answer this question, we generated input sets using BF, GF,
AF and GA for the contracts in the Random-C and Vulnerable-C
datasets. We then ran the generated input sets and measured branch
coverage, opcode coverage, event coverage and call coverage using
the CovCal framework.
Q2. Fault finding comparison: Which test generation technique
is most effective at fault finding on average?

To answer this question, we assess fault finding using Random-C
and Vulnerable-C datasets. Since contracts in Random-C have no
known vulnerabilities, we seed 10 artificial faults (or mutants) in
each of the 1665 contracts by analysing the source code and ap-
plying mutation operators to eligible locations using MuContract
and Mutec. Fault finding for a input set is measured as fraction
of mutants killed (for seeded faults) or vulnerabilties detected (for
real faults). We compare average mutation score achieved by the
techniques across all 1665 contracts in the Random-C dataset and
average fault finding across all 90 contracts in the Vulnerable-C
dataset. Contracts in the Vulnerable-C dataset have been manually
annotated (by the dataset creators) with the type of vulnerability
and its location in the contract. When a test execution in our envi-
ronment encounters a vulnerability, information on its location and
type appears in the error message. We match this to the annotation
in the dataset to mark the vulnerability as detected.
Q3. Input set size and execution time: What is the size of the
input set generated by each technique and how long does it take to
run?

We measured size of the input sets generated by BF, GF, AF and
GA for each Solidity contract in the Random-C and Vulnerable-
C datasets. We ran the test inputs on EVM to measure average
execution time over 10 repeated runs of each input set. We used the
same machine (Intel Quad Core i5-5200 CPU 2.20GHz, 8GB DDR3,
64-bits) for all runs. We report average input set sizes and average
input set execution times across all contracts in the Random-C and
Vulnerable-C datasets.

4.1 Data Set
Random-C . We collected 1665 verified3 smart contracts of dif-

ferent sizes from Etherscan [18], ranging from 49 to 2856 LOC. We
implemented a web-crawler to collect smart contracts whose source
codes are publicly available on Etherscan web-site. We restricted
the Random-C dataset to 1665 contracts in the interest of experi-
ment resources and time as each of these contracts had a further 10
mutated contracts for the fault finding experiment. The contracts
in our dataset covered a wide range of Solidity language features -

3Source code and byte code of the contract conform with each other.

0.00

0.01

0.02

0.03

0.04

25 50 75 100

Opcode coverage (%)

F
re

qu
en

cy

BF

GF

GA

AF

(a)

0.00

0.01

0.02

0.03

0.04

0 25 50 75

Call coverage (%)

F
re

qu
en

cy

BF

GF

GA

AF

(b)

0.00

0.01

0.02

0.03

0.04

0 25 50 75 100

Event coverage (%)

F
re

qu
en

cy

BF

GF

GA

AF

(c)

0.00

0.01

0.02

0.03

0.04

25 50 75 100

Branch coverage (%)

F
re

qu
en

cy

BF

GF

GA

AF

(d)

Figure 3: Histogram frequencies of coverage achieved by BF,
GF, AF and GA input sets for 1665 Solidity contracts in the
Random-C dataset
77 % of the contracts contain branch statements, 91% contain event
usages, 57% comprise external calls, and finally, 27% contain loops.

Vulnerable-C. Durieux et al. [16] created the SB Curated dataset
that contains Solidity contracts deployed in the Ethereum network
with known vulnerabilities. Contracts in the dataset have been
manually tagged with the location and type of its vulnerability. We
used 90 vulnerable contracts with 5 different vulnerability types,
namely- tx.origin usage (18) , integer overflow (7), integer underflow
(8), timestamp usage (5), unchecked send (52).

Dataset Availability. All the contracts in our datasets, implemen-
tation of testing techniques, coverage measurement and fault seed-
ing, along with scripts to run the experiments can be found at https:
//github.com/doubleblind-conf/empirical_evaluation_for_sc.

