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Rapid Solution of Cosserat Rod Equations
via a Nonlinear Partial Observer

Balint Thamo, Kev Dhaliwal, Mohsen Khadem

Abstract—The Cosserat rod equations are used to model
continuum and soft robots. Solving these equations are computa-
tionally expensive, particularly due to mixed boundary values and
kinematic constraints. In this paper, we present a novel nonlinear
observer that can rapidly estimate the solution of the Cosserat
rod equations. We present details of the observer design and
analyse its convergence and stability. Furthermore, we compare
the accuracy and performance of the observer with common
solvers used in the literature. Our results show that the proposed
observer can significantly improve the computational efficiency
of continuum robots’ models and estimates the solution of the
Cosserat rod equations 7 times faster than common solvers.

I. INTRODUCTION

Continuum and soft robots can traverse confined spaces and
manipulate objects in complex environments. These robots
benefit from mechanical compliance to offer safety and, si-
multaneously, approach the incredible capabilities of evolved
living systems in complex tasks. Soft robots have been stud-
ied for variety of industrial applications [1]. Moreover, the
enhanced dexterity and manipulability offered by continuum
and soft robots enables increasingly less invasive and more
complex procedures. They are envisioned as tools with sig-
nificant potential impact in robotic surgery [2]. The most
common approach for modeling of continuum and soft robots
is using the Cosserat rod theory. Cosserat-based models have
been developed and experimentally validated for tendon-driven
robots [3], concentric tube robots [4], [5], multi-backbone
robots [6], and fluidic actuated robots [7].

The Cosserat model estimates the continuum robots’ back-
bone shape as a function of the robots mechanical character-
istics and known external forces. It consists of several differ-
ential equations with boundary conditions split between the
base and the tip of the rod. Thus, solving the model involves
numerically solving a set of boundary value problems (BVPs),
which can be computationally expensive. Several studies [8],
[9] including our previous works [10], [11] have demonstrated
implementation of fast enough solutions of Cosserat model for
control of continuum robots. However, the computational cost
of the model directly affects the performance and stability of
these controllers. As a result less accurate models with low
computational cost are still more attractive [12], [13].

Additionally, there are several promising new designs of
continuum robots such as parallel concentric tube robots [6]
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Fig. 1. A schematic of a Cosserat rod with and without external force. The
actuation variables 6(t) and 3(¢) denote the rotation, and translation of the
rod’s base, respectively.

and eccentric pre-curved tube robots [14] that consists of
many kinematically coupled Cosserat rods. The computational
cost of the Cosserat rod model is a significant obstacle in
deployment of such designs and more efficient numerical
methods are needed.

Motivated by the above discussion, we study the design
of a novel observer that can rapidly estimate the solution of
Cosserat rod equations without the need to solve the BVP.
The proposed observer employs partial measurement of a
Cosserat rod’s states (i.e., curvatures at the end of the rod) to
estimate the solution of the Cosserat equations. Furthermore,
the convergence and stability of the observer is studied and it is
shown that the observer predictions exponentially converge to
the solution of the BVP. Simulations are performed to compare
the performance of the observer with commonly used BVP
solvers. Our algorithm is available online!.

In Section II, the Cosserat rod equations are briefly re-
viewed. Section III outlines the detail of the observer design
and study of the stability of the observer. In Section 1V,
simulations are performed to evaluate the performance of the
observer in estimating the solution of the Cosserat equations.
The results are compared with the existing BVP solvers in
terms of accuracy and computational efficiency. Concluding
remarks appear in Section V.

1I. REVIEW OF COSSERAT ROD EQUATIONS

Here, the Cosserat rod equations [5] are briefly reviewed.
The following notation is used throughout the paper: z, x, and
x denote a scalar, a vector, and a matrix, respectively.

