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LEVERAGING LINGUISTIC KNOWLEDGE FOR ACCENT ROBUSTNESS OF END-TO-END
MODELS

Andrea Carmantini, Steve Renals, Peter Bell

Centre for Speech Technology Research, University of Edinburgh, Edinburgh EH8 9AB, UK

ABSTRACT

Acoustic models are susceptible to the difference in acous-
tic characteristics between the training distribution and test
distributions. Accent variability is a challenging source of
variability, and the variations within one accent often do not
generalize to others. Consequently, end-to-end models that
have only transcriptions as linguistic information need high
amounts of data to learn how different accents realize their
sounds.

To aid with recognition of accented speech, we make
use of an accent independent abstraction of phonemes, often
called metaphonemes. We force our models to learn hidden
representations that are correlated to metaphonemes using
multi-task training. Our aim is to obtain a model that is more
robust to accented speech and, can, at the same time, adapt
faster to different accents through the learned structure.

Our experiments on the Common Voice corpus show bet-
ter generalization when making use of this additional linguis-
tic information, with a word error rate reduction of up to
12.6% when compared to the baseline. Furthermore, the rel-
ative improvement when adapting an existing model by mak-
ing use of the metaphonemes is higher than using Byte Pair
Encodings alone.
Index Terms: speech recognition, acoustic model adaptation,
accent adaptation, end-to-end models

1. INTRODUCTION

Speech recognition models are highly susceptible to mis-
match in the acoustic and language domains between the
training and the evaluation data. Dialectal and accented
speech is challenging for speech recognition models, as it can
present variability in pronunciation, vocabulary and grammar.

Although there is significant literature on automatic di-
alect identification from speech (e.g. [1, 2, 3]), there has been
less work on accent and dialect adaptive speech recognition
systems, as the task is often assimilated to acoustic adapta-
tion. The MGB–3 [4] and MGB–5 [5] challenges focused
on the identification and transcriptons of dialectal Arabic test
sets, with a modern standard Arabic (MSA) training set, using
broadcast and internet video data. The best reported results
reported on these challenges have used a straightforward

model-based transfer learning approach in a Lattice-Free
Maximum Mutual Information (LF-MMI) [6] framework,
where a baseline model trained on MSA was finetuned with
supervised data from specific Arabic dialects [7, 8].

In the context of hybrid systems, such choice seems ob-
vious because the language model and lexicon are separate
from the acoustic model, thus the acoustic model only needs
to adapt to the new distribution of sounds in the dialect, while
the grammar and vocabulary differences are provided to the
system separately. In end-to-end models the system is mono-
lithic, thus adaptation techniques aimed specifically at dialect
and accent variability are more relevant.

A simple solution to dialectal variability is to create an
unified robust model by pooling training data from multiple
dialects [9]. In Elfeky et al. [10], this method is expanded
by having a secondary output of the network learn to classify
the input dialect, making the network explicitly aware of the
dialectal variation. In the same vein, Yang et al. [11] train
a neural dialect classifier sharing the weights with the lower
layers of the ASR model, then uses the classifier’s decision
to select the dialect-specific output layers to use. Related re-
search combined the multi-task approach with the use of di-
alectal information as input, either as a one-hot vector or as
an embedding generated from a separate model [12, 13, 14].

Grace et al. [15] explored a family of cluster adaptive
training and hidden layer factorization approaches and com-
pared them to one-hot auxiliary inputs. They show that us-
ing one-hot dialect codes as an input augmentation (corre-
sponding to bias adaptation) proved to be the best approach,
and cluster-adaptive approaches did not result in a consistent
gain. In related research, Jain et al. [16] explored a mixture of
experts (MoE) approach, where separate input subnetworks
learn transformations for the input features based on their ac-
cent; at test time, an external classifier chooses the right mix-
ture given the input acoustics.

Yoo et al. [17] extended these approaches by applying
a method of feature-wise affine transformations on the hid-
den layers (FiLM), dependent both on the network’s internal
state and the dialect/accent code. This approach, which can
be viewed as a conditioned normalization, differs from the
previous use of one-hot dialect codes and multi-task learning
in that it has the goal of learning a single normalized model
rather than an implicit combination of specialist models. A



related approach is gated accent adaptation [18], with the fo-
cus being on using a single transformation inserted in the in-
termediate layers of the network and conditioned on dialect
label.