5 RESULT
In this Section, we report and discuss results in the context of the
research questions presented in Section 4.

5.1 Q1. Code Coverage Comparison
We present opcode, call, event and branch coverage achieved by BF,
GF, AF and GA input sets over the 1665 Solidity contracts in the

https://github.com/doubleblind-conf/empirical_evaluation_for_sc
https://github.com/doubleblind-conf/empirical_evaluation_for_sc

Testing Smart Contracts: Which Technique Performs Best? ESEM ’21, October 11–15, 2021, Bari, Italy

0.000

0.005

0.010

0.015

0.020

25 50 75 100

Opcode coverage (%)

F
re

qu
en

cy

BF

GF

GA

AF

(a)

0.00

0.01

0.02

0.03

0.04

0.05

25 50 75 100

Call coverage (%)

F
re

qu
en

cy

BF

GF

GA

AF

(b)

0.000

0.005

0.010

0.015

0.020

0 25 50 75 100

Event coverage (%)

F
re

qu
en

cy

BF

GF

GA

AF

(c)

0.000

0.005

0.010

0.015

0.020

25 50 75 100

Branch coverage (%)

F
re

qu
en

cy

BF

GF

GA

AF

(d)

Figure 4: Histogram frequencies of coverage achieved by BF,
GF, AF and GA input sets for 90 Solidity contracts in the
Vulnerable-C dataset
Random-C and 90 Solidity contracts in the Vulnerable-C datasets
in Figures 3 and 4, respectively. We discuss performance of the
techniques with respect to each of the coverage metrics in the
Sections below. We check if differences between the techniques is
significant using one-way Anova and Tukey’s honest significant
difference (HSD) test. P-values for pairwise comparison of tech-
niques using this test is shown in Tables 2 and 3 for the Random-C
and Vulnerable-C datasets, respectively, with emphasis on values
that show significant difference (at 5% significance level).

Uncovered Code. Median coverage achieved by all four input
generation techniques is not that high (ranging from 31% to 78%)
for contracts in both datasets in Figures 3 and 4. For instance, opcode
coverage in Figures 3(a) and 4(a) show that more than 50% of the
opcodes on average remain uncovered by all techniques. The main
reasons for the large proportion of uncovered regions observed
with all techniques are,
1. Restricted input generation time - In our experiment, we restrict
input generation time with each technique to 15 seconds. Increasing
the time for input generation will result in better coverage as seen
in Table 1 which shows the average opcode coverage (over a smaller
sample of 150 contracts) achieved by each technique with different
generation times.

Generation Time BF GF AF GA
15 secs 45.1% 47.5% 52.4% 35.5%
30 secs 52.3% 55.8% 58.8% 47.9%
45 secs 57.7% 59.4% 65.1% 56.5%

Table 1: Average opcode coverage achieved with increasing
test generation time on 150 contracts

Comparison Opcode Call Event Branch
GA vs BF 0.041 0.028 0.021 0.048
GA vs GF 0.023 0.011 0.008 0.031
GA vs AF 0.016 0.001 0.004 0.007
GF vs BF 0.554 0.511 0.178 0.478
GF vs AF 0.057 0.079 0.417 0.067
BF vs AF 0.050 0.050 0.051 0.044

Table 2: P-values using One way Anova Tukey’s HSD for
pairwise comparison of coverage achieved for Random-C
dataset

2. Dependency between functions not considered - All the tech-
niques generate inputs to execute functions within a contract with-
out considering dependency on other functions. As a result, con-
ditions dependent on values from other functions may not be be
satisfied. Statements depending on these conditions remain un-
covered. An example is a smart contract with three dependent
functions – assign, approve, and send. The send function sends
money to the user address that is approved by the approve function
which in turn checks if the address was allocated by the assign
function. Thus for a test input to cover the send money transaction,
the input will also need to have passed the condition checks in the
assign and approve functions. Such a constraint dependent on
other functions is not considered by any of the testing techniques.
3. Unused Functions in Inherited Contracts - Solidity language
supports inheritance using the keyword is. Inherited contracts are
found in both Random-C and Vulnerable-C datasets. We find not all
inherited functions get called in the child contract. These uncalled
functions contribute to the reduced coverage observed.
4. Modifier usage in the function - According to Solidity 0.6.2 docu-
mentation [15], "Modifiers can be used to change the behaviour of
functions in a declarative way." Listing 3 shows a code snippet for
a modifier function from the Bitconnect contract in the Random-C
dataset that restricts calling of this function to the creator. None of
the input generation techniques consider conditions imposed by
function modifiers which in turn affects code coverage.