Uhttps://github.com/SIRGLab/Rapid-Solution-of-Cosserat-Equations. git



A rod is modelled as a deformable curve with a frame
attached to every point along its arclength, with the z-axis
of the frame remaining tangent to the curve. A schematic of a
rod under external forces is shown in Fig. 1. The configuration
of the rod can be defined using a unique set of 3D centroids,
r(s,t) : [0, €] x [0, 00] = R3x [0, 00], and a family of orthogo-
nal transformations, R(s, t) : [0, £] x [0, 00] — SO(3) x [0, o<].
Now, assuming the rod is made of linear elastic isotropic
materials without pre-twist, we can derive the constitutive
equations for calculating the instantaneous curvature of the
rod u(s,t) and the overall shape of the rod.

r,(s,t) =R(s,t)es, (1a)
R (s,t) = R(s. t)[u(s, t)].,, (1b)
u (s, t)=— K" [[u(s, )], K (u(s.t) — u*)+

(1o

[eg]XRT<s,t>F<t>}

where " denotes a derivative with respect to arc length s, the
[.], operator is the isomorphism between a vector in R? and
its skew-symmetric cross product matrix, e = [0, 0, 1]7 is
the unit vector aligned with the z-axis of the global coordinate
frame, uw* denotes the precurvature of the rod in its reference
configuration, K = diag(EI, EI,GJ) is the stiffness matrix
for the rod, E is the rod’s Young’s modulus, [ is the second
moment of inertia, G is the shear modulus, J is the polar
moment of inertia, and F(¢) denotes the external loads.

The boundary conditions for (1) are specified in terms of
rod’s initial curvatures, rotation 0(t), and translation 5(t) of
the rod’s base.

r(0,) =0 0 0], (2a)
R(O>t) = Rz (a(t))v (Zb)
w(l + B(t),t) = u*, (2¢)

where R, denotes a rotation around the z axis and /¢ is
the rod’s initial length. The boundary conditions given in (2)
define r and R at the base of the rod, and curvatures u at the
end of the rod, thus forming a boundary value problem.

The model given in (1) is quasi-static. To solve the equa-
tions, it is assumed that at a given time, time-dependent
variables are constant and the equations are solved in spatial
domain (with respect to s). Shooting methods can be used to
solve the boundary value problem. A shooting method con-
sists of using a nonlinear root-finding algorithm to iteratively
converge on values for w(0,¢), in order to satisfy (2¢). Next,
the time-dependent variables are updated (i.e. 6(t), 8(t)), and
the equations are solved again in the spatial domain. Our main
goal in this paper is to design an observer that will employ
measurement of u(¢+3(¢), ) through time to estimate correct
value of u(0,t) and ensure u(¢ + §(t),t) — u* Vi > 0,
without the need to solve the BVP iteratively.

III. METHODOLOGY

In this section, we design an observer that can rapidly
estimate the rod’s curvature u(s,¢) in (1) without explicitly
solving the boundary value problem. Our main assumption is
that the solution of (1) is unique. We note that a Cosserat
rod can buckle under external forces and exhibit elastic in-
stabilities. In this case, solution of the Cosserat rod equations
can oscillate between multiple equilibrium points. In practice,
stability measures introduced in [15], [16] can be used to avoid
the instabilities and ensure the solution of Cosserat equations
remains unique.

A. Generalized Observable Cosserat Model

Here, we transform the Cosserat rod equations into an
observable form that simplifies the design of the observer. To
realize the effect of the missing initial value (i.e., u(0,t)) on
the solution of the Cosserat equations, we define two auxiliary
variables, namely,

(s, t) = %, (3a)
T S
oty 1= AR IE0) @ab)

Using (3a) and the chain rule, the evolution of Cosserat
rod’s curvature in time can be estimated

u(s,t) =T(s,t)u(0,t). 4

We now use (1) to derive the equations for calculating
I'(s,t) and x(s,t). I'(s,t) can be computed by taking the
partial derivative of (1c) with respect to u(0,t).