More recently, Winata et al. [19] experimented with
a meta-learning approach for few-shot adaptation to ac-
cented speech, where the meta-learning algorithm learns a
good initialization and hyperparameters for the adaptation.
Techniques for continual learning, aimed at fine-tuning a
model while avoiding catastrophic forgetting of what was
learned previously, have also been applied to dialect adapta-
tion [20, 21]

While end-to-end models try to make away with external
linguistic information, previous research has shown that mak-
ing use of phonetic transcriptions can help with the accuracy
of these models, both when used as the primary source of
information or a secondary task. [22, 23]. Furthermore, mul-
titask configurations making use of different representation
levels resulted in slight improvements for end-to-end models
when using words as the primary task and characters as a sec-
ondary task [24, 25].

In our paper, we will discuss a method making use of ex-
ternal linguistic information to help the model learn better
representations of the acoustics. Furthermore, we analyze an
higher abstraction of phonemes, referred to as metaphonemes,
developed to have an accent invariant representation of word
pronunciations. We show that this expert knowledge can help
end-to-end models learn general patterns describing accent
variability, improving generalization and adaptation power.

2. METAPHONEMES

For our experiments, we make use of the Unisyn lexicon [26],
a pronunciation resource for the English language built with
accent invariance in mind. Unisyn maps words of the English
language to accent agnostic transcriptions by using meta-
phonemes. Metaphonemes are an higher level abstraction of
phonemes. A metaphoneme transcription is accent indepen-
dent: for each metaphoneme and accent, there is a rule that
describes how the metaphoneme is realized in the specific
accent.

In Unisyn, all words in the English language are classi-
fied under certain ”keywords” that exemplify the set of rules
a specific metaphoneme follows to be mapped to its accent-
specific phoneme. Examples of keywords, their realization in
different accents and their Unisyn symbol for the open vowel
are in table 1.

The use-case for which Unisyn was built is different than
our aims. The aim of Unisyn is to use mapping rules written
by linguists on the metaphonemic transcription to generate
accent-specific lexicons. In our case, we want our models to
learn the rules governing the shifts in accent pronunciation in-
ternally during training. Assuming the model can learn some
of the patterns that govern accent variability, this should also

help with faster adaptation of the models to new accents.

Keyword RP American Australian
Unisyn
symbol

Trap æ æ æ a
Bath α: æ a: ah
Palm α: α* a: aa

Table 1. Example of Unisyn metaphonemes for three key-
words used to classify open vowels.

3. METHOD

To determine whether bringing separate linguistic informa-
tion related to pronunciation can help end-to-end models
learn better representations, we experimented with a multi-
task training configuration where both the graphemes and
sounds of a word are used as targets.

The objective of the two tasks calculated from the atten-
tional decoder is to minimize the cross-entropy of the ground
truth given the acoustic observations:

L = − logP (Y |X) = −
∑
t

logP (yt|X,Y0:t−1) (1)

where X is a vector of acoustic observations, Y is the
sequence of ground truth labels and t is the step in the se-
quence. The two tasks will use different representations of
the ground truth, where one of the representations is based on
expert knowledge in the form of a lexicon while the other is
based on the textual transcriptions.

We also use a secondary decoder trained using the Con-
nectionist Temporal Classification objective function:

LCTC = − logP (Y |X) =
∑

π∈B−1(Y )

P (π|X) (2)

where B−1(Y ) is a set containing all possible alignments π of
the sequence Y when including the blank label and allowing
label repetitions. As shown in literature, this helps the model
learn a monotonic alignment between the acoustics and the
labels, resulting in faster convergence [27].

The multitask loss of our model is a weighted combina-
tion of the losses from the primary and secondary task and the
CTC decoder:

Lmt = (1− α− β)L1 + αL2 + βLCTC (3)

For our secondary task, we use labels with a higher de-
gree of granularity representing the sounds composing the ut-
terance. To help the model with learning this representation
as a lower lever abstraction of the main task’s representation,
we compute the output of the secondary task using the hidden



representation of a lower layer in the decoder instead of the
last one. Fig.1 gives a visual representation of our architec-
ture.

’SUN BATH ING’’s uh n b ee dh i ng’

Primary output Secondary output

Decoder layer 6

Decoder layer 5

Decoder layer 1

Encoder

Input

CTC decoder

Fig. 1. Architecture of the multitask transformer model.