Listing 3: onlyCreator modifier from the Bitconnect smart contract in Random-C
dataset

1 mod i f i e r on l yC r e a t o r () {
2 r e q u i r e (msg . s ende r == c r e a t o r) ;
3 _ ;
4 }

5.1.1 Branch Coverage. Figures 3(d) and 4(d) show the histogram
frequencies of branch coverage achieved by all four techniques
over the Random-C and Vulnerable-C datasets, respectively. Me-
dian coverage is shown as a vertical dashed line. Median branch
coverage for contracts in the Random-C dataset are 45% for AF,

ESEM ’21, October 11–15, 2021, Bari, Italy Sefa Akca, Chao Peng, and Ajitha Rajan

Comparison Opcode Call Event Branch
GA vs BF 0.049 0.001 0.065 0.049
GA vs GF 0.035 0.001 0.073 0.049
GA vs AF 0.008 0.001 0.014 0.011
GF vs BF 0.719 0.758 0.571 0.763
GF vs AF 0.075 0.121 0.056 0.091
BF vs AF 0.050 0.205 0.061 0.099

Table 3: P-values using One way Anova Tukey’s HSD for
pairwise comparison of coverage achieved for Vulnerable-C
dataset.

43% for GF, 37% for BF and 35% for GA. Median values over the
Vulnerable-C dataset are 49% for AF, 47% for GF, 46% for BF and
44% for GA. Reasons for uncovered branches observed with all the
technqiues was discussed earlier in the context of uncovered code,
namely, restricted input generation time, function dependencies
and modifier usage. One-way Anova and Tukey’s HSD test revealed
significant difference between branch coverage achieved by fuzzing
techniques (BF, GF and AF) versus the GA technique. A significant
difference was also observed for BF versus AF over the contracts
in the Random-C dataset, not the Vulnerable-C dataset. This is
because nested conditions that BF struggles to cover occurs more
frequently in the Random-C (29%) dataset than in Vulnerable-C
(13%).

5.1.2 Opcode Coverage. Figure 3(a) and Figure 4(a) shows his-
togram frequencies of opcode coverage achieved by the four tech-
niques over the Random-C and Vulnerable-C datasets, respectively.
For the Random-C dataset, medians observed were 52% for AF, 49%
for GF, 45% for BF and 36% for GA. Median coverage values over
the Vulnerable-C dataset were – 60% for AF, 55% for GF, 53% for BF
and 50% for GA.

Tables 2 and 3 show there is a significant difference between the
fuzzing techniques versus the GA technique in opcode coverage
achieved. On the other hand, pairwise comparison of AF, GF, BF
revealed no significant difference.

It is worth noting for GF that several constraints provided to
the Z3 solver for uncovered branches provide no improvement in
opcode coverage or remain unsolved. The first scenario of no im-
provement occurred with constraints for uncovered false branches
of conditions with no code within, as seen in the following example.

Listing 4: btcToTokens function from the Bitconnect smart contract

1 function c (uint _0xbtcAmount) {
2 some p r e p a r a t i o n . . .
3 i f (_0xbtcAmount != 0) {
4 do something . . .
5 }
6 }

Else statements are often omitted to limit gas usage in contracts.
Many contracts with if-conditions resemble the example in the
above listing, with no error-handling or code in the false branch.
As a result, covering these additional branches do not result in ad-
ditional opcodes being covered. The second scenario of constraints
remaining unsolved occurred when conditions included Solidity
specific features like modifiers, block number, blockhash, address

data type and its member functions send and transfer, etc. List-
ing 5 shows an example function with an if condition that uses
block related dependencies and address data type that Z3 fails to
handle.

Listing 5: clearApproval function from a smart contract in Random-C dataset

1 function c l e a rApp r ov a l (address _owner ,
uint256 _ token Id) onlyOwner {

2 i f (ownerOf (_ t oken Id) == _owner &&
tokenApprova l s [_ t oken Id] != address
(0) && tokenApprova l s [_ t oken Id] .
f romBlock > _blockNumber) {

3 t okenApprova l s [_ t oken Id] = address (0) ;
4 }
5 }

Z3 only solves 185 constraints from 54 smart contracts in our
dataset. For these 54 smart contracts, opcode coverage increased
from an average of 38.1% without using the solver to 54.3% with
the solver.