T'(s,t) =K' |[K(u(s, t) — u*)] T(s,t)—

)
[u(s, )] KT (s, 1) - [es], x(s,1)|-
In deriving (5) we used the following identity
9(la], b) .. da b
T——[bh%+[a]x%- (6)

We can calculate x(s,t) in a similar way. First, we take
the transpose of (1b). Next, we multiply both sides by F(¢).
Finally, taking partial derivative of both sides with respect to
u(0,t) gives

X (s,6) = R (s, ) F(1)] T = [u(s,1)]  x- )

Remark 1. Based on our assumption on the uniqueness of
the solution of the Cosserat rod equations, I'(s, ) defined in
(3a) is a 3 x 3 matrix with rank of 3 if u # 0. Moreover, based
on (1) the initial values of T'(s,t) and x(s,t) at s = 0 are I
and O, respectively. Also (5) and (7) are linear with respect to
I'(s,t) and x(s,t). Therefore, I'(s,t) and x(s,t) are bounded
for any bounded s. Considering that s is upper bounded by
the length of the rod, both I'(s, t) and x(s,t) are bounded for
all 1.



Now, using (1), (4), (5), and (7), we transform the Cosserat
rod equations into an observable form.

r/(s,t) = R(s,t)eg, (8a)
R (s,t) = R(s, t)[a(s, )], (8b)
X (s,) = R (s, ) F(1)],.T = [u(s, )], x. (8c)

F/ (8, t) :K_l [K(U’(S’ t) - u*)}xr(sv t)f
(8d)

[u(s,t)]XKF(s,t) - [63]><X(33t) )
w(s,t) = T(s,t)a(0,t) (8e)
with the following boundary conditions.

r(0,¢) =100 0], (9a)
R(0,t) = R.(6(2)). (9b)
T(0.t) =1, (9c)
x(0,t) =0, (9d)

where #(s,t) denotes the rod’s curvature estimated by the
observer.

B. Observer Design

Based on (2c), error of the observer in estimating the
curvature of the rod at it’s tip is

€(t) =u(l+p(t),t) —u” (10)

In the following theorem, we provide the solution for u(0,t)
that drives the error in (10) to zero and ensures the solution of
the observer in (8) converges to the solution of the boundary
value problem in (1).

Theorem 1. With «(0,t) taken as

¢
w(0.) =~ [ RIT@+ B0, 0Pear b

0
where P(t) is the solution of the differential Riccati equation

—P(t) = —P()L" (¢ + B(1), )RT (¢ + 5(t),t)P(t) + Q,
P(ty) = Po,

(12)
and Q, R, P are all symmetric positive definite matrices, the
origin of (10) is exponentially stable and there exists positive
constants ¢, k, and A such that

le(to)]| < e = |le(t)]| < ke X=f) vt >t >0 (13)

Proof. Solution of the Riccati differential equation, P(t),
is symmetric positive definite if I'"'(¢ + B(t).t) is bounded
and non-singular [17]. Based on Remark 1 this condition is
satisfied. Now, we select the following Lyapunov candidate

V = €'Pe. (14)
Taking the time derivative of V' we obtain
V = ¢"Pe+ e"Pe + €' Pe. (15)

Cosserat Rod Model

Observable Cosserat Model
U(O7 t) 1‘/(5. t) = f{(.s.t)e;;.
(S, ) | R (s,0) = Ris. D, 1) T(s, 1)
Pl (5,6) = [RT (s, ) F (1) T — [u(s. 1)), X, .
»| T'(s,0) =K' [[K(u(,s.[) — )] T(s,t)—
(s, KU (1) = [es] x(5.0)|
Solved in spatial domain >
0(t) u(s, t)
t
6( ) Observer Law R(Sv t)
iw(0.1)= — RIT(1 + B(1).1)Pell). T(S’t)
t 1'1\.\_/;‘ =T(s.H)ul0.1)- <
—P(t) = =P(TT (1 + 3(t). ORI/ + 3(t). )P(t) = Q
Solved in time domain

Fig. 2. A block diagram of the designed observer.