4. EXPERIMENTAL SETUP

Our experiments were carried out using a transformer model [28].
All the feed-forward layers in the transformer have a dimen-
sion of 2048. We use 8-headed attention layers with a dimen-
sion of 512. The encoder uses 12 transformer layers, while
the decoder has 6. The primary target labels are byte pair
encodings (BPE), with a vocabulary size of 5000 BPEs. A
CTC decoder is trained jointly with the transformer decoder
on the BPE labels. Our input features are 83 dimensional
Filterbanks features with pitch. Our architecture follows the
one in Karita et al. [29].

To include the information from the lexicons, we trained
models in a multitask configuration. The secondary task in
this configuration is recognizing the metaphonemic transcrip-
tion of the audio. The output layer for the secondary task is
connected to the penultimate layer of the decoder. This is to
force the model to learn the metaphoneme transcription of the
acoustics as a lower level abstraction of the BPEs.

To determine whether the accent invariance of the meta-
phoneme transcriptions brings useful information to our mod-
els, we also experimented with phonemic transcriptions. For
this, we used the CMU pronunciation dictionary, contain-
ing pronunciations of English words as they’re commonly
realized in North American accents. Both the phoneme and
metaphoneme dictionaries were expanded using grapheme-
to-phoneme conversion to contain all words in our datasets.
The metaphonemic lexicon uses 632 unique symbols, while
the phonemic one has 72. The secondary output is used in

training and adaptation, but is not used during the decoding
process.

The baseline models were trained for 120 epochs. When
running adaptation on the separate accents, we fine-tuned all
parameters of the model for 15 epochs. The CTC loss had a
weight of 0.3 and, where used, our secondary task loss had a
weight of 0.2.

During decoding, a language model trained on the tex-
tual data released with LibriSpeech was combined with the
models using shallow fusion. Our language model consists of
16 transformer layers using the same hyperparameters as the
speech recognition model. We used the ESPnet toolkit for our
experiments.

4.1. Data

Our experiments make use of the English portion of Mozilla
Common Voice, a crowd-sourced and crowd-validated corpus
of prompted speech [30]. During the collection of the speak-
ers were asked to self-report various information, including
accent spoken. Reporting the accent information by the par-
ticipants was made optional; we made use of the data where
accent labels are available.

Note that Common Voice has multiple releases and we are
using the second version of the corpus. Data collection and
labeling conventions vary between releases. In the second
version of the corpus only accents from nations where English
is an official language could be reported.

We split the English data for which accent labels are
present into new train, development and test sets using the
Mozilla CorporaCreator tool, so as to make our setup repro-
ducible. Details of this setup are in Tables 2 and 3, listing the
amounts of data and speakers for each accent.

For our experiments, we created a mixed accent set by
pooling the England, US and Australian accented sections of
the training set, resulting in ~145 hours of data.

Some of our experiments use LibriSpeech, a corpus of
read speech from audiobooks [31]. Similarly to Common
Voice, the recordings are crowd-sourced but the validation
process used hybrid speech recognition models to align and
filter the data. As the hybrid models used for the valida-
tion process were based on VoxForge English and Wall Street
Journal data, we can expect LibriSpeech to have recordings
of accents closer to North American English [32, 33].

5. RESULTS

5.1. Common Voice

For models trained on ~145 hours of Common Voice English,
US and Australia pooled data, our results show the multi-task
training is, on average, slightly more robust to accent vari-
ability than the single task model. The single task model has
better results than the metaphoneme model only on the Irish,



Accent Duration Utterances Speakers

US 100.5 hrs 68527 886
England 26.1 hrs 18280 291
Australia 18.0 hrs 12046 102
Canada 13.4 hrs 8883 127
Scotland 6.6 hrs 3716 25
Ireland 2.5 hrs 1612 18
African 2.0 hrs 1366 31
Philippines 59.0 min 691 12
Singapore 45.1 min 489 6
Malaysia 16.7 min 205 6
Hong Kong 1.5 min 21 5
Bermuda 0.4 min 6 4

TOTAL 171.4 hrs 115729 1523

Table 2. Amount of data in relation to number of speakers and
utterances for different accents in our Common Voice train
set. The table is ordered by hours of data in the train set.