5.1.3 Call Coverage. Figures 3(b) and 4(b) shows the call coverage
frequency achieved by the four input generation techniques over
the Random-C and Vulnerable-C datasets, respectively. Median call
coverage values over the Random-C dataset are – 71% for AF, 68%
for GF, 64% for BF and 54% for GA. Median call coverage values
over contracts in the Vulnerable-C dataset are 78% for AF, 75% for
GF, 75% for BF and 62% for GA. We find fuzzing techniques achieve
significantly better call coverage over contracts in both datasets
than the GA technique. No significant difference was noted between
pairs of fuzzing techniques.

5.1.4 Event Coverage. Figures 3(c) and 4(c) shows event cover-
age achieved by the testing techniques over the Random-C and
Vulnerable-C datasets. Random-C median values were 67% for AF,
64% for GF, 59% for BF and 52% for GA. Vulnerable-C median event
coverage was 73% for AF, 70% for GF, 70% for BF and 68% for GA.

As with other coverage criteria, difference between event cov-
erage achieved by fuzzing techniques and GA was statistically
significant. As seen in Figures 3 and 4, median values for event
and call coverage are higher than those observed for opcode and
branch coverage with all four techniques. This is because many
of the event and call operations in a contract are not embedded
within a conditional statement (around 55% for Random-C contracts
) allowing them to be easily reached.

Summary. Over both datasets and for all four coverage metrics,
AF achieves the best median performance among the four input
generation techniques. Coverage achieved by all four techniques
over contracts in both datasets is not that high, with medians rang-
ing from 31% to 78% owing to small input generation time of 15
seconds per contract and not considering function dependencies
and modifiers. Performance of GF could be improved by using an
SMT solver that handles Solidity specific constructs.

Median values for coverage achieved over the Vulnerable-C
dataset is slightly better than the Random-C dataset since the con-
tracts are smaller on average (101 LOC in Vulnerable-C versus 389
LOC for Random-C) and contain fewer branches on average per

Testing Smart Contracts: Which Technique Performs Best? ESEM ’21, October 11–15, 2021, Bari, Italy

0

25

50

75

100
A

rit
h.

D
iv

B
yZ

er
o

Lo
gi

ca
l

O
ve

rf
lo

w

R
el

at
io

na
l

R
ep

. C
al

l

T
im

es
ta

m
p

T
x.

or
ig

in

U
nc

h.
 S

en
d

U
nd

er
flo

w

Vulnerability types

V
ul

ne
ra

bi
lit

y
de

te
ct

io
n

sc
or

e
(%

)

AF GF BF GA

Figure 5: Fault finding score using 16650 artifical faults
seeded in the Random-C dataset, grouped by mutation type

contract (10 branches per contract for Vulnerable-C versus 22 for
Random-C).

5.2 Q2. Fault Finding Comparison
We assess fault finding achieved by the four testing techniques
using (1) Artificial seeded vulnerabilties in the Random-C dataset,
and (2) Known vulnerabilities in the Vulnerable-C dataset.

Artificial Faults. Figure 5 shows average mutation score for each
technique grouped by mutation (or vulnerability) type. We seeded
a single fault for each of the 10 different mutation types for each
contract resulting in 16650 mutated contracts in our dataset. Across
all mutated contracts, we find AF performs best at fault finding
with an average mutation score of 72% versus 70% for GF (p-value =
0.39) and 67% for BF (p-value = 0.28) with no significant difference
between them confirmed with one-way Anova followed by Tukey
HSD test. However, AF was significantly better than GA with 56%
average mutation score (p-value = 0.03). We also compared the
average mutation score achieved by the four techniques for each
of the different mutation types. P-values with one way Anova and
Tukey HSD test is provided in Table 4 with emphasis on values
showing significant difference (at 5% significant difference).

Overall, we find fuzzing techniques outperform theGA technique
across all mutation types. As seen in Section 5.1, fuzzing techniques
(AF, GF, BF) achieve better coverage and therefore execute more

0

25

50

75

100

O
ve

rf
lo

w

T
im

es
ta

m
p

T
x.

or
ig

in

U
nc

h.
 S

en
d

U
nd

er
flo

w

Vulnerability types
V

ul
ne

ra
bi

lit
y

de
te

ct
io

n
sc

or
e

(%
)

AF GF BF GA

Figure 6: Fault finding score with 90 known vulnerabilities
in the Vulnerable-C dataset, grouped by vulnerability type

statements and operations than the GA technique. This in turn
helps fuzzing techniques exercise and reveal more mutations than
GA. For relational and repetitive function call mutation types, AF,
BF, GF and GA have comparable perfomance with no significant
difference, as none of them specifically target these constructs in
the contract.