Additionally, from (10), (11), and (8e) we can calculate € as

E(t) =T+ B(t),t)RTT (L + B(t),t)Pe(t).  (16)
Substituting (16) in (15) and sorting the equations gives
V =€’ <P —PIT (0 + B(t),t)RT (L + B(t), 1) P—
(17

PIL(¢ + B(t),t)RT(£ + B(t), t)TP> €

Replacing P using (12)
V=€'(—-Q—PI(¢+pA(t),)RI(¢+ B(t), 1) P)e (18)

—Q in (18) is uniformly negative definite in ¢ by definition.
P is symmetric, thus, —PT'(¢+ 3(t),t)RI(¢+ 3(t), )P has
a quadratic form and is negative semi-definite uniformly in ¢.
Hence their sum is negative definite uniformly in ¢. Thus, V'
satisfies the inequality

V < —ale|. (19)

Based on the Lyapunov Theorem and the foregoing inequality
the origin of (10) is exponentially stable.

C. Implementation

The observer given in (8) is quasi-static, similar to the
Cosserat equations in (1). However, it can be solved as an
initial value problem using the initial values given in (9)
and (11). At a given time ¢, time-dependent variables are
assumed constant and the equations are solved in spatial
domain using standard methods such as the Runge-Kutta
or Adams—Bashforth families of algorithms. Next, the time-
dependent variables are updated (i.e. u(0,t), P(t), 6(¢), and
B(t)). To calculate P(¢), the Riccati differential equation in
(12) should be solved backward in time from ¢ + ¢y, where
ty is desired finite time. The result should be stored in a
memory. Next the updated time-dependant variables are used
to solve the equations in the spatial domain again. This process
is shown in Fig. 2.
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Fig. 3. (a) A comparison of rod’s tip trajectory calculated by solving the rod’s model using the observer and 3 different shooting methods. The rod’s shape
is shown at several configurations along the trajectory. (b) Error of the observer in estimating the position of the rod’s tip with respect to the most accurate

BVP solver, i.e., interior point method.

In the next section, we evaluate the performance of the
observer in estimating the solution of Cosserat equations.

IV. SIMULATION STUDY

Simulations are performed to evaluate the proposed ob-
server. Physical parameters of the rod used in the simulations
are given in Table. I. The parameters are selected from the
data-sheet of a rod made of Nitinol alloy with outer and inner
diameters of 3 mm and 2 mm.

TABLE I
PHYSICAL PARAMETERS OF THE ROD.

£ [mm] E [GPa] G [GPa]
400 70e9 10e9

1 [m%] J [m%] w* [m~ 1]

3.1907c — 12 6.3814c — 12 [14,5,0]

We compared the observer predictions with the solution
of the rod equations computed using three different shooting
methods. Each method employs a different root-finding algo-
rithm, which to the best of authors knowledge, are the most
commonly used BVP solvers. These solvers are:

1) Interior point method [18],

2) Quasi-Newton method with BFGS Hessian estimation
[19],

3) Nelder-Mead method [20].

In the simulations, we rotated the rod at a frequency
of 27/10 Hz and pushed the rod at a velocity of
10 mm/sec. Moreover, a time varying force equal to
[sin(27t/10), cos(27t/10), sin(27t/10)]7 was applied to the
tip of the rod. The simulation runs for 10 seconds at sampling
frequency of 200 Hz. The observer gains R and Q used in the

simulations were set to 120 x I and 30 x I, respectively. These
values were found to achieve the minimum prediction error.
The optimally tolerance for all the root-finding algorithms
were set to 1073, Moreover, in all the shooting methods the
estimated value of initial curvature at sample time k, i.e.,
u(0,t;) was used as the initial guess for the root-finding
algorithm in the next step £+ 1. This would make the shooting
methods run faster. Moreover, in all the algorithms a 3(2) pair
Runge-Kutta formula [21] was used to solve the differential
equations governing the motion of the rod. The simulations are
performed in Matlab on an Intel Core i7 (2.93 GHz) machine
with 16 GB memory.