Accent Duration Utterances Speakers

US 13.2 hrs 9026 2050
England 3.7 hrs 2488 590
Australia 55.2 min 631 154
Canada 1.5 hrs 998 215
Scotland 15.5 min 178 41
Ireland 28.0 min 253 57
African 31.9 min 344 77
Philippines 16.2 min 173 43
Singapore 5.5 min 58 18
Malaysia 11.9 min 134 30
Hong Kong 7.5 min 82 22
Bermuda 5.3 min 59 19
India 3.1 hrs 2003 624
New Zealand 10.9 min 120 34

TOTAL 24.8 hrs 16671 4000

Table 3. Amount of data in relation to number of speakers and
utterances for different accents in our Common Voice test set.
The table is ordered by hours of data in the train set. In italic,
accents not present in the train set.

Scottish and African data. A possible explanation is the pho-
netic Levenshtein distance of those accents from the ones in
our pooled training set [34]. For the accents seen in the train-
ing set, using metaphonemes as a secondary task results in
consistently better word error rate than the single task train-
ing and, on average, better results than the model trained on
phonemes as targets, showing the model can make good use
of the expert knowledge given. Full results are in table 4.

5.2. LibriSpeech

We trained baseline models on the full ~960 hours of train-
ing data in the LibriSpeech corpus. Our results for the sin-

Accent BPE MT (BPE + MPH) MT (BPE + PHN)

African 18.1 18.4 18.1
Australia 12.5 11.8 13.1
Bermuda 15.1 15.6 14.5
Canada 13.4 12.9 12.5
England 15.7 15.4 15.0
Hongkong 28.7 27.7 28.9
Indian 27.5 26.0 26.6
Ireland 16.1 18.4 16.5
Malaysia 20.4 20.1 18.8
New Zealand 16.5 15.8 15.9
Philippines 25.3 24.9 24.9
Scotland 16.4 17.3 16.8
Singapore 17.5 15.3 18.7
US 14.4 13.6 13.6

Avg. seen 14.2 13.6 13.9
Avg. unseen 19.5 19.3 19.3

Table 4. WER (%) results for models trained either using
only BPEs or in a multitask configuration with metaphonemes
or phonemes. The models are trained on CommmonVoice
US, Australian and England pooled training data.

Model Dev Dev – other Test Test – other

BPE 2.3 5.6 2.6 5.7
MT (BPE + MPH) 2.3 5.6 2.7 5.8
MT (BPE + PHN) 2.2 5.6 2.6 6.0

Table 5. WER (%) results for models trained either using
only BPEs or in a multitask configuration with metaphonemes
or phonemes. The model is trained on ~960 hours of Lib-
riSpeech data.

gle task model mirror those from Karita et al. [29], which
uses the same transformer architecture. The models trained
on phonemes or metaphonemes as the secondary task have a
very similar performance to the single task architecture on the
LibriSpeech development and test sets (table 5).

When decoding the accented speech in Common Voice,
the multitask models trained on the full LibriSpeech data had,
on average, worse results than the single task model (table 6).

After adapting the models trained on the full LibriSpeech
data to the accents in Common Voice separately, the single
task model is, on average, more accurate than the multitask
models. In relative terms, the model adapted using meta-
phonemes as a secondary task has an average relative im-
provement of 11.5% over its baseline, a slight edge over the
single task model’s improvement of 9.6%.

The metaphonemic model consistently outperforms the
phonemic model. Furthermore, the metaphonemic adaptation
is the only one having accuracy improvements over all ac-
cents, while the single task and phonemic models degrade in
two of the lower resourced accents, Hong Kong and Singa-
pore. As the unadapted multitask models have similar perfor-
mance and identical architecture and training, the higher and



Accent BPE MT (BPE + MPH) MT (BPE + PHN)

African 19.8 18.9 20.2
Australia 12.3 12.7 12.6
Bermuda 13.8 14.0 14.7
Canada 14.2 14.1 14.4
England 16.2 16.7 17.0
Hong Kong 32.3 34.5 32.5
Indian 29.8 30.5 31.3
Ireland 16.7 17.6 17.0
Malaysia 22.6 24.2 23.9
New Zealand 14.3 16.5 16.8
Philippines 22.9 25.2 25.0
Scotland 17.4 19.1 18.1
Singapore 17.6 18.9 19.6
US 15.2 15.4 15.9

Average 18.9 19.9 19.9
Adapt average 18.4 19.3 19.2

Table 6. Baseline WER (%) results for models trained either
using only BPEs or in a multitask configuration with meta-
phonemes or phonemes. The models are trained on ~960
hours of LibriSpeech data and tested on Common Voice data.
Adapt average is the average of accents that do have a train
set; this average is comparable to the one in table 7.