Finally, we observe 20–38% of themutants remain alive evenwith
the most effective testing technique, AF, in our experiment. This is
because the generated inputs do not cover approximately 40% of the
code and, as a result, fail to reveal seeded faults in these uncovered
code regions. Reasons for regions of code being uncovered with
the testing techniques was discussed in Section 5.1.

Real Faults. Across all 90 vulnerable contracts in the Vulnerable-
C dataset, we find AF performs best at vulnerability detection with
an average score of 83% versus 78% for GF, 74% for BF and 56% for
GA. One-way Anova test shows a significant difference between
performance of AF and GA. Figure 6 shows average vulnerability
detection score for each technique grouped by vulnerability type.
AF has highest fault finding score for all vulnerability types, similar
to our observation over artificial faults. All the fuzzing techniques
achieve 100% detection score for the timestamp vulnerability. Pres-
ence of this vulnerability in mostly small contracts (37 LOC on
average) and lack of conditional statements around many of them
made it easy to detect this vulnerability type.

We find all four techniques were unable to detect vulnerabilities
in 17 out of the 90 contracts. This may be attributed to the following
reasons, (1) Uncovered code - vulnerabilities in uncovered code
remain undetected. As seen earlier, uncovered code is a pervasive
issue across our contracts. (2) Branch conditions in contracts that

ESEM ’21, October 11–15, 2021, Bari, Italy Sefa Akca, Chao Peng, and Ajitha Rajan

Pairwise
Comp.

Arithmetic Div by Zero Logical Overflow Relational Rep. call Timestamp Tx. origin Unchecked
send

Underflow

GA vs BF 0.051 0.057 0.173 0.005 0.097 0.213 0.004 0.017 0.044 0.039
GA vs GF 0.041 0.044 0.049 0.001 0.074 0.179 0.004 0.009 0.037 0.011
GA vs AF 0.037 0.041 0.036 0.001 0.071 0.103 0.001 0.001 0.033 0.002
GF vs BF 0.144 0.471 0.365 0.515 0.736 0.716 0.469 0.148 0.214 0.046
GF vs AF 0.333 0.098 0.111 0.634 0.971 0.918 0.338 0.113 0.377 0.051
BF vs AF 0.071 0.115 0.332 0.071 0.741 0.883 0.377 0.092 0.125 0.034

Table 4: P-values using One way Anova Tukey’s HSD for pairwise comparison of mutation score.

involve Solidity specific variable types such as deployed address,
balance, remain uncovered by test inputs from all four techniques.
Listing 6 shows an example of an unchecked send vulnerability in
the uncovered true branch of the if statement with Solidity specific
features – block number and contract balance.

Listing 6: finalize function from the MigrationAgent smart contract

1 function f i n a l i z e (uint _va lue) {
2 . . .
3 i f (t h i s . ba l ance > _va lue && a l l owed [from

] [msg . s ende r]>= _va lue && _va lue > 0
&& Approval [from] . _ f romBlock >
_blockNumber)

4 owner . send (_va lue) ;
5 / / Unchecked send v u l n e r a b i l i t y
6 . . .
7 }

Summary. We find fault finding scores for all four techniques is
higher for real over artificial vulnerabilties. This is because all four
testing techniques achieve better code coverage over contracts in
the Vulnerable-C dataset compared to Random-C dataset.

Tech. Average input set size Average Execution Time (secs)
Random-C Vulnerable-C Random-C Vulnerable-C

BF 973 1321 7.93 secs 9.02 secs
GF 436 587 4.31 secs 4.78 secs
AF 47 24 0.8 secs 0.31 secs
GA 100 100 1.78 secs 1.65 secs