Fig. 3(a) shows the rod’s trajectory estimated via the
aforementioned BVP solvers and the observer. As it can be
seen, accuracy of all of the methods are comparable. Also,
it can be seen that the observer has an error at the first
sampling time but rapidly converges to the correct solution.
To investigate the accuracy of the observer, we compared the
observer’s predictions of the rod’s tip position, r(¢,¢) with
the results of the interior point method, which was found
to be the most accurate BVP solver. The error measured as
|7 (£, t)observer — T (£, E)interior point|| 18 shown in Fig. 3(b). It can
be seen that the observer rapidly converges to the final solution
in less than 0.1 sec. After the convergence, the error of the
observer remains below 0.4 mm with an average of 0.13 mm.

Fig. 4(a) shows the error of the solvers and the observer
in satisfying the boundary conditions given in (2c). The error
is measured as ||u(¢,t) — u*|. The observer error is in the
same order as the BVP solvers and remains below 0.06 m~1.
Fig. 4(b) compares the computational efficiency of the BVP
solvers and the observer in terms of the time that each method
takes to compute the solution of the model at each sampling
time. The observer is much faster than the BVP solvers and has
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lower standard deviation. The average time that the observer
takes to estimate the model’s solution is 0.0042 seconds, which
is significantly faster than other solvers. The fastest BVP
method is Quasi-Newton method and can calculate the solution
of the Cosserat equations in 0.0330 sec, which is more than
7 times slower.

TABLE I
EXPERIMENTAL RESULTS. MEAN ERROR (empan) MEASURED AS
||w(€,t) — u*||, STANDARD DEVIATION OF ERROR (0¢), AVERAGE TIME
TO ESTIMATE THE SOLUTION OF THE MODEL (tmean) FOR EACH METHOD,
AND STANDARD DEVIATION OF TIME ot ARE REPORTED.

Observer  Interior-point  Quasi-Newton  Nelder-Mead
[i‘l“i'“’{‘] 0.0241 0.0055 0.0087 0.0101
[mtf_el] 0.0537 0.0053 0.0065 0.1034
bmean 0.0048 0.0525 0.0372 0.0810
[sec]
Tt Tde—4 0.021 0.0151 0.195
[sec]

We performed 20 more simulations, where, rods with dif-
ferent dimensions were moved/rotated at frequencies varying
between 7/5 Hz and 7/50. The results are summarized in
Table II. The results demonstrate that the observer maintain
similar error as the BVP solvers, while exhibiting superior
computational efficiency. The mean error of the observer in
satisfying the boundary conditions is 0.0241 m~!. Considering
the most accurate BVP solver, i.e, interior point method, as
the ground truth, the observer has a mean error of 0.102
mm in predicting the rod’s tip. This error is negligible and
much lower than the experimentally validated accuracy of
Cosserat equations, which is in the range of 3 to 10 mm
[6]. The average time that the observer takes to estimate
the model’s solution is 7 times faster than the fastest BVP
solver, namely, the Quasi-Newton method. The observer can

estimate the solution of the Cosserat equations at sampling
frequency of 200 HZ, while rendering similar accuracy to
slower BVP solvers. The observer can significantly improve
the computational efficiency of continuum and soft robots’
models that include several kinematically coupled Cosserat
rods.

V. CONCLUDING REMARKS

In this paper, we presented a new framework for solving
the Cosserat rod equations. The Cosserat equations are widely
used to model the motion of continuum and flexible robots.
However, the computational cost of the model has impeded the
widespread application of Cosserat-based models in real-time
control of continuum robots. We have demonstrated that our
numerical framework can estimate the model’s solution 7 times
faster than the fastest existing solvers, enabling future appli-
cations of Cosserat-based models in real-time control/motion-
planning of continuum and soft robots.
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