Accent BPE MT (BPE + MPH) MT (BPE + PHN)

African 16.2 17.1 17.1
Australia 10.1 9.8 10.4
Bermuda 13.8 14.0 14.7
Canada 12.1 12.4 12.9
England 13.3 13.1 14.2
Hong Kong 33.9 34.2 33.2
Ireland 14.9 15.6 15.1
Malaysia 19.2 20.9 21.4
Philippines 20.8 22.9 22.9
Scotland 15.9 16.2 16.9
Singapore 18.7 17.5 21.6
US 10.8 11.0 11.5

Average 16.6 17.1 17.7

Table 7. WER (%) results for models adapted either using
only BPEs or in a multitask configuration with metaphonemes
or phonemes. The seed models are trained on ~960 hours of
LibriSpeech data and fine-tuned on the Common Voice ac-
cents separately.

more consistent gains during adaptation can be attributed to
the choice of secondary targets. This indicates that the accent
independence of the metaphonemes brings useful and rele-
vant information for accent adaptation. Full results for the
adaptation experiments are in table 7.

5.3. Ablation study

To have a clearer picture of how the information from the
secondary tasks is used by the model, we adapted the Lib-
riSpeech baseline models on two accents of the Common

Model WER Australia WER Canada

Single task base 12.3 14.2
Adapted – BPE only 10.1 12.1
Adapted – MPH only —- —-
Adapted – CMU only —- —-
Adapted – BPE + MPH 9.8 12.2
Adapted – BPE + PHN 9.8 11.9

MT base (BPE + MPH) 12.7 14.1
Adapted – BPE only 10.4 13.1
Adapted – MPH only 11.2 13.3
Adapted – BPE + MPH 9.8 12.4

MT base (BPE + PHN) 12.6 14.4
Adapted – BPE only 10.9 13.5
Adapted – PHN only 12.5 15.0
Adapted – BPE + PHN 10.4 12.9

Table 8. WER (%) results for single and multi-task mod-
els adapted in different configurations. The seed models are
trained on ~960 hours of LibriSpeech data and fine-tuned on
Common Voice England English data. Missing results indi-
cate models that diverged during adaptation.

Voice corpus, Australian and Canadian, experimenting with
adapting the three seed models in single and multitask con-
figurations.

The results in table 8 show that the single task models
did not converge when trying to fine-tune using only the sec-
ondary task; this is expected, as the model hasn’t seen this
information during the original training. When fine-tuning
the single task baseline with an additional secondary task, the
model has slight fluctuation in accuracy over using only the
BPE labels, which we believe to be a regularization effect.

More interestingly, the metaphonemic models rely on
both tasks. Both sources of information have a positive im-
pact on the accuracy of the model when used separately, and
the combination of the tasks outperforms their separate im-
provement. In comparison, the phonemic models don’t seem
to rely on the secondary task as much, with the performance
on Canadian degrading when adapting only on phonemes.

Note that the secondary task is ignored during the beam
search and, as it is output from a lower layer, it doesn’t adapt
the last decoder layer. Thus, the improvements in WER when
adapting a multitask model relying only on the secondary task
show that the models managed to learn a structured represen-
tation that informs the final BPE output, and that is possible to
adapt this representation with a positive impact on the output.

We then tried to determine why the single task model has
better absolute performance than the multi-task model on the
LibriSpeech dataset. We hypothesized this degradation to be
an effect of the lower accent variability in the training data,
as the model can’t learn a more robust representation without
seeing the shifts in pronunciation in different accents.



Model Dev Dev – other Test Test – other

BPE 5.3 14.2 5.9 14.8
MT (BPE + MPH) 4.9 13.7 5.3 13.9
MT (BPE + PHN) 4.9 13.4 5.5 14.1

Table 9. WER (%) results for models trained either using
only BPEs or in a multitask configuration with metaphonemes
or phonemes. The model is trained on ~100 hours of clean
LibriSpeech data.

Accent BPE MT (BPE + MPH) MT (BPE + PHN)

African 45.6 41.2 41.2
Australia 28.9 27.8 26.3
Bermuda 29.6 26.1 29.4
Canada 25.9 24.7 24.7
England 37.8 36.3 36.4
Hongkong 55.1 49.3 54.5
Indian 65.4 62.1 63.3
Ireland 31.8 30.6 30.5
Malaysia 47.2 42.7 45.5
New Zealand 38.0 37.1 36.8
Philippines 43.1 41.8 41.7
Scotland 36.3 32.5 32.7
Singapore 41.3 37.6 42.5
US 29.6 28.2 28.0

Average 39.7 37.0 38.1

Table 10. Baseline WER (%) results for models trained ei-
ther using only BPEs or in a multitask configuration with
metaphonemes or phonemes. The models are trained on ~100
hours of clean LibriSpeech data and tested on Common Voice
data.