Table 5: Average input set size and execution time per con-
tract

5.3 Q3. Input set size and execution time of
techniques.

For the Random-C and Vulnerable-C datasets, we present average
size of the input sets generated by the four testing techniques and
their execution times in Table 5. BF, as one might expect, generates
the largest input set in the given time of 15 seconds - an average
of 973 test inputs for Random-C contracts and 1321 test inputs for
Vulnerable-C contracts. GF generates half as many test inputs as
BF. This is because GF runs random input generation for half the
generation time and the remaining time is used by the Z3 solver
to generate inputs for uncovered branch conditions. The Z3 solver
does not generate many test inputs as it was only able to solve
constraints for 54 contracts. AF generates a much smaller input set,
47 test inputs and 27 test inputs on average, for contracts in the
Random-C and Vulnerable-C datasets, respectively. This is because
the AF algorithm reduces the input set size with respect to branch

coverage after every evolution step. Input set size for GA remains
constant at 100 as that is the population size provided. Trends in
execution time follow input set size with BF taking up most time
and AF with least time. Overall AF generates the smallest input set
on average with least overhead in execution.

5.4 Threats to Validity
A potential threat to the internal validity is bugs in implementation
of the testing techniques or coverage measurement. We extensively
tested our implementatons and manually inspected them to mit-
igate this risk. Furthermore, the implementations for the testing
techniques and coverage measurement along with the raw data are
publicly available for other researchers and potential users to check
the validity of our results.

A potential threat to the external validity is related to the fact that
the set of smart contracts we have considered in this study may not
be an accurate representation of a contract under test. We attempt
to reduce the selection bias by leveraging a large collection of 1665
real, reproducible smart contracts. Additional threat to validity is
caused by using artificially seeded faults to assess fault finding.
To mitigate this threat, we also used a dataset of 90 vulnerable
contracts, collected by Durieux et al. [16], deployed in the Ethereum
network to assess fault finding. We also aim to reduce threats to
external validity and ensure the reproducibility of our evaluation
by providing the scripts used to run the evaluation, and all data
gathered.

6 CONCLUSION
In this paper, we evaluated four smart contract input generation
techniques - BF, GF, AF and GA by measuring, (1) Different types
of code coverage - branch, event, call and opcode coverage, and (2)
Fault finding - using real and artificially seeded vulnerabilities.

We used 2 datasets – Random-C, with 1665 contracts from Ether-
scan, and Vulnerable-C comprising 90 contracts with known vul-
nerabilities. The fuzzing techniques did significantly better than
GA at achieving code coverage and fault finding for a fixed input
generation time of 15 seconds per contract. AF did slightly better
than BF and GF in terms of median coverage and fault finding val-
ues but the difference was not statistically significant. AF had the
least overhead among the four techniques, generating the smallest
input sets while being effective at covering the code and detecting
vulnerabilities.

There is room for improvement for all four techniques in terms of
code coverage and fault finding. We believe considering dependen-
cies between functions and handling Solidity specific features will
help improve the performance of these techniques considerably.

Testing Smart Contracts: Which Technique Performs Best? ESEM ’21, October 11–15, 2021, Bari, Italy

REFERENCES
[1] Moataz A Ahmed and Irman Hermadi. 2008. GA-based multiple paths test data

generator. Computers & Operations Research 35, 10 (2008), 3107–3124.
[2] Sefa Akca, Ajitha Rajan, and Chao Peng. 2019. SolAnalyser: A Framework

for Analysing and Testing Smart Contracts. In 2019 26th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, 482–489.

[3] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao, Alexander Mols,
Taijin Tei, and Ilya Zorin. 2018. Deploying search based software engineering
with Sapienz at Facebook. In International Symposium on Search Based Software
Engineering. Springer, 3–45.

[4] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Auto-
mated concolic testing of smartphone apps. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering. 1–11.

[5] Parvaneh Asghari, Amir Masoud Rahmani, and Hamid Haj Seyyed Javadi. 2019.
Internet of Things applications: A systematic review. Computer Networks 148
(2019), 241–261.

[6] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A survey of attacks
on ethereum smart contracts (sok). In Principles of Security and Trust. Springer,
164–186.

[7] Catherine A Bliss, Morgan R Frank, Christopher M Danforth, and Peter Sheridan
Dodds. 2014. An evolutionary algorithm approach to link prediction in dynamic
social networks. Journal of Computational Science 5, 5 (2014), 750–764.

[8] Federico Bond. [n.d.]. A mutation testing tool for Solidity contracts . https:
//github.com/federicobond/eth-mutants,Accessed on: April 19, 2020.

[9] Brownie. [n.d.]. Brownie. https://github.com/iamdefinitelyahuman/brownie-v2,
Accessed on: August 24, 2020.

[10] Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jianchao Guo, and Wenqian
Liu. 2018. A systematic review of fuzzing techniques. Computers & Security 75
(2018), 118–137.

[11] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. 2019. A
Survey on Ethereum Systems Security: Vulnerabilities, Attacks and Defenses.
arXiv preprint arXiv:1908.04507 (2019).

[12] Keith D Cooper, Timothy J Harvey, and Ken Kennedy. 2001. A simple, fast
dominance algorithm. Software Practice & Experience 4, 1-10 (2001), 1–8.

[13] crytic. [n.d.]. Ethereum fuzz testing framework. https://github.com/crytic/
echidna,Accessed on: April 19, 2020.

[14] Giuseppe A Di Lucca and Anna Rita Fasolino. 2006. Testing Web-based applica-
tions: The state of the art and future trends. Information and Software Technology
48, 12 (2006), 1172–1186.

[15] Solidity Documentation. [n.d.]. Solidity in Depth âĂŤ Solidity 0.6.2 documenta-
tion. https://docs.soliditylang.org/en/v0.6.2/solidity-in-depth.html,Accessed on:
February 25, 2021.

[16] Thomas Durieux, João F Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical
review of automated analysis tools on 47,587 Ethereum smart contracts. In Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering.
530–541.

[17] Jon Edvardsson. 1999. A survey on automatic test data generation. In Proceedings
of the 2nd Conference on Computer Science and Engineering. 21–28.

[18] Etherscan. [n.d.]. Etherscan - The Ethereum Block Explorer. https://etherscan.
io/txs,Accessed on: April 19, 2020.

[19] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416–419.

[20] Gordon Fraser andAndrea Arcuri. 2016. Evosuite at the sbst 2016 tool competition.
In Proceedings of the 9th International Workshop on Search-Based Software Testing.
33–36.

[21] Menglin Fu, Lifa Wu, Zheng Hong, Feng Zhu, He Sun, and Wenbo Feng. 2019. A
critical-path-coverage-based vulnerability detection method for smart contracts.
IEEE Access 7 (2019), 147327–147344.

[22] The Peach Fuzzer Platform. [n.d.]. Integrating security into your DevOps Life-
cycle GitLab. https://about.gitlab.com/solutions/dev-sec-ops/,Accessed on:
February 24, 2021.

[23] Gregory Gay, Ajitha Rajan, Matt Staats, Michael Whalen, and Mats PE Heimdahl.
2016. The effect of program and model structure on the effectiveness of mc/dc test
adequacy coverage. ACM Transactions on Software Engineering and Methodology
(TOSEM) 25, 3 (2016), 1–34.

[24] Karthick Jayaraman, David Harvison, Vijay Ganesh, and Adam Kiezun. 2009.
jFuzz: A concolic whitebox fuzzer for Java. (2009).

[25] Bo Jiang, Ye Liu, and WK Chan. 2018. Contractfuzzer: Fuzzing smart contracts
for vulnerability detection. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. ACM, 259–269.

[26] Su Yong Kim, Sangho Lee, Insu Yun, Wen Xu, Byoungyoung Lee, Youngtae
Yun, and Taesoo Kim. 2017. Cab-fuzz: Practical concolic testing techniques
for {COTS} operating systems. In 2017 {USENIX} Annual Technical Conference
({USENIX} {ATC} 17). 689–701.

[27] Manoj Kumar, Mohamed Husain, Naveen Upreti, and Deepti Gupta. 2010. Genetic
algorithm: Review and application. Available at SSRN 3529843 (2010).

[28] Zixin Li, Haoran Wu, Jiehui Xu, Xingya Wang, Lingming Zhang, and Zhenyu
Chen. 2019. MuSC: A Tool for mutation testing of Ethereum smart contract. In

2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1198–1201.

[29] Jie Liang, Yu Jiang, Mingzhe Wang, Xun Jiao, Yuanliang Chen, Houbing Song,
and Kim-Kwang Raymond Choo. 2019. Deepfuzzer: Accelerated deep greybox
fuzzing. IEEE Transactions on Dependable and Secure Computing (2019).

[30] Xinyao Liu, Baojiang Cui, Junsong Fu, and Jinxin Ma. 2020. HFuzz: Towards
automatic fuzzing testing of NB-IoT core network protocols implementations.
Future Generation Computer Systems 108 (2020), 390–400.