To determine how the accent variability seen by the model
and the hours of training data affect our models, we decided
to train on the clean training set of LibriSpeech. The ~100
hours of clean data in LibriSpeech were originally selected by
decoding using a model trained on the WSJ corpus and taking
the utterances with the lowest WER. This means that the clean
set is closer in realization to North American English, as the
utterances matching the domain of the WSJ corpus will have
lower error rates.

The results in tables 9 and 10 show the multitask models
outperforming the single task models. This improvement is
consistent on both the LibriSpeech and Common Voice test
sets, with the metaphonemic model having a relative gain of
about 6% over its single task counterpart. Additionally, while
the two multitask models perform similarly on LibriSpeech
data the phonemic model is, on average, less robust to the
accents present in the Common Voice corpus.

Since the clean set of LibriSpeech has less accent variabil-
ity, the fact that the model using metaphonemes outperforms
the single task model on the Common Voice data is surpris-
ing when compared to the reverse results when using the full
training set. The full training set sees more variability in ac-

cent realization, so we’d expect to see an increase in perfor-
mance at least on the accented data.

This indicates that with higher amounts of data, the model
reaches a better internal representation when unconstrained
by the secondary task. As our other experiments show that the
auxiliary information is valuable and synergistic with the pri-
mary task, we believe the degradation on the full LibriSpeech
set might be due to inadequate use of the information pro-
vided, either by under-fitting or lacking modelling power. A
better matching architecture or hyperparameters could lead to
gains in performance on larger datasets.

6. CONCLUSION AND FUTURE WORK

We presented a multitask method making use of additional
linguistic information to help structure the internal represen-
tation of the model. We showed how this representational
constraint can help, when used in conjunction with relevant
expert knowledge, to increase model robustness and adap-
tation power, especially when training on lower amounts of
data.

In the future, we plan to expand the experiments to better
determine how the accent variability and data amounts seen
by the model affect results, and whether model and hyperpa-
rameter choices can lead to better accuracy. Further explo-
ration will pertain whether it’s possible to obtain similar in-
formation to metaphonemic transcriptions in an unsupervised
way, such as finding accent independent mappings through
sound class frequencies, phonotactics and word level tran-
scriptions.

7. ACKNOWLEDGMENTS

This work was supported by a project funded by Samsung
Electronics Co., Ltd. (Samsung Research).

8. REFERENCES

[1] Carlos Teixeira, Isabel Trancoso, and António Serral-
heiro, “Accent identification,” in ICSLP, 1996.

[2] Ghinwa Choueiter, Geoffrey Zweig, and Patrick
Nguyen, “An empirical study of automatic accent clas-
sification,” in ICASSP, 2008.

[3] Ahmed Ali, Najim Dehak, Patrick Cardinal, Sameer
Khurana, Sree Harsha Yella, James Glass, Peter Bell,
and Steve Renals, “Automatic dialect detection in Ara-
bic broadcast speech,” in Interspeech, 2016.

[4] Ahmed Ali, Stephan Vogel, and Steve Renals, “Speech
recognition challenge in the wild: Arabic MGB-3,” in
ASRU, 2017.



[5] Ahmed Ali, Suwon Shon, Younes Samih, Hamdy
Mubarak, Ahmed Abdelali, James Glass, Steve Re-
nals, and Khalid Choukri, “The MGB-5 challenge:
Recognition and dialect identification of dialectal Ara-
bic speech,” in ASRU, 2019.

[6] Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pe-
gah Ghahremani, Vimal Manohar, Xingyu Na, Yim-
ing Wang, and Sanjeev Khudanpur, “Purely Sequence-
Trained Neural Networks for ASR Based on Lattice-
Free MMI,” in Interspeech, 2016.

[7] Peter Smit, Siva Reddy Gangireddy, Seppo Enarvi, Sami
Virpioja, and Mikko Kurimo, “Aalto system for the
2017 Arabic multi-genre broadcast challenge,” in ASRU,
2017.

[8] Sameer Khurana, Ahmed Ali, and James Glass,
“DARTS: Dialectal arabic transcription system,” arXiv
preprint arXiv:1909.12163, 2019.
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