[31] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. Evodroid: Segmented
evolutionary testing of android apps. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 599–609.

[32] KeMao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated test-
ing for android applications. In Proceedings of the 25th International Symposium
on Software Testing and Analysis. 94–105.

[33] Dalal Nemin, Mueller Bernhard, and Lim Wanseob. [n.d.]. Ethereum Smart
Contract Best Practices . https://consensys.github.io/smart-contract-best-
practices/known_attacks/,Accessed on: January 30, 2021.

[34] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020.
sfuzz: An efficient adaptive fuzzer for solidity smart contracts. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering. 778–788.

[35] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2020.
Parmesan: Sanitizer-guided greybox fuzzing. In 29th {USENIX} Security Sympo-
sium ({USENIX} Security 20). 2289–2306.

[36] Chao Peng. [n.d.]. An automated mutation testing tool for C . https://github.
com/chao-peng/mutec,Accessed on: May 10, 2020.

[37] Chao Peng, Sefa Akca, and Ajitha Rajan. 2019. SIF: A Framework for Solidity Con-
tract Instrumentation and Analysis. In 2019 26th Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 466–473.

[38] Chao Peng and Ajitha Rajan. 2019. CLTestCheck: Measuring Test Effectiveness for
GPU Kernels. In International Conference on Fundamental Approaches to Software
Engineering. Springer, 315–331.

[39] Chao Peng and Ajitha Rajan. 2020. Automated test generation for OpenCL
kernels using fuzzing and constraint solving. In Proceedings of the 13th Annual
Workshop on General Purpose Processing using Graphics Processing Unit. 61–70.

[40] Van-Thuan Pham, Marcel Böhme, Andrew Edward Santosa, Alexandru Razvan
Caciulescu, and Abhik Roychoudhury. 2019. Smart greybox fuzzing. IEEE Trans-
actions on Software Engineering (2019).

[41] sc forks. [n.d.]. sc-forks/solidity-coverage. https://github.com/sc-forks/solidity-
coverage, Accessed on: August 24, 2020.

[42] David Siegel. [n.d.]. Understanding the DAO attack. http://www.coindesk.com/
understanding-dao-hack-journalists,Accessed on: April 19, 2020.

[43] SmartBugs. [n.d.]. SmartBugs: A Framework to Analyze Solidity Smart Contracts.
https://smartbugs.github.io/,Accessed on: August 24, 2020.

[44] Nick Szabo. 1997. The idea of smart contracts. Nick Szabo’s Papers and Concise
Tutorials 6 (1997).

[45] Darrell Whitley. 1994. A genetic algorithm tutorial. Statistics and computing 4, 2
(1994), 65–85.

[46] Gavin Wood. 2014. A secure decentralised generalised transaction ledger [J].
Ethereum project yellow paper 151 (2014), 1–32.

[47] Michal Zalewski. 2017. American fuzzy lop (AFL). URL: http://lcamtuf. coredump.
cx/afl (2017).

https://github.com/federicobond/eth-mutants
https://github.com/federicobond/eth-mutants
https://github.com/iamdefinitelyahuman/brownie-v2
https://github.com/crytic/echidna
https://github.com/crytic/echidna
https://docs.soliditylang.org/en/v0.6.2/solidity-in-depth.html
https://etherscan.io/txs
https://etherscan.io/txs
https://about.gitlab.com/solutions/dev-sec-ops/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://github.com/chao-peng/mutec
https://github.com/chao-peng/mutec
https://github.com/sc-forks/solidity-coverage
https://github.com/sc-forks/solidity-coverage
http://www.coindesk.com/understanding-dao-hack-journalists
http://www.coindesk.com/understanding-dao-hack-journalists
https://smartbugs.github.io/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Existing Solidity Testing Approaches
	2.2 New Solidity Testing Approaches
	2.3 Measuring Test Effectiveness

	3 Implementation
	3.1 Testing Techniques
	3.2 Solidity Code Coverage
	3.3 Fault Seeding

	4 Experiment
	4.1 Data Set

	5 Result
	5.1 Q1. Code Coverage Comparison
	5.2 Q2. Fault Finding Comparison
	5.3 Q3. Input set size and execution time of techniques.
	5.4 Threats to Validity

	6 Conclusion
	References

